OPTIMISATION OF ENERGY EFFICIENT ASSEMBLY SEQUENCE PLANNING USING MOTH-FLAME OPTIMISATION ALGORITHM

MUHAMMAD ARIF BIN ABDULLAH

MASTER OF SCIENCE

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

(Supervisor's Signature) Full Name : DR. MOHD FADZIL FAISAE BIN AB. RASHID Position : ASSOCIATE PROFESSOR Date :

(Co-supervisor's Signature)Full Name: DR. ZAKRI BIN GHAZALLIPosition: SENIOR LECTURERDate:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : MUHAMMAD ARIF BIN ABDULLAH ID Number : MMM16034 Date :

OPTIMISATION OF ENERGY EFFICIENT ASSEMBLY SEQUENCE PLANNING USING MOTH-FLAME OPTIMISATION ALGORITHM

MUHAMMAD ARIF BIN ABDULLAH

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Mechanical and Manufacturing Engineering

UNIVERSITI MALAYSIA PAHANG

JULY 2019

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation and gratitude to my main supervisor, Associate Professor Dr. Mohd Fadzil Faisae Ab. Rashid, who supported me from day one with his patience, invaluable guidance, continuous encouragement, constant support, and knowledge in making this research possible. Special thanks also goes to Dr. Zakri bin Ghazalli for his encouragement and effort. I really appreciate their guidance from the first to the final stage that enabled me to develop an understanding of this research thoroughly. Without their advice and guidance, it would be a lot tougher to complete this thesis.

I would also like to express my deepest gratitude to all lecturers and staff of the Faculty of Mechanical Engineering and Institute of Postgraduate Studies, Universiti Malaysia Pahang, who helped me in many ways and provided the best possible support during the research period. Special thanks also goes to all my research colleagues, especially in the Postgraduate Workstation, for their friendship and helpfulness.

Finally, I would like to express my sincere indebtedness and gratitude to my family; my beloved parents who continuously prayed for my success and became my motivators in accomplishing this thesis. Their sacrifice has inspired me from the day I learned how to read and write until now. May God reward them with goodness.

ABSTRAK

Dalam pengoptimuman pemasangan, perancangan turutan pemasangan (ASP) merujuk kepada aktiviti mencari kemungkinan rangkaian pemasangan terbaik yang dibangunkan berdasarkan pemodelan pemasangan. Masalah ini tergolong dalam kategori ketidakketentuan masa-polinomial (NP) sukar. Pada masa ini, masalah ini tidak dapat diselesaikan melalui pendekatan tepat. Memandangkan kerumitan pengoptimuman masalah ASP, pendekatan tradisional yang menilai penyelesaian ASP satu persatu tidak sesuai digunakan disebabkan jumlah masa, tenaga dan kos yang tinggi. Dalam ASP, kajian masalah pengoptimuman adalah penting untuk menentukan turutan pemasangan terbaik. Penyelidikan dalam ASP telah diberi banyak perhatian, terutamanya objektif yang berorientasikan keuntungan dan berkaitan manusia. Namun, berdasarkan kajian terdahulu, perhatian kurang diberikan untuk menangani isu kemanpanan dalam pemasangan seperti pelepasan karbon dan penggunaan tenaga. Di sisi lain, kajian ASP hari ini cenderung untuk meneroka potensi algoritma baru bagi mengoptimumkan ASP. Oleh itu, kajian ini bertujuan untuk membangunkan satu kaedah dan menggunakan algoritma bagi mengoptimumkan masalah pemasangan turutan perancangan dengan kecekapan tenaga (EE-ASP). Dalam model yang dicadangkan, penggunaan tenaga terbiar dioptimumkan bersama dengan arah dan alat pemasangan. Bagi tujuan pengoptimuman, penyelidikan ini menggunakan satu algoritma baru iaitu Moth-Flame Optimisation (MFO). Ujian berkomputer dilakukan dengan menggunakan enam masalah dari kajian terdahulu. Selain itu, kajian kes dijalankan untuk mengesah kebolehgunaan model EE-ASP dan prestasi algoritma untuk pengoptimuman. Prestasi MFO dibandingkan dengan tiga algoritma meta heuristik yang kerap digunakan di dalam ASP, iaitu Ant Colony Optimisation (ACO), Genetic Algorithm (GA) dan Particle Swarm Optimisation (PSO). Berdasarkan ujian berkomputer, MFO mencapai keputusan terbaik bagi kecergasan minima, kecergasan maksima, purata kecergasan dan sisihan piawai dalam setiap masalah ujian. Sementara itu, hasil kajian kes turut menunjukkan MFO memperolehi keputusan terbaik bagi kecergasan minima, kecergasan maksima dan purata kecergasan. Semua keputusan kemudian dianalisa menggunakan Analysis of Variance (ANOVA). Nilai P didapati lebih rendah berbanding aras signifikan α (P \leq 0.10) dalam setiap masalah ujian dan kajian kes. Oleh itu, terdapat perbezaan signifikan secara statistik antara purata kumpulan. Hasil dari ANOVA tadi, kemudian dianalisa dengan teknik post-hoc Fisher's Least Significant Difference (LSD). Keputusan LSD menunjukkan MFO memiliki perbezaan signifikan di dalam 67 % daripada kes-kes berbanding dengan algoritma perbandingan untuk masalah ujian. Keputusan dari kajian kes mengesahkan cadangan model EE-ASP dan algoritma MFO boleh diaplikasikan terhadap data pemasangan sebenar. Cadangan susun atur oleh MFO mampu mengurangkan penggunaan tenaga terbiar sehingga 11.7 %, sementara bilangan perubahan arah pemasangan dan alatan berkurangan masing-masing sebanyak 26.67 % dan 13.64 %. Hasil dari kajian dapat disimpulkan bahawa model penggunaan tenaga terbiar untuk ASP boleh digunakan sebagai garis panduan untuk mereka bentuk stesen bagi proses pemasangan yang mampan. Selain itu, MFO mempunyai potensi yang besar untuk terus diterokai bagi tujuan pengoptimuman masalah kombinatorial yang lain.

