A SEMI-AUTOMATED REQUIREMENTS PRIORITISATION TECHNIQUE FOR SCALABLE REQUIREMENTS WITH STAKEHOLDER QUANTIFICATION AND PRIORITISATION

FADHL MOHAMMED OMAR HUJAINAH

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that We have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

__
(Supervisor’s Signature)
Full Name : DR. ROHANI BINTI ABU BAKAR
Position : ASSOCIATE PROFESSOR
Date : August 1, 2019

__
(Co-supervisor’s Signature)
Full Name : DR. MANSOOR ABDULLATEEF ABDULGABBER
Position : ASSISTANT PROFESSOR
Date : August 1, 2019
I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : FADHL MOHAMMED OMAR HUJAINAH
ID Number : PCS15001
Date : August 1, 2019
A SEMI-AUTOMATED REQUIREMENTS PRIORITISATION TECHNIQUE FOR
SCALABLE REQUIREMENTS WITH STAKEHOLDER QUANTIFICATION
AND PRIORITISATION

FADHL MOHAMMED OMAR HUJAINAH

Thesis submitted in fulfillment of the requirements
for the award of the degree of
Doctor of Philosophy

Faculty of Computer Systems and Software Engineering
UNIVERSITI MALAYSIA PAHANG

AUGUST 2019
ACKNOWLEDGEMENTS

As a PhD foreign student, living in a very far country of my homeland with limited source of income has never been easy at all. Thus, the completion of this thesis has been made possible with the help of his almighty (Allah S.W) by giving me wisdom, health, strength and patience and then through the encouragement, support and guidance of many individuals.

First and foremost, truly and honestly, this journey would not be achieved without two persons who have been wisely, patiently, supportively and continuously encouraging me to finish up this work. From the bottom of my heart I would like to express my deepest appreciation to my main supervisor, Associate Professor. Dr Rohani Binti Abu Bakar, for her wonderful guidance, insights and working hand in hand and words of motivations. Also my co-supervisor, Assistant Professor. Dr Mansoor Abdulateef Abdulgabber, for his generous and patient to reviews, comments, and thoughtful suggestions to improve this thesis. I am forever grateful and thankful to have met and been given the opportunity to work with both of them.

I would like to dedicate these years of hard work to my family members – my mother-Obeidah, my father-Mohammed, my brothers- Omar, Amr, Ammar and Abdullah, my sisters- Amira, Hadeel and Bian, and my uncle-Ali Sheikh for their endless supports, patient and prayers.

My sincere gratitude goes to Yemeni Ministry of Higher Education, and University Malaysia Pahang for giving me this opportunity and providing me with the financial support.

I am also particularly indebted to all my interviewees and respondents for their support and willingness to spend their precious time and effort to take part in this study. Their generosity and honesty is greatly appreciated. Special thanks to all of my friends, lab mates for their encouragement and support.

I would like to acknowledge the Institute of Postgraduate Studies (IPS) of UMP and the Faculty of Computer Systems and Software Engineering, dean of the Faculty, deputy deans and also all the supporting staff and technical staff for their assistance and making things and procedures in clear and smoothly manner in order to complete this work.

Saving the best for last, to my soul (my mother) – Obeidah “Thank you for being besides me throughout these years and I am thankful to have you, you always motivate me to struggle and work hard”.

