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ABSTRAK 

Kebelakangan ini, terdapat tumpuan yang mendalam terhadap kaedah pengkomputeran 

lembut bagi mengatasi masalah dunia sebenar yang kompleks. Rangkaian neural dan 

logik kabur merupakan antara kaedah pengkomputeran lembut yang sering digunakan 

dalam bidang klasifikasi corak. Dalam membina sebuah model pengelas yang berkesan, 

para penyelidik memperkenalkan model hibrid yang menggabungkan kedua-dua logik 

kabur dan rangkaian neural buatan. Antara algoritma yang diperkenalkan, algoritma 

rangkaian neural Min-Max Kabur (FMM) terbukti sebagai salah satu rangkaian neural 

terulung dalam mengatasi masalah klasifikasi corak. FMM mempunyai pelbagai fitur 

penting, berkebolehan untuk menyediakan proses pembelajaran dalam talian dan 

menangani masalah kelupaan. Namun sedemikian, algoritma ini turut menghadapi 

beberapa batasan, khususnya dalam proses pembelajarannya, iaitu proses pengembangan, 

proses ujian bertindih dan proses pengecutan. Oleh itu, rangkaian neural Min-Max Kabur 

Moden (MDFMM) diperkenalkan dengan tujuan mengatasi batasan-batasan FMM asal. 

MDFMM membawa kepada beberapa sumbangan seperti mengubah suai fungsi 

pengaktifan pengembangan FMM asal dan menggantikannya dengan Min-Max Kabur 

Tertingkat (EFMM) untuk menyingkirkan kes bertindih. Pertama, kajian ini 

mencadangkan kaedah pengembangan baru untuk mengatasi masalah kelonggaran dan 

ketaksamaan pengembangan hiperboks yang bertindih. Akibatnya, kaedah ini dapat 

mengurangkan proses pengecutan. Kedua, kajian ini mengusulkan satu formula ujian 

bertindih baru yang mempermudahkan proses ujian bertindih FMM/EFMM dengan 

meliputi semua kes bertindih yang mungkin dengan sempurna. Ketiga, kajian ini 

mencadangkan satu proses pengecutan baru yang memberikan gambaran hiperboks yang 

lebih tepat dan menghindari masalah herotan data (kehilangan maklumat hiperboks). 

Keempat, kajian ini mengusulkan strategi ramalan baru dalam fasa ujian dengan 

menyepadukan persamaan jarak bersama fungsi keahlian untuk menangani masalah 

pembuatan keputusan rawak. Strategi ini dapat membantu untuk memberikan ramalan 

yang lebih tepat ketika sampel input mempunyai nilai kesesuaian yang sama dengan kelas 

lain. Bagi mengatasi kerumitan struktur rangkaian MDFMM, satu penambahbaikan 

diperkenalkan dengan meningkatkan pemilihan hiperboks yang menang dalam proses 

pengembangan menggunakan algoritma k-terdekat. Model cadangan baru dinamakan 

sebagai MDFMM-Kn. Prestasi MDFMM dan MDFMM-Kn dinilai menggunakan 

pelbagai set data tanda aras UCI dan set data kecerdasan buatan 2D. Di samping itu, tiga 

kaedah analisis statistik, iaitu kaedah bootstrap, pengesahsahihan silang k-fold dan ujian 

taraf bertanda Wilcoxon, digunakan untuk menyatakan kuantiti prestasi secara statistik. 

Berdasarkan penilaian empirik, MDFMM yang dicadangkan didapati lebih baik 

berbanding model sedia ada (rangkaian neural Min-Max Kabur Ubah Suai, atau 

MFMMN) dari segi ketepatan dengan peratusan peningkatan sebanyak 35.42%. 

Tambahan pula, prestasi purata MDFMM-kn berbanding model FMM dan MDFMM 

menunjukkan prestasi yang lebih baik dari segi kerumitan dengan peratusan sebanyak 

62%. 
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ABSTRACT 

In the recent years, the world has demonstrated an increasing interest in soft computing 

techniques to deal with complex real world problems. Neural network and fuzzy logic 

are considered to be one of the most popular soft computing techniques that applied in 

pattern classification domain. To build an efficient classifier model, researchers have 

introduced hybrid models that combine both fuzzy logic and artificial neural networks. 

Among these algorithms, Fuzzy Min Max (FMM) neural network algorithm has been 

proven to be one of the premier neural networks for undertaking the pattern classification 

problems. Although the FMM has many important features with the ability to provide 

online learning process and can handle the forgetting problem, it suffers from a number 

of limitations, especially in its learning process i.e., expansion process, overlapping test 

process, and contraction process. Therefore, Modern Fuzzy Min Max neural network is 

introduced with aim of overcoming the specified limitations of the original FMM. The 

MDFMM introduces a number of contributions in addition to modify the original FMM 

expansion activation function by replace it with that from the Enhanced Fuzzy Min Max 

(EFMM) to eliminate the overlapping cases. First, this study proposed a new expansion 

technique to overcome both overlap leniency and irregularity of hyperbox expansion 

problems, as a result, reducing the number of contraction processes. Secondly, proposing 

a new overlapping test formula that simplify the FMM/EFMM overlap test process with 

perfectly covers all the possible overlapped cases. Thirdly, proposing a new contraction 

process that provides more accurate hyperboxes description and avoid data distortion 

problem (hyperbox information losses). Fourthly, proposing a new prediction strategy in 

the test phase by integrating the distance equation with membership function in order to 

solve the randomization decision making problem, which helps to provide more accurate 

prediction when input sample has same fitness values with different classes. To overcome 

the network structure complexity of MDFMM, a further improvement is introduced by 

improving the selection of the winning hyperbox during the expansion process using the 

k-nearest neighbours algorithm (MDFMM-Kn). The performance of MDFMM and 

MDFMM-Kn was evaluated using different UCI benchmark datasets and 2D artificial 

intelligence dataset. Furthermore, three statistical analysis techniques, namely, bootstrap 

method, k-fold cross-validation and the Wilcoxon signed-rank test, were utilized to 

statistically quantify the performances. From the empirical evaluation, the proposed 

MDFMM is better than the recent existing model modified FMM network (MFMMN) in 

terms of accuracy at an improvement percentage of 35.42%. Furthermore, the average 

performance of the MDFMM-Kn against the FMM and MDFMM models is better than 

that of the existing techniques in terms of complexity at a percentage of 62%. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background  

Numerous species inhabit the earth and are stuck in a struggle for survival. 

Although not all strong, some of these species manage to stay alive and adapt to their 

surroundings whilst others die in huge numbers to the point of extinction. Amongst these 

living beings, only humans are given a rational mind that has transformed them into the 

most powerful creature on earth with full control over other species. When facing 

hardships, humans have sought for various means to alleviate their situation. These 

challenges have driven them to engage in research and development across various fields, 

especially in science. This constant engagement in research has inspired many 

innovations that are continuously being developed up to this day. However, with the 

constant emergence of these innovations, the amount of relevant data produced each day 

has increased to a point that they can no longer be stored in the human mind. As the 

traditional means for storing data are becoming obsolete, humans have resorted to 

computers as advanced technologies for storing and retrieving information in large 

amounts. Computers are also able to simulate the human memory, thereby allowing them 

not only to store information but also make rational decisions. 

Researchers in computer science have attempted to develop a smart machine that 

can engage in a learning process similar to humans. However, several challenges have 

delayed the development of such technology, including the complex processes in a human 

brain when making decisions. Therefore, researchers have devoted much effort in 
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studying the decision-making process of the human brain. One of the pioneering 

researchers in this field was Alan Turing, whose paper served as an introduction to the 

new concept of Artificial Intelligence (AI) (Alan 1950; Jain et al. 2000), which, over the 

past few decades, has become one of the most important fields in computer science  and 

applied mathematics.  

AI has a wide range of applications, including in diagnosing patients (Begum and 

Devi 2011; Umoh 2012), forecasting the weather (Barde and Patole 2016), automating 

industrial processes  and performing agricultural and geological research (Raj et al. 2015). 

AI is also considered a key component of an intelligent machine that can simulate the 

human learning process through the use of algorithms. With the recent research 

advancements in this field, people have begun to apply AI in various areas, including in 

data mining (Kamruzzaman and Jehad Sarkar 2011), robotics, email spam filtering 

(Shrivastava and Bindu 2014), financial analysis (Tkáč and Verner 2016) and especially 

pattern recognition (PR) (Liu et al. 2018). 

PR is deemed useful in many applications, including optical character recognition 

(Mithe et al. 2014), industrial inspection, speech recognition (Hau 2015; Saksamudre et 

al. 2015), biomedical studies (i.e. neuroscience, ECG monitoring, drug development and 

DNA sequences), biometrics (i.e. face, fingerprint and iris recognition) (Unar et al. 2014) 

and military applications (Raj et al. 2015).  

Pattern classification has eventually become a popular area in PR given its 

important role in several applications, including engineering control, medical diagnosis 

(Begum & Devi, 2011), signal processing (Reaz et al. 2006), speech recognition and data 

mining (Qu 2009). Given their increasing significance, researchers have resorted to using 

various classification approaches to develop high-accuracy classifiers. Classification 

problems are often addressed by using artificial neural networks (ANNs), which are 

particularly useful for managing noisy data collected from real environments. Several 

types of ANNs are often utilised in pattern classification, such as Hopfield network, 

neuro-fuzzy network, multilayer perceptron, Boltzmann machine and radial basis 

function network (Oludolapo et al. 2012; Yilmaz et al. 2010; Yilmaz and Kaynar 2011). 
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However, the extant neural networks can only support offline (batch) learning 

(Mohammed and Lim 2015), which examines how a specific task can be performed. No 

further improvements or changes can be observed in the system after the learning phase, 

during which no task can be performed. Therefore, offline learning faces a problem called 

‘catastrophic forgetting’, where the system cannot add or update its knowledge whenever 

new information is available. In other words, the ANNs previous knowledge will be 

forgotten whenever adding a new information. 

Even though they can manage noisy and nonlinear data from real environments, 

ANNs face the catastrophic forgetting problem (also known as the stability–plasticity 

dilemma) when dealing with new information in an incremental manner (Mohammed and 

Lim 2015; Simpson 1992). When facing such problem, the system requires plasticity and 

stability in order to combine new information and to retain previous information, 

respectively (Mohammed and Lim 2015, 2017b; Simpson 1992). In other words, to 

integrate new knowledge and retain previous knowledge, a parallel and distributed system 

must possess plasticity and stability, respectively. When increasing its plasticity, the 

system forgets its previously learned knowledge; meanwhile, increasing stability will 

affect the efficient learning of the system at the level of the synapses (Mermillod et al. 

2013). This dilemma poses several problems, including 

- how can the learning system stay plastic or adaptive when receiving significant 

input patterns and stay stable in response to irrelevant input patterns? 

- how can the system learn when to switch from the plastic mode to the stable mode 

and vice versa? 

- how can the system adapt to a new environment whilst retaining its previously 

learned information? 

Several ANNs with incremental learning abilities have been proposed to address 

these questions and to solve the stability–plasticity dilemma. These ANNs include the 

FMM network (Simpson, 1992) and adaptive reasoning theory (ART, including its 

various forms such as fuzzy ART, ARTMAP and ART1; (Carpenter et al. 1991a; 

Carpenter et al. 1991b; Moore 1988). 
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To overcome the stability–plasticity dilemma, ART networks insert a feedback 

mechanism between the input and competitive layers of a network to enable the system 

to (1) learn new information without necessarily forgetting its previously stored 

information and (2) automatically switch between the plastic and stable modes. 

Accordingly, several types of ART neural networks have been introduced, including 

fuzzy ARTMAP (FAM); (Kim Hua et al. 2004; Kuan et al. 2003). Despite effectively 

handling classification problems in different domains, FAM has several limitations, the 

most important of which is the overlapping of hyperboxes (Simpson 1992). In other 

words, an input pattern may be granted full class membership to various classes, thereby 

negatively affecting the classification rate. To address this problem, Simpson introduced 

supervised and unsupervised FMM neural networks. This work selects the supervised 

FMM network as its backbone model given its focus on the classification task.   

In general, an FMM neural network consist of three layers: input, hidden, and 

output layers. FMM able to absorb information online, and there is no need to retrain the 

network when new information is available. The  FMM has the following key features 

that enable the network to address the problems in pattern classification (Mohammed and 

Lim 2015; Simpson 1992): 

- Online learning: The FMM can quickly learn new classes and refine existing ones 

without forgetting the previous information. Online learning contrasts offline 

learning such that both the old and new information are retained in the former.  

- Nonlinear: The FMM builds a nonlinear decision boundary to separate different 

classes from one another irrespective of their size and shape. 

- Overlapping classes: The FMM builds a decision boundary to reduce the number 

of misclassification patterns within the overlapping region.  

- Training time: The FMM can learn and revise the nonlinear decision boundary 

with one-pass learning within a short training time. 

- Soft and hard decisions: The FMM can support hard and soft classification 

decisions, of which the former means that the pattern is within the class (0) or not 

(1) whilst the latter quantifies the fitness degree of a pattern within a class.   

In general, an FMM neural network consists of two stages i.e., learning and testing 

stage. Where the learning involves three main processes, namely, the expansion process 

in which a new input pattern is included by expanding the hyperbox, the overlap test 
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process to identify the overlapped areas between hyperboxes belongs to various classes, 

and the contraction process in which the overlapped area is eliminated if deemed 

necessary. All three processes allow the elimination of overlapped areas between 

hyperboxes belonging to different classes and subsequently address the limitations of 

FAM. While testing stage involves the membership function, which uses to measure the 

degree to which input sample fits within a hyperbox.  

1.2 Problem statement and Motivations  

Despite these salient features, the FMM neural network can still be improved in 

many ways. Specifically, some room for improvement can be observed in the overlapping 

test, expansion, membership function and contraction processes of this algorithm. The 

expansion process is utilized to extend the wining hyperbox such that it contains the new 

input pattern. However, applying expansion equation to activate the expansion process 

can distort the network structure due following reason. Firstly, there is leniency in 

creating an overlap between hyperboxes from different classes whenever the expansion 

constraint is satisfied. In this case, the expanded hyperbox will cause an overlap region 

with another hyperbox regardless whether both are from the same classes or otherwise. 

Accordingly, more overlap regions will be generated, which negatively affect the 

classifier performance. Secondly, there is irregularity of the hyperbox expansion 

procedure that leads one or more hyperbox dimensions to occupy a large area at the 

expense of other dimensions, thereby increasing the misclassification rate by generating 

unnecessary overlapped areas between classes. In fact, most of FMM variants such as: 

data core FMM (DCFMN), multilevel FMM (MLF), MFMMN, enhanced general FMM 

(EGFMM), and k-nearest FMM (FMM-Kn) still suffering from this limitation which 

adversely affects the network performance and generate inaccurate predication (Davtalab 

et al. 2014; Mohammed and Lim 2017a; Shinde and Kulkarni 2016; Zhang et al. 2011).  

The overlap test is used to specify whether an overlapped region occurs between 

existing hyperbox and expanded hyperbox which belongs to different classes. Most of 

FMM variants, which include MLF, EGFMM, enhanced FMM (EFMM), FMM-Kn, 

EFMMII, DCFMN, and MFMMN use this process suffers from two main limitations: a 

complex overlap test process and the boundary points are considered non-overlapped 

regions in the FMM. That could affect the network decision making natively during the 

test stage (Davtalab et al. 2014; Donglikar and Waghmare 2017; Mohammed and Lim 

2015, 2017a, 2017b; Shinde and Kulkarni 2016; Zhang et al. 2011). 
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Contraction process is utilized to eliminate the overlap between hyperboxes that 

belong to different classes. Most of FMM variants which include: EGFMM, adaptive 

FMM (AFMM), EFMM, EFMMII, FMM-kn, and MFMMN use the FMM contraction 

process suffer from the data distortion problem (Liu et al. 2012; Mohammed and Lim 

2015, 2017a, 2017b; Shinde and Kulkarni 2016). Data distortion happens due to lose of 

part of contracted hyperbox during the contraction producer (Bargiela et al. 2004; Kim et 

al. 2004). Consequently, inaccurate decision boundary is generated, thus decreasing 

classification accuracy. 

Another shortcoming of FMM and its variants, During the testing stage, the 

membership function of FMM and its variants can result in a random prediction especially 

when the fitness value of the input sample is the same across different classes. This type 

of predication could negatively affect the classification performance. All these limitations 

can influence the performance of the classifier and introduce additional misclassification 

errors. Meanwhile, learning with large datasets may increase the complexity of the 

network structure by generating more number of hyperboxes. To address these issues, 

this thesis searches for ways to enhance the accuracy and reduce the complexity of the 

FMM classifier and to subsequently improve its performance in pattern classification. 

1.3 Research Questions  

The following research questions (REQ) are addressed in this work:  

1- REQ1: What is the significance of the FMM neural network in the area of pattern 

classification?   

2- REQ2: What are the limitations of the FMM neural network and its variants? 

3- REQ3: How can these limitations be addressed to improve the classification 

accuracy of the FMM neural network? 

4- REQ4: How can the complexity of the network structure be addressed whilst 

simultaneously maintaining or improving the classification performance of the 

FMM neural network?  

5- REQ5: How can the recent modifications influence the performance of classifiers 

in processing datasets, specifically their accuracy, complexity and noise 

tolerance?  
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1.4 Research Objectives 

This work aims to propose new models improve the pattern classification 

efficiency of the FMM network. The specific objectives of this work are 

1. ROB1: To analyse the weaknesses, drawbacks and limitations of the extant FMM 

model and its variants when attempting to solve problems in pattern classification. 

2. ROB2: To introduce a new expansion technique, overlap test formula, contraction 

process and prediction strategy for building the modern fuzzy min–max 

(MDFMM) model. 

3. ROB3: To further improve the MDFMM model via the integration of the k-nearest 

technique, which can reduce the complexity of the network structure and improve 

the noise tolerance of the model.  

4. ROB4: To assess the usefulness of the proposed models in solving problems 

related to pattern classification by using different benchmarks and 2D AI 

(noisy/noise-free) datasets, and to utilise various statistical indicators to quantify 

the performance of these models and to compare and analyse the effectiveness 

with various classifiers. 

Figure 1.1 presents the mapping structure among the stated research questions, 

objectives and the defined limitations in the problem statement section. ROB1 of this 

work is mapped to the REQ1 and REQ2 that intend to perform a comprehensive 

investigation of the supervised FMM network with specifying the limitations in FMM 

variants. 

Further, ROB2 is associated to REQ3 to introduce MDFMM as a new model with 

the aim of handling the limitations of leniency in creating an overlap, irregularity of 

hyperbox expansion, complex overlap test process, boundary points and the data 

distortion problem. The proposed MDFMM introduces four new contributions. Firstly, a 

new expansion technique that can address the problems in hyperbox expansion, including 

irregularity and overlap leniency. Secondly, a new overlap test formula is proposed to 

address the potential overlaps and reduce the complexity of the original overlapping rules. 

Thirdly, a new contraction process is proposed in order to generate highly accurate 

decision boundaries and address the data distortion problem. Fourthly, a new predication 
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strategy that integrates the distance formula, a membership function to improve the 

decision making during the testing stage. The ROB3 is linked to the REQ4 that aims to 

further improve the performance of the proposed MDFMM in terms of catering for the 

complexity issue by developing a highly comprehensive model called MDFMM-Kn. 

Furthermore, ROB4 is linked to the REQ5, in which the performance of the 

proposed MDFMM and MDFMM-Kn models are assessed with respect to accuracy and 

complexity of the network structure.  

REQ2

REQ1

REQ4

REQ3 ROB2

ROB1

ROB4

ROB3

REQ5

leniency 

issue

irregularity 

issue

Complex 

overlap rules 

issue

Boundaries 

points issue

Data 

distortion 

issue

Complexity 

issue

 

Figure 1.1 The mapping structure among the Research Objectives, Questions and 

problem statement  

1.5 Research Scope  

To examine pattern classification problems, this work applies the FMM neural 

network as its backbone model due to its unique and salient features (i.e. nonlinearity, 

online learning capability, insulation of overlapping classes, support for soft and hard 

decisions, ability to overcome the stability–plasticity dilemma and short training time). 

The FMM neural network is thoroughly analysed in this work. A total of 15 UCI 

benchmark datasets, including Wine, Heart, Glass, Iris, Liver, Thyroid, Seed, Zoo, 

Ionosphere, PID, WBC, Page blocks, Ozone level, Spambase and Parkinson’s, as well as 

4 different 2D AI datasets, including half kernel, two spirals, outliers and corners, were 

used to evaluate the performance of both MDFMM and MDFMM-Kn. Furthermore, three 
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statistical methods have been used i.e., bootstrap method, k-fold cross validation, and 

Wilcoxon signed rank test to evaluate the performance of both MDFMM and MDFMM-

Kn models.    