ABSTRACT

In assembly optimisation, Assembly Sequence Planning (ASP) refers to the activity of finding the best possible assembly sequences developed on the foundation of assembly modelling. This problem is a non-deterministic polynomial-time (NP) hard problem, as currently cannot be solved by using a specific approach. By considering the complexity to optimise the ASP problem, the traditional approach that evaluates every single possible solution for ASP is inconvenient to be used due to time constraint, high energy consumed and computational cost. In ASP, the research on problem optimisation is important and needs an effective computational approach to determine the best assembly sequence. Research on ASP has been given a lot of attention, especially with the profit and humanrelated objectives. However, based on the literature survey, less attention was given to tackle the sustainable issue in assembly such as carbon emission and energy utilisation. On the other hand, the recent ASP research tends to explore the potential of a relatively new algorithm to optimise ASP. Therefore, the aim of this research is to establish a methodology and implement the relatively new algorithm to optimise the Energy Efficient Assembly Sequence Planning (EE-ASP) problem. In the proposed model, the idle energy utilisation was optimised together with the assembly direction and tool changes. For optimisation purpose, this research proposed a relatively new algorithm called the Moth-Flame Optimisation (MFO). A computational experiment was performed by using the six test problems from the literature. Furthermore, a case study was conducted to validate the proposed EE-ASP model and the performance of the optimisation algorithms. The MFO performance was compared with three frequently used meta-heuristics algorithms in ASP, namely Ant Colony Optimisation (ACO), Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO). Based on the computational experiment, MFO achieved the best results in terms of minimum fitness, maximum fitness, average fitness, and standard deviation in each test problem. Meanwhile, the case study results also indicated that MFO obtained the best minimum fitness, maximum fitness and average fitness. All of the results were then analysed by using the Analysis of Variance (ANOVA) method. The P-value was found to be lower than the significant level α (P ≤ 0.10) in all test and case study problems. Therefore, it could be interpreted that there were statistically significant differences among the group means. The outcomes of ANOVA for the test and case study problems were further analysed with the post-hoc Fisher's Least Significant Difference (LSD) technique. The LSD result indicated that the MFO had a significant difference in 67 % of the cases as compared to the comparison algorithms. The result from the case study confirmed that the proposed EE-ASP model and MFO algorithm were applicable for the actual assembly data. The proposed MFO layout was able to reduce the idle energy utilisation up to 11.7 %, while the direction change and tool change reduced to 26.67 % and 13.64 % respectively. The findings from this research concluded that the idle energy utilisation model for ASP can be used as a guideline to design a station for sustainable assembly process. Besides that, the MFO had a great potential to be further explored to optimise the combinatorial problem.

TABLE OF CONTENT

DEC	CLARATION		
TIT	LE PAGE		
ACF	KNOWLEDGEMENTS	ii	
ABS	STRAK	iii	
ABS	STRACT	iv	
TAB	BLE OF CONTENT	v	
LIST	Г OF TABLES	ix	
LIST	T OF FIGURES	xi	
LIST	LIST OF SYMBOLS		
LIST	T OF ABBREVIATIONS	XV	
CHA	APTER 1 INTRODUCTION	1	
1.1	Background	1	
1.2	Problem Statement	2	
1.3	Research Objectives	3	
1.4	Scopes of Study	4	
1.5	Thesis Organisation	4	
CHA	APTER 2 LITERATURE REVIEW	5	
2.1	Introduction	5	
2.2	Assembly Sequence Planning Problem	5	
	2.2.1 ASP Problem Modelling	6	
	2.2.2 ASP Constraints	12	

2.3	ASP Optimisation Approach		14
	2.3.1	Ant Colony Optimisation (ACO)	15
	2.3.2	Genetic Algorithm (GA)	17
	2.3.3	Particle Swarm Optimisation (PSO)	18
2.4	ASP O	ptimisation Objectives	20
	2.4.1	Minimise Assembly Direction Change	20
	2.4.2	Minimise Assembly Tool Change	21
	2.4.3	Minimise Assembly Operation Type	22
2.5	Research Trends		23
2.6	Overvi	ew of Moth-Flame Optimisation (MFO)	25
	2.6.1	Characteristics and Applications of MFO Algorithm	25
2.7	Summa	ary of Literature Review	27
	DTED 2		20
СНА	PTER 3	METHODOLOGY	28
3.1	Introduction		28
3.2			20
	Modell	ing of Energy Efficient Assembly Sequence Planning (EE-ASP)	29
	Modell 3.2.1	ling of Energy Efficient Assembly Sequence Planning (EE-ASP) Basic Assumptions	29
	Modell 3.2.1 3.2.2	Ing of Energy Efficient Assembly Sequence Planning (EE-ASP) Basic Assumptions Representation	29 29 30
	Modell 3.2.1 3.2.2 3.2.3	Ing of Energy Efficient Assembly Sequence Planning (EE-ASP) Basic Assumptions Representation Fitness Function	29 29 30 37
	Modell 3.2.1 3.2.2 3.2.3 3.2.4	Ing of Energy Efficient Assembly Sequence Planning (EE-ASP) Basic Assumptions Representation Fitness Function Example of Application	29 29 30 37 38
	Modell 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Ing of Energy Efficient Assembly Sequence Planning (EE-ASP) Basic Assumptions Representation Fitness Function Example of Application Assembly Problem Representation Example	29 30 37 38 39
	Modell 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	Ing of Energy Efficient Assembly Sequence Planning (EE-ASP)Basic AssumptionsRepresentationFitness FunctionExample of ApplicationAssembly Problem Representation ExampleAssembly Sequence Evaluation Example	29 29 30 37 38 39 42
3.3	Modell 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 Moth-F	Ing of Energy Efficient Assembly Sequence Planning (EE-ASP) Basic Assumptions Representation Fitness Function Example of Application Assembly Problem Representation Example Assembly Sequence Evaluation Example Flame Optimisation (MFO) Algorithm	29 29 30 37 38 39 42 45
3.3	Modell 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 Moth-H 3.3.1	Ing of Energy Efficient Assembly Sequence Planning (EE-ASP) Basic Assumptions Representation Fitness Function Example of Application Assembly Problem Representation Example Assembly Sequence Evaluation Example Flame Optimisation (MFO) Algorithm Details of the Algorithm	29 29 30 37 38 39 42 45 45
3.3	Modell 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 Moth-F 3.3.1 3.3.2	Ing of Energy Efficient Assembly Sequence Planning (EE-ASP) Basic Assumptions Representation Fitness Function Example of Application Assembly Problem Representation Example Assembly Sequence Evaluation Example Flame Optimisation (MFO) Algorithm Details of the Algorithm Mathematical Formulation	29 29 30 37 38 39 42 45 45 45

