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ABSTRAK 

Kemajuan terkini dalam teknologi pencetakan 3D telah membawa kepada penghasilan 

mesin pencetakan 3D berasaskan pancaran-bertopeng. Proses ini menggunakan tenaga 

cahaya UV bagi membentuk objek nyata dari resin penyembuhan-foto. Pancaran kontur 

dijanakan dengan mengiris model CAD STL kepada lapisan-lapisan kontur 2D yang 

kemudiannya disalurkan kepada alat pemancar lapisan demi lapisan berasaskan 

ketinggian binaan. Pengkomputan bagi penjanaan lapisan-lapisan kontur 2D adalah 

sangat intensif. Algoritma penjanaan kontur yang sedia ada memerlukan masa 

pengkomputan yang lama. Ini kerana algoritma tersebut perlu mengiris dan mengkomput 

setiap satu lapisan sesebuah model STL sebelum proses pencetakan bermula. Dalam 

usaha bagi mengurangkan masa pengkomputan, algoritma yang baru dan lebih pantas 

diperlukan. Lantaran itu, algoritma penjanaan kontur lantas dibentangkan di dalam kajian 

ini. Kaedah ini menghasilkan satu lapisan kontur secara lantas apabila parameter 

ketinggian binaan disuapkan ke dalam algoritma tersebut. Algoritma tersebut 

mengandungi beberapa algoritma seperti algoritma pengirisan, algoritma pemetaan 

garisan pixel, dan algoritma gelungan kontur. Algoritma pengirisan menggunakan model 

persilangan garisan-satah untuk menghasilkan segmen garisan rawak apabila ia menerima 

satu faset STL. Segmen-segmen garisan ini kemudiannya dipetakan berdasarkan resolusi 

alat pemancar dengan menggunakan algoritma pemetaan garisan pixel. Kemudian, 

garisan-garisan pixel tersebut dihubungkan untuk membentuk satu atau lebih gelungan 

kontur melalui algorithm gelungan kontur. Hasil dari setiap algoritma-algoritma tersebut 

dikaji secara mendalam. Pengukuran masa pengkomputan diambil menggunakan objek 

<QElapsedTimer> di dalam Qt Creator dan diukur dalam millisaat. Keputusan hasil 

kajian menyatakan algoritma-algoritma tersebut menjanakan lapisan-lapisan kontur 

dengan tepat. Malah dengan menggunakan model STL berpoligon tinggi, algoritma 

penjanaan kontur masih dapat menjanakan lapisan kontur secara purata 960.15% lebih 

pantas dari algorithm Park dan 169.15% lebih pantas dari perisian komersial Slic3r. 
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ABSTRACT 

Recent advancement in 3D printing technology has led to the development of projection 

mask stereolithography 3D printing process. This process harnesses the power of UV 

light contour projection to cure photocurable resin. The contour projection is generated 

by slicing STL CAD model into layers of 2D contours which is then fed into the UV 

projection device layer-by-layer with respect to the build height. Generation of the layers 

are computationally intensive. Existing contour generation algorithm requires long 

computational time to generate the contour layers especially for high polygon models. 

This is because the existing approach has to slice and compute every single layer of the 

STL model before the printing process starts. In an effort to reduce the computational 

time, a new and faster algorithm is required. Thus, a real-time contour generation 

algorithm is presented in this research. The real-time contour generation approach 

instantly generates single layer of contour whenever the build height parameter is fed into 

the algorithm. The algorithm composes of multiple algorithms such as slicing algorithm, 

pixel line mapping algorithm, and the contour loop algorithm. The proposed slicing 

algorithm uses line-plane intersection model to generate arbitrary line segment when it 

receives an STL facet. These line segments are mapped based on the projection device 

display resolution by the pixel-line mapping algorithm. Then, the pixelated line segments 

are connected to form single/multiple contour loops using contour loop algorithm. The 

results of each algorithms are thoroughly evaluated. Computation time measurement is 

taken using <QElapsedTimer> object in Qt Creator and measured in milliseconds. It is 

later found that the algorithms able to correctly generates the contour projection layers. 

Even with the high polygon STL model, the contour generation algorithm able to perform 

on average 960.15% faster than Park algorithm and 169.18% faster than commercial 

software Slic3r. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 DLP Projection Mask Stereolithography 

Three-dimensional (3D) printing is an additive manufacturing (AM) process and 

also known as rapid prototyping (RP). Unlike conventional subtractive manufacturing 

method such as milling that cuts and removes material to manufacture the product, an 

additive manufacturing process performs the opposite of the milling method. Instead of 

removing material which cause material waste and tool weariness, the process stacks the 

material on top of one layer and another. This is also called as layered manufacturing 

(LM). Most of the material waste in 3D printing comes from its scaffold/support during 

the printing process which is minimal compared to subtractive manufacturing. 

In 1981, 3D printing was firstly introduced by Hideo Kodama (Kodama, 1981). 

The study proposed a new method of fabrication using photopolymer which solidifies 

upon exposure to ultraviolet (UV) light source (Xenon lamp and Mercury lamp) 

controlled by XY interpolation mechanism for contour routing and elevated build plate 

for Z-axis. Ever since then, researches have revolutionized the methods of 3D printing. 

Table 1.1 shows the classification of 3D printing according to current technology of 3D 

printing.

Recent advancement in 3D printing leads to the development of Digital Light 

Processing (DLP) projection mask stereolithography which utilizes UV light to cure 

photocurable resin into solid model. Like conventional 3D printing, it is a layer-by-layer 

process. Instead of traversing along XY axis to construct the layer, the process uses 

contour projection-based curing technique to uniformly cure each layer. Thus, this 

improves the printing speed and maintain uniformity of the cured part. The printed part 



2 

generated by this technique becomes monolithic due to continuous curing process. Thus, 

improving its mechanical properties and its quality. The DLP projection mask 

stereolithography is known to have the best printing quality compared to other 3D 

printing technique. 

Table 1.1 Classification of 3D printer 

Process Technique Materials 

Extrusion 

Fused deposition modeling 

(FDM) 

Thermoplastics filament (ABS, 

PLA, etc.), glass, metal, etc. 

Robocasting (DIW) 
Plastics, ceramic, food, organic 

cell, composites 

Powder based 

Selective laser sintering 

(SLS) 
Thermoplastics, metals 

Selective laser melting 

(SLM) 
Metals 

Electron beam melting 

(EBM) 
Metals 

Binder jetting (3DP) 
Any material in particulate 

form 

Lamination 
Laminated object 

manufacturing (LOM) 

Sheets (paper, metal, plastic, 

etc.) 

Photopolymerization 

Stereolithography (SLA) Photopolymers 

Material jetting Photopolymers 

Continuous liquid 

interface printing (CLIP) 
UV-curable resins 

Two-photon 

polymerization (2PP) 
UV-curable resins 

Source: Hemant et al. (2015); Wong et al. (2012) 

All methods stated in Table 1.1 share similarities in its process thread or also 

known as digital manufacturing pipeline. Before any of the printing process can takes 

place, a Computer Aided Design (CAD) file containing the information of the desired 

geometry will undergo a tessellation process that converts it into STL formatted file. 

Contour generation algorithm is then implemented to slice the 3D model of STL file into 

layers of contours which can be used for toolpath computation (for multi-axis 3D printer) 

or layer projection (projection-based 3D printer). The STL file and contour generation 

algorithm are considered as standard process flow for any 3D printing process. 
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1.2 Contour Generation Algorithm in Projection Mask Stereolithography 

Contour generation process involves multiple algorithms to be implemented. 