1.6 Research Methodology  

The main aim of this work is to introduce a new model that can overcome the 

limitations of extant FMM models. Figure 1.2 illustrates the research methodology, which 

is also outlined below:  

1. Review the FMM model and its variants, analyse the problems in the learning 

and testing stages and identify the necessary required improvements. 

2. Examine the testing and learning stages of MDFMM and apply modifications to 

each of these stages. In the learning stage, this study will introduce a new 

expansion technique to address the problems relating to overlapping cases, 

develop an overlap test formula that is applicable to any possible overlap case 

and can also simplify the original overlap test rules, and propose a new 

contraction process that can address the data distortion problem and reduce the 

complexity of the original contraction process. In the testing stage, the study will 

integrate the distance equation into the membership function to develop a new 

strategy that can overcome the problems related to randomised decision making. 

3. Use different benchmark datasets to assess the performance of MDFMM and 

then analyse the results and compare them with those of other classifiers 

proposed in the literature. Conduct a statistical analysis by using k-fold cross 

validation, bootstrap methods and Wilcoxon signed rank test. 

4. Reduce the complexity of the MDFMM network and improve its noise tolerance 

when processing different noisy and/or noisy free datasets. Introduce the k-

nearest method to improve the structure of the MDFMM model and build the 

MDFMM-Kn model. 

5. Use different benchmarks as well as noisy and noise-free datasets to assess the 

performance of MDFMM-Kn and then analyze and compare the results with 

those of MDFMM and other classifiers reported in the literature. Conduct a 

statistical analysis by using k-fold cross validation and bootstrap methods.   
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Figure 1.2 Research Methodology  

 

1.7 Thesis Outline  

The arrangement of this thesis is patterned against its objectives. Chapter 1 

presents the introduction to this work whilst Chapter 2 reviews the pattern classification 

techniques, including FMM, and highlights the methods, modifications and techniques 

that are applied to improve the performance of the original FMM model. 

Chapter 3 describes the FMM network and its limitations in detail. The 

modifications applied to the existing network with an aim to address its limitations and 

improve its performance are also discussed. The MDFMM neural network and its 

performance are then evaluated by using different benchmark datasets. The evaluation 

results are presented and compared with those of FMM variants or other classifiers. 

Chapter 4 presents those problems relating to the complexity of the MDFMM 

network. Some existing methods for addressing the issues in FMM are also reviewed, 
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including the k-nearest method. The MDFMM network is then modified to develop 

MDFMM-Kn, which can address the problems related to the complex structure and noise 

tolerance of the former. Some experiments are also conducted by using various 

benchmarks as well as noisy and noise-free datasets to evaluate the performance of 

MDFMM-Kn. The evaluation results are statistically analysed via bootstrap and k-fold 

validation methods and compared with those of other FMM variants. 

Chapter 5 summarises the entire thesis and its contributions as well as presents 

several areas that may be explored in future research.     
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction  

As explained in Chapter 1, the main focus of this work is to improve the fuzzy 

min max neural network (FMM) performance for tackling the pattern classification 

problems. Based on that, an investigation about the efficiency of the FMM-based network 

as a useful and usable pattern classification system is covered. As such, this chapter 

presents a highlight on the pattern classification techniques, as well as, a detail elaboration 

of the FMM neural network learning process. In addition, a review on the FMM network 

and its variants has been introduced in this chapter. A research gap and summary of the 

review has been presented at the end of this chapter, respectively. 

2.2 Background 

Pattern classification is concerned with the ability to find categorical labels for a 

set of observation. It is an active area because it has been widely used in a number of real 

world applications including weather forecasting (Barde and Patole 2016), medical 

diagnosis (cancer, heart diseases)(Begum and Devi 2011; Mohammed and Lim 2015; 

Quteishat et al. 2013; Umoh 2012), Optical character recognition (OCR) (Naz et al. 2014), 

fault diagnosis industrial (cooling system, induction motors, robotics)(Duan et al. 2007; 

Gao et al. 2015; Quteishat et al. 2010; Seera and Lim 2014; Seera et al. 2013),  face 

detection(Kim et al. 2006), intrusion detection(Azad and Jha 2017), object recognition 

(Pawar 2015), and speaker recognition (Jawarkar et al. 2011). Over the past years, many 

techniques have been developed for pattern classification. Among the neuromas 
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techniques that are dedicated to tackling pattern classification problems, two main 

techniques, namely, ANNs and FL, are the most popular.   

ANNs are computational models that able to learn, handle large sample, and tackle 

noisy data that are obtained from real world environments (Genaro et al. 2009). However, 

several drawbacks have limited their application in practice such as: ANNs lack a formal 

approach to identifying the optimal structure of a network, difficulty tackling imprecise 

or ambiguous information and suffer from the black box problem. To overcome these 

shortcomings, researchers integrated the ANN with FL to form the fuzzy neural network. 

This integration led to the generation of more robust classifier designs even when applied 

to real world problems. e.g., ANFIS Fuzzy (Jang 1993), Fuzzy ARTMAP (FAM); 

(Carpenter et al. 1991a), and the fuzzy min-max (FMM) neural networks (Simpson 1992; 

Simpson 1993). 

FNN is one of the most popular hybrid methods because it combines the main 

advantages of ANNs and FL: ability to learn and deal to the imprecise data in constructing 

robust classifiers. In 1985, Keller and Hunt were the first one to work on the integration 

of fuzzy logic within the neural network (Keller and Hunt 1985). They suggested a way 

of incorporating the concept of fuzzy sets into perceptron (single-layer) for pattern 

recognition. The fuzzification of the single-layer perceptron improves the convergence 

problem when the datasets are nonlinearly separable. However, the fuzzification of the 

single-layer perceptron was applied on a single layer, which means that the computation 

will be simply done for this reason. Another work was proposed in 1992 by Pal and Mitra 

to overcome the limitations of the Keller and Hunt model (Pal and Mitra 1992). Pal and 

Mitra worked to extend the fuzzification from single layer to the MLP network. In fuzzy 

MLP, the input vectors consist of membership values while the output vector is defined 

in terms of the fuzzy class membership value. 

Although the use of fuzzy within the neural network led to many successes, 

especially for real applications(Viharos and Kis 2015), it still inherits the limitations of 

the MLP. One of the limitations is related to “catastrophic forgetting”. The catastrophic 

forgetting problem happens when the neural network loses all the previous information 

while trying to learn a new set of information. This problem has motivated Carpenter & 

Grossberg in 1987 in order to tackle the problem and led them to introduce the adaptive 
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resonance theory (ART) network that provides online learning (Carpenter and Grossberg 

1987). Carpenter et al., later developed fuzzification of ART, and suggested the Fuzzy 

ART in 1991 (Carpenter et al. 1991b), and Fuzzy ARTMAP (FAM) networks in 1992 

(Carpenter et al. 1991a). Fuzzy ART and FAM are able to learn both binary and analog 

input patterns. Intersection and union operators in the ART and FAM network are 

replaced by the maximum and minimum operators in the fuzzy set theory. Although the 

FAM solved the “catastrophic forgetting” problem, it faced a problem that allowed it to 

overlap between the hyperboxes, despite their classes being different. For this reason 

Simpson in (1992 and 1993) proposed two versions of fuzzy min max neural network 

(FMM) to tackle the limitation in the ARTMAP network (Simpson 1992; Simpson 1993).  

The FMM network was introduced in 1992, which is the backbone for this 

research, deals with pattern classification, while the FMM was proposed in 1993 deals 

with pattern clustering. The FMM network uses fuzzy sets as pattern classes where each 

fuzzy set is an aggregate of fuzzy set hyperboxes. The learning algorithm of FMM uses 

series of activities on creating, expanding, and contracting hyperboxes. Further details 

about the FMM for pattern classification are explained in Section 2.3. Over past few 

years, a number of modifications were proposed in the FMM network; these 

modifications will be explained in Section 2.4. 

2.3 Overview of the Fuzzy Min-Max Neural Networks 

The FMM for pattern classification is a supervised learning model proposed by 

Simpson in 1992 (Simpson 1992). This network builds decision boundaries by creating 

hyperboxes in the pattern space. Each hyperbox is characterized by a pair of minimum 

and maximum points in n-dimensional space with a membership function. The training 

algorithm in FMM consist of three stages, i.e., expansion, overlap test, and contraction. 

During learning, an input pattern with its class is selected. Then, a hyperbox from the 

same class that has the highest membership degree is selected and expanded to include 

the input pattern. If hyperbox fails to expand and absorb the input pattern a new hyperbox 

is created. Overlapping among hyperboxes of the same class is allowed, while 

overlapping among hyperboxes from different classes is forbidden. A contraction process 

is triggered when overlapping between two hyperboxes belonging to two different classes 

occurs. The FMM learning process is shown in Figure 2.1.  
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Figure 2.1 The FMM learning process 

In general, the FMM classifier consists of three-layers i.e., input, hidden, and 

output layers. In the first layer, the number of neurons is equal to the number of features, 

while the number of neurons in output layer is equal to the number of classes. The number 

of neurons in the hidden layer is equal to the number of hyperboxes that are generated 

during the learning process, Figure 2.2 shows the FMM network structure (Mohammed 

and Lim 2017a). Each hyperbox in the hidden layer also represents a fuzzy set, and a 

hyperbox is normally characterized as a pair of minimum (Vj) and maximum (Wj) points 

in n-dimensional space, as shown in Figure 2.3. 
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Figure 2.2 The FMM structure 

Source: Mohammed and Lim (2017) 

 

Figure 2.3 A 3-D hyperbox structure 

FMM uses a membership function to measure the belongingness of the input 

pattern with respect to the j-th hyperbox. The membership value ranges from 0 to 1. In 

this case, the input pattern contained in the hyperbox has a full class membership. The 

membership degree of the input pattern with respect to the jth hyperbox decreases 

whenever the distance between the input pattern and the jth hyperbox increases. The 

membership value is calculated using: 

1

1
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   2.1 

Where bj(Ah) represents the membership function; Ah = (ah1, ah2, ah3,…,ahn) ϵ In is 

the hth input pattern; γ is the sensitivity parameter that controls how fast the membership 

value decreases as the distance between input pattern Ah and hyperbox Bj increases; and 

Vj = (v1, v2, v3, …, vn) and Wj = (w1, w2, w3, …, wn) are the minimum and maximum points 

Wj 
Vj 
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of the hyperbox, respectively. Mathematically, the j-th hyperbox fuzzy set Bj is defined 

as follows (Simpson 1992): 

{ , , , (A , , )} n

j h j j h j jB A V W f V W A I  
     2.2 

In the FMM, the hyperbox size is regulated by an expansion parameter (θ) that 

varies between 0 and 1. A smaller expansion parameter leads to generating a smaller 

hyperbox size, which, as a result, creates a larger number of hyperboxes, and otherwise. 

As shown in Figure 2.2, the FMM network structure consists of three layers, i.e., input 

layer, FA, hidden (hyperbox) layer, FB, and output layer, FC. The number of nodes in FA 

equals to the dimension of the input pattern, while the number of nodes in FC equals to 

the number of target classes. Each node in FB represents a hyperbox (fuzzy rule). The 

connection between FA and FB nodes are the minimum and maximum points. The 

connection between FB and FC is in binary values and is stored in a matrix, U, described 

as follows: 

𝑢𝑗𝑘 = {
1           𝑖𝑓  𝑏𝑗  𝑖𝑠 𝑎 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑥 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠  𝑐𝑘 

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   
}   2.3 

Where bj is the jth FB node and ck is the kth FC node with. Given an input pattern, 

the node in the FC layer that has the highest membership degree is selected as the winner. 

The transfer function for each node in the FC layer is defined as: 

1
max

m

k j jk
j

c b u



 

2.4 

Where ck is the kth output layer node , ujk is a binary value that represents the 

connections between Fb nodes and Fc nodes, and m represent the number of hyperboxes 

in the Fb layer (as shown in Figure 2.2). The FMM network uses either a hard or soft 

decision to determine the winning class. If a soft decision is required, the output is used 

directly. Correspondingly, the output of the FC layer can be 0 or 1 (hard decision), where 

one indicates the winning ck class. As discussed previously, the FMM learning process 

consist of three steps: the expansion process, the overlap test, and the contraction process, 

if necessary (if all dimensions from hyperboxes that belong to different classes are 

overlapped). When a new input sample is provided during the learning process, the degree 

of membership is computed via Eq. 2.1 to determine the winning hyperbox. The winning 
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hyperbox is the hyperbox that has the highest membership degree and contains the input 

sample; a new hyperbox is constructed if it does not contain the input sample. Typically, 

the expansion process generates various types of overlapped areas. Partially overlapped 

dimensions between hyperboxes from the different classes are allowed, whereas fully 

overlapped dimensions are forbidden. To solve the overlap problem, an overlap test 

process is performed to identify the dimension that has the minimum overlapped region. 

Then, a contraction process is activated to eliminate the identified region. The FMM 

learning phase can be described as follows: 

a. Expansion: Before the expansion process begins, the membership degrees are 

computed to determine the winning hyperbox. The winning hyperbox is expanded to 

contain the input sample if the expansion coefficient satisfies Eq. 2.5; otherwise, a new 

hyperbox is created.  

1

(max ( , ) min ( , ))
n

ji hi ji hi

i

n w a v a


 
 2.5 

Where θ is a user-defined parameter that is used to control the maximum size of 

hyperbox. The hyperbox value range is (0 ≤ 𝜃 ≤ 1). If Eq. 2.5 is satisfied, the winning 

hyperbox min and max points should be modified via the following two equations:  

min( , )new old

ji ji hiv v a
 2.6 

max( , )new old

ji ji hiw w a
 2.7 

Where 
new

jiv  and 
new

jiw  are new minimum and maximum points of the hyperbox 

that is expanded. 

b. Overlap Test: The overlap test is utilized to check if the hyperbox expansion caused 

overlap with a hyperbox from a different class. FMM uses four rules to determine the 

overlapped area, where each dimension in the expanded hyperbox is compared with 

the same dimension in the hyperbox that is from a different class. The hyperboxes are 

determined to overlap if any of equations (Eq. 2.8, Eq. 2.9, Eq. 2.10, or Eq. 2.11) is 

satisfied. 
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𝐶𝑎𝑠𝑒 1 ∶ 
𝑉𝑗𝑖 < 𝑉𝑘𝑖 < 𝑊𝑗𝑖 < 𝑊𝑘𝑖 , 𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛( 𝑊𝑗𝑖 −  𝑉𝑘𝑖 , 𝛿𝑜𝑙𝑑 )        2.8 

𝐶𝑎𝑠𝑒 2 ∶ 
𝑉𝑘𝑖 < 𝑉𝑗𝑖 < 𝑊𝑘𝑖 < 𝑊𝑗𝑖  , 𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛( 𝑊𝑘𝑖 −  𝑉𝑗𝑖 , 𝛿𝑜𝑙𝑑 )     2.9 

𝐶𝑎𝑠𝑒 3 ∶ 
𝑉𝑗𝑖 < 𝑉𝑘𝑖 < 𝑊𝑘𝑖 < 𝑊𝑗𝑖 ,  

          𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛 ( 𝑊𝑗𝑖 −  𝑉𝑘𝑖, 𝑊𝑘𝑖 −  𝑉𝑗𝑖) , 𝛿𝑜𝑙𝑑 )         2.10 

𝐶𝑎𝑠𝑒 4 ∶ 
𝑉𝑘𝑖 < 𝑉𝑗𝑖 < 𝑊𝑗𝑖 < 𝑊𝑘𝑖 ,   

          𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛 ( 𝑊𝑗𝑖 −  𝑉𝑘𝑖, 𝑊𝑘𝑖 −  𝑉𝑗𝑖) , 𝛿𝑜𝑙𝑑 )      2.11 

Initially assume that δold =1. If  δold - δnew > 1, then  = i and δnew = δold. This shows 

that overlap detects for th dimension and test proceeds for next dimension. Otherwise, 

testing stops and goes for contraction test with = -1. If the hyperboxes from dissimilar 

classes overlaps with each other, then contraction process is started so that, the overlap 

of hyperboxes can be eliminated from overlapping regions (Simpson 1992). Nevertheless, 

overlapping areas occurred by hyperboxes from the similar class are acceptable.      

c. Contraction: The contraction process is initiated if all dimensions that belong to 

different classes are overlapped; hence, the contraction process is used to create one 

pure dimension by eliminating the minimally overlapped dimension. The contraction 

rules are defined as follows: 

𝐶𝑎𝑠𝑒 1: 

𝑉𝑗∆ < 𝑉𝑘∆ < 𝑊𝑗∆ < 𝑊𝑘∆ .  𝑊𝑗∆
𝑛𝑒𝑤 = 𝑉𝑘∆

𝑛𝑒𝑤 =
𝑊𝑗∆

𝑜𝑙𝑑 + 𝑉𝑘∆
𝑜𝑙𝑑

2
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𝐶𝑎𝑠𝑒 2: 

     𝑉𝑘∆ < 𝑉𝑗∆ < 𝑊𝑘∆ < 𝑊𝑗∆ . 𝑊𝑘∆
𝑛𝑒𝑤 = 𝑉𝑗∆

𝑛𝑒𝑤 =
𝑊𝑘∆

𝑜𝑙𝑑+𝑉𝑗∆
𝑜𝑙𝑑

2
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𝐶𝑎𝑠𝑒 3𝑎 ∶  𝑉𝑗∆ < 𝑉𝑘∆ < 𝑊𝑘∆ < 𝑊𝑗∆  𝑎𝑛𝑑  

                         (𝑊𝑘∆ − 𝑉𝑗∆) < (𝑊𝑗∆ − 𝑉𝑘∆) . 𝑉𝑗∆
𝑛𝑒𝑤 = 𝑊𝑘∆

𝑜𝑙𝑑        

2.14 

𝐶𝑎𝑠𝑒 3𝑏: 𝑉𝑗∆ < 𝑉𝑘∆ < 𝑊𝑘∆ < 𝑊𝑗∆  𝑎𝑛𝑑  

                          (𝑊𝑘∆ − 𝑉𝑗∆) > (𝑊𝑗∆ − 𝑉𝑘∆) . 𝑊𝑗∆
𝑛𝑒𝑤 = 𝑉𝑘∆

𝑜𝑙𝑑      

2.15 

𝐶𝑎𝑠𝑒 4𝑎: 𝑉𝑘∆ < 𝑉𝑗∆ < 𝑊𝑗∆ < 𝑊𝑘∆  𝑎𝑛𝑑 

                        (𝑊𝑘∆ − 𝑉𝑗∆) < (𝑊𝑗∆ − 𝑉𝑘∆). 𝑊𝑘∆
𝑛𝑒𝑤 = 𝑉𝑗∆

𝑜𝑙𝑑      

2.16 

𝐶𝑎𝑠𝑒 4𝑏: 𝑉𝑘∆ < 𝑉𝑗∆ < 𝑊𝑗∆ < 𝑊𝑘∆  𝑎𝑛𝑑  

                          (𝑊𝑘∆ − 𝑉𝑗∆) > (𝑊𝑗∆ − 𝑉𝑘∆). 𝑉𝑘∆
𝑛𝑒𝑤 = 𝑊𝑗∆

𝑜𝑙𝑑
 

2.17 
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2.4 FMM variants  

Although the FMM network is considered an effective online learning model, 

there is still plenty of room to enhance the FMM network(Mohammed and Lim 2015). In 

particular, the expansion, overlap test, contraction process, and membership function 

need further improvements in order to make FMM more powerful and accurate in 

classification. Researchers have proposed many FMM variants to enhance the 

classification performance. in this research, FMM and its variants have been classified 

into two groups as shown in Figure 2.4. The first group covers FMM variants that keep 

the original FMM learning stages (expansion, overlap test, and contraction) along with 

modification or enhancements, while the second highlights FMM variants that eliminate 

the contraction process. 

 

Figure 2.4 FMM variants with and without contraction procedure 

 

2.4.1 FMM variants with contraction  

There are a number of FMM variants that maintain the same learning stage, and 

apply some modifications to overcome the FMM shortcomings or improve its 
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performance by modifying the expansion procedures and the membership function, as 

well as extending the overlap test rules, or contraction rules. This group of variants 

utilizes the contraction process to obtain a pure dimension between overlapped 

hyperboxes belong to different classes. Several FMM variants using contraction process 

are explained as follow: 

In 2000, Gabrys and Bargiela proposed a general FMM model called GFMM 

(Gabrys and Bargiela 2000). GFMM appears to be the first variant to improve the 

performance of the original FMM network by addressing the following issues: the 

inability to distinguish between ignorance and equal interpretation of membership 

degrees, the inability to simultaneously address labelled and unlabelled data and interval 

analysis. 

 GFMM can simultaneously process labelled and unlabelled input patterns by 

combining supervised and. unsupervised learning into a single algorithm. This feature 

enables the use of GFMM in three different modes: pure classification, clustering, and 

hybrid modes (partial supervision). Several changes are introduced to improve efficiency 

of FMM. The modified fuzzy membership function of GFMM differs from that of FMM, 

which is a new formulation to compute the membership values. Simultaneously, the 

sensitive parameter for regulating the maximum hyperbox size can be changed adaptively 

during the learning phase of GFMM. The input patterns can be fuzzy hyperboxes or crisp 

points in the pattern space.  