3.4	Computational Experiment		54
3.5	Case S	Study	63
	3.5.1	Data Collection	64
3.6	Sumn	nary of Methodology	69
CHA	PTER 4	4 RESULTS AND DISCUSSION	71
4.1	Introd	uction	71
4.2	Comp	utational Experiment Result for Assembly Test Problems	71
	4.2.1	Best Solution for Assembly Test Problems	74
	4.2.2	Average Convergence for Assembly Problems Optimisation	77
	4.2.3	Average CPU Time for Assembly Problems Optimisation	82
	4.2.4	Statistical Test: ANOVA and Post-Hoc for Assembly Test Problems	83
4.3	Resul	ts for Case Study Problem	87
	4.3.1	Best Solution for Case Study Problem	88
	4.3.2	Comparison of Existing Layout with MFO Proposed Layout	89
	4.3.3	Average Convergence for Case Study Problem	90
	4.3.4	Average CPU Time for Case Study Problem	91
	4.3.5	Statistical Test: ANOVA and Post-Hoc for Case Study Problem	92
4.4	Sumn	nary of Results and Discussion	94
CHA	PTER (5 CONCLUSION AND RECOMMENDATION	96
5.1	Summ	nary of the Research	96
5.2	Resea	rch Contributions	98
5.3	Resea	rch Conclusions	99
5.4	Resea	rch Limitations and Recommendations for Future Works	100
REFF	FERENCES		

LIST OF PUBLICATIONS	114
APPENDIX A SUMMARY ON ASP OPTIMISATION ALGORITHMS APPROACH	115
APPENDIX B SUMMARY ON ASP OPTIMISATION OBJECTIVES	118

LIST OF TABLES

Table 2.1	Assembly relation matrix for a ball pen	10
Table 2.2	Characteristics of MFO algorithm	25
Table 3.1	Assembly relation matrix of a ball pen	39
Table 3.2	De Fazio's Q&A procedure	40
Table 3.3	Assembly data table for a ball pen	41
Table 3.4	Power for assembly tool in a ball pen	41
Table 3.5	Assembly part allocation for f1	42
Table 3.6	Assembly part assignment for f1	43
Table 3.7	Calculation of energy utilisation for f1	43
Table 3.8	Assembly direction and tool change evaluation for f1	44
Table 3.9	Assembly data table for a desk	55
Table 3.10	Power rate for assembly tool in a desk	56
Table 3.11	Assembly data table for a wall rack	57
Table 3.12	Power rate for assembly tool in a wall rack	57
Table 3.13	Assembly data table for a mobile phone	58
Table 3.14	Power rate for assembly tool in a mobile phone	58
Table 3.15	Assembly data table for a toy motorbike	59
Table 3.16	Power rate for assembly tool in a toy motorbike	60
Table 3.17	Assembly data table for a toy car	61
Table 3.18	Power rate for assembly tool in a toy car	62
Table 3.19	Assembly data table for an electric fan	63
Table 3.20	Power rate for assembly tool in an electric fan	63
Table 3.21	Liaison matrix for case study problem	65
Table 3.22	Summary of De Fazio's Q&A procedure for case study problem	66
Table 3.23	Assembly data for case study problem	68
Table 3.24	Power rate for assembly tool in case study problem	68
Table 4.1	Computational experiment result for assembly test problems	72
Table 4.2	Best solution for assembly test problems	74
Table 4.3	Continued	75
Table 4.4	One-way ANOVA result for test problems	84
Table 4.5	Post-hoc Fisher's Least Significant Difference (LSD) result for test problems	86
Table 4.6	Mean and absolute mean difference of LSD analysis result for test problems	86

Table 4.7	Optimisation results of case study problem	87
Table 4.8	Best solution for case study problem	88
Table 4.9	Comparison of assembly layout	89
Table 4.10	One-way ANOVA for case study problem	92
Table 4.11	Post-hoc Fisher's Least Significant Difference (LSD) for case study problem	93
Table 4.12	Mean and absolute mean difference of LSD analysis result for case study problem	93

LIST OF FIGURES

Figure 2.1	ASP problem modelling approach	7
Figure 2.2	Assembly of a ball pen	9
Figure 2.3	Precedence graph of ball pen assembly	10
Figure 2.4	Frequency of optimisation algorithms usage in ASP	15
Figure 2.5	Frequency of ASP objectives usage in cited research	20
Figure 2.6	Number of ASP papers over time	23
Figure 2.7	Number of ASP papers that used ACO, GA and PSO between 2000–2017	24
Figure 3.1	Flowchart of research methodology	28
Figure 3.2	Flowchart of the proposed representation and evaluation	30
Figure 3.3	Assembly of a ball pen	38
Figure 3.4	(a) Initial precedence graph. (b) Updated precedence graph	40
Figure 3.5	Transverse orientation	46
Figure 3.6	Spiral flying path around close light sources	46
Figure 3.7	Flowchart of the MFO algorithm	47
Figure 3.8	Assembly of a desk	55
Figure 3.9	Precedence graph of a desk assembly	55
Figure 3.10	Assembly of a wall rack	56
Figure 3.11	Precedence graph of a wall rack assembly	56
Figure 3.12	Assembly of a mobile phone	57
Figure 3.13	Precedence graph of a mobile phone assembly	58
Figure 3.14	Assembly of a toy motorbike	59
Figure 3.15	Precedence graph of a toy motorbike assembly	59
Figure 3.16	Assembly of a toy car	60
Figure 3.17	Precedence graph of a toy car assembly	61
Figure 3.18	Assembly of an electric fan	62
Figure 3.19	Precedence graph of an electric fan assembly	62
Figure 3.20	Precedence graph mapping for case study problem	67
Figure 4.1	Average convergence for desk test problem	78
Figure 4.2	Average convergence for wall rack test problem	78
Figure 4.3	Average convergence for mobile phone test problem	79
Figure 4.4	Average convergence for toy car test problem	79
Figure 4.5	Average convergence for toy motorbike test problem	80

Figure 4.6	Average convergence for electric fan test problem	80
Figure 4.7	Average CPU time for assembly test problems	82
Figure 4.8	Average convergence for case study problem	90
Figure 4.9	Average CPU time for case study problem	91