First, the process starts with slicing algorithm which slices each facet of an STL file into 

multiple line segments with respect to the slicing height. Next, the process uses the 

generated line segments to connect each line segment into one or more closed contour 

loops using contour loop algorithm. Finally, a contour filling algorithm shades the closed 

loop contours to form a mask which cures the photopolymer or UV curable resin. In the 

past, researchers implemented the contour generation algorithm at the process planning 

stage (Choi & Kwok, 1999; Pandey et al., 2003; Zhang & Joshi, 2015). Each level of 

contours is generated before the printing process took place. However, in order for the 

printed model to appear seamless, the slicing thickness must be very small. This 

consumed a lot of memory utilized by the thousand layers of contours for the model to 

appear seamless. Another flaw for this approach is that the possibility of backlash of the 

elevation mechanism of Z-axis. For an open loop system, stepper motor is often used as 

the main actuators. A stepper motor usually has the tendency to misstep at a point when 

the rotor lag. This causes error in layer projection due to error in elevation height hence 

affects the printed model. 

There are two types of slicing algorithm which are: uniform slicing and adaptive 

slicing. Adaptive slicing is an advanced slicing method which varies the slicing height 

depending on the features of the geometry. The algorithm works differently than uniform 

slicing. It performs comparison between layers and varies the slicing thickness depending 

on the geometry features to generate close approximation of the 3D model. In both slicing 

algorithms, issue of cusp height also commonly known as staircase effect often affecting 

the surface roughness of the printed model. Figure 1.1 shows rough edges that appear 

visible to naked eye if the layer resolution is low. This happens due to the DLP 3D printer 

works in single Z-axis. The layer cures vertically as the build platform elevates upward 

and the projected contour remains unchanged until it reaches the height for next contour. 

Instead of smooth slope transition between layers, the layer cures into stack of layers. 

Past study shows that layer stacking weakens the mechanical strength of the printed model 

especially when the layer resolution is low (Dizon et al., 2018; Lederle et al., 2016). 

Seamless layer formation is achievable by continuously generates new contour with 

respect to the smallest change of elevation height. The resolution of the printing output is 
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subjected to the printer mechanism itself such as the pitch of the lead/ball screw, its 

diameter, and the resolution of the motor rotation. 

 

Figure 1.1 Staircase effect caused by uniform slicing thickness 

The issue with STL slicing has been addressed multiple times by the rapid 

prototyping research community. But, most of the issue addressed mainly focuses on the 

quality of the printed model, improvements on the slicing process, and memory usage. 

None of the researches addressed the issue of computational time for the slicing algorithm 

which can consume up to 60% of the entire process planning time (Gregori et al., 2014; 

Kirschman & Jara-Almonte, 1992). Optimizing the computational time taken for slicing 

algorithm can improves the performance of the DLP 3D Printer and allows the contour 

generation algorithm to be implemented in real-time. 

  

1.3 Problem Statement 

Mask projection stereolithography process is a layer stacking process. Each layer 

is cured one by one until the printing process completed. In mask projection 

stereolithography printing process, these layers become monolithic due to continuous 

curing process. The contour layers are generated by intensive computational process. 

However, existing contour generation algorithm requires long computational time due to 

every layer had to be computed before the printing process. Higher resolution printing 

will require more computational time. More computational time is also required for high 

polygon STL model. Thus, a real-time contour generation algorithm is presented in an 

effort to reduce the computational time to generate the contour layer for mask projection 

stereolithography 3D printing process.  
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1.4 Research Objectives 

The following objectives is developed to achieve the aim of the study. Objectives 

are classified into three stages which are: 

i. To develop the real-time contour generation algorithm for projection mask 

stereolithography 3D printing process based on STL CAD model 

ii. To evaluate the performances of the proposed algorithm based on 

computational time measurement 

iii. To validate the performances of the proposed algorithm against literature 

 

1.5 Research Scope 

The scope of this research covers the projection aspect of the DLP 3D printing 

process. The algorithm for developing the contour projection is thoroughly studied and 

measured based on its computational time. Generated contour is directly generated from 

a raw STL model without any support generation algorithm. Each model tested are sliced 

with respect to only Z-component of the printer. This research does not cover the slicing 

process with different slicing orientation. The main objective is the development of real-

time contour generation algorithm which will give results of the generated contour layers 

based on specific STL model. This will be thoroughly studied and discussed. Next, in 

order to evaluate the performance of the algorithm, execution time measurements of the 

algorithms are recorded. Finally, to results of computational time measurements are 

compared with the result obtained from the journal using similar STL model and same 

specifications for the workstation. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter describes critical review on process of photopolymerization in order 

to get better understanding on photopolymerization process before the implementation of 

the contour generation algorithm. The understanding of the photopolymerization 

chemistry will contributes on how the algorithm should be constructed. Other than that, 

this chapter also discusses on previous works done by other researchers in slicing and 

contour loop algorithms to develop the best approach in constructing the algorithm. The 

methodology and analysis which were developed by other researchers can be useful to 

support this work. Literature review on algorithms also give fundamental knowledge on 

how the slicing and contour generation algorithm work.  

 

2.2 Mask Projection Stereolithography 

The mask projection stereolithography is an additive manufacturing technique 

which harness UV-light projection to solidify photocurable resin into solid model. This 

method does not require any tooling or fixture as in milling process (Mu et al., 2017). The 

difference between the mask projection and traditional stereolithography process is that 

the use of digital micromirror device (DMD) by Texas Instrument to generate the 

projection (Pan et al., 2012). Traditional Stereolithography (SLA) process requires CNC 

routing for traversing the UV laser beam onto the resin to build each layer. This is time 

consuming due to traversing laser beam. Instead of traversing the laser, mask projection 

projects the whole contour onto the resin and uniformly cures the layer.  
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2.2.1 Photopolymerization 

The process of polymerization using photopolymer is called photopolymerization 

process. Photopolymer usually consists of oligomer/binder, photoinitiator, and monomer. 

Typical photopolymer mixture contains at about 50-80% of oligomer, 10-40% monomer, 

and the rest of the portion is photoinitiator. In photopolymer, the oligomer usually used 

as ink, adhesives, and coating purpose. There are several families of oligomer which are: 

Methacrylate, Styrene, Vinylalcohol, Olefine, Polypropylene, and Glycerol family 

(Pandey, 2014). The oligomer also defines the basic property of the photopolymer such 

as glass transition, stress-strain, and adhesion. Meanwhile, the monomer defines the 

wetting property, crosslink, elasticity, and the viscosity. The photoinitiator formulation 

usually around 0.1-5% of the whole composition of photopolymer (Kitano, 2012).  

Photoinitiator is highly reactive substance to light exposure usually UV light. 

There are also studies have been conducted for visible light photopolymerization (Gao et 

al., 1999). There are two types of photoinitiator: radical and cationic. Upon exposure to 

UV light, the photoinitiator generates free radicals that react with the monomers to form 

reactive species. Reactive species forms chain with another monomer causes chain 

reaction which forms the polymer. This chain reaction terminates when a reactive species 

reacts with each other forming dead radicals. Oxygen inhibition also causes this chain 

reactive to stop. When the oxygen reacts with the reactive radical, it  forms an unreactive 

peroxide that terminates the chain reaction (Boddapati, 2010; Dendukuri et al., 2008).  

 

2.2.2 Curing Depth Model of Photopolymerization 

The photopolymerization curing depth model defines the fundamental equation 

governing the relationship between irradiance and the chemical reaction of the 

photopolymerization process. Back in 1992, Jacobs presented the standard design 

equation of stereolithography using Beer-Lambert law. The standard design equation 

presented is as follows: 

 Cd = Dp ln (Emax Ec)⁄  2.1 
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where Cd is the curing depth of the resin. Dp is the depth of penetration which governs by 

Beer-Lambert law that suggests the irradiance at the resin surface is reduced by 1/𝑒 with 

respect to depth of the resin due to light absorption by the resin. Emax is the maximum 

energy of the laser, and Ec is the critical dosage of the resin (Jacobs, 1992). 