ii
ABSTRAK

Salah satu cara untuk memastikan kualiti sistem aplikasi adalah dengan mengambilkira proses penentuan keutamaan keperluan perisian. Proses pengutamaan keperluan perisian selalunya dijalankan untuk memilih kerperluan perisian yang penting sebagaimana yang dinyatakan dan dihasratkan oleh pihak berkepentingan sesuatu sistem. Ini menjadikan proses ini adalah satu proses yang penting dalam memastikan kualiti dan kejayaan pembangunan perisian sistem tersebut. Proses kuantifikasi dan keutamaan pihak berkepentingan perisian dilaksanakan adalah dengan tujuan untuk mengenalpasti dan memberi keutamaan kepada senarai pihak berkepentingan berdasarkan pengaruh yang mereka ada dalam memilih keperluan utama aplikasi. Oleh itu, penelitian ini memfokuskan kepada kaedah kuantifikasi keutamaan pihak berkepentingan dan juga senarai keperluan didalam sesuatu projek pembangunan aplikasi. Dalam masa yang sama, ianya juga mengambilkira isu yang dihadapi oleh teknik-teknik semasa seperti isu berskala besar, kelemahan didalam proses kuantifikasi keutamaan pihak berkepentingan, kekurangan dalam penjelasan bagaimana proses pemilihan ini dilakukan, ketiadaan kriteria penilaian pihak berkepentingan dan keberkatan yang kuat kepada keperluan manusia didalam memastikan kejayaan proses-proses ini. Isu-isu ini menjadi motivasi utama didalam penyelidikan yang dirancang dan dijalankan. Oleh itu, teknik untuk penyenaraian keutamaan perisian yang berskala besar dan bersifat separa automatik (SRPTackle) dengan mengintegrasikannya bersama teknik baru untuk proses kuantifikasi keutamaan pihak berkepentingan yang dinamakan sebagai StakeQP telah dicadangkan untuk menyelesaikan masalah yang dinyatakan diatas. StakeQP berkeupayaan untuk melakukan proses kuantifikasi keutamaan pihak berkepentingan berasaskan atribut penilaian baru yang dengan menggunakan teknik kepelbagaian atribut membuat keputusan yang bernama TOPSIS. Manakala, SRPTackle yang dicadangkan akan menghasilkan nilai keutamaan keperluan perisian dengan menggunakan algoritma K-Means, K-Means++ dan carian pokok binary. StakeQP pula telah diuji dengan menggunakan data penanda aras RALIC dengan menunjukkan StakeQP berupaya untuk mencapai ketepatan sebanyak 89.69% dalam proses kuantifikasi keutamaan pihak berkepentingan pihak berkepentingan. Manakala, StakeQP telah dinilai dengan menggunakan data penanda aras dari sistem pembangunan perisian yang sebenar yang berskala sedemikian dan besar dari segi senarai keperluan sistem dan juga pihak berkepentingan dengan menjalankan sebanyak tujuh (7) set eksperimen. Keputusan pengujian menunjukkan SRPTackle berupaya untuk memberi keputusan kepada pihak atau keperluan keperluan aplikasi pada minimum 93% dan maksimum 94.65%. Kesemua keputusan yang didapati menunjukkan StakeQP dan SRPTackle berupaya untuk melaksanakan proses kuantifikasi keutamaan pihak berkepentingan dan penyenaraian keperluan aplikasi dengan lebih baik dan berkesan berbanding teknik yang sediada dengan menggunakan masa yang lebih sedikit dan lebih efektif dalam mengatasi malapun yang dibincangkan diatas. Pada masa hadapan, kajian ini boleh difokuskan untuk menambah baik prestasi SRPTackle dan StakeQP dalam mengendalikan keperluan sistem yang bergantungan dan juga mengelasan pihak berkepentingan dengan set data yang berbeza dari projek perisian sebenar.
ABSTRACT