LIST OF SYMBOLS

α	Significant level
А	Disassembly interference matrix
A _{ij}	Element of A and it represents the set of parts that interfere
	with part v_i when v_i is disassembled along y direction
b	Constant for interpreting the shape of logarithmic spiral
С	Contact-connection matrix
CA	Connector structures set
CD_{ij}	Constant direction of part j to part i
Ci	Assembly complexity
Cij	Contact and connection relationship
C_j	Connector structure
cmax	Maximum time allowable in a workstation
ct	Cycle time
D	Assembly direction
D_i	Distance of <i>i</i> -th moth
$D(S_k)$	Set of detachable parts under S_k
Е	The set of edges of G
EI	Energy utilisation
FA(Pi)	Feasible assembly sequence
FA (Pi, Pj)	Empty set
F_j	<i>j</i> -th flame
$F(v_i(S_k))$	Constraint degree of part $vi(S_k)$
f1	Sequence
G	Product assembly association graph
H_0	Null hypothesis
H_1	Alternate hypothesis
Ι	Initialisation function
L	Connection set of edges
lb	Lower bound
m	Assembly time
М	Number of moths

M_i	<i>i</i> -th moth
$M(S\mathbf{k})$	Disassembly constraint matrix
MW_matrix	Moving wedge matrix
n	Number of variables (dimension)
N_{pw}	Amount of power consumption
ntp	Number of assembly parts
ot	Operation time
Р	Assembly power
pt	Processing time
$R(v_i)$	Contact constraint set of part v_i
r	Adaptive convergence constant
Si	Assembly stability
S_k	Constraint status when the product is disassembled k times
Т	Set of assembly tool
t	Random number in [-1, 1]
ts	Number of assembly tasks
ub	Upper bound
V	The set of nodes of G
v_{base}	Assembly base part
W	Using matrix of assembly tool
<u>+</u> <i>x</i>	X-axis direction
<u>+</u> y	Y-axis direction
<u>+</u> <i>z</i>	Z-axis direction
Ω	Parts set assembled before part <i>i</i>
\wedge	Logical operator
V	Logical operator

LIST OF ABBREVIATIONS

AC	Minimise Assembly Complexity
ACO	Ant Colony Optimisation
ALO	Ant Lion Optimiser
ANOVA	Analysis of Variance
AOTC	Minimise Assembly Operation Type
APL	Minimise Assembly Production Level
AS	Maximise Assembly Stability
ASP	Assembly Sequence Planning
ATTD	Minimise Assembly Tool Travel Distance
BPSO	Binary Particle Swarm Optimisation
С	Precedence Constraint
CAD	Computer Aided Design
CAS	Constraint Assembly State
СВ	Connector-Based
ССМ	Contact-Connection Matrix
CD	Constraint Direction
CPU	Central Processing Unit
CPSO	Chaotic Particle Swarm Optimisation
CS	Minimise Connector Similarity
CSAM	Connector Structure Assembly Model
СТ	Minimise Cycle Time
DAG	Directed Acyclic Graph
DC	Direction Change
DFMA	Design for Manufacturing and Assembly
df	Degrees of Freedom
EE-ASP	Energy Efficient Assembly Sequence Planning
FA	Firefly Algorithm
FWA	Fireworks Algorithm
GA	Genetic Algorithm
GSA	Genetic Simulated Annealing
GWO	Grey Wolf Optimiser

IA	Immune Algorithm
LSD	Least Significant Difference
MA	Memetic Algorithm
MCAS	Minimal Constraint Assembly State
MFO	Moth-Flame Optimisation
МО	Multi-Objective
MS	Mean Square
MSW	Mean Square Within
NFL	No-Free-Lunch
NN	Neural Networks
NOW	Minimise Number of Workstations
NP	Non-Deterministic Polynomial-Time
OHM	Other Heuristic Methods
PB	Part-Based
PM	Precedence Matrix
PR	Precedence Relation
PSO	Particle Swarm Optimisation
SCA	Sine Cosine Algorithm
SO	Single Objective
SS	Sum of Degrees
SSA	Scatter Search Algorithm
ТВ	Task-Based
TC	Tool Change
TWO	The Whale Optimisation
Q&A	Question-and-Answer
WS	Workstation

REFERENCES

- Abd, Gamal, M., Abeer, & M., El-Sayed. (2014). A Comparative Study of Meta-Heuristic Algorithms for Solving Quadratic Assignment Problem. *International Journal of Advanced Computer Science and Applications*, 5(1), 1–6.
- Abdullah, Muhammad Arif, Rashid, Mohd Fadzil Faisae, & Ghazalli, Zakri. (2018). Optimization of Assembly Sequence Planning Using Soft Computing Approaches: A Review. Archives of Computational Methods in Engineering, 1–14.
- Aibinu, A. M., Salau, H. Bello, Rahman, Najeeb Arthur, et al. (2016). A Novel Clustering Based Genetic Algorithm for Route Optimization. *Engineering Science and Technology, An International Journal*, 19(4), 2022–2034.
- Allam, Dalia, Yousri, D. A., & Eteiba, M. B. (2016). Parameters Extraction of The Three Diode Model for the Multi-Crystalline Solar Cell/Module Using Moth-Flame Optimization Algorithm. *Energy Conversion and Management*, 123, 535–548.
- Arunkumar, G., Gnanambal, I., Naresh, S., et al. (2016). Parameter Optimization of Three Phase Boost Inverter Using Genetic Algorithm for Linear Loads. *Energy Procedia*, 90(December 2015), 559–565.
- Azari, Sahar Mohammad, Bozorg-Haddad, Omid, & Chu, Xuefeng. (2018). *Studies in Computational Intelligence 720 Advanced Optimization by Nature-Inspired Algorithms*. Springer Netherlands.
- Bentouati, Bachir, Chaib, Lakhdar, & Chettih, Saliha. (2016). Optimal Power Flow Using The Moth Flame Optimizer: A Case Study of The Algerian Power System. *Indonesian Journal of Electrical Engineering and Computer Science*, 1(3), 431–445.
- Bérot, Maxime, Malrieu, Julien, & Bay, François. (2014). An Innovative Strategy to Create Equivalent Elements for Modelling Assembly Points in Joined Structures. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 31(3), 453–466.
- Bhesdadiya, R. H., Trivedi, Indrajit N., Jangir, Pradeep, et al. (2017). A Novel Hybrid Approach Particle Swarm Optimizer with Moth-Flame Optimizer Algorithm. *Advances in Computer Communication and Computational Sciences*, 760(553), 569–577.
- Biswal, Bibhuti Bhusan, Pattanayak, Sujit Kumar, Mohapatra, Rabindra Narayan, et al. (2012). Generation of Optimized Robotic Assembly Sequence Using Immune Based Technique. In *Proceedings of the ASME 2012 International Mechanical*

Engineering Congress & Exposition (pp. 1–9).