Moreover, a change in hyperbox expansion is observed in GFMM, as compared 

with that in FMM. The GFMM algorithm defines a new constraint, which ensures that 

the differences between the minimum and maximum points of the individual dimension 

do not exceed a user-specified limit. GFMM has been compared with FMM in tackling 

classification and clustering tasks in a single-pass training scenario. Comparatively, 

GFMM produces fewer hyperboxes and exhibits lower misclassification rates. GFMM 

uses the same contraction process as supervised learning FMM and assists in achieving 

the minimal overlapped dimensions of different classes. However, the application of this 

contraction process results in classification errors for labelled data. 
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Figure 2.5 GFMM network topology 

Source: Gabrys and Bargiela (2000) 

In 2004, Kim and Yang proposed a new variants of FMM named as a weighted 

FMM network (WFMM)(Kim et al. 2004). A hyperbox is not subject to expansion, either 

with the consideration of its contraction process or the overlap test.  The feature 

distribution information is utilized in the course of the learning process in order to 

compensate for the distortion of the hyperbox, which may be caused due to the 

elimination of the overlapping area of hyperboxes during the contraction process.  The 

weight concept is added for the purpose of reflecting the frequency factor of the feature 

values. According WFMM, because the weight factor effectively reflects the relationship 

between the feature range and its distribution, the model can prevent an undesirable 

performance degradation caused by noisy patterns. However, this method also inherits 

the limitations related to expansion, overlap test, and contraction producers of the original 

FMM model (Mohammed and Lim 2015). 

In 2008, Quteishat and Lim designed a modified version of the FMM, named as 

(MFMM) (Quteishat and Lim 2007). MFMM enhances the performance of FMM when 

the size of the expansion parameter is large. It uses the Euclidian distance and 

membership function to select the wining hyperbox for predicting the winning target 

class, as shown in Figure 2.6. MFMM also reduces the complexity of FMM using pruning 

strategy. The drawbacks of MFMM are the same as the FMM learning phase as mentioned 

earlier. Later, the same authors developed a hybrid model MFMM and the Genetics 

algorithm (MFMM-GA) for pattern classification and rule extraction (Quteishat et al. 
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2010). The first stage is used to reduce the MFMM complexity by applying a pruning 

strategy. In second stage, a “don’t care “strategy is applied by a genetic rule extractor for 

decreasing the number of features in the extracted rules. Evaluated using benchmark data 

sets from the UCI machine learning repository and a real medical diagnosis task, the 

classification performance of MFMM-GA is better than that of MFMM and pruned 

MFMM. Although it obtained significant result, it relied on the FMM rules (expansion, 

overlap test, and contraction), which themselves have a number of limitations. 

 

Figure 2.6 The classification process using the Euclidean distance  

Source: Quteishat and Lim (2007) 

An Adaptive Fuzzy Min Max Neural Network (AFMN) classifier based on the 

principle component analysis (PCA) and adaptive genetic algorithm (GA) was developed 

by J. Liu et al. to improve the classification performance of FMM (Liu et al. 2012). 

AFMN uses the PCA as a pre-processing step to reduce the input dimension and extract 

only useful information. The confidence coefficient for each hyperbox is calculated for 

enhancing the classification rate. The GA is used for parameter optimization, which is 

able to improve the speed and precision of AFMM. Although this variant can reduce the 

complexity of FMM neural network, the use of expansion, overlap test, and contraction 

process of original FMM generates misclassification results. 

In 2015, Mohammed and Lim presented an Enhanced FMM (EFMM) model to 

overcome a number of limitations in the original FMM network (Mohammed and Lim 

2015). Three heuristic rules to improve the training phase of FMM are introduced, namely 
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the modified expansion, overlap test, and contraction procedures. Firstly, the expansion 

procedure is updated using a new expansion rule, which employs a dimension-by-

dimension scheme rather than the summation of all dimensions. Using the new expansion 

rule leads to reducing the overlap areas between hyperboxes belonging to different 

classes. Secondly, the overlap test rules are extended to cover all overlap cases. Finally, 

a new contraction procedure is introduced to eliminate all overlapped cases. EFMM 

contracts all overlapped dimensions, rather than only the minimal overlapped dimension 

as in FMM. The empirical results shows EFMM efficiency as compared with FMM, 

GFMN, FMCN, and the Support Vector Machine (SVM) classifiers (Mohammed and 

Lim 2015). However, EFMM inherits the limitations related to contraction process from 

original FMM model, which leads to data distortion problem.   

In 2016, a Modified FMM neural network (MFMMN) was introduced for pattern 

classification (Shinde and Kulkarni 2016). The main contribution of the MFMM network 

is the ability to deal with both discrete and continuous data at the same time. In MFMMN, 

the pruning algorithm was used in order to reduce the network complexity. However, this 

it still inherits a few limitations i.e., expansion, overlap test, contraction of the original 

FMM, which affects the classification performance.  

In 2017, Mohammed and Lim proposed a new improvement on the FMM network 

using a K-nearest (Kn) hyperbox expansion rule named as FMM-Kn (Mohammed and 

Lim 2017a). The K-nearest hyperbox expansion rule is used to increase classification 

accuracy through reducing the FMM network complexity. The concept of selecting the 

winner hyperbox is modified. Instead of selecting only one winner, the K-nearest 

hyperboxes capable of expanding and including the input pattern without expansion rule 

are selected as the winners. Using different benchmark datasets, the proposed model 

reveals good classification accuracy with less network complexity as compared with the 

original FMM model. Nevertheless, it did not address the expansion process and did not 

cover all the overlap cases. 

Mohammed and Lim further presented an extension of EFMM, known as EFMM-

II (Mohammed and Lim 2017b). EFMM-II enhanced the performance of EFMM with 

two strategies, K-nearest hyperboxes and a pruning strategy. Firstly, the K-nearest rule is 

used to reduce the number of established hyperboxes in the hidden layer. Secondly, a new 
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pruning strategy is used to reduce the noise effect by removing weak hyperboxes that 

affect the network efficiency. The experimental results show the efficiency of the 

proposed strategies in improving the EFMM performance in terms of network complexity 

and classification accuracy. However, EFMMII utilizes a contraction process to eliminate 

the overlapped regions, which can lead to an increase in the misclassification rate.  

The EGFMM network was proposed with the aim to handle both labelled and 

unlabelled data by combining the advantages of the GFMM membership function and the 

EFMM equations (expansion, overlap test, and contraction) (Donglikar and Waghmare 

2017). The performance of EGFMM network was evaluated using different UCI 

benchmark datasets and the results are better than those from GFMM neural network. 

However, EGFMM suffers from two aspects. Firstly, EGFMM uses the Simpson 

contraction process, which leads to data distortion problem. Secondly, the network 

complexity, where the network complexity for EGFMM is higher than that of EFMM and 

GFMM.  

Improved data classification using fuzzy Euclidian hyperbox classifier (FEHC) 

was introduced by Azad et al. with aim of enhancing the classification performance of 

FMM neural network (Azad et al. 2018). A new way to calculate the membership value 

for hyperboxes based on the Euclidian distance is proposed. Thereby the process of 

computing the membership value of each hyperbox is computed with consideration to the 

centroids of the hyperboxes. However, FEHC inherits the limitations related to expansion, 

overlap test, and contraction from original FMM model, which can affect the 

classification performance. 

In 2018, an optimized FMM neural network with knowledge compaction (FMM-

KC) was introduced for supervised outlier detection (Upasani and Om 2018). The FMM-

KC structure added a new phase named as knowledge compaction to be implemented 

after learning phase. The compaction phase represents the hyperbox that are purely 

created during the learning phase. This can help to enhance the recall time without 

decreasing classification performance. However, this method inherits the limitation 

related to expansion, overlap test, and contraction of the original FMM, which affected 

negatively on the classification rate.  
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Although significant improvements on the original FMM model have been 

proposed over the past years, FMM variants with contraction suffer from the data 

distortion problem. Data distortion happens due to lose of part of contracted hyperbox 

information during the contraction procedure (Bargiela et al. 2004; Kim et al. 2004). 

Table 2.2 shows how the limitations of original FMM are handled by different FMM 

variants. From Table 2.1, it is evident that FMM and its variants inherit at least one 

limitation in the learning stage, i.e., expansion, missing overlap rule, missing contraction 

rules, data distortion, susceptible to noise, and membership function.  

Table 2.1 A summary of FMM variants with the contraction procedure 

Model 

Limitations 
 

Expansion 
Missing 

overlap rules 

Missing 

contraction rules 

Data 

distortion 

Affected 

by Nosie 

 

Membership 

function  

 

FMM  Y Y Y Y Y Y 

GFMM Y Y Y Y Y Y 

WFMM Y Y Y Y Y Y 

MFMM Y Y Y Y N Y 

FMM-GA Y Y Y Y N Y 

AFMN Y Y Y Y N Y 

EFMM N N N Y Y Y 

MFMMN Y N N Y Y Y 

EFMMII N N N Y N Y 

FMM-Kn  Y Y Y Y Y Y 

EGFMM N N N Y Y Y 

EGFMM Y Y Y Y Y Y 

FEHC Y Y Y Y Y Y 

FMM-KC Y Y Y Y Y Y 

Y= Yes indicates the limitation still exists.  

N= No indicates the limitations has been overcome. 

 

 

2.4.2 FMM variants without contraction  

Another group of FMM improvements focus on eliminating the contraction 

procedure from the learning stage. The aim is to improve classifier accuracy by avoiding 

data distortion that leads to increasing misclassification cases by removing the contraction 

process from learning stage, which generated during contraction procedure. The negative 

effect of this group is a more complex network structure due to adding more new neurons 

(in case of overlap) to cover omission of the contraction procedure. A review of this group 

of FMM variants is as follows.  
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In 2004, Bargiela et al. proposed an inclusion/exclusion fuzzy classifier (EFC) 

(Bargiela et al. 2004). EFC introduced two types of hyperboxes, inclusion and exclusion, 

to overcome the problem of the contraction procedure. The inclusion hyperbox represents 

the input patterns with the same classes, while the exclusion hyperbox represents the 

overlap region between hyperboxes belonging to different classes. In this model, two 

fuzzy sets are used for expressing the class set, rather than using one fuzzy set as in FMM. 

Each class is represented by taking union of inclusion of hyperboxes of the same class 

minus the exclusion one. The empirical results show better results than those of FMM 

and GFMM (Gabrys and Bargiela 2000; Simpson 1992). An issue occurs when the size 

of exclusion hyperbox is relatively large compared with those of the inclusion 

hyperboxes, leading to a high ratio of patterns that cannot classify as belonging to a 

specific class. In the same year, another researcher study proposed an improved model, 

known as adaptive exclusion/inclusion, by updating the expansion parameter to overcome 

the weakness of inclusion and exclusion model (Andrzej Bargiela 1 2004). 

To enhance classification accuracy in overlap region, Nandedkar and Biswas 

proposed a new model with Compensatory Neuron, known as (FMCN) in (2007) 

(Nandedkar and Biswas 2007a). FMCN uses three types of neurons: 1) the classified 

neuron (CLN) that represent a pure hyperbox; 2) the overlap compensation neuron (OCN) 

that represents the overlap region; and 3) the containment compensation neuron (CCN) 

that represents a hyperbox inside a hyperbox. Figure 2.7 shows FMCN network structure. 

Two activation functions for OCN and CNN neurons are derived. The empirical results 

show that FMCN performs better than FMM and GFMN (Gabrys and Bargiela 2000; 

Simpson 1992). The primary weakness of FMCN is its complexity. Besides that, the 

membership function of the compensatory neuron often does not yield a correct decision.  

In the same year, Nandedkar and Biswas proposed a General Reflex FMM 

network to handle the overlap problem (Nandedkar and Biswas 2007b). GRFMN is 

capable of clustering and classification in a single pass. It gives good classification 

accuracy as compared with that of GFMM. However, FMCN inherits the limitations 

related to missing overlap test rules and expansion process, thereby compromising is 

classification accuracy. 
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Figure 2.7 Architectuer of the FMCN 

Source: Nandedkar and Biswas (2007) 

Later, in 2011, Zhang et al. proposed a data core FMM (DCFMN) model for 

pattern classification (Zhang et al. 2011). DCFMN updates the FMM structure using two 

types of neurons, i.e., classifying neuron (CN) and overlapping neurons (OLN), as shown 

in Figure 2.8. Furthermore, a new membership function for the classifying and 

overlapping neurons is designed, which takes into consideration noise, geometric centre, 

and data core. The empirical results show that DCFMN outperforms FMM, GFMM, and 

FMCN with decreased computation time. However, the DCFMN has the following 

shortcomings: firstly, it is unable to classify all learning samples correctly and cannot 

correctly classify the samples located in the overlap region (Davtalab et al. 2014); 

secondly, the DCFMN uses the Simpson expansion rule, which leads to further overlaps 

between the hyperboxes that belong to different classes (Mohammed and Lim 2015). 
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Figure 2.8 Architectuer of the DCFMN  

Source: Zhang et al. (2011) 

In 2014, Dvtalab et al. proposed a multilevel FMM (MLF) using two types of 

subnets to improve classification accuracy in the overlap regions (Davtalab et al. 2014). 

Each node in MLF is known as a subnet, and acts as an independent classifier, as shown 

in Figure 2.9(a). Each subnet has two types of hyperboxes, i.e., HBS and OLS that 

represent the hyperbox segment and the overlap hyperbox segment, respectively, Figure 

2.9 (b) shows the structure of subnet (S_net). HBS is created during the training stage, 

while OLS is utilized to classify the input pattern in the overlap region. The transaction 

function node G determines output of the subnet relying on ca and oa, which represent 

output of HBS and OLS, respectively. For enhancing classification accuracy in the 

overlap region, different sizes of hyperboxes are created in different network levels. MLF 

shows high performance in training accuracy with low sensitivity with respect to the 

expansion parameter, as compared with FMM, FMCN, GFMM, and DCFMN. However, 

this method will create a larger number of hyperboxes than the FMM and DCFMN 

(Simpson 1992; Zhang et al. 2011), because the number of hyperboxes depends on the 

overlap region. Whenever the overlap region increases, the number of hyperboxes will be 

increased, and thus, the complexity of this method will also be increased. 
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Figure 2.9 MLF network. (a) MLF structure. (b) Structure of subnet  

Source : Davtalab et al (2014) 

Table 2.2 summarizes the strengths and weaknesses of each proposed model. 

From Table 2.2, all these FMM variants still suffer from numerous limitations in the 

learning phase. These include a shortage of overlap rules in addition to the expansion 

limitation. Certain FMM variants also suffer from the complexity problem because the 

high number of nodes in the hidden layer. 
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Table 2.2 A summary of FMM variants without the contraction procedure 

overcome 

Model 

Limitations  

Expansion 
Missing 

overlap rule 

Affected by 

Nosie 
Complexity 

Membershi

p function 

EFC Y Y Y Y Y 

Adaptive EFC Y Y Y Y Y 

GRFMM  Y Y Y Y Y 

FMCN Y Y Y Y Y 

DCFMN Y Y N Y Y 

MLF Y Y N Y Y 

Y= Yes indicates the limitation still exists. 

N= No indicates the limitations has been overcome. 

 

In general, there is another classification for the development of FMM, i.e., 

accuracy and complexity. The first category focused on improving the accuracy through 

the development of the learning process i.e., expansion, overlap test, contraction, and 

membership function. Examples of these models GFMM, WFMM, EFMM, EGFMM, 

EFC, Adaptive EFC, GRFMM, FMCN, DCFMN, and MLF. However, these models are 

still suffering from a number of limitations described in the previous two Tables (2.2,2.3). 

Therefore, a new model will be introduced with useful modifications for overcoming the 

existing limitation and realizing better classification performance, as detailed in chapter 

three.  

The other category focused on reducing the complexity and improving the 

accuracy at the same time, because the modifications conducted on the original model led 

to the creation of a problem called complexity (extra hyperboxes are generated). The 

problem of complexity means creating more hyperboxes, which negatively affects the 

efficiency of the network by increasing computation cost (Liu et al. 2012). The models 

that have reduced the complexity are: MFMM, MFMM-GA, AFMN, EFMMII, and 

FMM-Kn (Liu et al. 2012; Mohammed and Lim 2017a, 2017b; Quteishat and Lim 2008; 

Quteishat et al. 2010). All these models except the FMM-Kn worked to solve the problem 

of complexity by using pruning algorithm. The pruning algorithm works to delete less 

efficient hyperboxes after the completion of the training process based on the confidence 

factor. During the training process the confidence factor for each hyperbox is calculated. 

Hyperboxes that have a confidence factor less than user defined pruning threshold are 

deleted. We note that the use of pruning algorithm depends on a confidence factor 

identified by the user before the starts of the training process. The greater the value of the 
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pruning threshold is the greater the number of pruned hyperboxes is; and vice versa. This 

means that the pruning threshold must be chosen strictly so as not affect the performance 

of the network. However, the use of pruning algorithm will make the network more 

dependent on the user by using user defined parameters. In addition, the hyperboxes that 

were constructed during the training process represent knowledge. Deleting any hyperbox 

after completion of the training process is a deletion of the knowledge. This explains why 

the accuracy of classification is reduced when using pruning algorithm. For this reason, 

the FMM-Kn has been introduced for pattern classification as a suitable solution to the 

problem of complexity to ensure not deleting any hyperbox that was constructed as 

explained in section 2.3.1. However, referring to Table 2.2 in Section 2.3.1, the FMM-

Kn is still experiencing a number of limitations, especially during the learning process. 

Therefore, this research will reduce the complexity in chapter 4 via use of the concept of 

Kn used by Mohammad and Lim with some improvements that will be clarified in chapter 

4.  

2.5 Research Gap  

Based on the literature review reported in this chapter, there have been many 

improvements to the FMM network over the past years. Researchers have enhanced the 

learning process in various stages (membership, expansion, overlap rules, and 

contraction) to improve accuracy and reduce complexity. In this chapter, it is noticed that 

several researchers have focused on the development of the membership function. This is 

because the FMM network does not observe the problem associated with data distortion. 

Researchers have therefore conducted their experiments by adding distortion to the data 

samples. Other researchers who studied the disadvantages of the expansion procedure 

argue that it leads to more overlap regions, and they develop different expansion 

equations. Several researchers mentioned that the overlap test rules proposed by Simpson 

are not able to cover all overlap cases. As such, different overlap test rules have been 

proposed to enhance those proposed by Simpson (Simpson 1992). Researchers also 

reasoned that the method of contraction proposed by Simpson distorts the hyperboxes and 

leads to the loss of certain key segments of a hyperbox. As a result, the contraction 

procedure is omitted, in order to prevent data distortion. The network structure is modified 

by the addition of neurons representing the overlap zone, which in turn need to be adjusted 

for their membership function.  
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In this chapter, FMM and its variants have been classified into two groups: with 

and without the contraction procedure. The first group of variants aims to obtain pure, no 

overlapping dimensions. Table 2.1 shows six characteristics of this group of FMM 

variants: five of which are concerned with the learning algorithm (expansion, missing 

overlap rules, missing contraction rules, data distortion, and membership function) and 

the last is concerned with the capability of the network to classify distorted data. Table 

2.1 also shows that all the models still suffer from two problems, i.e., data distortion and 

membership function. The lack of overlap and contraction rules is another issue faced by 

most of these FMM variants, except EFMM, EFMM-II, MFMMN, and EGFMM, which 

extended the rules in both procedures, however, that extension led to increase the process 

complexity due to the number of overlap rules. As for the expansion procedure, most of 

the variants use the original one proposed by Simpson, although it leads to more overlap 

regions between hyperboxes belonging to different classes. For the group of FMM 

variants without contraction, the aim is to preserve the hyperbox structure and prevent the 

distortion by modifying the components pertaining to the overlapping hyperboxes. 

Therefore, in the case of an overlap between hyperboxes belonging to different classes, a 

neuron is added to the network to represent the overlap area. However, adding neurons to 

the network increases the degree of complexity. As for the expansion and overlap test 

procedures, these variants apply Simpson’s equations, although the equations of overlap 

are known to be sub-optimal, while the equation of expansion could result in more overlap 

regions. Table 2.2 summarizes the limitations still existing in the group of FMM variants 

without contraction. 