The study on photocuring model of stereolithography also has been done by Lee 

et al. (2001). The study focuses on derivation of the photocuring mathematical model and 

incorporates both photochemical properties and the light intensity as the curing 

parameter. Multifunctional monomer that has been used in the study was 2,2-bis{4-[2-

hydroxy-3-(methacryloxy)propoxy]phenyl}-propane (Bis-GMA). Photoinitiator that has 

been used was 2-benzyl-2-N,N-(dimethylamino)-1-(4-morpholinophenyl)-1-butanone 

(DBMP). In the experiment, the photopolymer mixtures were exposed to scanning He-

Cd 325 nm UV laser. The photopolymer contains the mixtures of DBMP which was 

varied from 0.34 until 99.70 mmol/l that corresponded to 0.01 to 3.00 wt% of the solution. 

The conducted experiments also varied the laser dosage ranging from 0.931, 1.702, and 

22.255 J/cm2. It was found that the concentration of photoinitiator in the photopolymer 

enhances the cure depth but only up to its critical point before the reaction rate starts to 

plateau. It was due to high concentration of photoinitiator that limits the UV laser 

penetration depths. High photoinitiator concentration gives greater photon absorption but 

localizes the free radical concentration near the surface of the resin thus limiting the laser 

penetration. The authors distinguished the photochemical parameters and the photonics 

parameters as α and β which were derived as: 

 α2 =
kt[ln(1 − pc)]

2

kp
2ϕϵ 

 2.2 

 β2 =
chNavPL

λWo
2(2π)1/2

 2.3 

where in Equation 2.2, the kt  represents the termination constant and kp  is the 

propagation constant of the photopolymerization process. The pc  is the extent of 

polymerization. Molar extinction coefficient, ϵ of the DBMP which has been used is 

23000 M-1cm-1. Whereas, the ϕ represents the quantum yield of the photoinitiator. 

Together, these parameters describe the photochemical terms of the photopolymer in a 

single non-dimensional variable, α. Equation 2.3 describes the photonics term of the UV 
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laser exposure with λ as the wavelength of the laser emission, Wo as the beam width, the 

c is the speed of light, h as the Planck’s constant, Nav is the Avogadro constant, and PL 

as the laser power. Using both parameters, the authors have derived the equation that 

defines the cure depth as the function of both photochemical and photonics parameters as 

state in the equation below: 

 zc =
2

2.303ϵ[PI]
ln (

Emax[PI]
1
2⁄

αβ
) 2.4 

Equation 2.4 is the derivation of the cure depth based on the photochemical and photonics 

parameters. In the equation, [PI] stands for the photoinitiator concentration and Emax 

represents maximum energy per unit area of the laser exposure. The presented cure depth 

model in Equation 2.4 is equivalent to the model presented by Jacobs (1992) in Equation 

2.1. The authors also presented a 3D map of the curing relationship between the 

photoinitiator concentration and the energy dosage with respect to the curing depth. 

 

Figure 2.1 Surface topology of the curing space 

Source: Lee et al. (2001) 

Figure 2.1 shows that the increase in energy dosage will increase the cure depth. 

The same goes for photoinitiator concentration. At the beginning, increasing the 
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photoinitiator concentration, rapid increase of the cure depth can be seen. However, up to 

some point, the cure depth starts to plateau with respect to increasing photoinitiator 

concentration (Lee et al., 2001). The surface topology that has been presented helps 

researchers to develop an optimal photopolymer formulation and algorithms for 

stereolithography 3D printing process.  

In 2005, a study was conducted on stereolithography cure process modelling 

(Tang, 2005). In his work, the author claims that previous curing model presented by 

Jacobs is an oversimplification of the whole process. The model presented by Jacobs only 

considers the exposure threshold terms whilst disregarding the effect of photochemical 

process as presented by Lee. The author also stated that the process of 

photopolymerization is an exothermic. It means that the process generates heat during the 

reaction. Plus, the photopolymer resins often have low thermal conductivities. This causes 

thermally initiated polymerization to occur which reduces the resolution of the printed 

model and causing thermal stresses on the printed model. Hence, the mathematical model 

which incorporates the photopolymerization, mass diffusion, and heat transfer were 

developed starting with consideration of single axis laser scanning along X-axis on X-Z 

plane. The curing profile of a single axis laser scanning is shown in Figure 2.2 and Figure 

2.3 below. 

 

Figure 2.2 Curing profile of single axis laser scanning 

Source: Tang (2005) 
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Figure 2.3 Domain of single axis laser scanning model 

Source: Tang (2005) 

Since the curing profile is assumed to be symmetrical, only half of the laser beam 

is taken as the domain. Derivation of the curing model is based on the energy balance, 

mass balance for the monomer, and the mass balance of radicals as shown in equations 

below: 

 ρCP
∂T

∂t
= k {

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
} + ∆HPRP 2.5 

 
∂[M]

∂t
= DM {

∂2[M]

∂x2
+
∂2[M]

∂y2
+
∂2[M]

∂z2
} + (−RP) 2.6 

 
∂[P •]

∂t
= DP• {

∂2[P •]

∂x2
+
∂2[P •]

∂y2
+
∂2[P •]

∂z2
} + (−Ri) 2.7 

Free radical photopolymerization kinetic models are presented with the derivation based 

on photochemical reaction during initiation phase, propagation phase, and termination 

phase. The reaction is described as: 

 

PI
   hv   
→   R • 

M+ R •
   ki   
→  P1 

Initiation 

2.8 

Pn • +M
   kp   
→  Pn+1 • Propagation 

Pn • +Pm •
   ktc   
→   Mn+m Termination by Combination 
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Pn • +Pm •
   ktd   
→   Mn +Mm 

Termination by 

Disproportionation 

 𝑅 • +𝐼𝑛
   𝑘𝑖𝑛   
→   𝑄 Inhibition 

where in the Equation 2.8 above, the PI is the photoinitiator that decays upon exposure to 

light energy into the initial radicals [R •]. The radical reacts with a monomer [M] to start 

a polymer chain Pn • in the initiation phase. The polymer chain propagates to react with 

another monomer forming longer polymer chain. There are 3 cases of termination of the 

propagation phase. Either it is caused by reaction with another polymer chain by 

combination or disproportionation, or radicals inhibition commonly caused by oxygen 

inhibition that forms a non-reactive peroxy (Tang, 2005; Tang et al., 2004). Similar work 

has been done by Boddapati (2010). The author used the same principle but also 

incorporates oxygen inhibition model in the curing depth model. 

Kang et al. (2012) presented pixel-based curing model for projection-based 

stereolithography printing process. The model is developed by applying Beer-Lambert 

law to model the depth of light penetration through liquid curable resin. Gaussian 

distribution is also used to model the light distribution profile. The light distribution is 

constrained to the square pixel shape of the projection device. The mathematical model 

of pixel-based curing includes time, critical energy dosage, light intensity, penetration 

depth, and other photochemical parameters. These are the important parameters that 

needs to be taken into account when developing the contour generation algorithm because 

the curing model will define the final shape of the printed model. 

Tumbleston et al. (2015) presented slightly different curing model but with 

oxygen inhibition taken into consideration. The model is also based on Beer-Lambert law 

which model the depth of penetration of the light. The curing technique in the authors 

work on continuous liquid interface production takes advantages of the oxygen inhibition 

to accurately control the curing and provides continuous layer separation. Thus, this 

allows the printer to continuously cure every contour layer and allows faster printing time. 

The oxygen inhibition is modelled as dead zone which is a controlled uncured region for 

each layer.  
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2.3 STL Format 

STereoLithography (STL) is a CAD file format that was developed by Albert 

Consulting Group for 3D Systems. The format was introduced as a means to transfer CAD 

data into rapid prototyping machine when Chuck Hall invented the first stereolithography 

(SLA) 3D printing machine back in 1987. Since then, STL has become a de facto in rapid 

prototyping industry and still widely supported by modern CAD software such as 

Autodesk, SolidWorks, Blender, CATIA, Rhinoceros 3D, and several other CAD 

software (Cătălin IANCU et al., 2010; Jacob et al., 1999; Królikowski & Grzesiak, 2014; 

Wu & Cheung, 2006). The popularity gained was due to its non-encrypted data, open-

source, and simplicity (Hayasi & Asiabanpour, 2009). Most of other CAD formats are 

encrypted and licenses are required for the software developer to incorporate the CAD 

format compatibility in their applications. 