- Buch, Hitarth, Trivedi, Indrajit N., & Jangir, Pradeep. (2017). Moth Flame Optimization to Solve Optimal Power Flow with Non-Parametric Statistical Evaluation Validation. *Cogent Engineering*, 4(1), 1–22.
- Cai, N., Qiao, L., & Anwer, N. (2015). Assembly Model Representation for Variation Analysis. *Procedia CIRP*, 27, 241–246.
- Cao, Li, Zhuanxia, & Cao, Sen. (2015). A Fixture Assembly Sequence Planning Method Based on Ant Colony Algorithm. In Proceedings of the 2015 International Industrial Informatics and Computer Engineering Conference (pp. 559–562).
- Chang, Chien-Cheng, Tseng, Hwai-En, & Meng, Ling-Peng. (2009). Artificial Immune Systems for Assembly Sequence Planning Exploration. *Engineering Applications of Artificial Intelligence*, 22(8), 1218–1232.
- Chen, Hsu, Yung-Yuan, Hsieh, Ling-Feng, et al. (2010). A Systematic Optimization Approach for Assembly Sequence Planning Using Taguchi Method, DOE, and BPNN. *Expert Systems with Applications*, *37*(1), 716–726.
- Chen, & Liu, Yong-Jin. (2001). An Adaptive Genetic Assembly-Sequence Planner. International Journal of Computer Integrated Manufacturing, 14(5), 489–500.
- Chen, Tai, Pei-Hao, Deng, Wei-Jaw, et al. (2008). A Three-Stage Integrated Approach for Assembly Sequence Planning Using Neural Networks. *Expert Systems with Applications*, 34(3), 1777–1786.
- Choi, Young-Keun, Lee, Dong Myung, & Cho, Yeong Bin. (2009). An Approach to Multi-Criteria Assembly Sequence Planning Using Genetic Algorithms. *The International Journal of Advanced Manufacturing Technology*, 42(1–2), 180–188.
- Cui, Hao, & Turan, Osman. (2009). Application of A New Multi-Agent Based Particle Swarm Optimisation Methodology in Ship Design. *Computer-Aided Design*, 42(11), 1–15.
- Deif, Ahmed M. (2011). A System Model for Green Manufacturing. Advances in Production Engineering & Management, 6(1), 27–36.
- Duan, Ping, & AI, Yong. (2016). Research on An Improved Ant Colony Optimization Algorithm and Its Application. *International Journal of Hybrid Information Technology*, 9(4), 223–234.

- Farhan, Uday Hameed, Tolouei-Rad, Majid, & Osseiran, Adam. (2017). Assembly Modelling Approach for Special Purpose Machines. Assembly Automation, 38(2), 158–172.
- Fazio, Thomas L. De, & Whitney, Daniel E. (1987). Simplified Generation of All Mechanical Assembly Sequences. *IEEE Journal on Robotics and Automation*, 3(6), 640–658.
- Fysikopoulos, Apostolos, Pastras, Georgios, Vlachou, Aikaterini, et al. (2014). An Approach to Increase Energy Efficiency Using Shutdown and Standby Machine Modes. *IFIP Advances in Information and Communication Technology*, 439(2), 205–212.
- Garg. (2009). A Comparison Between Memetic Algorithm and Genetic Algorithm for The Cryptanalysis of Simplified Data Encryption Standard Algorithm. *International Journal of Network Security & Its Applications*, 1(1), 34–42.
- Garg, Pertik, & Gupta, Ashu. (2016). Optimized Open Shortest Path First Algorithm Based on Moth Flame Optimization. *Indian Journal of Science and Technology*, 9(48), 1–9.
- Ghandi, Somayé, & Masehian, Ellips. (2015a). A Breakout Local Search (BLS) Method for Solving The Assembly Sequence Planning Problem. *Engineering Applications* of Artificial Intelligence, 39, 245–266.
- Ghandi, Somayé, & Masehian, Ellips. (2015b). Assembly Sequenc Planning of Rigid and Flexible Parts. *Journal of Manufacturing Systems*, *36*, 128–146.
- Gunji, Deepak, Bahubalendruni, et al. (2018). An Optimal Robotic Assembly Sequence Planning by Assembly Subsets Detection Method Using Teaching Learning-Based Optimization Algorithm. *IEEE Transactions on Automation Science and Engineering*, 15(3), 1369–1385.
- Guntsch, Michael, Middendorf, Martin, Schmeck, Hartmut, et al. (2001). An ACO Approach to Dynamic TSP. In *GECCO'01 Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation* (pp. 860–867).
- Guntsch, Michael, Middendort, Martin, Schmeck, Hartmut, et al. (2001). An Ant Colony Optimization Approach to Dynamic TSP. *The Genetic and Evolutionary Computation Conference*, 860–867.
- Guo, Jianwen, Sun, Zhenzhong, Tang, Hong, et al. (2015). Improved Cat Swarm Optimization Algorithm for Assembly Sequence Planning. *The Open Automation*

and Control Systems Journal, 7(1), 792–799.

- Hanh, Le Thi My, Binh, Nguyen Thanh, & Tung, Khuat Thanh. (2016). A Novel Fitness Function of Metaheuristic Algorithms for Test Data Generation for Simulink Models Based on Mutation Analysis. *The Journal of Systems & Software*, *120*, 17–30.
- Henrioud, J. M., & Bourjault, A. (1992). Computer Aided Assembly Process Planning. In Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (Vol. 206, pp. 61–66).
- Herwan, Sulaiman Mohd, Zuriani, Mustaffa, Muhammad, Rashid, et al. (2018). Economic Dispatch Solution Using Moth-Flame Optimization Algorithm. In 2018 2nd International Conference on Information Processing and Control Engineering (ICIPCE 2018) (Vol. 214, pp. 1–6).
- Hong, Tzung-Pei, Peng, Yuan-Ching, Lin, Wen-Yang, et al. (2017). Empirical Comparison of Level-Wise Hierarchical Multi-Population Genetic Algorithm. *Journal of Information and Telecommunication*, 1(1), 66–78.
- Hsu, Hung Y., & Lin, G. C. I. (2002a). Quantitative Measurement of Component Accessibility and Product Assemblability for Design for Assembly Application. *Robotics and Computer-Integrated Manufacturing*, 18(1), 13–27.
- Hsu, & Lin, Chin-Jen. (2002b). A Comparison of Methods for Multiclass Support Vector Machines. *IEEE Transactions on Neural Networks*, 13(2), 1026–1027.
- Huang, Feng-Yi, & Tseng, Yuan-Jye. (2011). An Integrated Design Evaluation and Assembly Sequence Planning Model Using A Particle Swarm Optimization Approach. World Academy of Science, Engineering and Technology, 77(5), 416– 421.
- Hui, Cheng, Yuan, Li, & Kai-Fu, Zhang. (2009). Efficient Method of Asembly Sequence Planning Based on GAAA and Optimizing by Assembly Path Feedback for Complex Product. *International Journal of Advanced Manufacturing Technology*, 42(11–12), 1187–1204.
- Hui, Jingxiao, Zhang, Lieyan, Ren, et al. (2013). Scheduling Optimization of Construction Engineering Based on Ant Colony Optimized Hybrid Genetic Algorithm. *Journal of Networks*, 8(6), 1411–1416.
- Hussain, Abid, Muhammad, Yousaf Shad, & Nawaz, Asim. (2018). Optimization through Genetic Algorithm with a New and Efficient Crossover Operator. *International Journal of Advances in Mathematics*, 2018(1), 1–14.