FMM variants have been introduced to overcome the limitations of FMM on 

various levels in the learning and test phase stages. However, all the proposed methods 

inherit at least three limitations from the original FMM model. Table 2.3shows three main 

characteristics of FMM variants, namely, expansion, overlap test and contraction, where 

each characteristic presents two limitations. In the expansion column, all the FMM 

variants, except for FMCN, suffer from the leniency hyperbox problem, whereas 

irregularity expansion has been handled by EFMM, EGFMM, and EFMMII through the 

new expansion rule. In the overlap test, all the FMM variants, except for MFMMN, still 

suffer from the boundary overlap problem. EFMM, EFMMII, EGFMM, and MFMMN 

have dealt with missing overlap rules via extending the original FMM rules. However, 

this extension leads to an increase in the complexity of overlap process.  
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Furthermore, all FMM variants with contraction process suffer from data 

distortion problem, leading to inaccurate decision boundaries  

Table 2.3  FMM variants Limitations  

Model Expansion Overlap Test Contraction 

Leniency 
overlap 

irregularity 

expansion 

Boundary 

overlap 

Missing 

rules 

Missing 

rules 

Data distortion 

FMM  H H H H H H 

GFMM  H H H H H H 

EFC  H H H H ______ ______ 

WFMM  H H H H H H 

FMCN N H H H ______ ______ 

GRFMM H H H H ______ ______ 

MFMM H H H H H H 

DCFMN H H H H ______ ______ 

MLF H H H H ______ ______ 

EFMM H N H N N H 

MFMMN H H N N N H 

EFMMII  H N H N N H 

KN  H H H H H H 

EGFM  H N H N N H 

FEHC H H H H H H 

FMM-KC  H H H H H H 

H= Have Limitation  N =No Limitation ______ = process omitted  

As shown in Table 2.3, all FMM variants inherit at least three limitations from the 

original model. Thus, this work aims to enhance the original FMM performance to 

overcome the limitations of existing FMM variants. This study introduces the MDFMM 

model by addressing limitations of expansion (leniency overlap and irregularity 

expansion), overlap test (boundary overlap and missing rule) and contraction process 

(missing rule and data distortion). Detailed analysis of these core limitations of FMM will 

be presented as a follow:  

a. Hyperbox Expansion: The expansion process is used to extend the winning 

hyperbox to contain a new input pattern that belongs to the same class. However, applying 

Eq. 2.5 to activate the expansion process could distort the network structure due to the 

following: First, there is leniency in creating an overlap between hyperboxes from 

different classes whenever the constraint in (Eq. 2.5) is satisfied. In this case, the 

hyperbox will be expanded and will cause overlap regardless of whether the classes are 

different or not. Accordingly, more overlap regions will be generated, which will 

negatively affect the classifier performance. Second, the problem of irregularity of the 
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hyperbox expansion leads one or more hyperbox dimensions to occupy a large area at the 

expense of other dimensions, thereby increasing the misclassification rate by generating 

unnecessary overlapped areas between classes. The expansion process calculates the total 

difference between minimum and maximum points of all dimensions of hyperbox 

expansion and compare outcome with (n* θ), as expressed in Eq. 2.5. Although some 

dimensions of hyperbox expansion exceed the user-defined hyperbox size (θ) during the 

expansion process, it will be expanded because of the constraint in (Eq. 2.5) is still 

satisfied. The two expansion problems, namely, the leniency of overlapping and the 

irregularity of the hyperbox expansion, can be explained using a 2D example, as 

illustrated in Figure 2.10.  

Suppose there are two hyperboxes that belong to different classes: hyperbox H1 ∈ 

C1 (class 1) with minimum point V1 = (0.1,0.1) and maximum point W1= (0.2,0.3) and 

hyperbox H2 ∈ C2 (class 2) with minimum and maximum points V2 = (0.4,0.5) and W2 = 

(0.5,0.6), respectively. Suppose the expansion parameter is set to θ =0.7 (hyperbox size) 

and the input sample are provided, which are denoted as P1 ∈ C1 (0.45,1), as shown in 

Figure 2.10 (a). When P1 is provided, FMM uses Eq. 2.1 to specify the nearest hyperbox 

that belongs to the same P1 class as a winning hyperbox; according to that, H1 is selected 

to include P1. To apply the expansion process, while the constraint of Eq. 2.5 is satisfied, 

namely, 1.25 ≤ (2*0.7), H1 is expanded and contains P1. H1 now has the same minimum 

point, namely, V1 = (0.1,0.1), while its maximum point is updated to W1= (0.45,1). The 

expanded H1 causes the generation of an overlap region between H1 ∈ C1 and H2 ∈ C2; as 

a result, the overlap leniency problem is encountered, as shown in Figure 2.10 (b). 

Furthermore, the second dimension (Y) of H1 occupies a large area by exceeding the size 

of θ (0.9>0.7), which will generate additional overlapping cases and increase the ratio in 

the contraction process when receiving additional input patterns.  

These limitations lead to an increase in the overlap regions between the 

hyperboxes that belong to different classes. Consequently, this will affect the network 

performance negatively. Therefore, a new expansion process is needed to overcome these 

limitations, as discussed in Section 3.5. 



35 

0.30.1 0.2 0.60.4 0.5 0.90.7 0.8 1.0

0.2

0.1

0.4

0.3

0.6

0.5

0.8

0.7

0.9

1.0

V1

V2

W1

W2

P1

H1  C1

H2  C2

V1 = (0.1,0.1)  C1

W1 = (0.2,0.3)  C1

V2 = (0.3,0.4)  C2

W2 = (0.5,0.7)  C2

Input Pattern

P1 = (0.45,1)  C1

(a)

X

Y

0.30.1 0.2 0.60.4 0.5 0.90.7 0.8 1.0

0.2

0.1

0.4

0.3

0.6

0.5

0.8

0.7

0.9

1.0

V1

V2

W1

W2

V1 = (0.1,0.1)  C1

W1 = (0.45,1)  C1

V2 = (0.3,0.4)  C2

W2 = (0.5,0.7)  C2

H1  C1

X

Y

(b)

H2  C2

 

Figure 2.10 The expansion problems  

 

b. Hyperbox overlap test: This step is used to examine whether the dimensions of 

the newly created hyperbox or expanded hyperbox overlap with those of any hyperboxes 

that belong to different classes. Despite the significant of this stage, it suffers from 

insufficient overlap rules. The FMM network utilizes four rules to identify the overlap 
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cases; however, these rules are insufficient for covering all the overlapped cases; there 

are a few cases in which hyperboxes are shown to be pure even though they are 

overlapped. The EFMM model extended the number of overlap rules to cover all the 

possible overlapped cases (Mohammed and Lim 2015); however, that extension led to an 

increase in the process complexity due to the larger number of overlap rules. Therefore, 

a new overlap test formula is needed to simplify the current process that has the ability to 

cover all possible overlapped cases. 

Furthermore, boundary points are considered non-overlapped regions in the 

FMM. That could keep overlapping between hyperboxes from different classes from 

occurring and cause the network to randomly select the winning hyperbox during the test 

phase. This problem can be explained using a 2D example, as shown in Figure 2.11. 

Assume there are two hyperboxes that belong to different classes: H1 belongs to class 

(C1) with minimum and maximum points V1 = (0.1,0.1,0.2) and W1= (0.4,0.4,0.5), 

respectively, and H2 belongs to class (C2) with minimum and maximum points V2= 

(0.3,0.2,0.5) and W2= (0.5,0.5,0.5). The x-axis and y-axis represent features and hyperbox 

min-max-point weights, respectively. As Figure 2.11(a) shows, both hyperboxes H1 ∈ C1 

and H2 ∈ C2 shared the boundary region with the same weight value (0.5) at the dimension 

(F3), while the reset dimensions (F1 and F2) are overlapped. 

FMM considers the boundary region to be a non-overlap case; therefore, no 

contraction process will be applied. That could affect the knowledge presentation through 

preventing overlap insulation and, as a result, affect the network decision-making natively 

during the test stage. In this case, when a test sample such as P1= (0.35, 0.3, 0.6) is 

provided, as Figure 2.11(b) shows, FMM uses the membership function to identify the 

winning hyperbox. The provided test sample has the same membership value for both 

hyperboxes (0.9833); hence, a random decision is made to select the winning class 

between these hyperboxes, which will have a 50% possibility of generating an incorrect 

prediction. Therefore, a new process is needed to overcome this problem: the shared 

boundary area that belongs to different classes can be treated as an overlapped region, as 

highlights in Section 3.4.  
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Figure 2.11  The overlap test boundary problem  

 

c. Hyperbox Contraction: the contraction step is used to eliminate the overlap 

between the hyperboxes that belong to different classes. In FMM, this process suffers 

from two main drawbacks: missing contraction rules and the data distortion problem. 
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First, the FMM classifier uses six contraction rules, which are constructed based on four 

test cases, to eliminate the overlapped regions. The overlap test process has limitation in 

discovering all overlapped cases, and the contraction process inherited those limitations. 

To solve this problem, EFMM extended the overlapping test rules and the contraction 

rules. Although the proposed method in the EFMM model could overcome the FMM rule 

limitations, it could not avoid the data distortion problem. The data distortion problem 

refers to the lose of partial hyperbox information during the contraction process. 

Typically, min-max hyperbox points represent the information from the data. During the 

contraction process, the hyperbox minimum and/or maximum points are updated in the 

way that causes distortion of the hyperbox data presentation; as a result, an inaccurate 

decision boundary is generated, which increases the misclassification rate. The 

contraction problem can be described using the example that is illustrated in Figure 2.12. 

Assume that there are two hyperboxes that belong to different classes in 2D space: H1 

belongs to class (C1) with minimum and maximum points V1= (0.1,0.1,0.2) and W1 = 

(0.4,0.4,0.6), respectively, and H2 belongs to class (C2) with minimum point V2= 

(0.3,0.2,0.4) and maximum point W2 = (0.6,0.6,0.7). The hyperbox size is θ =0.4, and the 

x-axis and y-axis represent features and hyperbox min-max point weights, respectively. 

As shown in Figure 2.12 (a) and according to Eq. 3.8, there is an overlap between H1 and 

H2, where the first dimension (F1) has a minimal overlapped area. Therefore, Eq.3.12 is 

applied to eliminate the overlapped region in (F1), as Figure 2.12(b) shows. This process 

creates a data distortion problem, whereby V21 ∈ C2 becomes a full member of H1 ∈ C1, 

even though it represents an actual point of H2. The same problem occurs with W11 ∈ C1, 

which becomes a member of H2 ∈ C2 even though it represents an actual point of H1. In 

addition, the shaded areas, which are denoted as Dr1 and Dr2 in Figure 2.12(b), represent 

the amounts of distorted information that belong to different classes in each hyperbox. As 

Figure 2.12(b) shows, both hyperboxes have the same amount of distorted area, where 

according to Eq. 2.12, both hyperbox points V21 and W11 are shifted to the centre of the 

overlapped region. Therefore, the amount of distorted area depends on the size of the 

overlapped region, where a larger overlapped region leads to higher distortion of 

hyperbox information.  

Using the current contraction process led to the loss of part of the overlapped 

hyperbox information, which could negatively affect the network performance. 

Furthermore, the FMM network eliminates the overlapped points by scaling them to the 
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hyperbox boundary region; hence, both contracted points will be full members of both 

hyperboxes (overlap still exists), as shown in Figure 2.12(b), where W11=V21 ∈ C1 ∈ C2 

in the first dimension (F1). Therefore, it is necessary to introduce a new contraction 

technique and process for solving the data distortion problem and the boundary region 

case, as discussed in Section 3.4.  
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Figure 2.12  The Contraction Process problem 
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d. Membership function in testing: the FMM network uses the membership 

function to measure the degree to which an input sample fits within a hyperbox. FMM 

uses the same membership function for the training and testing stages. During the testing 

stage, there are a few cases in which the test sample could have the same membership 

degree values with two or more hyperboxes that belong to different classes. In this case, 

FMM randomly selects one of the winning hyperboxes from the top hyperboxes that have 

similar fitness values in response to the test sample. This type of prediction could 

negatively affect the classification performance. This problem can be explained using an 

example as shown in Figure 2.13. Suppose there are two hyperboxes that belong to 

different classes: H1∈C1 with minimum point V1= (0.1,0.1,0.3) and maximum point W1= 

(0.3,0.2,0.55), and H2∈C2 with V2= (0.15,0.35,0.1) and W2= (0.4,0.5,0.15). Suppose the 

hyperbox size is θ = 0.3 and the x-axis and y-axis represent dimensions 

(features/attributes) and hyperbox min-max point weights, respectively. When a test 

sample, namely, P1∈C2 is specified as P1= (0.2,0.25,0.2), the membership function is used 

to identify the fitness of the input sample P1 relative to H1 and H2. According to the 

specified scenario, P1 has equal fitness value (0.9750) relative to H1 and H2. 

Consequently, FMM will randomly select the winning hyperbox and there is 50% 

probability of selecting the incorrect class in this case.  
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Figure 2.13 Test stage decision  
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Hence, using only the membership function to make the decision during the test 

stage will sometimes yield an inaccurate decision. Therefore, it is a necessary to avoid 

the randomized decision-making problem process by incorporating multiple factors 

instead of using only the membership function. 

Therefore, this research will develop a new model that is capable of addressing 

these limitations efficiently and effectively named as Modern FMM (MDFMM). This 

will be achieved by introducing a new expansion process, and using a new formula that 

is covering all overlapping cases, in addition to introducing a new rule of contraction that 

does not distort the data in the hyperboxes, in addition that, improving the membership 

function decision through the testing phase.  

2.6 Summary  

In this chapter, the FMM neural network has been explained. A comprehensive 

review on some related works, as well as, recent methods that have been implemented in 

order to improve the FMM performance for solving pattern classification problems. 

where FMM and its variants have been classified into two groups, i.e., models with 

contraction process, and models without contraction process. Despite the possession of 

many robust characteristics of FMM and its variants, there are a number of existing 

limitations still exist in the both groups of FMM (i.e., expansion process, overlap test, 

contraction, process, membership function), as explained highlighted in Table 2.3  . The 

next Chapter 3 will demonstrate the MDFMM model, which is designed to overcome the 

limitations still existing in the FMM and its variants. 
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CHAPTER 3 

 

 

MODERN FUZZY MIN MAX NEURAL NETWORK  

3.1 Introduction 

Based on the literature review chapter, we noticed that there is an increasing 

interest on the FMM neural networks because of its robust characteristics, i.e., online 

learning, nonlinear, overlapping classes, and training time. However, and depending on 

the limitations Table 2.3, Section 2.5,Chapter 2, the FMM and its variants still suffer from 

number of limitations that are existed in the learning process (Mohammed and Lim 2015). 

Therefore, in this research the Modern Fuzzy Min Max (MDFMM) is introduced to 

overcome the limitation of FMM and its variants. These include a new expansion 

technique, a new overlapping test formula, a new contraction technique, and enhancing 

the decision making during testing phase.  

This chapter is organized as follows. The proposed modifications (MDFMM) are 

illustrated in Section 3.2. In Section 3.3 the performance evaluation of the MDFMM using 

different benchmarks dataset from UCI machine learning repository is introduced. 

Finally, the summary of results is given in the Section 3.4. 

3.2 The MDFMM Neural Network model  

The MDFMM model introduces salient solutions for overcoming limitations of 

the original FMM and its variants. The following subsections provide details about the 

MDFMM learning process (the expansion, overlap test, and contraction process) and the 

proposed decision-making process for the test phase. 
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3.2.1 Learning in MDFMM  

The learning stage in the MDFMM model consists of three main steps, namely, 

expansion, overlap test, and contraction, which are described as follows:  

3.2.1.1 Expansion Rule   

Each record in training set (D) consists of a set of n ordered pairs (Ah, ck), where 

Ah and ck are the input pattern and class label, respectively. When Ah is applied, the 

membership function is used to determine the wining hyperbox that belongs to the same 

class as Ah. If Ah is not a full member of the selected hyperbox, the expansion process is 

applied to contain the new input sample. As described in Section 2.5 (a), the original 

FMM expansion process suffers from two limitations: overlap leniency and irregularity 

of the hyperbox expansion. These limitations negatively affect the network performance 

by increasing the size of the overlapped region between hyperboxes that belong to 

different classes. To overcome these limitations, this study propose a new expansion 

method that combines Eq. 3.1, which is inherited from EFMM (Mohammed and Lim 

2015), and a newly proposed method, which is defined in Eq.3.2. MDFMM uses Eq.3.1 

to overcome the irregularity of hyperbox expansion problem, where each dimension will 

be checked according to the hyperbox size (θ), instead of considering the cumulative 

value over all dimensions. Eq. 3.1 can be used to overcome the irregular dimension shape; 

however, it is unable to overcome the overlap leniency problem.  

Hence, we use a new overlap test equation, namely, Eq.3.2, which can identify all 

overlap cases, and take into consideration the boundaries of overlapped areas. Thus, this 

approach overcomes the high complexity of the EFMM process, as highlighted in Section 

2.5 (a), and helps generate more accurate hyperbox decision boundaries. 

The MDFMM network will allow the winning hyperbox to be expanded to include 

the new input sample if the constraints of equations (Eq. 3.1 and Eq. 3.2) are satisfied. 

Otherwise, the expansion process will be terminated and a new hyperbox will be created 

from the input sample. 

Expansion rule: 

( , ) ( , )ji hi ji hiMax W a Min V a  
       3.1 
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Overlap rule:   

(Max(W , ), ) ( ( , ), ) 0ji hi ki ji hi kiMin a W Max Min V a V 
   3.2 

The new expansion process can be further clarified by revisiting the example in 

Section 2.5 (a) (Figure 2.10) and comparing it with Figure 3.1 which illustrates the new 

expansion process. As shown in Figure 3.1, assume there are two hyperboxes: H1 ∈ C1 

with minimum points and maximum points, V1 = (0.1,0.1) and W1 = (0.2,0.3), 

respectively, and H2 ∈ C2 with minimum points V1= (0.3,0.4) and maximum points W2 = 

(0.5,0.7), as shown in Figure 3.1 (a). The expansion coefficient is set to θ = 0.7.  

When input pattern P1 = (0.45,1) ∈ C1 is provided, according to Eq.3.1, H1 is 

selected as a the winning hyperbox. Both Eq. 3.1 and Eq. 3.2 are utilized to evaluate the 

ability of H1 to contain P1. According to Eq. 3.1, H1 is prohibited from being expanded 

due to the violation the expansion constraint (θ) by dimension Y. In contrast, according 

to Eq. 3.2, the expansion of H1 will lead to overlap with H2 which belongs to a different 

class. In this case, to solve the overlap problem, a new hyperbox is created, namely, H3 ∈ 

C1 with V3=W3= (0.45,1), as shown in Figure 3.1 (b).  

When the next input pattern (P2) is provided, Eq. (2.1) is triggered to specify the 

nearest hyperbox that belong to the same P2 class as a winning hyperbox; according to 

that, H1 is selected to include P1, as shown in Figure 3.1 (c). both Eqs. 3.1 and Eq. 3.2 are 

used to evaluate the ability of H1 to include P2. According to Eq. 3.1, H2, H1 is met the 

expansion constraint, however a new hyperbox is created (H4 ∈ C1) with V4=W4= 

(0.45,0.45) according to Eq. 3.2, because the expansion of H1 will lead to overlap with 

H2 which belong to different classes, as shown in Figure 3.1 (d).  

In general, This example demonstrates how the new expansion process can 

overcome both overlap leniency and irregularity of the hyperbox expansion, thereby 

improving the network performance. 
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Figure 3.1 New Expansion Process 
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Figure 3.1 Continued 
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3.2.1.2 MDFMM Overlap Test Rule  

The overlap test is used to determine whether there is any overlap between 

hyperboxes that belong to different classes. As discussed in Section 2.5 (b), the original 

FMM overlap test rules have two limitations: missing overlap rules and the boundary 

region between hyperboxes that belong to different classes. The EFMM network dealt 

with the missing overlap rules by adding new rules to cover all overlap cases; however, 

that generated a more complex process. Therefore, a new formula is proposed for 

simplifying the process while covering all overlap cases, which can be realized by 

replacing the current rules with Eq. 3.2. The overlap test process (Eq. 3.2) is triggered to 

identify whether the expanded or the created hyperbox overlaps with a hyperbox that 

belongs to a different class. The network will initiate or omit contraction process 

according to the overlap detection results. The second limitation, as highlighted in Section 

2.5 (b), is eliminated by treating the shared boundary region that belongs to different 

hyperboxes from different classes as an overlapped region. The contraction process in the 

MDFMM model is applied to the next dimension with a minimal overlapped area if the 

selected dimension belongs to a boundary point. This approach improves MDFMM 

performance by creating a more accurate decision boundary with at least one pure 

dimension. Furthermore, it avoids the network using random selection to determine the 

winning hyperbox during the test phase, as highlighted in Section 2.5 (b). Eq.3.3 is used 

in MDFMM to determine the minimum overlap value for the ith dimension. If the selected 

dimension with minimal overlap value belongs to a boundary region, where the overlap 

value equals =0, the contraction process is applied on the next nth dimension with a 

minimal overlap value with that is greater than 0. 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑖𝑛((𝑊𝑘𝑖 − 𝑉𝑗𝑖), (𝑊𝑗𝑖 − 𝑉𝑘𝑖)) > 0  3.3 

 

3.2.1.3  MDFMM Contraction Technique  

As discussed in Section 2.5 (c), the FMM contraction process has two limitations:  

missing contraction rules and data distortion. The problem of missing contraction rules 

was overcome by the EFMM model via extension of the original FMM contraction rules; 

however, it requires a complex process. Furthermore, the data distortion problem 

remained in the previous models. Even though the MDFMM expansion process prevents 
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any overlap case between hyperboxes that belong to different classes during the 

expansion process, there is a containment overlap case that occurs when input sample P 

falls inside a created hyperbox (Hj) that is from a different class during the learning stage 

cannot be avoided. In this case, a new hyperbox (Hk) will be created based on the input 

sample P with the same minimum and maximum points (Vk = Wk) inside the created 

hyperbox (Hj). MDFMM uses Eq.3.3 to determine the minimal overlap dimension, then, 

Eq.3.4 is applied to eliminate the specified overlapped area. The contraction process is 

applied by creating an insulated area in the selected overlap dimension. The insulated area 

can be created by adding new minimum and maximum points using a scale value, as 

expressed in Eq.3.4. The purpose of the scale value is to prevent the generation of an 

overlapped boundary and its value (0.001) is selected based on (Shinde and Kulkarni 

2016). This process generates a more accurate boundary description for the overlapped 

area; nevertheless, it led to an increase number of hyperboxes by dividing Hj into two 

hyperboxes, as expressed in Eq.3.4. Three hyperboxes will exist: Hj1 with Vj1_old and 

Wj1_new, Hj2 with Vj2_new and Wj2_old, and Hk with the same minimum and maximum 

points (Vk = Wk). Even though the new contraction process generates more hyperboxes, 

however, it overcomes the data distortion problem and generates a more accurate decision 

boundary, which improves the classifier performance. 