STL is also known as the abbreviation for “Standard Tessellation Language” by 

some scholars. It is because the STL file is constructed using a tessellation process. 

Tessellation is a process that converts the surface geometry of a CAD model into meshes 

of small triangle. This triangle is called Facet. It has three vertices in 3D Cartesian 

Coordinate System that form the triangle. Together all the Facets made up a shell 

representation of the original CAD model. Tessellation process can also be applied to 

point clouds data usually obtained from Coordinate Measuring Machine (CMM) to 

construct an STL model. This is done by connecting all the point clouds into triangular 

mesh to construct the meshed surface geometry of the model (Cătălin IANCU et al., 2010; 

Koc et al., 2000; Tyvaert et al., 1999; Wu & Cheung, 2006). Thus, this make the STL 

formatted CAD models more robust and simpler. 

 

2.3.1 Types of STL 

The STL has two different types of data format which are ASCII and Binary. The 

ASCII STL format are human readable text format. ASCII STL format begins with solid 

name syntax. Usually, a model name is optional and often omitted with white spaces. 

Next, the syntax followed by facet syntax along with its normal vector coordinates. 

Vertices are enclosed with outer loop and endloop syntaxes. The vertex indicates a 

beginning for each vertex which are used as P1(x, y, z) , P2(x, y, z) , and P3(x, y, z) 
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respectively in the proposed algorithms. The 𝑛 and 𝑣 is a formatted floating number of 

sign-mantissa-“e”-sign-exponent, e.g. “2.999381e-002” separated with white spaces. 

Each facet data will end with an endfacet syntax. Depending on the complexity of the 

geometry, an STL file may consists of more than one facet; usually thousands. When a 

new facet syntax is located after the previous endfacet syntax, this indicates the start of a 

new facet. Finally, an STL file normally ends with endsolid name syntax (Cătălin IANCU 

et al., 2010; Wu & Cheung, 2006). An example of ASCII STL format is shown below. 

solid name 
facet normal ni nj nk 
 outer loop 
  vertex v1x v1y v1z 
  vertex v2x v2y v2z 
  vertex v3x v3y v3z 
 endloop 
endfacet 
endsolid name 

Due to ASCII STL using ASCII text as its data, it often has larger file size compared to 

its Binary counterpart. 

On the other hand, Binary STL file uses structured data format using binary 

representation of the data. The data can be read in Bytes with the first 80 Bytes of the 

Binary STL file is the header of the file. Most of the time, the first 80 Bytes are skipped 

to improve the reading time. In some cases, the header section contains the metadata of 

the STL file which is not as important as the facets data. After that, Binary STL contains 

another 4 Bytes of data that represents the facets count of the STL file. The facets count 

is read as Unsigned Integer data type in programming code. Then, the facets data starts 

with 12 Bytes of Normal vector data in which each 4 Bytes are the vector components for 

X, Y, and Z respectively. Each vector components are read and casted as Float data type. 

Next, the following 12 Bytes of data contains the first vertex of the facet with each 4 

Bytes as its vector components similar to the Normal vector. The second and third vertex 

follow similar structure to the Normal and first vertex data structure. Then, the Binary 

STL allocated another 2 Bytes for attribute data for the facet. Overall, each facet data has 

the size of exactly 50 Bytes. Each 50 Bytes until the end of Binary STL file contains only 

the facet data of the STL model (Cătălin IANCU et al., 2010). The structure of Binary 

STL file is shown below. 
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Byte[80]  - Header 
Byte[4]  - Facets Count 
 
For each facet 

Byte[12] - Normal vector(x, y, z) 
 Byte[12] - First Vertex (x, y, z) 
 Byte[12] - Second Vertex(x, y, z) 
 Byte[12] - Third Vertex (x, y, z) 
 Byte[2] - Attribute 
Loop 

The Binary STL has several advantages over ASCII STL data format because the data is 

more compact and reading time is faster than the ASCII STL data format. The 4 Bytes 

facets count gives useful information regarding the STL model. The Binary STL file sizes 

are smaller than ASCII STL file. 

Recent advancement in rapid prototyping technology demands more information 

from an STL model such as colour. Thus, in the work of DX Wang, they proposed a 

Colour STL format derived from Binary STL format. Using the 2 Bytes in the attributes, 

an RGB565 colour code was inserted to represent the colour of the specified facet as 

shown below. 

Byte[80]  - Header 
Byte[4]  - Facets Count 
 
For each facet 

Byte[12] - Normal vector(x, y, z) 
 Byte[12] - First Vertex (x, y, z) 
 Byte[12] - Second Vertex(x, y, z) 
 Byte[12] - Third Vertex (x, y, z) 
 Byte[2] - RGB565 Colour 
Loop 

These bytes have the range of 65536 different colour levels that can be coded (Wang et 

al., 2006). However, the Colour STL format is rarely found because of its limited colour 

palette and inaccurate representation of the model colouring caused by arbitrary triangular 

meshes. 

 

2.3.2 Issues of STL 

Problems that occur in STL format are still being discussed up until now by 

numerous researchers ever since it was introduced back in 1987. STL format is known to 
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have issues with incorrect and inconsistency in its normal vector. This occurs when the 

CAD software generated facet normal vector differs from the calculated normal based on 

the facet vertices (Huang et al., 2002; Kumar & Dutta, 1997; Wu & Cheung, 2006). Most 

of the time, programmer would prefer calculated normal based on the facet vertices 

coordinates rather than the generated facet normal due to this inconsistency problem. 

Thus, the generated facet normal is often ignored or skipped. 

Another known error that occurs in STL format is when there is a gap or crack 

between the facets as shown in Figure below. This error is caused by truncation error in 

the CAD software generated vertices. Each facet usually shares at least one of its vertices 

with another facet within close proximity. According to STL rule, for two adjacent facets, 

there will be two shared vertices (Barequet & Sharir, 1995; Bloomenthal, 1988; Huang et 

al., 2002; Leong et al., 1996; Piegl & Richard, 1995). The mismatch of these vertices due 

to truncation error forms a crack or hole in the tessellated model (Kumar & Dutta, 1997; 

Wu & Cheung, 2006). Although this error can be fixed using algorithms such as K-

Nearest Neighbors (k-NN) algorithm, it is still less efficient compared to other CAD 

formats. The truncation error of the vertices also causes the facets to overlap due to 

incorrect vertex generated in either facet as shown in Figure below. 

 

Figure 2.4 Hole at a vertex and overlapping facets 

Source: Szilvśi-Nagy & Mátyási (2003) 

Aside from the gap error and inconsistent normal, the major flaw in STL format 

is that every facet is generated in random order or arbitrarily. There are no pointers that 

show the relationship and proximity between each element (Szilvśi-Nagy & Mátyási, 

2003). This leads to difficulty in processing the STL model since it will require complex 

algorithm to piece the facet together as if piecing a puzzle which is time consuming. This, 

in fact, lower the performances of the operation involving STL model. Some researchers 

suggested to use Octree data structure to correctly assign and store each facet for 

optimized slicing and other processes (Wong et al., 2017). 
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STL files are also known to consume large memory allocation to be stored. This 

make it less portable compared to other CAD formats (Wu & Cheung, 2006). Typical 

high polygon STL model consists of 1,175,288 facets has the file size of 56 MB in Binary 

STL and 273 MB in ASCII STL. In ASCII STL format, each chunk of data is stored as 

char or character which consume 1 Byte or 8 Bits for every chunk of data. This is wasteful 

for the case of numerical data. For example, each digit in the number “0.12345e+3” is 

individually regarded as char based on ASCII code. Thus, this number will consume 10 

Bytes of memory. Although it is human readable, it is still inefficient in terms of resource. 

Thus, the Binary STL is developed in order to reduce this wasteful memory consumption 

by storing the numerical data in float data type which are 4 Bytes or 32 Bits. However, 

the Binary STL file size is still larger compared to other CAD formats. Redundancy of 

the STL vertices also contributes to the large STL file size. 