- Ibrahim, Ismail, Ahmad, Hamzah, Ibrahim, Zuwairie, et al. (2014). Multi-State Particle Swarm Optimization for Discrete Combinatorial Optimization Problem. *International Journal of Simulation: Systems, Science and Technology*, 15(1), 15– 25.
- Ibrahim, Ismail, Ibrahim, Zuwairie, Ahmad, Hamzah, et al. (2015). An Assembly Sequence Planning Approach with A Rule-Based Multi-State Gravitational Search Algorithm. *International Journal of Advanced Manufacturing Technology*, 79(5–8), 1363–1376.
- Jangir, Narottam, Pandya, Mahesh H., Trivedi, Indrajit N., et al. (2016). Moth-Flame Optimization Algorithm for Solving Real Challenging Constrained Engineering Optimization Problems. In 2016 IEEE Students' Conference on Electrical, Electronics and Computer Science, SCEECS.
- Jiang, P., Ding, J. L., & Guo, Y. (2018). Application and Dynamic Simulation of Improved Genetic Algorithm in Production Workshop Scheduling. *International Journal of Simulation Modelling*, 17(1), 159–169.
- Johari, Nur Farahlina, Zain, Azlan Mohd, Mustaffa, Noorfa Haszlinna, et al. (2013). Firefly Algorithm for Optimization Problem. *Applied Mechanics and Materials*, 421(April), 512–517.
- Joyce, Thomas, & Herrmann, J. Michael. (2018). A Review of No Free Lunch Theorems, and Their Implications for Metaheuristic Optimisation. *Studies in Computational Intelligence*, 744, 27–51.
- Kachore, Priti, & Palandurkar, M. V. (2009). TTC and CBM Calculation of IEEE-30 Bus System. In 2nd International Conference on Emerging Trends in Engineering and Technology, ICETET 2009 (pp. 539–542). IEEE.
- Karthik, G. V. S. K., & Deb, Sankha. (2018). A Methodology for Assembly Sequence Optimization by Hybrid Cuckoo-Search Genetic Algorithm. *Journal of Advanced Manufacturing Systems*, 17(01), 47–59.
- Kaur, Simranjeet, Agarwal, Prateek, & Rana, Rajbir Singh. (2011). Ant Colony Optimization : A Technique Used for Image Processing. *International Journal of Computer Science and Technology*, 2(2), 173–175.
- Kim, Hae-Young. (2014). Analysis of Variance (ANOVA) Comparing Means of More that Two Groups. *Restorative Dentistry & Endodontics*, 39(1), 74–77.

Kumar, E. Raj, & Annamalai, K. (2015). Recent Nontraditional Optimization Techniques

for Assembly Sequence Planning. International Journal of Pure and Applied Mathematics, 101(5), 707–715.

- Li, Jun-Ying, & Lu, Cong. (2016). Assembly Sequence Planning with Fireworks Algorithm. *International Journal of Modeling and Optimization*, 6(3), 195–198.
- Li, Wu, Bo, Hu, Youmin, et al. (2013). A Hybrid Assembly Sequence Planning Approach Based on Discrete Particle Swarm Optimization and Evolutionary Direction Operation. *International Journal of Advanced Manufacturing Technology*, 68(1–4), 617–630.
- Li, Xing, Wu, et al. (2017). Total Energy Consumption Optimization via Genetic Algorithm in Flexible Manufacturing Systems. *Computers and Industrial Engineering*, 104, 188–200.
- Li, Yao, Y. X., Gao, D., et al. (2008). Cutting Parameters Optimization by Using Particle Swarm Optimization (PSO). *Applied Mechanics and Materials*, *10–12*, 879–883.
- Li, Zhang, Zeng, et al. (2016). The Modified Firefly Algorithm Considering Fireflies' Visual Range and Its Application in Assembly Sequences Planning. *International Journal of Advanced Manufacturing Technology*, 82(5–8), 1381–1403.
- Liu, Liu, Youhui, & Xu, Bihong. (2013). A Converse Method-Based Approach for Assembly Sequence Planning with Assembly Tool. *International Journal of Advanced Manufacturing Technology*, 69(5–8), 1359–1371.
- Liu, Tang, Min, & Dong, Jin-Xiang. (2003). Solving Geometric Constraints with Genetic Simulated Annealing Algorithm. *Journal of Zhejiang University Science*, 4(5), 532– 541.
- Liu, Wang, Yong, & Gu, Zhicai. (2008). Generation of Optimal Assembly Sequences Using Particle Swarm Optimization. In Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (pp. 1–8).
- Lu, C., Huang, H. Z., Fuh, J. Y. H., et al. (2008). A Multi-Objective Disassembly Planning Approach with Ant Colony Optimization Algorithm. In *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture* (Vol. 222, pp. 1465–1474).
- Lu, C., Wong, Y. S., & Fuh, J. Y. H. (2006). An Enhanced Assembly Planning Approach Using A Multi-Objective Genetic Algorithm. *Journal of Engineering Manufacture*, 220, 220–255.