1_

1_

2_

2_

ji ki ki ji

j old j

j new k

j new k

j old j

if V V W W then

V V

W V scale

V W scale

W W

  



 

 



   3.4 

Where Vj1new and Wj2new represent the newly added points. The contraction 

process can be demonstrated using an example, as shown in Figure 3.2. Suppose there are 

two hyperboxes that belong to different classes in 2D space, i.e., H1ϵ C1 with minimum 

V1= (0.2,0.25,0.1) and maximum point W1= (0.4,0.5,0.5), and H2∈ C2 with same 

minimum and maximum points V2 = W2= (0.35,0.5,0.35). The hyperbox size is θ=0.4, 

and the x-axis and y-axis represent features and min-max point weights, respectively. All 

dimensions for both hyperboxes (H1 and H2) are overlapped, as shown in Figure 3.2 (a). 

Eq. 3.3 is utilized to identify the dimensions with that have minimal overlap values; the 
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overlap values were F1(0.05), F2(0), and F3(0.15). Even though the minimal overlap value 

is located in F2, as shown in Figure 3.2 (b), the contraction process is applied on F1 since 

F2 is a boundary point, as shown in Figure 3.2 (c). Next, Eq.3.4 is applied to eliminate the 

overlap area (F1). According to Eq.3.4, an insulated area is created in the selected minimal 

overlap dimension (F1).  The insulated area is created by adding new points (V31, W31), 

and the H1 minimum and maximum points are updated via Eq.3.4, where V11 has the same 

value (0.2), while the new value for maximum point W11 is (0.349). According to Eq.3.4, 

the new minimum (V31) and maximum point values (W31) for H3 are V31 = 0.351 and W31 

= 0.4, where V31 is equal to W21 – scale, while W31 is equal to old value of W11. As a 

result, three hyperboxes will exist, namely, H1 with V1= (0.2,0.25,0.1) and W1= 

(0.349,0.5,0.5), H2 with V2= W2= (0.35,0.5,0.35), and H3 with V3= (0.351,0.25,0.1) and 

W3= (0.4,0.5,0.5), as shown in Figure 3.2 (d). Overall, this new contraction process leads 

to the creation of at least one pure region between H1 and H2. Therefore, it helps create a 

more accurate decision boundary, thereby improving the classifier performance. The 

effectiveness of MDFMM contraction process is shown in Section 3.3 experiment 2.   
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Figure 3.2 New contraction process  
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Figure 3.2 Continued 
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Figure 3.2 Continued 

 

3.2.2 Testing Based on a New Decision Making Process   

As discussed in Section 2.5 (d), there are a few cases in which the input pattern 

has the same membership degree for two or more hyperboxes that belong to different 

classes. In this scenario, FMM will randomly select one of the winning hyperboxes. This 

type of prediction could negatively affect the classification performance. To overcome 

this limitation, this study proposed a new process that combines a membership function 

(Eq.2.1) and a distance formula (Eq. 3.5). When a test sample is provided, MDFMM uses 

the membership function to find the fitness value for the sample according to the created 

hyperboxes. If there are two or more winning hyperboxes that belong to different classes 

and have the same fitness values, MDFMM uses the distance function (Eq. 3.5) to identify 

the winning class. Otherwise, the hyperbox with the highest fitness value will be selected 

as a winner. 
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Where Dj is the distance for the jth hyperbox, n represents the number of 

dimension, and ahi , vji,and  wji, are the input sample, minimum and maximum points, 

respectively. The process for determining the winning class is illustrated in the following 

flowchart.  

The proposed modification can be further clarified by revisiting the example in 

Section 2.5 (d). When input sample P1 = (0.2,0.25,0.2) is provided. The membership 

function is utilized to measure the fitness of P1 relative to both hyperboxes: H1 and H2. 

According to Eq. 2.1, P1 has same fitness value (0.9750) relative to H1 and H2. Therefore, 

Eq.3 5 is utilized to calculate the distances between the input sample and the selected 

hyperboxes. According to Eq. 3.5, the distance between P1 and H1 is (0.133), while it is 

(0.125) between P1 and H2. Therefore, class H2 is selected as the winning class. This 

modification helps to avoid random the decision-making, thereby reducing the 

misclassification error.  
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Use membership function fitness value 
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Sorting the fitness values descending 

   Winner hyperboxes with 

same fitness value   2
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Figure 3.3 Flow chart of testing phase 

 



53 

3.3 Performance Evaluation 

To evaluate the effectiveness of the MDFMM, four experiments were conducted. 

The evaluation process was based on the classification accuracy. In the evaluation 

performance, 11 UCI benchmark datasets have been selected from UCI Machine learning 

repository (Bache and Lichman 2013), to assess the performance of MDFMM. The 

chosen datasets cover examples of different levels of difficulties, input features, output 

classes, and number of instances(Mohammed and Lim 2017b). Among these data, Glass, 

Thyroid, WBC (origin), and Liver are most difficult problem in which this is a highly 

imbalanced and overlapping data. Other datasets such as Wine, Seed, and Zoo possess 

moderate imbalanced characteristic. Overlapping dataset such as PID, Heart (Stalog) are 

also chosen to cover different aspect of MDFMM performance. In addition, balanced 

dataset, such as Ionosphere, and less overlapping datasets, such as Iris, are also included 

in the experiments. Furthermore, most of the existing models used these datasets for 

purpose of assessing. Thus, using these datasets will assist to compare the proposed 

models with others to achieve a fair evaluation. Table 3.1 lists the statistical information 

on all UCI benchmarks datasets that are utilized in these experiments. While the 

description of each data set is as follows.  

1. Iris:  Iris represents a plants data set. The data contains 150 instances, each with four 

features i.e., sepal length, sepal width, petal length, and petal width, from three 

classes. The classes refer to three kinds of Iris plants, namely, Iris Virginica, Iris 

Setosa, and Iris Versicolor. The dataset includes fifty instances for each of the three 

classes.  

2. Wine: Wine dataset consist of 178 instances in thirteen features distributed in three 

classes. This dataset represent three kind of wine gathered from the same place in 

Italy, in which 59 instances (33%) were from class 1, 71 instances (40%) were for 

class 2, and 48 instances (27%) were for class 3.   

3. Glass: The Glass identification dataset determines the type of glass based on its 

component, it consist of 214 instances, each with nine features, from six classes. They 

are building non-float processed 76 instances, headlamps 29 instances, building 

window float processed 70 instances, tableware 9 instances, and vehicle windows 

float processed 17 instances. 
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4. Heart (Statlog): The Heart (Statlog) consists of 270 samples of patients with heart 

issue and healthy persons, each sample has 13 features (age, sex, chest pain type, 

resting blood pressure, serum cholesterol, fasting blood sugar, resting 

electrocardiographic results, maximum heart rate achieved, exercise induce angina, 

oldpeak = ST depression induced by exercise relative to rest, the slope of the peak 

exercise ST segment, number of major vessels (0-3) coloured by fluoroscopy, thal: 3 

= normal; 6 = fixed defect; 7 = reversable defect  ). It contains two classes, namely, 

present or absent regarding the presence and absence of heart diseases, respectively.  

5. Liver: The Liver disorders dataset was prepared by BUPA medical research company 

contains 345 samples of liver patient where and two classes, where class 1 has 145 

instances, and class1 has 200 instances. While the number of features equals six, 

namely, mean corpuscular volume, alkaline phosphatase, alamine aminotransferase, 

gamma- glutamyl transpeptidase, and number of half-pint equivalents of alcoholic 

beverages. The first five features are blood test that were thought to be sensitive that 

might arise from excessive consumption alcohol.        

6. Ionosphere: Ionosphere dataset contains radar data gathered by a system in Goose 

Bay, Labrador. The goals were free electrons in the ionosphere, this dataset consist of 

351 instances, each with 34 features, from two classes. Where the class 1 represents 

“good” radar data instances which have evidence of some kind of structure in the 

ionosphere, while class 2 represents “bad” instances which do not include that 

evidence.    

7. WBC: the WBC dataset is collected from Dr. Wolberg’s clinical cases at university 

of Wisconsin, and the problem is to specify whether the tumors were benign or 

malignant based on data for each cancer patients. This dataset contains 699 instances, 

each with nine features from two classes.  

8. PID: PID dataset consists of 768 instances from National Institute of Diabetes and 

Digestive and Kidney Diseases, the aim is to specify whether the patient shows signs 

of diabetes based on World Health Organisation criteria. Where the number of 

features in this dataset is 8 and class is two. In which 268 instances (35%) of patients 

diagnosed with diabetes, and 500 instances (65%) diagnosed as healthy.      
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9. Zoo: Zoo dataset uses to classify animals into seven classes, where class 1 has 41 

instances, class 2 has 20 instances, class 3 has 5 instances, class 4 has 13 instances, 

class 5 has 4 instances, class 6 has 8 instances, and class 6 has 10 instances. It contains 

101 samples, each sample has 17 features namely, hair, feathers, eggs, milk, airborne, 

aquatic, predator, toothed, backbone, breathes, venomous, fins, legs, tail, domestic, 

catsize, and type.   

10.  Seed: Wheat Seed dataset contains 210 instances, each with seven features (Area, 

perimeter, compactness, length of kernel, width of kernel, asymmetry coefficient, 

length of kernel groove, and length of kernel groove) from three classes, namely, 

Rosa, Kama, and Canadian. 

11. Thyroid:  Thyroid dataset consists of 7200 instances, each with 21 features, from 

three classes. In which 166 (2.3%) instances were from class hyperthyroid, 368 

(5.1%) instances were from class normal, and 6666 (92.5%) instances from class 

hypothyroid.    

Table 3.1  UCI benchmarks datasets 

Number  Benchmark data Instances Features Classes 

1 Iris 150 4 3 

2 Wine 178 13 3 

3 Glass 214 9 7 

4 Heart (Statlog) 270 13 2 

5 Liver 345 6 2 

6 Ionosphere 351 34 2 

7 WBC (Origin) 699 9 2 

8 PID 768 8 2 

9 ZOO 101 17 7 

10 Seed 210 7 3 

11 Thyroid 7200 21 3 

The first three experiments each consist of two sub-experiments, in which the 

original FMM and the proposed MDFMM model are compared on various UCI 

benchmark datasets. In the second sub-experiment, the proposed model and other FMM 

variants, i.e., GFMM, DCFMM, FMCN, MLF, MFMMN, and EGFM, were compared on 

various UCI benchmark datasets. In the fourth experiment, MDFMM was compared in 

term of performance with several other non-FMM- related classifiers: naïve bayes, C4.5, 

sequential minimal optimization (SMO), fuzzy gain measure, and hybrid higher neural 

classifier (HHONC). The aim of these experiments are as follows:  
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• Experiment 1: aims at evaluating the effect of the expansion coefficient on the 

performance of MDFMM. Six UCI benchmarks data set were used: Iris, Heart, 

WBC, PID, Seed, and Zoo. The hyperbox size ranged from (0.01-0.9); 

• Experiment 2: aims at evaluating the effectiveness of the new contraction process 

and how solving the data distortion problem could affect the performance of 

MDFMM. In this experiment, the hyperbox size ranged from (0.1-0.9) and six UCI 

benchmark datasets were used: Iris, Heart, PID, Thyroid, Wine, and Liver, 

Ionosphere, Seed; 

• Experiment 3: aims at comparing the performance of MDFMM to those of other 

FMM variants using various training size in the first sub experiment and 3k-folds 

cross -validation in second sub experiment. Five UCI benchmark datasets were used, 

i.e., Iris, Wine, Glass, and Ionosphere, Thyroid. The hyperbox size varied from 0.0 

to 0.1; 

• Experiment 4: aims at evaluating the effectiveness of MDFMM comparing to other 

non-related classifiers. Four UCI benchmark datasets were used: Iris, Wine, WBC, 

and Glass; 

Furthermore, the overall percentage performance improvements of MDFMM 

compared to the other model are presented in Section 3.3.5. In these experiments, three 

statistical analysis techniques were utilized: The first was k-fold cross validation method, 

which was used to estimate the generalization error of the MDFMM model. In this 

research, the data were divided into k mutually exclusive sets, where k=3 and k=5 for 3-

fold and 5-fold cross validation, respectively, and one of the K subsets is utilized for 

testing and the other subsets are combined to form a training set. Then, the average error 

across all K trials is computed, Figure 3.4 shows the two types of cross validation 5 and 

3 folds. Second, the bootstrap method was used as a second statistical technique. The 

bootstrap method carries out re-sampling based on the observations from an experiment. 

Re-sampling is repeated multiple times to establish a bootstrap distribution. The 

parameter of interest, namely, the mean/confidence interval, is estimated based on the 

bootstrap distribution. In this research, 3000 resampling were used to estimate the 

performance indicators, such as the classification rates, standard deviations, and 95% 

confidence intervals. Third, the Wilcoxon signed rank test with 5% level of significant 
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was utilized as a third statistical technique. The Wilcoxon test is a non-parametric test 

compares the results on a case-by-case basis (Smola and Vishwanathan 2008). These 

different statistical analysis methods have been used in order to obtain a fair comparison 

performance evaluation and comparison of the proposed model (MDFMM and MDFMM-

Kn) with those compared techniques. The alternative techniques have utilised the same 

used statistical analysis methods as the present research in the evaluation process. 

Datasets with various numbers of instances, features, and classes were used for the 

experiments to evaluate the strength of the proposed MDFMM model  

 

Figure 3.4 k-fold cross validation method (a) 5k-fold (b) 3k-fold    

As for accuracy, in this research we will use the confusion matrix for calculation 

the classification accuracy and classification error (misclassification). The confusion 

matrix includes the numbers of correctly and incorrectly classified instances for each 

class. Table 3.2 shows the confusion matrix. As shown in Table 3.2, there are number of 

term associated with confusion matrix such as:  

 True Positive (TP): the number of positive case that were correctly identified. 

 False Positive (FP): the number of negative cases that were incorrectly 

classified as positive. 

 True Negative (TN): the number of negative cases that were classified 

correctly.  
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 False Negative (FN): the number of positive cases that were incorrectly 

classified as negative.  

The classification accuracy (AC) and the classification error/misclassification are 

calculated by using the following equation:  

𝐴𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        3.6 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     3.7 

 

Table 3.2 Cofusion matrix  
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True  True Positive (TP) False Positive (FP) 

False  False Negative (FN) True Negative (TN) 

 

3.3.1 Experiment 1  

The main objective of this experiment is to evaluate the effect of the expansion 

coefficient on the performance of the proposed model, namely, MDFMM, and on four 

other classifiers: FMM, GFMM, DCFMM, and FMCN. In the first sub-experiment, six 

benchmark datasets from the UCI machine learning repository were used: Heart, WBC, 

Seed, Iris, PID, and Zoo. Figure 3.5 shows the classification rates along with 95% 

confidence intervals of MDFMM and FMM. Five-fold cross-validation was utilized and 

the hyperbox size (θ) was varied from 0.1 to 0.9 in steps of 0.1, where each step was 

repeated 10 times. As shown in Figure 3.5, the MDFMM model outperformed FMM. On 

various datasets, the average (bootstrap) test accuracy rates of MDFMM were comparable 

to those FMM when the hyperbox size ranged from 0.1 to 0.4, as shown in Figure 3.5 

(a,b,c,d), where the error bars indicate the 95% confidence intervals. However, MDFMM 

outperformed FMM statistically (at the 95% confidence level) when the hyperbox size 

ranged from 0.5 to 0.9. this result demonstrates the ability of the MDFMM model in 

overcoming the irregular dimension shape and the overlap leniency problem by 

incorporating the proposed modifications. In other words, MDFMM contributed to 
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reducing the overlap between hyperboxes that belong to different classes by preventing 

the creation of hyperboxes of large size. MDFMM performed more stably and obtained 

better average accuracy values compared to the original FMM for all hyperbox size, as 

shown in Figure 3.5.  

  

Figure 3.5 Average (bootstrap) test accuracies of MDFMM and FMM on six UCI 

benchmark datasets. The error bars indicate the 95% confidence intervals. 

When compared between the FMM and MDFMM in term complexity, the number 

of hyperboxes generated by FMM is less than MDFMM, as shown in Figure 3.6. due to 
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the modifications that MDFMM introduced in order to overcome the FMM limitations, 

where this modification focus on building more accurate decision boundary, for this 

reason the MDFMM more complex structurer than FMM network.       

 

Figure 3.6 The average 5k folds cross validation number of hyperboxes of 

MDFMM and FMM for different data set 

The Wilcoxon signed-rank test is conducted in this experiment to further assess 

the performances statistically; this test is a nonparametric test utilized to specify 

differences between two methods over each dataset (Smola and Vishwanathan 2008). The 

null hypothesis is rejected when the p-value is lower than the significant level (α = 0.05 
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or 95% confidence interval). In other words, the performances statistically differ. In this 

experiment, the null hypothesis claims that MDFMM and FMM models both exhibit 

similar performances under testing. For comparison, Table 3.3 shows the average p-value 

in each hyperbox size (θ). 

Table 3.3 The p-value of the Wilcoxon signed rank test   

Θ FMM VS MDFMM 

 Zoo PID Iris Heart Seed WBC 

0.1 0.3681 0.000182 0.065584 0.000062 0.0252 0.001414 

0.2 0.7672 0.003886 0.181047 0.260676 0.226 0.01934 

0.3 0.0289 0.000725 0.674569 0.014005 0.5693 0.5197 

0.4 0.000024 0.217563 0.908830 0.000182 0.519 0.9698 

0.5 0.000024 0.105122 0.907222 0.000575 0.0275 0.0017 

0.6 0.000024 0.023231 0.000459 0.000245 0.5273 0.00024 

0.7 0.000024 0.001505 0.000459 0.000182 0.004 0.000328 

0.8 0.000024 0.000130 0.000459 0.000180 0.0076 0.000725 

0.9 0.000024 0.000328 0.000459 0.000181 0.0250 0.000011 

In Table 3.3, the highlighted cells are those with p-values lower than the 

significant level ( 05.0 ), rejecting the null hypothesis. In other words, their 

performances are statistically different (at the 95% confidence interval). The MDFMM 

performed better (statistically) than FMM (i) Zoo and heart when hyperbox size θ> 0.4; 

(ii) PID, Iris, and WBC when hyperbox size θ >0.6. The MDFMM shows significant 

results compared with FMM as highlighted in bold text. The results positively indicate 

the usefulness of the proposed model in increasing classification rates. 

In the second sub-experiment, MDFMM is compared to other FMM variants in 

terms of performance. By following the same procedure as in (Zhang et al. 2011), 50% 

of the iris data set is used for training, while all the data (100%) are used for testing. The 

hyperbox size is varied from 0.01 to 1 in steps 0.02. Figure 3.7 shows the effects of 

increasing the hyperbox size on the performances of MDFMM and other FMM variants. 

The MDFMM network obtained the lowest misclassification ratio comparing to other 

networks, where the minimum error rate was obtained when the hyperbox size was set to 

(0-0.4), while the maximum error rate was obtained when hyperbox size was set to 0.5. 

Overall, MDFMM outperforms other classifiers in term of the error rate. The DCFMN 

model outperformed MDFMM when the hyperbox size was in the range (0.4-0.5); 

however, increasing the hyperbox size to Ө>0.5 led to the collapse of the learning 
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efficiency for all classifiers except MDFMM. As the hyperbox size increases, the number 

of overlapping areas between hyperboxes that are from different classes increases. Hence, 

FMM and its variants show unstable performance; however, MDFMM overcomes this 

problem by controlling the expansion process and avoiding the generation of overlap 

during this process. 