Recent advancement in 3D application demands more information out of a CAD 

model. The information that often required by most modern CAD software nowadays 

demand information on the multiple material type, multiple colour information, surface 

texture, and etc. (Cătălin IANCU et al., 2010). This information which are lacking in STL 

model leads to its major downfall compared to other CAD formats which are more robust 

and practical. An attempt has been done to improve the STL format. One of it is the usage 

of 2 Bytes of attributes data to indicate the colour of the facet. However, the colour is 

only limited to 16-Bits colour RGB565 palette. The triangular shaped facet also causes 

inaccuracy in color representation of the STL model (Wang et al., 2006). Up until now, 

STL format is still unable to fulfill these new demands from the modern CAD software. 

Based on the literature done on issues involving STL format, we can classify that 

there are two distinct cause of errors mentioned above. One, where the errors are caused 

by the CAD software generation process of STL format. The errors involving cracks and 

overlapping facets are caused by bad tessellation algorithm by the CAD software itself. 

Hence, it is unfair to regard it as a downfall of the STL model. These errors can be 

prevented if the CAD software performs a verification or linkage check algorithm on the 

generated STL model to detect the error. The other type of error that can be classified, is 

the limitations by the STL format itself such as the file sizes, arbitrary facets, and lack of 

required information. This is in fact, the major downfall of the STL format which has not 

been changed for the last 30 years since it was introduced.  
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2.4 Slicing Algorithm 

Projection stereolithography 3D printing machine requires the 3D model to 

undergo process planning stage before the printing process. This process planning stage 

has a series of tasks which include: model orienting and positioning, slicing the model 

into 2D contours based on Z-axis of the printer workspace, and if necessary, add support 

structures (Kulkarni et al., 2000; Minetto et al., 2017). Slicing thickness is the crucial 

parameter that needs to be properly set as it defines the quality of the printed model. Large 

slicing thickness leads to “stair-case” effect. Small slicing thickness or higher slicing 

resolution provides accuracy and better printing quality but consumes larger memory and 

higher computational time. To overcome this issue, the slicing process must be 

computationally fast and efficient. 

The process of converting triangular facet into line segment is called slicing 

process. The slicing process use an algorithm that relies on computation of the 

intersecting points between the slicing plane and the STL facet. Each facet is made of 

three vertices. When paired, the vertices become lines which form the triangle facet. 

When these lines intersect with the slicing plane, it will intersect at single intersection 

point. If two of the lines intersect with the slicing plane at the same time, connecting both 

intersection points form a line segment that exist on the slicing plane. An STL file 

contains multiple facets. Multiple interactions between the facet and the slicing plane 

form the 2D contour on the slicing plane that can be process into contour projection for 

DLP 3D printing process. In other application, these 2D contour can also be used for G-

Code generation for CAD/CAM process in a CNC machine (Pandey et al., 2003). 

 

2.4.1 Fundamental of Slicing Algorithm 

The slicing algorithm relies on mathematical computation to compute the 

intersection points that form the line segments. It is derived based on line-plane 

intersection model in calculus math as represented by the Figure 2.5 below. 
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Figure 2.5 Facet intersecting with slicing plane 

Source: Manmadhachary et al. (2016) 

Figure 2.5 shows an STL facet intersecting with the slicing plane located at certain slicing 

height. The pair between the vertices Pa, Pb, and Pc are the lines intersecting with the 

plane. The two points that exist on the plane are the projected contour line of a single 

facet. This contour line is called as line segment. As can be seen, the line from Pa to Pb 

does not intersects with the plane, thus, no intersection point can be computed. To check 

whether the line intersects or vice versa, the height of the slicing plane must be in between 

the z coordinates of the two vertices. The closed loop contours at this particular slicing 

height are generated by multiple intersection between the STL facets at that slicing height 

(Manmadhachary et al., 2016). However, the set of these line segments are not 

programmatically connected. A contour loop algorithm is required to connect each of the 

generated line segment to form single/multiple closed loop contours. 

In many literatures (Huang et. al, 2012; Hu, 2017), the most commonly used 

mathematical equation is the linear extrapolation method where the equation is defined 

as: 

 
x − x1
x2 − x1

=
y − y1
y2 − y1

=
z − z1
z2 − z1

 2.9 

In the above equation, the subscript 1 denotes the beginning of the line segment and 

subscript 2 denotes the end point of the line segment. By setting the slicing height, z, the 

unknown x and y can be solved. Thus, the intersection point is P(x, y) as long the x and 
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y exist in between P1 and P2 (Huang et al., 2012; Xu et al., 2017). This method is often 

used due to simple and fast computation. However, there are a few drawbacks of using 

this method. For example, the STL formatted CAD model uses fixed position vectors of 

its facets. Thus, to change the slicing orientation of the model will requires each position 

vectors to be modified. This process can be time consuming especially for high polygon 

model.  

 

2.4.2 Facet-Plane Intersection Case Handling 

The slicing algorithm involves intersection between the slicing plane and the STL 

facet. Studies have shown that certain type of intersection between these two causes 

geometrical errors and redundancies during the contour generation process (Jing Hu, 

2017; Topçu et al., 2011). Thus, these facet-plane intersections are classified into 5 cases 

as shown in Figure 2.6 below. Each of the cases are treated with each respective case 

handling. 

 

Figure 2.6 Possible intersection cases 

Source: Topçu et al. (2011) 

Case I describes the case where the facet is in parallel with the slicing plane. Thus, 

all sides intersect with the slicing plane. Usually facet with this case usually omitted 

because there will be another facet that shares the same side with the one in parallel. This 

normally occurs at the flat surface of the STL model. Commonly, at top and bottom side. 

Case I can also be used by directly storing all vertices as the contour points. But, to avoid 

redundancy of contour points, the facet is often omitted. 

Case II describes the scenario where one side of the facet is in parallel with the 

slicing plane and two vertices intersect with the slicing plane. This case is usually handled 

by removing or ignoring the side in parallel with the slicing plane. The other two non-

parallel sides are then sliced to generate the required line segment. Case II sometime 
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shares its parallel side with the facet in Case I. Most of the time Case II is given priority 

over Case I. 

Case III shows the facet intersects with the slicing plane at one side and one of its 

vertices. In this case, all sides are considered intersecting with the slicing plane. This issue 

will cause errors to the line segment generation because the line segment only requires 

two distinct points to form a line. Since the intersection happens at the vertex, two similar 

points will be generated. Removing one of the points can solve the issue. 

Case IV shows an ideal case where only two sides intersect with the slicing plane. 

Slicing the two sides will produce only two distinct points that form the right line 

segment. The side that does not intersects is ignored. 

Case V represents the occurrence where only one vertex of the facet touches the 

slicing plane. The algorithm might assume this condition as two sides intersecting with 

the slicing plane. Slicing this facet will produces two similar points. Thus, the line 

segment will end up becoming a single point in the 2D space. This leads to redundancies 

of contour points for contour generation process. 

 

2.4.3 Data Structure 

The STL files usually contain large quantity of facets information. These facets 

need to be properly managed so that the algorithm will performs better. Choosing the 

right data structure to store the facet information allows the algorithm to quickly access 

the necessary data needed without having to look into each element in the list. Aside from 

that, different STL models have different numbers of facet. Thus, the data structure should 

be able to scale itself to match the size of data. An array data structure requires fixed size 

allocation before the data can be stored. If the allocation size is too big, it will consume a 

lot of computer memory. On the other hand, if the size is too small, to program might 

crash due to array overflow when handling large STL file.  

Huang et al. (2012) implemented hash table data structure in their work on slicing 

algorithm for G-Code generation for CNC Milling using STL file. The hash table stores 

the results of the slicing algorithm according to the incremental of the slicing height. The 

code is executed on a low-end PC operating on Intel Core 2 1.6 GHz RAM 2GB running 
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on Windows XP SP3. The result shows that the execution time increases with respect to 

slicing thickness. Based on comparison, the result shows slight improvement than the 

original method. Considering that the program runs on low-end PC, the results are 

relatively fast with the implementation of hash table data structure. However, the test is 

implemented only on a single STL model. The cylinder-like shaped STL model always 

has single contour loop at each slicing height. STL model with multiple contour loops are 

not tested and reported in the journal. 