One of the gatekeepers of quality software systems is requirements prioritisation (RP) that is often used to select the most important requirements as perceived by system stakeholders. RP is considered as a vital role in ensuring the development of a quality system with defined constraint. Stakeholder quantification and prioritisation (SQP) is executed to quantify and prioritise the stakeholders of the system based on their impacts. The SQP plays a crucial role in identifying and selecting the most essential requirements to produce a successful system. Thus, this research mainly focuses on the RP and SQP domains. Although, the useful of the existing RP and SQP techniques, a close look discloses that these techniques face key challenges with respect to the scalability, shortage of SQP process, lack of low SQP implementation detail with respect to the non-existence of attributes measurement criteria and heavily need of highly professional human intervention in quantifying and prioritising the participating stakeholders and specifying priority value of each requirement in RP process, and lack of automation along time consumption in performing the SQP and RP processes. Hence, a new semi-automated scalable prioritisation technique (SRPTackle) integration with a new SQP technique (StakeQP) are proposed to address the reported key limitations. The StakeQP introduces new low-level implementation details to perform SQP automatically. The StakeQP is on the basis of the newly proposed new measurement criteria for each SQP attribute and using the multi-attribute decision-making method, namely, technique of order preference similarity to the ideal solution (TOPSIS). Furthermore, the proposed SRPTackle is based on the combination of the proposed StakeQP technique, the constructed requirement priority value formulation function and the employing of classifying algorithm (K-means and K-means++) and binary search tree. The effectiveness of SRPTackle and StakeQP are evaluated using a benchmark dataset of the actual software project (RALIC). Experimental implementation of the proposed StakeQP technique and comparative analysis against the existing SQP techniques have been conducted in order to evaluate the StakeQP performance. On other hand, seven experiments are conducted using the large sets of requirements with purpose of assessing the SRPTackle and comparing the SRPTackle performance results with other alternative techniques. The experiments show that StakeQP can produce accurate result of 89.69 %, while accuracy results of the SRPTackle are 93.0% and 94.65% as minimum and maximum accuracy, respectively, which are better than other existing SQP and RP techniques. Also, the findings demonstrate that the StakeQP and SRPTackle perform the SQP and RP process, respectively with less time consumption and are more effective in addressing the reported key limitations compared with other alternative techniques. Future research can dig deeper in improving the SRPTackle and StakeQP performance in terms of catering the requirements independencies and stakeholder classifications, respectively, along with extending the implication of the StakeQP and SRPTackle with different dataset of global software projects practices for better applicability.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Research Motivation 3

1.3 Problem Statement 5

1.4 Research Objectives 7

1.5 Research Questions 8

1.6 Research Scope 10

1.7 Thesis Organization 10

CHAPTER 2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Requirements Prioritisation 13
2.3 Stakeholder Quantification and Prioritisation 15
2.4 Literature Exploration and Analysis 17
 2.4.1 SLR-RP 17
 2.4.2 SLR-SQP 33
2.5 Gap Analysis 46
2.6 Chapter Summary 51

CHAPTER 3 RESEARCH METHODOLOGY 53

3.1 Introduction 53
3.2 Research Methodology Process 53
 3.2.1 Planning Stage 53
 3.2.2 Investigation Stage 55
 3.2.3 Development Stage 56
 3.2.4 Evaluation Stage 64
 3.2.5 Conclusion Stage 66
3.3 Chapter Summary 66

CHAPTER 4 STAKEQP: THE PROPOSED SEMI-AUTOMATED
STAKEHOLDER QUANTIFICATION AND PRIORITISATION
TECHNIQUE 67

4.1 Introduction 67
4.2 Proposed StakeQP Technique 68
 4.2.1 Establishment Phase: 68
 4.2.2 Stakeholder Profile Collection 81
 4.2.3 Formulating the SPV 81
4.3 StakeQP Automation Implementation Tool (StakeQP-AIT) 86
4.4 Evaluation 89
4.4.1 Experimental Study 89
4.4.2 Performance Analysis and Result Evaluation 90
4.5 Threats to Validity 97
4.6 Chapter Summary 99

CHAPTER 5 SRPTACKLE: THE PROPOSED SEMI-AUTOMATED SCALABLE REQUIREMENTS PRIORITISATION TECHNIQUE 100

5.1 Introduction 100
5.2 The Proposed SRPTackle Technique 101
 5.2.1 Pre-prioritisation Phase 101
 5.2.2 Post-prioritisation Phase 101
5.3 SRPTackle Automation Implementation Tool 107
5.4 Experimentations 109
 5.4.1 SRPTackle Performance Analysis and Result Evaluation 111
5.5 Threats to Validity 119
5.6 Chapter Summary 120