 

Figure 3.7 Performance on the Iris data using various hyperbox sizes 

In general, it is obvious that MDFMM is able to produce better classification rate 

than FMM and it variants. This is proved the effectiveness of the modifications in 

increasing the classification rate and making the MDFMM more robustness toward 

increasing the hyperbox size.   

3.3.2 Experiment 2 

This experiment aims to ascertain the learning stability of the proposed MDFMM 

model and evaluate the new contraction procedure and its effect on overcoming the data 

distortion problem. In this experiment, the learning stability of MDFMM is analysed by 

evaluating whether previously trained patterns can directly access their associated class 

hyperboxes accurately during repeat presentation (Mohammed and Lim 2015). Two sub-

experiments are conducted based on this experiment. In both sub-experiments, 100% of 

the data samples are used for training, and the same order of training patterns is presented 

again. Thus, if learning is stable in MDFMM, then this method is expected to achieve 

100% accuracy. 
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In the first sub experiment, six benchmarks datasets were used: Iris, Heart, 

Thyroid, Liver, Wine, and PID. For all data sets, 100% of the data instances were used 

for training and the same amount used for testing. A series of systematic evaluations were 

performed by increasing the hyperbox size (θ) from 0.1 to 0.9 in steps of 0.1 was made; 

the test was repeated 10 times for each step. On all six datasets, the MDFMM model 

outperformed FMM. Even though the hyperbox size increased, the MDFMM model 

yielded  an error rate 0, in contrast to FMM, which generated more misclassified cases, 

as shown in Figure 4.8. Increasing the hyperbox size created more overlapped cases, as a 

result, increased the number of contraction processes which caused more distortion of the 

data presentation in the overlapped hyperboxes. Unlike FMM, the performance of 

MDFMM was very stable with an error of 0, which is attributed to the efficiency of the 

new proposed methods, especially, the new contraction process in solving the data 

distortion problem and generating more accurate hyperbox structures. 

  

Figure 3.8 Performance comparison using different UCI benchmark datasets with 

different hyperbox size. (a) Heart dataset. (b) Thyroid dataset. (c) Liver datasets. (d) 

PID datasets. (e) Ionospher. (f) Seed. 
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In the second sub-experiment, the MDFMM model was compared with other 

FMM variants, as in (Donglikar and Waghmare 2017). For a fair comparison, the test data 

set in this experiment was the same as the reported in (Donglikar and Waghmare 2017).  

The proportions of the training and testing datasets (Wine, Iris) were both 100% and the 

size of the hyperbox varied from 0.1 to 0.9 with steps 0.1, the test was repeated 5 times 

for each step. Table 3.4 summarizes the results on the both datasets (Wine, Iris). MDFMM 

outperformed the other models in term of accuracy of 100% for various hyperbox sizes. 

The accuracy rates of other classifiers were changed substantially as the hyperbox size 

increased comparing to MDFMM, which yielded a stable accuracy rate.  

In these models (FMM, GFMM and GEFMM), when hyperbox size increases, the 

accuracy rate decreases due to two main reasons: overlap test and contraction procedure. 

In overlap test, the FMM and GFMM suffer from missing overlap rules, resulting in the 

incapability of the overlap procedure to cover all cases of overlaps between hyperboxes 

of different classes. Accordingly, this phenomenon will negatively affect network 

classification with respect to accuracy rate. Concerning the contraction procedure, three 

models (FMM, GFMM, EGFMM, EFMM, FMM-Kn, and EFMMII) use the same 

contraction procedure and suffer from data distortion problem, as shown in Section 

3.2.1.3.  

The contraction procedure causes the removal of unambiguous areas between 

overlapping hyperboxes, yielding errors during the training procedure. Consequently, 

inaccurate decision boundary is generated, thus decreasing classification accuracy. When 

the size of overlap area increases, the amount of distorted area generally increases. This 

condition explains the increasing misclassification rate of these models when the size of 

hyperbox increases. By contrast, the proposed MDFMM generates 100% classification 

accuracy at every hyperbox size due to the new contraction procedure, leading to the 

creation of at least one pure region between overlapping hyperboxes. Consequently, the 

MDFMM succeeds in generating additional accurate decision boundaries, producing 

higher classification rate compared with that of alternative variants. 

 

 



65 

Table 3.4 Comparison between MDFMM  and other FMM  variants on two 

benchmark datasests. The results (percntage of classification rate ) of GFMM, FMM 

and EGFM 

Dataset  Classifier 

Hyperbox size (θ) Avg 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Iris 

FMM 99.67 99.67 99.47 98.27 97.93 96.47 96.47 96.47 96.47 97.88 

GFMM 100 92 88 98 88.67 95.33 93.33 92.67 95.33 93.70 

EFMM 99.93 98.66 96.26 94.13 90.86 89.46 89.13 88.81 88.46 92.86 

EGFMM 100 98 97.33 97.33 97.33 96.67 96.67 96.67 96.67 97.41 

FMM-Kn 99.67 99.07 99 97.53 97.93 96.74 96.47 96.47 96.47 97.71 

EFMMII 99.73 98.07 96.47 93.67 90.40 88.33 87.67 89.20 89.27 92.53 

MDFMM 100 100 100 100 100 100 100 100 100 100 

Wine 

FMM 100 100 100 100 99.94 99.49 98.48 97.47 95.84 99.02 

GFMM 100 99.66 99.44 94.38 94.94 97.19 89.33 96.07 94.94 96.22 

EFMM 100 100 99.89 99.60 98.98 95.93 95.03 94.46 93.39 97.48 

EGFMM 100 100 100 99.44 98.88 97.75 97.19 98.31 98.88 98.94 

FMM-Kn 100 100 100 100 99.77 99.10 98.31 97.85 96.89 99.10 

EFMMII 100 100 99.44 96.50 94.35 94.18 89.15 84.15 82.15 93.32 

MDFMM 100 100 100 100 100 100 100 100 100 100 

 

3.3.3 Experiment 3 

In this experiment, the aim is to assess the effect of the training size on the 

performance of MDFMM and compare the results with FMM classifiers and other 

variants. Two sub experiments were conducted to evaluate the performance of MDFMM 

on five different datasets: Iris, Wine, Glass, Thyroid, and Ionosphere. To evaluate the 

effect of changing the training size on the network performance, various training sizes for 

the Iris dataset were applied in first sub-experiment. MDFMM was compared in term of 

performance with four FMM variants: FMM, GFMM, DCFMN, and FMCN. To follow 

the same experimental procedures as in (Zhang et al. 2011), the training dataset 

percentage was varied from 30% to 70%, while 100% of the data set was used for testing. 

The expansion coefficient value (θ) was varied from 0.01 to 0.4 in increments of 0.02, 

and the experiment was repeated 10 times for each hyperbox size (θ). The Table 3.5 lists 

the standard deviation, average misclassification rate, and minimum, and maximum result 

values for each training size. According to Table 3.5, the MDFMM model outperformed 

the other classifiers: it achieved the minimum misclassification rate for all experiments. 

A misclassification rate of 0 was achieved by MDFMM when the training size was 60% 

and 70%. The error rate increased when training size was reduced because the reduction 
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of the training size leads to the creation of a few hyperboxes unable to adequately 

represent the knowledge; thereby causing the misclassification rate to increase. In the 

standard deviation analysis, MDFMM obtained the lowest value for all cases comparing 

to other classifiers, which demonstrates the efficiency of the proposed techniques in 

supporting a stable performance of the MDFMM model. 

Table 3.5 Performance comparison of MDFMM with other variants on the Iris 

dataset with with different training size  

Method Training Size 

% 

Misclassification rate 

Min  Max Avg. Std. 

MDFMM 

30 0.2 4 1.26 1.38 

40 0.22 2 0.64 0.66 

50 0.27 3.9 1.38 0.92 

60 0 0 0 0 

70 0 0 0 0 

DCFMN 

 

30 0.67 4 1.99 1.67 

40 0 2.67 1.49 1.21 

50 0 2.67 1.09 1.01 

60 0 2 0.8 0.65 

70 0 2 0.51 0.61 

FMCN 

 

30 0.67 4.67 2.43 1.95 

40 0.67 4 1.87 1.44 

50 0 2.67 1.39 1.14 

60 0 2.67 1.01 0.72 

70 0 2 0.73 0.91 

GFMN 

 

30 0.67 6 2.62 2.49 

40 0 4 2.06 2.06 

50 0 3.33 1.46 1.46 

60 0 2.67 1.15 1.15 

70 0 2.67 0.84 0.84 

FMM 

 

30 0.67 4.67 2.45 2.75 

40 0.67 4 1.87 1.86 

50 0 3.33 1.47 1.54 

60 0 2.67 1.11 1.24 

70 0 2 0.8 1.06 

In the second sub-experiment, the K-fold cross validation method was used to 

evaluate the effectiveness of using a variety of training samples with the MDFMM model 

comparing to six other classifiers: GFMMN, EFC, FMCN, DCFMN, MLF, and 

MFMMN. By following the same experimental procedure as in (Shinde and Kulkarni 

2016), 3-fold cross-validation was conducted for all datasets. The expansion coefficient 

value (θ) was varied from 0.0 to 0.1 in steps of 0.02. Table 3.6 lists the average 

misclassification rate for various coefficient values and the average number of generated 

hyperboxes. Comparing with other classifiers, the MDFMM model showed better 

accuracy performance on all datasets. The number of generated hyperboxes was another 
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criterion that was used to assess the performance of MDFMM. The numbers of 

hyperboxes generated by GFMMN, EFC, FMCN, DCFMN, and MLF were smaller 

comparing to the MDFMM, which affected the knowledge presentation in the network 

structure and increased the misclassification rates for the other classifiers. 

Table 3.6 Comparison between MDFMM and other FMM variants on four 

benchmark classification problems  

Dataset Classifier Misclassification Number of hyperboxes 

Max Min Avg. 

Wine 

GFMMN 

EFC 

FMCN 

DCFMN 

MLF 

MFMMN 

MDFMM 

15 

7.78 

7.78 

7.78 

7.78 

20 

5.22 

2.22 

2.22 

2.22 

2.22 

2.22 

5 

1.67 

7.09 

5.53 

5.53 

5.47 

5.39 

11.01 

3.42 

129 

133 

183 

124 

133 

34.5 

118 

Glass 

GFMMN 

EFC 

FMCN 

DCFMN 

MLF 

MFMMN 

MDFMM 

56.52 

64.73 

70.53 

70.53 

43.96 

42.25 

40.8 

33.33 

32.37 

32.37 

33.33 

31.88 

28.17 

29.2 

50.21 

57.47 

58.75 

60.03 

39.68 

36.44 

34.2 

56 

89 

394 

77 

227 

97 

118.72 

Ionosphere 

GFMMN 

EFC 

FMCN 

DCFMN 

MLF 

MFMMN 

MDFMM 

57.26 

66.67 

53.85 

20.46 

16.24 

25.64 

14.5 

10.54 

12.54 

10.54 

6.55 

6.55 

3.42 

4.1 

31.07 

37.88 

21.57 

12.23 

10.70 

16.24 

10.4 

120 

150 

271 

132 

184 

89 

220.46 

Thyroid 

GFMMN 

EFC 

FMCN 

DCFMN 

MLF 

MFMMN 

MDFMM 

69.41 

25.11 

25.11 

25.11 

24.66 

10.8 

6.29 

14.61 

9.13 

9.13 

6.83 

5.48 

5.39 

4.85 

38.63 

14.7 

14.22 

10.24 

9.12 

8.06 

5.59 

57 

66 

116 

66 

72 

8.3 

2018.79 

 

3.3.4 Experiment 4  

This experiment was conducted to assess the effectiveness of MDFMM. In this 

experiment, MDFMM was compared with several non-FMM-related classifiers, i.e., 

Naïve Bayes, C4.5, SMO, Fuzzy gain measure, and HHONC, which was reported in 

(Fallahnezhad et al. 2011). Four benchmarks datasets were utilized, namely, Iris, Wine, 

WBC, and Glass, as listed in Table 3.7. In this comparison, each dataset is divided 

randomly as follows: 75% of the data are used for training and the remaining data are 
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reserved for testing.  This experiment followed the same procedure as that reported in 

(Fallahnezhad et al. 2011). Table 3.7 lists the classification accuracy and standard 

deviation results. The results that are presented in Table 3.7 demonstrate that MDFMM 

yields better results than the other classifiers. The accuracy advantages of MDFMM 

ranged from 0.5 to 2% on Iris, Wine, and WBC. This advantage was substantial on the 

Glass dataset and reached more than 10% to the closest classifier. 

Table 3.7 Accuracy comparison of MDFMM and various classification on several 

UCI datasets 

Method Iris  WBC Wine Glass 

Naïve Bayes 96.0±0.3 95.9±0.2 96.75±2.32 42.9±1.7 

C4.5 95.13±0.2 94.71±0.09 91.14±5.12 67.9±0.5 

SMO 96.69±2.58 97.51±0.97 97.87±2.11 58.85±6.58 

Fuzzy gain measure 96.88±2.4 98.14±0.9 98.36±1.26 69.14±4.69 

HHONC 97.46±2.31 97.17±1.17 97.88±2.29 56.5±7.58 

MDFMM 98.28±1.41 98.69±0.77 98.83±1.89 78.87±0.76 

 

3.3.5 Overall comparative performance analysis  

This section aims to measure the overall classification rate improvements 

percentage of the MDFMM comparative to other selected models, as described in 

experimental results of experiment 3. To calculate the improvements percentage of each 

dataset, the difference in the average classification (obtained Table 3.6) between 

MDFMM and each model is calculated. The improvement percentage is calculated using 

following equation: 

Ai =  
𝐴𝑣𝑔.𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅−𝐴𝑣𝑔.𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝐷𝐹𝑀𝑀

𝐴𝑣𝑔.𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅
∗ 100   3.8 

Where Ai represents the improvement percentage of MDFMM relative to the Rth  

model for ith dataset. Next, the overall average improvement of MDFMM for each dataset 

is computed using the following equation:  

𝐴𝑣𝑔𝑘 =
∑ 𝐴𝑛

𝑖=1

𝑛
       3.9 

Where Avgk represents the overall improvement percentage of MDFMM 

respected to the kth model on all datasets; A is the improvement percentage, which is 

computed using Eq. 3.8 for the all datasets i= (1,2,3,…,n); n indicate to the total number 

of datasets. 
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Figure 3.9 plots the MDFMM improvement percentage compared to other models 

from  Table 3.6 in experiment 3. MDFMM achieves higher improvements percentages 

by generating the highest classification percentage (58.93, 53.29, 48.10, 35.22, 22.97, 

35.42) for all datasets compared with six models: GFMM, EFC, FMCN, DCFMN, MLF, 

and MFMMN.  

 

Figure 3.9 Overall improvement percentage  

3.4 Discussion  

This section demonstrates the main findings of this work. Based on the findings 

of experimental case studies, the MDFMM has evidently succeeded in addressing the 

core limitations in FMM with respect to expansion procedure (leniency overlap and 

irregularity of hyperbox expansion), overlap test (boundary overlap and missing overlap 

rules) and contraction procedure (missing rules and data distortion). By contrast, FMM 

and its variants still suffer from various limitations in the learning phase, as shown in 

Table 2.3 , Section 2.5, Chapter 2. 

As highlighted in Section 2.5, the EFMM, EFMMII, EGFMM, EFMM-ACO and 

MFMMN exhibit a fewer number of limitations compared with other FMM variants 

because they overcome at least three out of the six limitations that remain in the original 

FMM. Models EFMM, EFMMII, EGFMM and EFMM-ACO overcome the irregularity 

expansion problem, missing overlap rules and missing contraction rule by introducing a 

new expansion rule and extending overlap and contraction rules. However, all these 

models overlook issues on data distortion, leniency overlap and boundary overlap, which 
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can negatively affect the performance of neural networks. Although EFMM, EFMMII, 

EGFMM, EFMM-ACO and MFMMN handle the missing overlap and contraction rules, 

their extension leads to increased procedure complexity due to a large number of overlap 

and contraction rules. As various limitations still exist in different FMM variants, this 

paper introduces the MDFMM model for pattern classification. 

The MDFMM is proposed to overcome all the limitations highlighted in Table 

2.3; these limitations include leniency overlap, irregularity expansion, boundary overlap, 

missing overlap rules, data distortion and missing contraction rules. This study has 

introduced four new contributions. Firstly, unlike the EFMM, EFMM-ACO, EGFMM 

and EFMMII, the MDFMM provides a new expansion procedure to overcome the 

leniency and irregularity problems by preventing the use of expansion procedure if leads 

to create overlap with other hyperboxes of different classes (Eqs. 3.1 and 3.2). Secondly, 

missing overlap cases and boundary overlap have been addressed by employing a new 

overlap test formula (Eq 3.2 and Eq. 3.3) that replaces the overlap test procedure from the 

alternative FMM models (Eqs. 2.8–2.11). Thirdly, unlike EFMM, EFMM-ACO, 

EGFMM, EFMMII, GFMM, MFMM, FMM-Kn and MFMMN, the MDFMM introduces 

a new contraction procedure that can handle data distortion and missing contraction rules 

problem by replacing (Eqs. 2.11–2.17) with a new formula (Eq. 3.4). Lastly, a new 

prediction strategy that integrates the membership function (Eq. 2.1) and distance formula 

(Eq. 3.5) is proposed to improve decision making during the testing stage. Results of 

performance evaluation indicate that MDFMM performs better than the existing models 

and can be useful in real pattern classification problems. Furthermore, Table 3.8 depicts 

the new equations that have been proposed, in which each equation is discussed with 

respect to its usage impact. 

Table 3.8 Equations usage impact. 

Equations  Usage description 

Eq. 3.1 Used to overcome the irregularity problem by checking the expansion 

coefficient dimension by dimension. 

Eq. 3.2 Used to overcome the leniency and missed overlap test rules by 

terminating the expansion process in case it leads to overlap other 

hyperboxes from different classes.  

Eq. 3.4 Used to avoid the data distortion by creating an insulated area in the 

selected overlap dimension.  

Eq. 3.5 Used to overcome the random selection winning hyperbox by using 

distance function as final decision process for selecting the winning 

hyperbox. 
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3.5 Summary 

In this chapter, we proposed a modern fuzzy min-max neural network (MDFMM) 

that can deliver a high classification performance while maintaining the salient features 

of FMM. Although the FMM neural network has several remarkable characteristics, such 

as single one-pass operation, online learning, overlapping classes, and hidden layer 

construction in a dynamic manner, it has limitations in its learning process: First, the 

expansion process tends to generate unnecessary overlapped regions between hyperboxes 

from different classes due to two problems: the leniency and the irregularity of the 

hyperbox expansion. Second, the existing overlap test rule suffers from two main 

limitations: a complex overlap test process and the randomization of decision-making 

when dealing with boundary regions that belong to different classes as a non-overlapped 

case. Third, the existing contraction process is affected by the complexity of the overlap 

test process and tends to generate data distortion problems due to the loss of part of the 

hyperbox information during the contraction process. Fourth, in some cases, the 

membership function leads to random decision-making. Based on that, we analysed the 

efficacy of FMM/EFMM models in dealing with overlapped regions that belong to 

different classes and we introduced MDFMM with the aim of overcoming the current 

limitations and improving the classification performance. 

The main contributions of this chapter are as follows: First, a new expansion 

process was utilized that overcomes both the overlap leniency problem and the 

irregularity of the hyperbox expansion problem. That led to simplification of the training 

process and prevention of overlap cases between hyperboxes from different classes being 

generated during the expansion process. Therefore, the only possible overlap case that 

can occur in MDFMM during the learning stage belongs to containment case. Second, a 

new overlap test formula is proposed to simplify the previous overlap test process. It can 

identify all possible overlap cases. This process in necessary for terminating the 

expansion process if it leads to an overlap case and activating the contraction process by 

identifying the containment overlap case. Third, a new contraction technique is proposed 

that overcomes the data distortion problem and generates more accurate hyperbox 

decision boundaries. Fourth, a new strategy is introduced into the testing phase by 

integrating the distance equation with the membership function to solve the 

randomization of the decision-making problem. To assess the performance of the 
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MDFMM model and quantify the performance statistically, a series of experiments on 

various UCI benchmark datasets were performed using the bootstrap method and k-fold 

cross-validation. Via the experimental studies, the MDFMM accuracy as a function of the 

number of generated hyperboxes is compared with those of FMM variants and other 

models from the literature. Overall, the results demonstrate the superior performance of 

MDFMM in various aspects compared with other classifiers and the effectiveness of the 

proposed modifications in improving the classification performance. The MDFMM 

network tends to generate more hyperboxes compared to the FMM network, which is 

necessary for providing a more accurate description of the network structure and generate 

more accurate decision boundaries. Therefore, further enhancement to MDFMM is 

necessary, and this is the subject of the chapter 4. 
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CHAPTER 4 

 

 

A MODERN FUZZY MIN MAX NEURAL NETWORK BASED ON K-

NEAREST TECHNIQUE  

4.1 Introduction 

As described in Chapter 3, the FMM network is extensively analysed to clarify 

the existing limitations. Different problems (i.e. expansion, overlap test and contraction 

processes) are observed in the learning stage, and the decision-making process is 

highlighted in the testing stage. All these limitations negatively affect the performance of 

the FMM network. Therefore, the modern FMM (MDFMM) is put forward and 

introduced in Chapter 3. The MDFMM consists of four new contributions to address the 

existing limitations of the FMM network and its variants. Firstly, the MDFMM involves 

a new expansion process that can create a highly accurate knowledge structure by 

overcoming overlap leniency and the irregularity of hyperbox expansion problems. 