Wong et al. (2017) utilized Octree data structure in their work on real-time slicing 

for light painting rendering application using STL formatted CAD model. The use of 

Octree data structure is mainly to reduce computational time for STL slicing. The 

algorithm first determines the axis-aligned bounding box of the STL model. The 

bounding box is set to be the root of the Octree structure. Then, the model is recursively 

subdivided into eight octants as the nodes of the tree. Each of these nodes contains a 

collection of facets of the STL model bounded by each respective node boundary. The 

algorithm is implemented using 4 different STL models having different number of 

facets. The number of tree levels are varied and the computational time of each cases are 

recorded. It is later found that, model with a greater number of facets requires more 

computational time to be sliced. Varying the tree level can reduce the computational time 

but only up to a certain limit. It is observed that after 3 tree level, the computational time 

started to rise due to more time is spent on the divide-and-conquer approach. 

Pan et al. (2014) used linked list data structure in the development of rapid 

prototyping STL model slicing software. The linked list is used to store the facet and also 

contains a pointer that points to the next pairing facet. This kind of implementation can 

be advantageous since the algorithm does not need contour loop algorithm to connect 

each line segment because the facets are already arranged in such manner. But, since the 

slicing height varies, the pairing might also change. Thus, the list needs to be 

reconstructed which is also time consuming (Ye et al., 2017). 

 

2.4.4 Type of Slicing Algorithm 

Many methods have been developed on slicing algorithm to improve its 

computational time, accuracy, and memory efficiency. Among popular methods proposed 
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by the researchers are uniform slicing, adaptive slicing, and direct slicing algorithm. 

These methods have its own advantages and limitations.  

Uniform slicing has been popularized since the early years the slicing algorithm 

has been presented. It utilizes constant slicing thickness for all of the layers (Choi & 

Kwok, 1999). It is the simplest method for slicing approach. However, stair-case effect is 

known to occur when using this method. The stair-case effect is the case where there are 

losses of geometric data in between the slicing thickness interval since the fixed slicing 

thickness skipped these intervals. Some important features of the geometric model might 

be skipped which resulted in lower accuracy of the printed model. Reducing the slicing 

thickness can mitigate this effect (Zheng et al., 2018; Zhou et al., 2004) but the slicing 

output will consume more memory to store the slicing results.  

In an effort to reduce the stair-case effect whilst reducing the memory 

consumption, adaptive slicing method is introduced. Adaptive slicing method uses 

variable slicing thickness that depends on the value of allowable cusp height. Pandey 

explained the concept of cusp height in their work on adaptive slicing algorithm. The cusp 

height is based on theoretical calculation of surface roughness and the build orientation. 

By limiting the allowable surface roughness parameter, variable slicing thickness can be 

obtained (Pandey et al., 2003). Zhou presented their work on non-uniform cusp height 

which is different than the work of Pandey. The non-uniform cusp height is based on 

circular approximation and user specified allowable cusp height as shown in Figure 2.7. 

The layer thickness model presented are able to solve the containment issues that occur 

during the printing process (Zhou et al., 2004).  
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Figure 2.7 Circular approximation for layer error and thickness 

Source: Zhou et al. (2004) 

The adaptive slicing technique reduces memory consumption by also eliminating the 

repetitive features of the geometric model. For example, a cube STL model will always 

has the same contour from bottom to top when the slicing orientation is perpendicular to 

the cube. Thus, adaptive slicing eliminates the needs to reconstruct the same contour that 

can cause memory inefficiency. 

Direct slicing algorithm is more recent approach in CAD slicing. This approach 

does not require tessellated CAD model such as STL format. Instead, the algorithm is 

implemented on the original CAD format without involving any tessellation process. This 

is because the tessellation process is a surface approximation process of the original CAD 

model. This approximation often leads to reduction in geometric accuracy (Jing Hu, 

2017). Other reason the direct slicing algorithm is proposed due to the size of the STL 

file. Complex STL file often requires a lot of memory space to be stored compares to 

other CAD formats (Choi & Kwok, 1999). The direct slicing algorithm can be 

implemented using either uniform or adaptive slicing technique. The only difference is 

the CAD format. 

 

2.5 Contour Loop Algorithm 

In order to complete the contour generation for the projection mask 

stereolithography process, each line segments generated by the slicing algorithm must be 

connected to form closed-loop contours (Tian et al., 2018). These line segments are in 
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arbitrary order due to STL facets are sorted in similar fashion (Zhang & Joshi, 2015). It 

is also possible to have multiple closed-loop contours at the same slicing height. Thus, it 

is crucial to differentiate to which group does a contour loop belongs to because the 

contours will define the geometrical features of the printed model. 

One of the most common and naïve methods applied by the previous researchers 

are the head-to-tail search algorithm (Choi & Kwok, 1999; Wang et al., 2006). The 

algorithm works by joining neighboring line segments until closed-loop contour is 

formed. Each line segments contain two distinct points Po to Pf. The Po of the first line 

segments from the list is assigned as the head of the contour group. Then, the algorithm 

searches for the similar point that matches the Pf of the first line. The algorithm stops 

when the found Pf matches the assigned head. This indicates a closed-loop contour. Then, 

the remaining line segments are considered as new contour group and the algorithm 

assigns new head for the next contour group. The process will repeat until every line 

segment from the list is checked. The head-to-tail contour loop algorithm is known to 

have the worst case of O(nk). This happen when the algorithm has to loop through each 

line segment from the list if the neighboring line is located at the end of the list. Since the 

k element decreases as n element increases, on average, this algorithm will run as O(n). 

However, a study was done back in 2002 by Huang proves that STL formatted CAD 

model are susceptible to flaws such as cracks which may appear in between two side-by-

side facets (Huang et al., 2002). Thus, the resulting line segments give incorrect pairs 

hence breaking the closed-contour loop formation. Even the smallest truncation errors 

between the pairs can be catastrophic to the head-to-tail contour loop algorithm.  

An algorithm that uses shortest distance calculation is introduced to prevent the 

mispairing issue. This method is applied in the work of Manmadhachary in an attempt to 

improve surface smoothness of rapid prototyping printed medical product 

(Manmadhachary et al., 2016). The shortest distance approach eliminates truncation error 

that can cause contour dysconnectivity. The equation used for the shortest distance is 

defined as: 

 D = √(x − xt)2 + (y − yt)2 2.10 

The equation above is used in comparison to compare the points of current line segment 

with the next line segment. If the point coincides, the value of D should be near or equal 
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to zero (Vatani et al., 2009). However, the computation uses square root function which 

is more computationally intensive than normal mathematical operation. Thus, the shortest 

distance requires more computational time compared to the naïve head-to-tail search 

algorithm. It is a tradeoff between error-tolerance and the performance of the algorithm.  

Zhang & Joshi introduced Efficient Contour Construction (ECC) algorithm in 

their work. The authors used linked list data structure for the ECC algorithm. The 

algorithm checks for the insertion position to construct the contour. The insertion process 

is decided by checking the first and last elements from the intersection linked list (Zhang 

& Joshi, 2015). The contour grouping process which differs between which group does 

the contour loop belongs is not clearly stated in the ECC algorithm. There could be more 

than one closed loop contour at different slicing height depending on the geometry 

features. 

 

2.6 Summary 

Mask projection stereolithography 3D printing process uses UV-light projection 

to cure photocurable resin. The curing process is called photopolymerization. 