CHAPTER 6 CONCLUSION AND FUTURE WORK 122

6.1 Introduction 122
6.2 Thesis Synopsis 122
6.3 Research Contribution 125
6.4 Future Work 132

REFERENCES 135

APPENDIX A SLR-RP 151
APPENDIX B SLR-SQP 185
APPENDIX C STAKEQP 200
LIST OF TABLES

Table 1.1 Casuative Factors of System Development Projects Failure 4
Table 2.1 SQP Execuation Process of The RP Techniques 48
Table 4.1 Definitions of StakeQP Attributes 70
Table 4.2 Detailed Description of the Measurement Criteria for RIA Attribute 72
Table 4.3 Detailed Description of the Measurement Criteria for PPA Attribute 73
Table 4.4 Demographic Analysis of Participating Experts 76
Table 4.5 The Used Importance Level of Likert Scale 77
Table 4.6 AWV of Each Proposed Attribute 78
Table 4.7 MCV of Attributes Measurement Criteria 79
Table 4.8 Decision Matrix 84
Table 4.9 Normalized Decision Matrix 84
Table 4.10 Weighted Normalized Decision Matrix 85
Table 4.11 Sample of the RALIC Stakeholder Profiles 90
Table 4.12 Sample of the StakeQP Experimental Results 90
Table 4.13 Comparative Analysis of StakeQP with Existing Techniques based on Time Consumption 92
Table 4.14 The Interpretation of Correlation Coefficients Value 95
Table 4.15 Comparative Analysis of StakeQP with Different Existing Techniques 97
Table 5.1 The Experiements Details 110
Table 5.2 Accuracy Results of the SRPTackle 113
Table 5.3 SRPTackle Time Consumption Results 114
Table 6.1 Research Objectives Achievements 124
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Percentage of Unsuccessful System Development Projects From 2011 to 2015</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>The Linking Structure among the Research Objectives and Questions</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>The Map Structure of the Literature Review</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Successful Rate of the Systems Project Development in 2015</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Classification of RP Techniques based on the Executation Type</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Techniques that Address Size of Requirement Sets</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Requirements Prioritisation Criteria and their Usages Frequency</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Categories of RP Stakeholders</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Contexts of RP Techniques</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Publication Tendencies of Selected Primary Studies by Publication Year and Study Focus with Contexts</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Importance Degree of SQP Attributes</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>SQP Existing Techniques</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Percentage of the Existence of Scalability Issue in RP Techniques</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Research Methodology Process</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>SLR-RP and SLR-SQP Review Protocol</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>StakeQP Structure Design and Development</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>SRPTackle Structure Design and Development</td>
<td>59</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Process of StakeQP Technique</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>StakeQP Attributes</td>
<td>70</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>AWV Calculation Method</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>MCV Calculation Method</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>StakeQP-AIT Implementation Structure.</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Performance Analysis of StakeQP with respect to Time Consumption</td>
<td>93</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Accuracy Performance of StakeQP</td>
<td>96</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Process Structure of the Proposed SRPTackle Technique</td>
<td>102</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Clustering Pseudo Code</td>
<td>104</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>BST Pseudo Code</td>
<td>107</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Implementation Structure of the SRPTackle-Tool</td>
<td>108</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Sample of Experimentation Result of the Partial List of the Prioritised Requirements.</td>
<td>110</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Accuracy Performance Analysis</td>
<td>113</td>
</tr>
</tbody>
</table>
Figure 5.7 Time Consumption Performance Analysis 115
Figure 6.1 Research Contributions 125
LIST OF SYMBOLS