Secondly, a new overlap test formula is presented to diminish the complexity of the 

overlap test rules for discovering all possible overlap cases. Thirdly, a new contraction 

process is provided to overcome data distortion and the complexity problems of the 

original contraction process in the FMM network. Fourthly, a new prediction strategy is 

used to overcome the decision-making randomisation problem during the testing stage. 

The MDFMM was evaluated in the current work using different experiments 

conducted on the basis of diverse UCI benchmark datasets. The results indicate the 

effectiveness of the proposed modifications in improving the MDFMM classification 

performance and providing diminished error rates, highly accurate knowledge structure 
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and particularly stable performance against parameter changes (expansion 

coefficient value (θ) and training size) relative to other classifiers. However, the number 

of generated hyperboxes in the network structure increases as a result of the creation of 

pure decision boundaries (Section 3.5.1). 

In the FMM network, the structure complexity term denotes the number of 

generated nodes (hyperboxes) in the hidden layer. The degree of computation cost 

increases as the number of hyperboxes increases. Hence, using few hyperboxes can 

decrease the computation cost (Ramos et al. 2008). In the last decade, several models 

(MFMM, FMM-GA, AFMN, EFMMII and FMM-K-nearest (Kn)) have been proposed 

to overcome the complexity problem in the FMM network (Section 2.3). Most of these 

models, excluding FMM-Kn, entailed the use of pruning technique.  

Using a pruning technique can generally reduce the network structure whilst 

providing an accurate performance that is comparable to that of other non-pruned models. 

The dynamic process of the pruning technique focuses on removing the created 

hyperboxes with low knowledge structure, which identified as a hyperboxes that have 

confidence value below the user-defined threshold factor (Augasta and 

Kathirvalavakumar 2013; Mohammed and Lim 2017b). Despite the effectiveness of 

pruning technique in solving problem complexity, it adversely affects network structure 

by pruning a part of network knowledge and influences the quality of the learning process 

through the use of a part of a learning sample for prediction. It also increases the number 

of user-defined parameters with random value initialisation and makes the network barely 

adaptive. Mohammed and Lim proposed the FMM-Kn model to overcome the problems 

in the use of pruning technique (Mohammed and Lim 2017a). 

The FMM-Kn model is able to reduce the network structure by modifying the 

original expansion process and enhancing the approach to specifying and selecting 

winning hyperbox during the learning stage. This approach creates a few accurate 

hyperboxes and thus improves the FMM network’s classification accuracy. The proposed 

modifications can help address the complexity problem and create a highly accurate 

knowledge structure for the FMM classifier. However, the backbone model used in these 

modifications is the FMM classifier, which has various limitations (Section 3.3). In this 

regard, the FMM-Kn model inherits the limitations of the original FMM network. In this 
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chapter, new modifications for the MDFMM classifier are introduced with the goal of 

improving its performance against complexity and noise tolerance problems. These 

modifications generate a Modern Fuzzy Min-Max model on the basis of the Kn technique 

(MDFMM-Kn) by integrating the advantages of the Kn technique and the MDFMM 

model. 

The remainder of this chapter is organised as follows. Section 4.2 presents an 

analysis of the MDFMM network. Section 4.3 discusses the Kn technique and its usability 

for the MDFMM network. Section 4.4 explains the integration of the Kn technique with 

MDFMM model. Section 4.5 describes the experimental results. Section 4.6 provides a 

summary of the research findings.  

4.2 Analysis of the MDFMM Classifier 

The classification accuracy rate of the MDFMM network is better than that of the 

FMM network and its variants. However, it tends to generate more hyperboxes than the 

FMM network does (Section 3.5.1). The increase in the number of hyperboxes helps 

overcome the limitations of the FMM network and generate a highly accurate knowledge 

structure. However, the MDFMM network inherits another limitation from the original 

FMM, that is, the expansion rule. The expansion rule focuses on winning hyperbox and 

thus leads to the creation of many small hyperboxes within the vicinity. As a result, the 

network structure becomes increasingly complex. Although many researchers have 

sought to produce a less complex structure classifier and maintain an acceptable 

classification accuracy (Liu et al. 2012; Mohammed and Lim 2017a, 2017b; Quteishat et 

al. 2010; Shinde and Kulkarni 2016), further improvements must be made to minimise 

the complexity of the MDFMM network structure and maintain its classification 

performance. In this section, the complexity problem of the MDFMM network is 

investigated, and additional details are illustrated. 

The MDFMM network is limited by the need to specify a winning hyperbox that 

is supposed to expand and include the new input sample. This requirement affects the 

expansion process and causes the creation of many unnecessary small hyperboxes during 

the learning stage. The MDFMM classifier generally uses the membership function 

shown in Eq. 3.1 to identify a set of hyperboxes that belong to the same class of input 

samples (Section 3.2). Subsequently, the hyperbox with a high fitness function is selected 
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as a winner to expand and contain the new input sample if the expansion process does not 

violate equations. (Eq. 3.19) and (Eq. 3.20); otherwise, a new hyperbox that encodes the 

current input sample is created. Hence, adopting the expansion process for the winning 

hyperbox alone generates numerous small hyperboxes within the vicinity of the winning 

hyperbox. In the case of the MDFMM network, many new small hyperboxes are created 

whenever the winning hyperbox does not meet the expansion criteria. This condition 

increases network complexity. The FMM network and most of its variants suffer from the 

same problem, as described by (Mohammed and Lim 2017a). 

The problem can be further clarified using a 2D example (Figure 4.1). Suppose 

that three hyperboxes belong to different classes (i.e. H1 and H3 belong to class (C1), and 

H2 belongs to class (C2) with minimum and maximum points of V1 = (0.1,0.1) and W1 = 

(0.2,0.2), V3 = (0.1,0.5) and W3 = (0.3,0.7) and V2 = (0.32,0.27) and W2 = (0.5,0.4), 

respectively, as shown in Figure 4.1(a)). The hyperbox size is θ = 0.3. When the first 

input sample (i.e. P1 = (0.25,0.35) ∈ C1) is provided, the MDFMM network uses Eq. 3.1 

to specify the closest hyperbox that belongs to the P1 class as a winner. On the basis of 

the specification, H3 is selected as a winner hyperbox to contain P1 owing to its high 

fitness value. Then, Eq. 3.19 and Eq. 3.20 are triggered to check the ability of H3 to 

include P1. Although H3 satisfies Eq. 3.20, it violates the expansion constraint (θ) 

according to Eq. 3.19. Therefore, a new hyperbox (i.e. H4 ∈ C1) is created with V4 = W4 

= (0.25,0.35), as shown in Figure 4.1(b). When the second input sample (P2 = (0.35,0.26) 

∈ C1) is applied, H4 is selected to be expanded and contain P2. However, H4 cannot be 

expanded because it violates Eq. 3.20; here, the expansion of H4 causes it to overlap with 

H2, which belongs to a different class. Hence, a new hyperbox (i.e. H5 ∈ C1) is created 

with V5 = W5 = (0.35,0.26), as shown in Figure 4.1(c). 

This scenario evidently shows the limitation of the original selection process and 

the manner by which the selection of the hyperbox with a high fitness value as the sole 

winner from a set of hyperboxes could increase structure complexity through the 

generation of unnecessary small hyperboxes. This limitation could adversely affect the 

performance of the MDFMM network. Therefore, a new modification is proposed in the 

current work to overcome the complexity problem. This modification integrates the Kn 

expansion technique with the MDFMM model. This approach could improve the 

MDFMM network structure and provide highly accurate classification performance with 
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diminished noise tolerance effect when noise datasets are used. In the following section, 

the Kn concept will be discussed and analysed to explain and understand its working 

mechanism.

 

Figure 4.1 MDFMM expansion process  
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Figure 4.1 Continued 

 

4.3 The K-Nearest Technique and Usability for the MDFMM   

The Kn technique that uses the Kn hyperbox expansion rule is introduced to 

overcome the complexity of the FMM network (Section 4.1). To reduce the network 

structure, the Kn hyperbox expansion rule averts the creation of many small hyperboxes 

within the vicinity of the winning hyperbox (Mohammed and Lim 2017a). The FMM-Kn 

classifier utilises the membership function to define a set of hyperboxes that belongs to 

the same class of the input sample. Subsequently, the hyperbox with a high fitness 

function is selected as the winner. Then, Eq. 3.5 is utilised to evaluate the ability of the 

selected hyperbox to contain the new input sample. If the selected hyperbox does not 

satisfy Eq. 3.5, the expansion process is terminated, and a step-by-step verification for 

the set of hyperboxes is applied until the Kth hyperbox that meets Eq. 3.5 is found. 

Otherwise, a new hyperbox is created from the input sample with the same minimum and 

maximum values (Vi = Wi). Relative to the original FMM classifier, the proposed model 

is evidently able to generate a less complex network structure and maintain a satisfactory 

accuracy rate (Mohammed and Lim 2017a).   
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The Kn expansion rule can be clarified by using a 2D example, as shown in Figure 

4.2. Suppose that three hyperboxes (i.e. H1, H2 and H3) belong to different classes, where 

H1 and H3 ∈ C1 and H2 ∈ C2 with minimum and maximum points of V1 = (0.1,0.1) and 

W1 = (0.2,0.2), V3 = (0.1,0.5) and W3 = (0.3,0.7) and V2 = (0.32,0.27) and W2= (0.5,0.4), 

respectively. Assume that two input samples (i.e. P1 = (0.25,0.35) and P2 = (0.35,0.26) ∈ 

C1) exist, as shown in Figure 4.2(a). When the input sample P1 is applied, according to 

Eq. (3.1) (Section 3.2), H3 is selected as the winning hyperbox, as shown in Figure 4.2(b). 

The expansion coefficient (Eq. 3.5) is used to evaluate the ability of H3 to include P1. 

According to Eq. 3.5, H3 cannot be expanded because the expansion constraint (θ) is 

violated. Thus, the next nearest hyperbox is selected as the winning one (H1). Meanwhile, 

the constraint of Eq. 3.5 is satisfied. Hence, H1 is expanded to contain P1, as shown in 

Figure 4.2(c). Moreover, Eq. 3.6 and Eq. 3.7 are applied to update the minimum and 

maximum points for H1, where V1 = (0.1,0.1) and W1 = (0.35,0.35).  

When the next input sample (P2) is provided, Eq. (3.1) is triggered because the 

nearest hyperbox that belongs to the same P2 ∈ C1 class is selected as the winning one. 

On the basis of this outcome, H1 is selected to include P2, as shown in Figure 4.2(d). H1 

is expanded and contains P1 considering that expansion coefficient Eq. 3.5 is met through 

the expansion process. Accordingly, H1 now exhibits the same minimum point, that is, V1 

= (0.1,0.1), whilst its maximum point is modified to W1 = (0.35,0.26), as shown in Figure 

4.2(e). In this example, the Kn technique is able to improve the general FMM 

performance by decreasing the number of unnecessary hyperboxes generated and thereby 

limiting the number of overlapped cases between hyperboxes from different classes. With 

these results, the overlap and contraction processes are shortened, and the effect of data 

distortion on knowledge structure is minimised. This technique can diminish noise 

tolerance capability, as explained by (Mohammed and Lim 2017b).  
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Figure 4.2 FMM k-nearest expansion process 
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Figure 4.2 Continued 
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Figure 4.2 Continued 

 

In the Kn expansion rule, all hyperboxes that exhibit the same class label as the 

winning one are selected, and expansion coefficient (Eq. 3.5) is applied to all selected 

hyperboxes. Firstly, the hyperbox with a high fitness value is selected, and the expansion 

coefficient (Eq. 3.5) is utilised to evaluate the ability of the winning hyperbox to include 

the new input pattern. If the winning hyperbox is prohibited from expanding because 

expansion coefficient (Eq. 3.5) is violated, then the next nearest hyperbox is selected as 

the winning hyperbox. In general, the first Kn hyperboxes that can satisfy Eq. 3.5 are 

selected for expansion. If all selected hyperboxes cannot meet expansion coefficient (Eq. 

3.5), then a new hyperbox is created.  

Fundamentally, using the Kn technique with the MDFMM model leads to 

effective results. It is needed to use equations (Eq. 3.19) and (Eq. 3.20) to integrate the 

MDFMM model and Kn technique, which is introduced by the MDFMM model instead 

of Eq. 3.5. The integration of the Kn technique with the MDFMM model is described in 

Section 4.4. 
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4.4 MDFMM Based on K-Nearest Technique (MDFMM-Kn) 

The FMM complexity problem is solved by applying the Kn technique to prevent 

the generation of unnecessary hyperboxes in the network structure (Section 4.1) 

(Mohammed and Lim 2017a). Although FMM is the backbone of the MDFMM model, it 

tends to generate more hyperboxes than the original model does. This incremental in the 

MDFMM structure is related to its nature to create a highly accurate knowledge structure 

by solving the data distortion problem. The Kn technique integrated with the MDFMM 

model is applied to reduce network complexity. It needs to use the MDFMM expansion 

equation (Eq. 3.19) and overlap test (Eq. 3.20), which were introduced in Chapter 3 to 

overcome the irregularity and leniency problems.  

The MDFMM-Kn can be further clarified by revisiting the example in Section 4.4 

(Figure 4.2) and comparing it with that in Figure 4.3. Assume three hyperboxes exist in a 

2D space (i.e. H1 and H3 ∈ C1 and H2 ∈ C2 with minimum and maximum points V1 = 

(0.1,0.1) and W1 = (0.2,0.2), V3 = (0.1,0.5) and W3 = (0.3,0.7) and V2 = (0.32,0.27) and 

W2= (0.5,0.4), respectively. Assume that two input samples (i.e. P1 = (0.25,0.35) and P2 

= (0.35,0.26)) belong to the same class C1, as shown in Figure 4.3(a). When P1 is applied, 

MDFMM uses Eq. 3.1 to select the nearest hyperbox that belongs to the same P1 class as 

a winner. Accordingly, H3 is selected to contain P1, as shown in Figure 4.3(b). The next 

nearest hyperbox (H1) that belongs to the same class is expanded because expanding H3 

results in the violation of the expansion coefficient in Eq. 3.19. According to Eq. 3.19 and 

Eq. 3.20, H1 can contain P1, as shown in Figure 4.3(c). In this regard, the H1 minimum 

point remains the same (i.e. V1 = (0.1,0.1)) whilst the maximum point is updated to W1 = 

(0.25,0.35).  

When the next input sample P2 is applied, hyperbox H1 is selected as the winner. 

However, expanding H1 causes it to overlap with other hyperboxes from different classes 

(H2). Hence, a new hyperbox (H4) is created with the same minimum and maximum 

points (i.e. V4 = W4= (0.35,0.26)), as shown in Figure 4.3(e).     
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Figure 4.3 MDFMM-Kn expansion process 
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Figure 4.3 Continued 
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Figure 4.3 Continued 

As illustrated in Figure 4.3, the MDFMM-Kn leads to the creation of four 

hyperboxes, which are compared with those in the MDFMM model shown in Figure 4.1. 

As a result, the Kn hyperbox expansion rule can reduce the network structure with 

marinating the classification rate. 

4.5 Performance Evaluation   

MDFMM-Kn was compared with the MDFMM and other popular FMM variants, 

such as FMM, GFMM, EFC, FMCN, DCFMN and MLF, to evaluate its performance. 

Three experiments were conducted to comprehensively assess the performance of 

MDFMM-Kn. In the first experiment, six benchmark datasets (i.e. Iris, Wine, WBC, PID, 

Page Blocks and Thyroid) from the UCI machine learning repository were utilised. The 

hyperbox size (θ) was varied from 0.1 to 0.9 in step 0.1 to show the effect of the expansion 

coefficient value on the network accuracy and complexity. In the second experiment, four 

2D artificial datasets (i.e. Two Spirals, Corner, Half Kernel, and Outlier) with different 

training sizes were used to evaluate the effectiveness of changing the training size. In the 

third experiment, seven UCI benchmark datasets (i.e. Iris, Glass, Ionosphere, Thyroid, 

Parkinson, Ozone level and Spambase) were utilised to evaluate the noise effect on 

classifier performance. Hence, various hyperbox sizes and noise levels were adopted 
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during the evaluation process. Table 4.1 summaries the UCI benchmark datasets, which 

are used in the first and third experiments.  

Table 4.1 Description of UCI benchmark datasets  

Data set Features Classes Sample size 

Iris  4 3 150 

Seed 7 3 210 

Wine 13 3 178 

WBC 9 2 699 

PID 8 2 768 

Page blocks 10 5 5473 

Thyroid 21 3 7200 

Glass 9 7 214 

Ionosphere  34 2 351 

Parkinson 22 2 197 

Ozone level 72 2 2536 

Spambase  57 2 4601 

 

4.5.1 Experiment 1 

The experiment aims to evaluate the effect of increasing the hyperbox size on the 

performance of MDFMM-Kn and MDFMM. Six UCI benchmarks datasets (i.e. Iris, 

Wine, WBC, PID, Page Blocks and Thyroid) were utilised. Figure 4.4 shows the 

classification rates, along with the 95% confidence intervals, of MDFMM-Kn and 

MDFMM. A five-fold cross-validation was performed to estimate the generalisation 

performance of both models. A series of systematic evaluations was conducted by 

increasing the hyperbox size from 0.1 to 0.9 in step 0.1. The experiment was repeated ten 

times for each hyperbox size. The outcomes were computed using a bootstrap method. 

Figure 4.4 illustrates the accuracy rates (%) of MDFMM and MDFMM-Kn. The 

error bars represent the 95% confidence intervals rated using the bootstrap method. As 

illustrated in the figure, MDFMM and MDFMM-Kn produced almost consequences 

result when the hyperbox size was small, except for the Thyroid dataset. In summary, the 

MDFMM-Kn model outperformed MDFMM. The average (bootstrap) test accuracy rates 

of MDFMM-Kn for the different datasets exceeded those of MDFMM when the hyperbox 
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size ranged from 0.1 to 0.9, as shown Figure 4.4(a–f). In Figure 4.4(d–f), MDFMM-Kn 

outperformed MDFMM in all hyperbox sizes, especially in Figure 4.4(e), where 

MDFMM-Kn statistically exceeded MDFMM (at the 95% confidence level) when the 

hyperbox size ranged from 0.1 to 0.9, 0.1 to 0.3, and 0.4 to 0.6 for  Figure 4.4 (e) , Figure 

4.4 (d), and Figure 4.4 (f), respectively. As shown in the figure, MDFMM-Kn performed 

more stably and obtained better average accuracy values in comparison with the 

MDFMM model for all hyperbox sizes. 

 

 

Figure 4.4 The average test accuracy of MDFMM and MDFMM-Kn 
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Figure 4.4 Continued 
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Figure 4.4 Continued 

In terms of complexity, Figure 4.5 shows the average number of hyperboxes 

generated by MDFMM-Kn and MDFMM. All datasets were used for MDFMM and 

MDFMM-Kn. The result showed that MDFMM generated a more complex network 

structure than MDFMM-Kn. Many small hyperboxes within the vicinity of the hyperbox 

were created because MDFMM tends to create numerous hyperboxes to provide a highly 

accurate description of the network structure and generate substantial precise decision 

boundaries, as explained in Section 4.2 and shown in Figure 4.2. All these figures show 

that MDFMM-Kn produced fewer hyperboxes than the MDFMM network. MDFMM-Kn 

statistically outperformed FMM for all hyperbox size settings, as shown in Figure 4.5. 

Specifically, MDFMM-Kn can create a parsimonious network structure without 

negatively affecting the accuracy. 
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Figure 4.5 The average number of hyperboxes of MDFMM and MDFMM-Kn for 

different benchmark datasets 
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Figure 4.5 Continued 
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Figure 4.5 Continued 



94 

 

Figure 4.5 Continued 

 

4.5.2 Experiment 2  

This experiment aims to assess the effect of using different training size samples 

on the performance of MDFMM-Kn and compare the outcomes with those of MDFMM 

and FMM networks. Four datasets (Two Spirals, Kernel, Corners and Outlier) were 

generated for performance validation. Table 4.2 shows the statistical information of the 

created datasets. In this experiment, the training sizes for all datasets were randomly 

generated instances and varied from 1000 to 10000 whilst 1000 new instances were used 

for testing. The hyperbox size was set to a small value (0.05) to maximise the 

classification performance. Figure 4.6 shows the original image for the created dataset. 