Photopolymer resin used in this process contains 50-80% oligomer, 10-40% monomer, 

and the rest is photoinitiator. Each of the components in the photopolymer defines the 

properties of the printed model. Photoinitiator is the photo-reactive substance that initiates 

the polymerization process upon exposure to light with specific wavelength. The 

concentration of the photoinitiator in the photopolymer mixture highly affects the curing 

depth of the photopolymer as shown in Figure 2.1. Other parameters which affect the 

curing process include the light intensity, the critical energy dosage, time, and other 

photochemical parameters. This shows that the photopolymerization is a time dependent 

process. Thus, the proposed algorithm must be fast enough to keep up with the 

photopolymerization process. The elevation speed of the printer must also correlate to the 

curing speed in order to generate accurate printed model.  

STL file is a de facto CAD format in 3D printing industry. There are two types of 

conventional STL format which are Binary STL and ASCII STL. Each STL model 

consists of multiple facets which are made of a normal vector and three vertices that form 

the facet. Ever since it was first developed back in 1987, STL format remains unchanged. 
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There are a lot of known issues with the STL format. Among the flaws associated with 

the STL format is the possibility of crack due to mismatch of the facet coordinates. The 

proposed algorithm must be able to correct this error since it can cause failures during the 

contour formation. 

Slicing algorithm is an algorithm that slices the 3D CAD model into layers of 

contour. In mask projection stereolithography, the 3D model is sliced into multiple 2D 

contour layers. These layers are used in the mask projection to cure each layer of the 3D 

model with respect to the build height. The fundamental equation used in slicing process 

uses linear extrapolation method. This method is simple and straightforward. However, 

this method is susceptible to division by zero which may cause the program to crash. As 

discussed earlier in Section 2.4.2, there are several cases of interaction between the slicing 

plane and the facet. Each of these cases must be handled properly in order to generate the 

correct 2D contour representation of the 3D model. Most commonly studied slicing 

algorithm are the uniform slicing and adaptive slicing. However, these methods cause 

stair-case effect and requires long computational time. Since the curing process is 

continuous, the printer must also continuously track the changes of the curing depth hence 

modifies the contour layer according to the cure depth. 

The process of STL slicing only generates multiple arbitrary line segments. Thus, 

a contour loop algorithm is needed to reconnect the line segments into one or multiple 

closed loop contours. Based on literature, many researchers proposed the head-to-tail 

search algorithm which is simple and naïve. Considering that there are cases of cracks 

occurring in the STL format, the naïve approach will not be sufficient due to error caused 

by slicing. Manmadhachary et al. (2016) proposed shortest distance approach to find and 

connect the line segments. But the shortest distance is more computational intensives. In 

this research, the proposed contour loop algorithm uses pixel line mapping algorithm to 

map the line segment based on pixel coordinate of the projection device and uses head-

to-tail search algorithm to efficiently connect every line segment. 

The issue of computational time in Contour Generation process is rarely been 

discussed by the rapid prototyping community. The process can make up to 60% of the 

whole process planning stage (Gregori et al., 2014; Kirschman & Jara-Almonte, 1992; 

Minetto et al., 2017). One of the factors which contributes to long computational time is 

usually caused by bad STL file which needs to be checked and corrected as discussed in 
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Section 2.3.2. Hence, the algorithm will have to include error-checking routine which can 

be complex and demands more computational time. Another factor is due to the nature of 

STL facets which are arbitrary and unorganized. This causes the algorithm to take longer 

time to find facet that intersects with the slicing plane. As discussed in Section 2.4.3, 

using more organized data structure which handles the facets data can improve the 

computational time for Contour Generation. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

In this chapter, the slicing, contour loop, and line to pixel map algorithms are 

thoroughly discussed and elaborated based on the fundamentals of the algorithm and the 

structure of the algorithm. This chapter also discusses the structure of STL formatted 

CAD models and how the data from this CAD models are read and stored in the concept 

of programming.

 

Figure 3.1 Flowchart of Research Methodology 

Figure 3.1 shows the methodology flows of this research starting with the development 

of Slicing algorithm. In this phase, the slicing algorithm is developed based on its 
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fundamental equation, facet data handling, and facet-plane interaction cases handler. 

Next, in the Contour Loop algorithm development phase, the algorithm is constructed by 

implementing pixel line algorithm and head-to-tail search algorithm. This phase is 

followed by implementation for both Slicing and Contour Loop algorithms on actual STL 

CAD format. Then, the algorithm is tested with different complexity STL model. 

Computation time is measured and later tabulated. Finally, the results are validated and 

compared with the existing results obtain from literature. 

 

3.2 STL Data Management 

Managing a huge number of facets require proper encapsulation of the data. 

Hence, the proposed algorithm introduces a list of facet class to store the facet data. These 

data will be read by the slicing algorithm. Each facet class stores the vertices (P1, P2, P3) 

and maximum/minimum Z coordinates between the three vertices. The use of 

maximum/minimum Z value is to filter out other facets except the ones intersecting with 

the slicing plane by comparison of zmin ≤ zslice ≤ zmax for each facet in the STL file. 

This is to reduce the number of facets from the list by taking only a portion of it and 

improves the performance of the slicing algorithm. 

 

3.3 Slicing Algorithm 

A slicer is an algorithm that slices each triangular facet in STL model which 

intersects with the slicing plane. The slicing process of each intersecting facet generates 

line segments which lie on the slicing plane. These line segments are arbitrary because 

all facets in STL model are also randomly ordered. Hence, the line segment requires a 

contour loop algorithm to connect each line segment into single or multiple closed loop 

contours which will be discussed in the next section. By adjusting the slicing plane height, 

different contour can be generated. This allows layer-by-layer contour generation for 

layered manufacturing process. 
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3.3.1 Case Handler for Facet-Plane Interaction 

As discussed in Section 2.4.2, the cases of facet-plane intersection can be 

categorized into 5 cases (6 cases including Case IV in Figure 3.2). This section focuses 

on how each facet-plane interaction cases is handles in the proposed Contour Generation 

Algorithm. The most common issue contributing to slicing error is caused by interaction 

between facet and the slicing plane. A line segment requires only two distinct points. 

However, some cases of facet-plane interaction cause the slicing algorithm to generate 

more/less than two distinct points. Known cases of facet-plane interactions are defined in 

Figure 3.2 and Table 3.1. 

 

Figure 3.2 Possible facet-plane interaction 

 

Table 3.1 Definition of interaction cases 

Case Interaction of facet and plane Possible Point 

I Line through one side of the facet 4 

II Line bisecting the facet through one vertex 3 

III Line bisecting the facet through two sides 2 

IV No intersection 0 

V Vertex intersection 2 

VI Parallel intersection 6 

Table 3.1 defines the number of points that is generated considering all six possibilities. 

As stated in Table 3.1, both Case I and VI have a side/sides which in parallel with the 

plane. This parallel intersection must be eliminated to avoid redundant points. Case VI is 

ignored because all the sides are in parallel. Case VI occurs at flat surfaces and usually 

found during slicing the base of the model. It can also be detected when zmin = zmax. For 

Case I, the parallel side is eliminated and the other two sides are sliced. The method of 

eliminating parallel side is using a dot product criterion which will be discussed later. 
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Next, Case II happens when the slicing plane intersects at one vertex of the facet and one 

side passing through the plane. Case II generates three intersection points which are 

redundancy for line generation. During the slicing routine, the vertex intersection 

generates two similar points and one distinct point. In the proposed slicing algorithm, the 

algorithm compares the cross combination between the three generated points to see 

which of the combinations give the longest line and later stores the combination as a line 

segment. Intersection at vertex can also be seen in Case V. A two similar point cannot 

forms a line segment. Hence, Case V is ignored. The same goes for Case IV which is 

already been filtered out using Z-comparison in the previous section. 

 

3.3.2 Formulation of Slicing 

 

Figure 3.3 Facet-Plane intersection model 

The fundamental of the proposed slicing algorithm is based on line-plane 

intersection mathematical equation which differs than the one discussed in Section 2.4.1. 