- Lu, & Yang. (2016). Integrated Assembly Sequence Planning and Assembly Line Balancing with Ant Colony Optimization Approach. *The International Journal of Advanced Manufacturing Technology*, 83(1), 243–256.
- Lv, Hongguang, & Lu, Cong. (2009). A Discrete Particle Swarm Optimization Algorithm for Assembly Sequence Planning. *International Journal of Advanced Manufacturing Technology*, 50(2), 1119–1122.
- Magnor, Dirk, & Sauer, Dirk Uwe. (2016). Optimization of PV Battery Systems Using Genetic Algorithms. *Energy Procedia*, 99(March), 332–340.
- Mahmoodabadi, M. J., & Nemati, A. R. (2016). A Novel Adaptive Genetic Algorithm for Global Optimization of Mathematical Test Functions and Real-World Problems. *Engineering Science and Technology, an International Journal*, 19(4), 2002–2021.
- Marian, Luong, & Abhary. (2006). A Genetic Algorithm for The Optimisation of Assembly Sequences. *Computers and Industrial Engineering*, 50(4), 503–527.
- Martí, Rafael, Laguna, Manuel, & Glover, Fred. (2006). Principles of Scatter Search. *European Journal of Operational Research*, 169(2), 359–372.
- Mathew, Arun Tom, & Rao, C. S. P. (2014). Implementation of Genetic Algorithm to Optimize The Assembly Sequence Plan Based on Penalty Function. *ARPN Journal of Engineering and Applied Sciences*, 9(4), 453–456.
- Meng, Yu. (2016). An Application of the Geometric Method to Assembly Sequence Planning. *International Journal of Semiconductor Science & Technology*, 17–20.
- Mirjalili, Seyedali. (2015a). Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. *Knowledge-Based Systems*, 89(July), 228–249.
- Mirjalili, Seyedali. (2015b). SCA: A Sine Cosine Algorithm for Solving Optimization Problems. *Knowledge-Based Systems*, *96*, 120–133.
- Mirjalili, Seyedali, Jangir, Pradeep, & Saremi, Shahrzad. (2016). Multi-Objective Ant Lion Optimizer: A Multi-Objective Optimization Algorithm for Solving Engineering Problems. *Applied Intelligence*, 46, 1–17.
- Mirjalili, Seyedali, & Lewis, Andrew. (2016). The Whale Optimization Algorithm. *Advances in Engineering Software*, 95, 51–67.

- Mirjalili, Seyedali, Mirjalili, Seyed Mohammad, & Lewis, Andrew. (2014). Grey Wolf Optimizer. *Advances in Engineering Software*, 69, 46–61.
- Mishra, Atul, & Deb, Sankha. (2016). An Intelligent Methodology for Assembly Tools Selection and Assembly Sequence Optimisation. *CAD/CAM, Robotics and Factories of the Future*, (January), 323–333.
- Mohanty, Banaja. (2018). Performance Analysis of Moth Flame Optimization Algorithm for AGC System. *International Journal of Modelling and Simulation*, 6203(May), 1–15.
- Mukred, Jameel A. A., Ibrahim, Zuwairie, Ibrahim, Ismail, et al. (2012). A Binary Particle Swarm Optimization Approach to Optimize Assembly Sequence Planning. *Advanced Science Letters*, 13(June), 732–738.
- Murali, G. Bala, Sahu, Pradip Kumar, Deepak, B. B. V. L., et al. (2018). Modified BAT Algorithm for Optimum Assembly Sequence Planning. In *IOP Conference Series: Materials Science and Engineering* (Vol. 377, p. 012091).
- Özmen, Özkan, Batbat, Turgay, Özen, Tolgan, et al. (2018). Optimum Assembly Sequence Planning System Using Discrete Artificial Bee Colony Algorithm. *Mathematical Problems in Engineering*, 2018(2010), 1–10.
- Patriota, Alexandre Galvão. (2017). On Some Assumptions of the Null Hypothesis Statistical Testing. *Educational and Psychological Measurement*, 77(3), 507–528.
- Pintzos, George, Triantafyllou, Christos, Papakostas, Nikolaos, et al. (2016). Assembly Precedence Diagram Generation through Assembly Tiers Determination. *International Journal of Computer Integrated Manufacturing*, 29(10), 1045–1057.
- Qiao, Lihong, Qie, Yifan, Zhu, Zuowei, et al. (2018). An Ontology-Based Modelling and Reasoning Framework for Assembly Sequence Planning. *International Journal of Advanced Manufacturing Technology*, 94(9–12), 4187–4197.
- Ramteke, Prachi E. (2014). Assembly Sequence Optimization. *International Journal of Innovative Research in Advanced Engineering*, 1(6), 15–22.
- Rao, Calyampudi Radhakrishna, & Lovric, Miodrag M. (2016). Testing Point Null Hypothesis of a Normal Mean and the Truth: 21st Century Perspective. *Journal of Modern Applied Statistical Methods*, 15(2), 2–21.

Rashid, Mohd Fadzil Faisae. (2017). A Hybrid Ant-Wolf Algorithm to Optimize

Assembly Sequence Planning Problem. Emerald Insight, 37(2), 238–248.

- Rashid, Mohd Fadzil Faisae, Hutabarat, Windo, & Tiwari, Ashutosh. (2012a). A Review on Assembly Sequence Planning and Assembly Line Balancing Optimisation Using Soft Computing Approaches. *International Journal of Advanced Manufacturing Technology*, 59(1–4), 335–349.
- Rashid, Mohd Fadzil Faisae, Hutabarat, Windo, & Tiwari, Ashutosh. (2012b). Development of A Tuneable Test Problem Generator for Assembly Sequence Planning and Assembly Line Balancing. In *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture* (Vol. 226, pp. 1900–1913).
- Rashid, Mohd Fadzil Faisae, Tiwari, Ashutosh, & Hutabarat, Windo. (2011). An Integrated Representation Scheme for Assembly Sequence Planning and Assembly Line Balancing. In *Proceedings of the 9th International Conference on Manufacturing Research ICMR 2011* (pp. 125–131).
- Sangwan, Kuldip Singh, & Kant, Girish. (2017). Optimization of Machining Parameters for Improving Energy Efficiency Using Integrated Response Surface Methodology and Genetic Algorithm Approach. *Proceedia CIRP*, 517–522.
- Sawyer, S. F. (2009). Analysis of Variance: The Fundamental Concepts. *Journal of Manual & Manipulative Therapy*, 17(2), E27-38.
- Schneider, Jesper W. (2015). Null Hypothesis Significance Tests. A Mix-Up of Two Different Theories: The Basis for Widespread Confusion and Numerous Misinterpretations. *Scientometrics*, *102*(1), 411–432.
- Selvi, V., & Umarani, R. (2010). Comparative Analysis of Ant Colony and Particle Swarm Optimization Techniques. *International Journal of Computer Applications*, 5(4), 0975–8887.
- Shakerian, R., Kamali, S. H., Hedayati, M., et al. (2011). Comparative Study of Ant Colony Optimization and Particle Swarm Optimization for Grid Scheduling. *International Journal for Trends in Engineering & Technology*, *3*(2), 469–474.
- Shan, Hongbo, Zhou, Shenhua, & Sun, Zhihong. (2009). Research on Assembly Sequence Planning Based on Genetic Simulated Annealing Algorithm and Ant Colony Optimization Algorithm. *Assembly Automation*, 29(3), 249–256.
- Shuang, Bing, Chen, Jiapin, & Li, Zhenbo. (2008). Microrobot Based Micro-Assembly Sequence Planning with Hybrid Ant Colony Algorithm. *International Journal of*

Advanced Manufacturing Technology, 38(11–12), 1227–1235.