Table 4.2 Statistical information of created datasets   

Data set Features Classes Training size Testing size 

Two Spiral 2 2 10000 1000 

Kernel 2 2 10000 1000 

Corners 2 4 10000 1000 

Outlier 2 4 10000 1000 
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Figure 4.6 The original shape for the created datasets   

The results for this experiment are summarised in Table 4.3. The three models 

(i.e. MDFMM, MDFMM-Kn and FMM) obtained the same accuracy, as shown in the 

table. In terms of complexity, the MDFMM-Kn outperformed FMM and MDFMM by 

generating a simple network structure. Based on Table 4.3, the difference in network 

complexity increases by increasing the training samples, where the MDFMM-Kn 

generated less network structure as compared with MDFMM and FMM neural network. 

In other words, integration the MDFMM with Kn expansion rule technique result in 

reduced network complexity.  

These results showed that MDFMM-Kn can maintain its accuracy whilst forming 

a less complex network structure relative to MDFMM and FMM (Table 4.3). This finding 

verified the effectiveness of integrating the Kn expansion rule with the MDFMM model 
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in decreasing the MDFMM network structure, increasing/maintaining the classification 

rate and making the network highly robust towards increasing the hyperbox size.    

Table 4.3 Comparison of MDFMM-Kn results with FMM and MDFMM classifiers  

Dataset  Training 

size 

Models 

FMM MDFMM MDFMM-Kn 

Accuracy Complexit

y 

Accuracy Complexity Accuracy Complexity 

Two 

Spirals  

1000 100 140 100 163.10 100 126.70 

5000 100 320.9 100 300.20 100 157.10 

10000 100 515.1 100 411.20 100 163.50 

Corners 1000 100 277.9 100 244.30 100 132.30 

5000 100 823.8 100 707.90 100 184.90 

10000 100 1282.7 100 1073.70 100 198.00 

Half 

Kernel  

1000 100 297.90 100 275.10 100 153.70 

5000 100 957.00 100 828.20 100 237.90 

10000 100 1493.90 100 1294.10 100 265.40 

Outlier 1000 100 302.10 100 276.20 100 148.70 

5000 100 961.50 100 841.00 100 216.60 

10000 100 1505.40 100 1285.80 100 241.30 

In the second sub-experiment, MDFMM is compared with FMM and MDFMM 

networks in terms of the creation of small hyperboxes within the vicinity. In this sub-

experiment, four 2D artificial datasets (i.e. Two Spirals, Corners, Half Kernel and Outlier) 

were used. Figures 4.7, 4.8 and 4.9 show the network structure of MDFMM-Kn, 

MDFMM and FMM, respectively. The training and test sizes for each dataset were 10,000 

and 1000, respectively. The hyperbox size was θ=0.05, and this experiment was 

conducted ten times for each dataset. As shown in Figures 4.7, 4.8 and 4.9, MDFMM-Kn 

outperformed FMM and MDFMM by generating a simple network structure. It is clear 

that the winner selection method that used only the sole winning hyperbox leads to the 

creation of many small hyperboxes within its vicinity; thus increasing the MDFMM and 

FMM network complexity unnecessarily, as shown in Figures 4.7, 4.8 and 4.9.  

These Figures 4.7, 4.8, and 4.9 demonstrate the ability of MDFMM-Kn in 

preventing the creation of hyperboxes with small sizes. Specifically, the integration of the 

Kn expansion rule with MDFMM contributed to the decrease of the network complexity.     
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Figure 4.7 The two spirals data set with training  and testing size 10000 and 1000, 

respectively 

(a) FMM 

(b) MDFMM 

(c) MDFMM-Kn   
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Figure 4.8 The Corners data set with training and testing size 10000 and 1000, 

respectively 

(a) FMM 

(b) MDFMM 

(c) MDFMM-Kn 
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Figure 4.9 The Half Kernel data set with training and testing size 10000 and 1000, 

respectively 

 

 

(a) FMM 

(b) MDFMM 

(c) MDFMM-Kn 
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Figure 4.10 The Outlier data set with training  and testing size 10000 and 1000, 

respectively 

(a) FMM 

(b) MDFMM 

(c) MDFMM-Kn 
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4.5.3 Experiment 3 

This experiment aims to assess the effect of adding noise to the dataset on the 

performance of MDFMM and MDFMM-Kn networks and compare the results with those 

of the other common variants of FMM. Nine benchmark datasets (i.e. Iris, Glass, Wine, 

Ionosphere, Thyroid, Ozone level, Parkinson and Spambase) were used in this 

experiment. In this experiment, the training and testing samples was corrupted with 5%, 

10%, and 15% noise levels. The noise was added to the class labels for each selected 

benchmark dataset to test the robustness of MDFMM and MDFMM-Kn and other 

classifiers against noise. A three-fold cross validation was carried out in accordance with 

the experimental procedures reported by (Davtalab et al. 2014), and the size of the 

hyperbox (θ) was varied from 0.0 to 0.1 in increments of 0.02. Table 4.4 shows the results 

of misclassification in different models with noise datasets. As shown in the table, 

MDFMM-Kn and MDFMM performed better than the other models did because it 

achieved the minimum misclassification rate for all experiments.    

Table 4.4 Furthermore, MDFMM-Kn obtained the lowest misclassification rate 

for various noise levels relative to the different variants of FMM. However, the MLF 

neural network showed a low misclassification rate in the Iris dataset at the 5% noise 

level. By contrast, MDFMM-Kn showed superiority in the same dataset at the 10% and 

15% noise levels. As shown in Table 4.4, MDFMM and MDFMM-Kn obtained the same 

low misclassification rates in the Wine, Ozone level and Parkinson datasets across all 

noise levels. Moreover, MDFMM-Kn achieved low misclassification rates for the Glass, 

Thyroid, Spambase, Iris and Ionosphere datasets. In this experiment, MDFMM-Kn 

showed high tolerance to noise and could thus create a pure decision boundary with few 

hyperboxes (Section 3.4). In noisy dataset, the noisy samples cause the generation of 

some hyperboxes with the wrong class label. The size of these wrong hyperboxes relies 

on the expansion coefficient and, when a large value is selected for hyperbox size (θ), 

these hyperboxes will enlarge. As a result, a large number of overlapped areas will be 

generated. This issue leads to increase the misclassification rate in FMM and its variants. 

As MDFMM-Kn is reduced the misclassification rate in overcoming the irregular 

dimension shape and overlap leniency by incorporating the proposed modifications. In 

other words, MDFMM-Kn is able to reduce the overlap between hyperboxes belonging 

to different classes by preventing the creation of hyperboxes of a large size. In addition, 
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the k-nearest hyperbox selection rule is able to establish accurate decision boundaries by 

avoiding the creation of too many small hyperboxes in the vicinity of the wining hyperbox 

(using the k-nearest expansion rule, as explained in Section 4.3 and 4.4).  In summary, 

these results indicate that MDFMM-Kn and MDFMM are not as sensitive to noisy data 

as other related classifiers are due to the modifications added to both networks. The result 

is the creation of pure decision boundaries and undistorted hyperboxes.  

Table 4.4 Performance comparison in percentage  between MDFMM-Kn and 

MDFMM, and variants of FMM models highlighted in Davtalab et al. (2014) for 

different benchmark datasets 

Dataset Noise 

Level 

 Models 

GFMM EFC FMCN DCFMN MLF EFMM MDFMM MDFMM-

Kn 

Iris 5% 15.56 12.08 13.51 11.34 6.53 7.36 8.28 8.27 

10% 29.61 27.91 27.51 20.91 15.74 8.13 10.77 10.69 

15% 30.23 32.19 29.01 25.95 19.85 10.94 13.09 13.09 

Glass 5% 58.48 50.33 52.68 45.80 39.74 32.76 31.45 31.32 

10% 61.20 51.80 53.44 46.10 42.46 33.45 31.42 31.42 

15% 64.46 57.61 58.53 53.06 44.18 35.56 27.87 27.8 

Wine 5% 15.61 9.86 11.66 10.23 9.76 11.53 7.85 7.85 

10% 16.03 12.13 12.82 12.63 11.72 11.72 8.55 8.55 

15% 23.34 18.94 19.48 18.29 17.72 21.97 12.90 12.90 

Ionosphe

re 

5% 64.10 20.26 16.19 15.83 15.18 17.96 13.14 13.14 

10% 64.10 27.16 20.10 20.72 19.93 22.16 18.88 18.47 

15% 64.10 31.65 28.12 26.68 23. 51 25.60 17.6 17.43 

Thyroid 

5% 33.02 28.23 26.59 18.61 11.94 19.4 10.35 8.41 

10% 26.37 44.02 35.46 24.69 13.29 25.20 15.11 12.57 

15% 47.48 42.36 41.31 28.70 22.61 31.79 20.29 16.99 

Ozone 

Level 

5% 27.85 20.29 13.03 13.55 11.90 11.97 10.17 10.17 

10% 32.11 26.32 18.58 18.39 15.48 16.17 14.83 14.83 

15% 39.91 29.14 23.84 24.66 19.09 21.02 17.97 17.97 

Parkinso

n 

5% 22.23 18.60 17.99 15.28 15.04 17.85 13.20 13.20 

10% 23.10 24.47 23.73 19.96 19.72 14.87 12.08 12.08 

15% 25.93 23.12 22.90 21.64 21.01 16.66 12.74 12.74 

Spambas

e 

5% 51.75 48.61 47.26 39.05 17.09 19.72 15.13 13.98 

10% 59.18 57.14 49.71 40.07 21.71 21.53 17.54 16.49 

15% 60.22 64.80 52.11 43.07 26.56 22.35 19.04 18.26 

 

4.5.4 Overall comparative performance analysis  

This section aims to measure the overall complexity (number of generated 

hyperboxes) improvements percentage of the MDFMM-Kn comparative to other selected 

models, as described in experimental results of experiment 2. Eq. 4.1 is used to calculate 

the improvement percentage. It is a basic and well known equation of finding the 

improvement percentage of the performance testing for a technique  
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𝑃𝐼𝑀𝑖 =
#𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑥𝑠_𝐸𝑖−#𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑥_𝑆 

#𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑥_𝐸𝑖
*100    4.1 

Where PIMi is the percentage improvement of MDFMM-Kn model against the ith 

existing model; #Hyperboxs_Ei is the number of generated hyperboxes by the ith existing 

model; #Hyperboxes_S is the number of generated hyperboxes by the proposed model 

MDFMM-Kn.  

Figure also shows that the space complexity efficiency of MDFMM-Kn is 63% 

and 61% better than that MDFMM and FMM models. Furthermore, the average 

performance of MDFMM-Kn against MDFMM and FMM models indicates that its 

performance is better than the FMM and MDFMM models in term of complexity at a 

percentage of 62%.  

 

Figure 4.11 performance analysis of MDFMM-Kn with respect to the space 

complexity   

 

The experimental evaluation result showed that MDFMM-Kn created a balance 

between complexity and accuracy because it alleviated complexity without diminishing 

the network performance. Specifically, the performance of MDFMM-Kn was more stable 

than that of MDFMM, according to Experiments 1, 2 and 3. In addition, MDFMM-Kn 

decreased the effect of increasing the hyperbox size on the accuracy of the network, 

thereby indicating that few variations were generated when the maximum sizes of the 
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hyperbox ranged from 0.1 or 0.9. In terms of noisy data, MDFMM-Kn and MDFMM 

showed an excellent performance relative to other FMM variants.   

4.6 Summary  

In this chapter, the MDFMM model and K-nearest expansion rule were analysed 

and explained. MDFMM-Kn was introduced to decrease the number of hyperboxes 

generated by the MDFMM network. In this approach, Kn was integrated with the 

MDFMM model (i.e. MDFMM-Kn). The resulting MDFMM-Kn model was evaluated 

by using different benchmark (i.e. Iris, Wine, Glass, WBC, PID, Thyroid, Page blocks 

and Ionosphere) and 2D (Two Spirals, Half Kernel, Outlier and Corners) datasets. The 

experimental results showed that the performance and sensitivity to noise of MDFMM-

Kn are better than those of all the variants of FMM. Finally, MDFMM-Kn achieved an 

excellent performance with a simple network structure
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CHAPTER 5 

 

 

 CONCLUSION AND FUTURE WORKS 

5.1 Summary of research  

This chapter delineates the influence and contributions of this study by 

summarizing the outcomes presented in the previous chapters. Some recommendations 

for future works are also provided. 

Chapter 1 discusses the extant techniques for pattern classification. The features 

and benefits of the FMM network, which serves as the backbone of this study, are also 

presented. The scope, problems, objectives, motivations and methodology of this work 

are eventually described.  

Chapter 2 introduces the cutting-edge innovations in FMM and its variants with 

and without contraction. A detailed analysis of the FMM network is initially presented 

before highlighting the limitations in its expansion, contraction, overlap test processes, as 

well as, in the membership function. Several modifications are also presented to address 

these limitations. 

Chapter 3 introduces the MDFMM model along with the four key contributions 

of this work (i.e. a new expansion technique, overlap test formula, contraction process, 

and prediction strategy). The efficacy of the MDFMM model is then evaluated by 

conducting experimental tests. The model demonstrates significant improvements in its 

classification accuracy across all tested UCI benchmark datasets. However, given its 

embedded extraction process and contraction method, the MDFMM network has more 

complex network structure as compared with the original FMM model, thereby producing 

more hyperboxes number whilst addressing overlaps.
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Chapter 4 addresses the third research objective by introducing the MDFMM-Kn 

model, which is developed by integrating the k-nearest technique into the MDFMM 

expansion process. The MDFMM-Kn model is considered as a method for addressing the 

limitations of the MDFMM network. As indicated by the ‘Kn’ in its name, the MDFMM-

Kn model selects ‘the k-nearest’ hyperbox during training stage instead of relying on a 

single winning hyperbox in order to reduce the number of generated hyperboxes. The 

performance of this model is then evaluated using 11 UCI benchmark datasets and 4 other 

datasets, including two spirals, corners, outlier and kernel. The evaluation results are 

compared with those for the MDFMM model and other classifiers presented in the 

literature. The results of the experiment indicate that the MDFMM-Kn model 

demonstrates a favorable performance across all datasets and generate a smaller number 

of hyperboxes with comparable or better accuracy rate comparing with other classifiers. 

In sum, this research achieves its objectives by developing, implementing and 

evaluating MDFMM and MDFMM-Kn models. The objectives of this work are outlined 

in Table 5.1 along with the chapters where these objectives are addressed. 

Table 5.1 The research objective achievment  

# Objectives  Chapter achievement 

1 To study and analyse the weakness, limitations and 

drawbacks of the current FMM model and its variants 

in handling pattern classification problems. 
Chapter 2 

2 To propose Modern Fuzzy Min-Max (MDFMM) model 

by introducing a new expansion technique, new overlap 

test formula, new contraction process, and new 

prediction strategy for the test stage. 

Chapter 3 

3 To further enhance the MDFMM model by integrating 

k-nearest technique to reduce the network structure 

complexity and improve the model noise tolerance 

ability. 

Chapter 4 

4 To evaluate the usefulness of the proposed models in 

undertaking pattern classification problems using 

different benchmark, 2D AI, noise and noise free data 

sets. Furthermore, quantify their performances using 

statistical indicators, as well as analyse and compare 

their effectiveness with different classifiers 

Chapter 3 and 4 
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5.2 Contributions of the Research  

This study contributes to pattern classification research by identifying the 

limitations of the FMM network in both the testing and learning phases as summarized in 

Table 2.3, Section 2.5, Chapter 2. These limitations are addressed in this work by applying 

two key modifications to the FMM network. The contributions of this research can be 

summarized in the following paragraphs.   

As its first contribution, this work introduces a new expansion technique that 

prevents generating overlap cases between hyperboxes from different classes, thereby 

simplifying the training process in the learning stage. As its second contribution, this 

work constructs a new overlap test formula that can simplify the overlap test process and 

determine the potential overlap cases (containment overlaps). This formula uses also to 

terminate the expansion process in case it led to overlap other hyperboxes from different 

classes. As its third contribution, this work addresses the data distortion problem and 

simplifies the extant contraction process by introducing a new contraction process that 

produces highly accurate hyperbox decision boundaries and subsequently promotes the 

classification accuracy. As its fourth contribution, this research integrates the distance 

equation into the membership function to create a new prediction strategy that can solve 

the randomized decision making problem, especially when the fitness value of the input 

sample remains the same across multiple hyperboxes from different classes. 

All these contributions lead to the formation of the MDFMM network, which 

performance has also been empirically examined in this work by using 11 benchmark 

datasets, including Iris, Glass, Heart, Wine, Liver, WBC, Ionosphere, PID, Zoo, Thyroid 

and Seed. To address the inadequacy of measuring accuracy, statistical analysis was 

conducted to evaluate the classification performance via bootstrap method and k fold 

cross validation method. The results of the evaluation are then compared with other 

models from the literature. The empirical findings indicate that the MDFMM outperforms 

the other classifiers proposed in the literature in various aspects. Therefore, the 

aforementioned contributions effectively improve the performance of FMM. The 

proposed MDFMM model not only shows higher stability in its performance compared 

with FMM but can also generate a highly accurate hyperbox structure and solve the data 

distortion problem as discussed in Section 3.3.2. Nevertheless, the structure of the 

MDFMM network is more complex compared with that of the FMM network because of 
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its behaviour to produce pure decision boundaries. However, complex network structures 

consider as a critical issue in real world applications. Therefore, reducing the complexity 

of the MDFMM network warrants further attention as discussed in Chapter 4.    

As its fifth contribution, this work integrates the k-nearest algorithm into 

MDFMM to solve the issues related to the complexity of its network structure. The 

objective of the resulting MDFMM-Kn model is to use a set of k-nearest hyperboxes in 

the expansion process instead of relying on a single winning hyperbox. The process 

conditions Eq. 3.1 and Eq. 3.2 should be satisfied by the selected/winning hyperbox. 

Specifically, the MDFMM-Kn model prevents the creation of small hyperboxes within 

the area of the winning hyperbox and reduces the number of hyperboxes that are 

generated by the MDFMM model in the training stage. The performance of this model 

was evaluated using 11 benchmark datasets and 4 created datasets. Whilst its 

effectiveness in reducing the complexity and producing efficient classification accuracy 

was validated by conducting three experiments, bootstrap method and k fold cross 

validation, which indicate that this model obtains more stable outcomes, achieves better 

mean values and produces few hyperboxes compared with MDFMM. Both the MDFMM 

and MDFMM-Kn models were then evaluated against noisy data to understand how these 

data influence their performance. The evaluation results were then compared with the 

results for the other classifiers that have been proposed in the literature. Both models 

demonstrate a better performance compared with the variants of FMM across all noise 

levels for different benchmark datasets.  

5.3 Future Expansion and Recommendations  

This study introduces two models, namely, MDFMM and MDFMM-Kn, as well 

as several modifications to address the pattern classification issues faced by FMM and its 

variants. Some directions for future research in this area are also presented as follows. 

Both the MDFMM and MDFMM-Kn models have some limitations related to the 

identification of the maximum hyperbox size (θ) and the expansion process. To address 

these limitations, a re-expansion method can be implemented after the learning process. 

This method not only grants some flexibility to hyperboxes without the need to integrate 

the expansion parameter, θ, but also could generate more accurate decision boundaries 

for the generated hyperboxes and prevents the formation of any overlaps amongst 
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hyperboxes from various classes. These effects have been proven to improve the 

performances of both the MDFMM and MDFMM-Kn models.  

The MDFMM neural network should be integrated with feature selection 

algorithms as a pre-processing phase in order to solve issues related to big data. Doing so 

can also lessen the influence of insignificant features and consequently promote the 

prediction quality of the membership function and improve the decisions related to feature 

selection.  

Most ANNs, including MDFMM and MDFMM-Kn, suffered from inability to 

explain its predication (black box). An extraction step can be set up to address this 

problem by generating compact rules via a genetic algorithm.  

The pattern classification conducted in this study adheres to the FMM network 

and its variants, including MFMM-GA, MFMMN, enhanced FMM network and FMM 

clustering. Future studies may consider applying the modifications introduced in this 

study, including the new contraction and expansion methods, Kn and new overlap test 

formula, into other FMM models.  

The proposed MDFMM and MDFMM-Kn models have demonstrated high 

accuracy and obtained excellent pattern classification results. However, these models 

show some instability in the learning phase because of the changes in the training 

sequence that can influence their intricacy and accuracy. Applying the ensemble method 

can support the predictions derived from multiple classifiers, obtain an integrated output 

and manipulate the decisions of a multi-classifier framework, thereby enhancing the 

robustness of both MDFMM and MDFMM-Kn. 
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