\[\Sigma \quad \text{Summation} \]
\[\% \quad \text{Percentage} \]
\[\geq \quad \text{Greater than or Equal to} \]
\[\leq \quad \text{Less than or Equal to} \]
\[\text{PIS} \quad \text{Positive Ideal Solution Value} \]
\[\text{NIS} \quad \text{Negative Ideal Solution Value} \]
\[S^* \quad \text{Separation Value of Stakeholder from the Positive Ideal Solution} \]
\[S^- \quad \text{Separation Value of Stakeholder from the Negative Ideal Solution} \]
\[\text{RC} \quad \text{Relative Closeness Value} \]
\[h \quad \text{Hour} \]
\[s \quad \text{Second} \]
\[\in \quad \text{Element of} \]
\[— \quad \text{Division} \]
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC</td>
<td>Attribute Measurement Criteria</td>
</tr>
<tr>
<td>ASD</td>
<td>Agile Software Development</td>
</tr>
<tr>
<td>AWV</td>
<td>Attribute Weight Value</td>
</tr>
<tr>
<td>BST</td>
<td>Binary Search Tree</td>
</tr>
<tr>
<td>CD</td>
<td>Cognitive Driven</td>
</tr>
<tr>
<td>EA</td>
<td>Experience Attribute</td>
</tr>
<tr>
<td>EBA</td>
<td>Educational Background Attribute</td>
</tr>
<tr>
<td>GRQE</td>
<td>Goal-Oriented Requirement Engineering</td>
</tr>
<tr>
<td>IA</td>
<td>Interest Attribute</td>
</tr>
<tr>
<td>KA</td>
<td>Knowledge Attribute</td>
</tr>
<tr>
<td>MCV</td>
<td>Measurement Criteria Value</td>
</tr>
<tr>
<td>MDSD</td>
<td>Market-Driven Software Development</td>
</tr>
<tr>
<td>PPA</td>
<td>Power Position Attribute</td>
</tr>
<tr>
<td>QAC</td>
<td>Quality Assessment Criteria</td>
</tr>
<tr>
<td>RALIC</td>
<td>Replacement Access, Library and ID Card</td>
</tr>
<tr>
<td>RCCD</td>
<td>Real-Client Custom Development Projects</td>
</tr>
<tr>
<td>RCWV</td>
<td>Requirement Cost Weight Value</td>
</tr>
<tr>
<td>RE</td>
<td>Requirements Engineering</td>
</tr>
<tr>
<td>RIA</td>
<td>Role Influence Attribute</td>
</tr>
<tr>
<td>RIWV</td>
<td>Requirement Importance Weight Value</td>
</tr>
<tr>
<td>RP</td>
<td>Requirements Prioritisation</td>
</tr>
<tr>
<td>RPV</td>
<td>Requirement Priority Value</td>
</tr>
<tr>
<td>RQ</td>
<td>Research Question</td>
</tr>
<tr>
<td>SA</td>
<td>Software Architecture</td>
</tr>
<tr>
<td>SAV</td>
<td>Stakeholder Attribute Value</td>
</tr>
<tr>
<td>SDOW</td>
<td>System Development Organisational Work</td>
</tr>
<tr>
<td>SE</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>SLR</td>
<td>Systematic Literature Review</td>
</tr>
<tr>
<td>SNSD</td>
<td>Social Network System Development</td>
</tr>
<tr>
<td>SPV</td>
<td>Stakeholder Priority Value</td>
</tr>
<tr>
<td>SQP</td>
<td>Stakeholder Quantification and Prioritisation</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SREP</td>
<td>Software Release Planning</td>
</tr>
<tr>
<td>SRPTackle</td>
<td>Semi-automated Scalable Requirements Prioritisation Technique</td>
</tr>
<tr>
<td>StakeQP</td>
<td>Semi-automated Stakeholder Quantification and Prioritisation Technique</td>
</tr>
<tr>
<td>TOPSIS</td>
<td>Technique of Order Preference Similarity to the Ideal Solution</td>
</tr>
<tr>
<td>VBSD</td>
<td>Value-based Software Development</td>
</tr>
</tbody>
</table>
REFERENCES

Achimugu, P. & Selamat, A. 2015. A hybridized approach for prioritizing software requirements based on evolutionary algorithms. Computational Intelligence Applications in Modeling and Control, hlm. 73–93.

Ahuja, H., Sujata & Batra, U. 2018. Performance enhancement in requirement prioritization by

Heidelberg, hlm. 67–78.

Ma, Q. 2009. The effectiveness of requirements prioritization techniques for a medium to large number of requirements: a systematic literature review. Master’s Thesis, School of Computing and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.

Rabinowitz, P. 2015. Identifying and analyzing stakeholders and their interests.

Racheva, Z., Daneva, M., Sikkel, K., Wieringa, R. & Herrmann, A. 2010b. Do we know enough about requirements prioritization in agile projects: Insights from a case study. Proceedings
of the 2010 18th IEEE International Requirements Engineering Conference, RE2010, hlm. 147–156.

Rawlins, B.L.B. 2006. Prioritizing stakeholders for public relations.

148