- Sinanoglu, Cem, & Borklu, H. Riza. (2005). An Assembly Sequence-Planning System for Mechanical Parts Using Neural Network. *Assembly Automation*, 25(1), 38–52.
- Sivakumar, P., & Elakia, K. (2016). A Survey of Ant Colony Optimization. International Journal of Advanced Research in Computer Science and Software Engineering, 6(3), 574–578.
- Soliman, Ghada M. A., Khorshid, Motaz M. H., & Abou-El-Enien, Tarek H. M. (2016). Modified Moth-Flame Optimization Algorithms for Terrorism Prediction. *International Journal of Application or Innovation in Engineering & Management*, 5(7), 47–58.
- Su, Liang, Di, & Dong, Hai. (2014). Connector Structure-Based Modeling of Assembly Sequence Planning. *Applied Mechanics and Materials*, 496–500, 2729–2732.
- Su, Qiang, & Lai, Sheng-Jie. (2010). 3D Geometric Constraint Analysis and Its Application on The Spatial Assembly Sequence Planning. *International Journal of Production Research*, 48(5), 1395–1414.
- Suszyński, Marcin, Żurek, Jan, & Legutko, Stanisław. (2014). Modelling of Assembly Sequences Using Hypergraph and Directed Graph. *Tehnički Vjesnik*, *3651*(6), 1229–1233.
- Tseng, Chen, Jian-Yu, & Huang, Feng-Yi. (2010). A Particle Swarm Optimisation Algorithm for Multi-Plant Assembly Sequence Planning with Integrated Assembly Sequence Planning and Plant Assignment. *International Journal of Production Research*, 48(10), 2765–2791.
- Tseng, H. E., Chen, M. H., Chang, C. C., et al. (2008). Hybrid Evolutionary Multi-Objective Algorithms for Integrating Assembly Sequence Planning and Assembly Line Balancing. *International Journal of Production Research*, 46(21), 5951–5977.
- Tseng, & Tang. (2006). A Sequential Consideration for Assembly Sequence Planning and Assembly Line Balancing Using The Connector Concept. *International Journal of Production Research*, 44(1), 97–116.
- Tseng, Wang, Wen-Pai, & Shih, Hsun-Yi. (2007). Using Memetic Algorithms with Guided Local Search to Solve Assembly Sequence Planning. *Expert Systems with Applications*, 33(2), 451–467.

- Wang, & Liu. (2010). Chaotic Particle Swarm Optimization for Assembly Sequence Planning. *Robotics and Computer-Integrated Manufacturing*, 26(2), 212–222.
- Wang, Liu, J. H., & Zhong, Y. F. (2005). A Novel Ant Colony Algorithm for Assembly Sequence Planning. *International Journal of Advanced Manufacturing Technology*, 25(11–12), 1137–1143.
- Wang, Rong, & Xiang. (2014). Mechanical Assembly Planning Using Ant Colony Optimization. *Computer-Aided Design*, 47, 59–71.
- Wang, Zhang, Hehu, Chen, Ying, et al. (2017). Study of Thermal Sensitive Point Simulation and Cutting Trial of Five Axis Machine Tool Based on Genetic Algorithm. *Procedia Engineering*, 174, 550–556.
- Woeginger, Gerhard J. (2003). Exact Algorithms for NP-Hard Problems: A Survey. In Combinatorial Optimization - Eureka, You Shrink! (pp. 185–207). Springer, Berlin, Heidelberg.
- Xiaobu, Yuan. (2002). An Interactive Approach of Assembly Planning. *IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans.*, 32(4), 522–526.
- Yang, Zhuo, Lu, Cong, & Zhao, Hong Wang. (2013). An Ant Colony Algorithm for Integrating Assembly Sequence Planning and Assembly Line Balancing. *Applied Mechanics and Materials*, 397–400, 2570–2573.
- Yasin, Azman, Puteh, Nurnasran, Daud, Ruslizam, et al. (2010). Product Assembly Sequence Optimization Based on Genetic Algorithm. *International Journal on Computer Science and Engineering*, 02(09), 3065–3070.
- Yin, Wensheng. (2016). Assembly Design System Based on Engineering Connection. *Frontiers of Mechanical Engineering*, 11(4), 423–432.
- Yıldız, Betül Sultan, & Yıldız, Ali Rıza. (2017). Moth-Flame Optimization Algorithm to Determine Optimal Machining Parameters in Manufacturing Processes. *Materials Testing*, 59(5), 425–429.
- Youhui, Xinhua, & Qi. (2012). Assembly Sequence Planning Based on Ant Colony Algorithm. *Future Communication, Computing, Control and Management,* 141(287), 397–404.
- Yu, Hong, Yu, Jia Peng, & Zhang, Wen Lei. (2009). An Particle Swarm Optimization

Approach for Assembly Sequence Planning. *Applied Mechanics and Materials*, 16–19, 1228–1232.

- Yu, & Wang, Chengen. (2013). A Max-Min Ant Colony System for Assembly Sequence Planning. *International Journal of Advanced Manufacturing Technology*, 67(9–12), 2819–2835.
- Zhang, Jing, Sun, Jie, & He, Qiwei. (2010). An Approach to Assembly Sequence Planning Using Ant Colony Optimization. In *International Conference on Intelligent Control and Information Processing* (pp. 230–233).
- Zhang, Liu, & Li. (2013). Research on A Kind of Assembly Sequence Planning Based on Immune Algorithm and Particle Swarm Optimization Algorithm. *The International Journal of Advanced Manufacturing Technology*, 71(5–8), 795–808.