Consider one side of the facet as a line connecting two vertices from P1 to P2. In 3D 

environment, a line can be either parallel to a plane or intersects at one point on the plane 

(see Figure 3.3). Parametric equation of a line with Po as the initial point and Pf as the 

final point is given as: 

 P(s) = Po + s(Pf − Po) 3.1 
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Assume that point Q  in Figure 3.3 lies on the same slicing plane where its x  and y 

coordinate can be randomly set (usually set at the origin), and zslice is the slicing plane 

height. By adjusting the zslice value, slicing algorithm can be implemented at any height 

of the STL model. Slicing plane normal is given by unit vector n̂ = 〈0, 0, 1〉 which is for 

the case of slicing with respect to Z-axis. Unit vector n̂ can be change to alter the slicing 

plane direction. In Figure 3.3, the line 𝐮, 𝐯, and 𝐰 are direction vectors connecting the 

three vertices (P1, P2, and P3) in clockwise order (P1,  P2, P3, P1) respectively to represent 

the sides of the facet. The algorithm initially checks for any intersection which exists 

between the facet sides and the slicing plane by computing the dot product criterion, n̂ ∙

𝐮 = 0 , n̂ ∙ 𝐯 = 0 , n̂ ∙ 𝐰 = 0  respectively. These criterions eliminate the facet parallel 

sides for both Case I and Case VI as mentioned earlier. The output of the criterion 

becomes zero when there is no intersection between the direction vector and the slicing 

plane. Should the line intersect with the plane as seen in Figure 3.3, the criterion output 

is not equal to zero. As seen in Figure 3.3, the direction vector 𝐮 from point P1 to P2 

intersects with the plane at point P(su). Substituting P1 as the initial point Po, P2 as the 

final point Pf and su as the parameter s, Equation 3.1 now becomes: 

 P(su) = P1 + su(P2 − P1) 3.2 

Equation 3.2 above is a parametric equation of the intersection point P(su). By using a 

direction vector 𝐠 that lies on the same plane, it is known that n̂ ∙ 𝐠 = 0 because the vector 

is in parallel to the plane. The vector can also be represented as 𝐠 = 𝐡 + su𝐮. Hence, n̂ ∙

𝐠 = n̂ ∙ (𝐡 + su𝐮) = 0. Rearranging this equation, the parameter su can be written as: 

 su =
−n̂ ∙ 𝐡

n̂ ∙ 𝐮
 3.3 

Vector 𝐡 is given by 𝐡 = P1 − Q and vector 𝐮 is given by 𝐮 = P2 − P1. Substituting both 

vector 𝐡 and 𝐮 into Equation 3.3 yield: 

 su =
n̂ ∙ (Q − P1)

n̂ ∙ (P2 − P1)
 3.4 

Now, the intersection point P(su) can be computed. Based on the previous derivation, it 

is known that vector 𝐠 is a direction vector from point Q to the intersection point. This 
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means that 𝐠 = P(s) − Q. Vector 𝐡 is a direction vector from point Q to the initial point 

of the vector 𝐮 which is 𝐡 = Po − Q. Hence, 𝐠 = 𝐡 + s𝐮 where 𝐮 = Pf − Po. Finally, the 

general form of the Equation 3.4 above can be derived as: 

 s =
n̂ ∙ (Q − Po)

n̂ ∙ (Pf − Po)
 3.5 

Hence, applying Equation 3.1 and 3.5 to another intersecting side of the facet yield 

another intersection point P(sv) forming a line segment 𝐿 on the slicing plane. However, 

the value su and sv must be within the range 0 ≤ s ≤ 1 to ensure that the intersection 

points exists only within the line between Po and Pf. 

 

3.3.3 Line to Pixel Mapping 

The generated line segments are floating numbers, which is computationally 

expensive, and tends to cause truncation errors that disrupt the performance of the contour 

generation algorithm. In this context, the floating numbers are irrelevant because the 

resolutions of the geometry are eventually subjected to the projection device resolution. 

The algorithm proposed novel method of reducing computational time by converting the 

line segments floating number coordinates to pixel coordinates. 

The Pixel Mapping method starts by computing both aspect ratio of the projection 

device ARdevice and the aspect ratio of the object ARobject. This allows the algorithm to 

detect whether to geometry can be fit to neither height nor width of the projection device 

while preserving the aspect ratio of the geometry. The aspect ratios are given by: 

 
ARdevice =

width

height
 3.6 

 ARobject =
xmax − xmin
ymax − ymin

 3.7 

In Equation 3.6 and 3.7, these values are used as comparison to determine whether the 

object should be fit to width or height. If the ARobject  has higher proportion than 

ARdevice, it means that the object has longer width and must be fit to width and vice versa 
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when the ARobject  is less than ARdevice . Using this condition, a new variable R  is 

introduced to represent the conditions as: 

 R = {
width − 1; ARobject ≥ ARdevice
height − 1; ARobject < ARdevice 

 3.8 

The R value is minus by one because the pixel coordinates are zero based integer and its 

value is conditional depending on the comparison of ARobject with ARdevice. Consider a 

case of fit-to-width ARobject ≥ ARdevice ; the following equation can be used to map the 

floating number of x-coordinate into a horizontal pixel position (the width) of the 

projection device: 

 xpixel =
Px − xmin 

xmax − xmin
∙ R 3.9 

However, y-coordinate must be scaled with modified value of height′  to retain the 

original aspect ratio of the object. This means, the ARdevice  must equal to ARobject . 

Hence, the new ARdevice value is defined as: 

 AR′device = ARobject =
width′

height′
 3.10 

For this case, the width’ = R where R = width − 1 because it is a fit-to-width condition. 

Hence, using Equation 3.10 the modified height is written as: 

 height′ =
width′

ARobject
=

R

ARobject
 3.11 

The equation of y-coordinate now can be derived as: 

 ypixel =
Py − ymin

ymax − ymin
∙

R

ARobject
 3.12 
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Based on Equation 3.12, the ypixel  is now scaled to modified value of height for 

perseverance of its original aspect ratio and it represents the vertical pixel position of the 

projection device.  

Next, for the case of fit-to-height where ARobject < ARdevice  and the variable  

R = height − 1, the algorithm must use full scale of projection device height for y-axis 

and a modification of the width for the x-axis. The equation for ypixel can be written as: 

 ypixel =
Py − ymin

ymax − ymin
∙ R 3.13 

But the xpixel must be scaled with modified value by using Equation 3.10 which now 

becomes: 

 width′ = height′ ∙ ARobject = R ∙ ARobject 3.14 

The equation of xpixel is now derived as: 

 
xpixel =

Px − xmin
xmax − xmin

∙ R ∙ ARobject 3.15 

Comparing the Equation 3.9 and 3.15, and Equation 3.12 and 3.13, two new conditional 

variables are introduced to generalize both equations for xpixel and ypixel which are: 

 
V = {

       1      ;  ARobject ≥ ARdevice
ARobject;  ARobject < ARdevice

 3.16 

 
W = {

ARobject
−1 ;  ARobject ≥ ARdevice

      1       ;  ARobject < ARdevice
 3.17 

Finally, the equations for xpixel and ypixel are rewritten as: 

 
xpixel =

Px − xmin
xmax − xmin

∙ R ∙ V 3.18 

 
ypixel =

Py − ymin

ymax − ymin
∙ R ∙ W 3.19 
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In the algorithm, Equation 3.18 and 3.19 map the floating number coordinates of 

the line segment 𝐿 for both Po and Pf to a new pixel line segment coordinates. These pixel 

coordinates are store as an unsigned integer value to eliminate the decimal point of its 

original value so that it can be used for the pixel mapping of the projection device. 

 

3.3.4 Algorithm Structure 

This section discusses complete implementation of the slicing algorithm. All the 

fundamentals of the slicing algorithm have been previously explained starting from issues 

regarding STL models, the fundamentals of slicing, and the line to pixel mapping 

fundamental. Figure below shows the structure of the algorithm which will be thoroughly 

discussed in this section.  

 

In Step 1, the algorithm first starts by obtaining a list of intersecting facets 𝐿 from 

a list of STL Facet Class (as in Section 3.2) where 𝑛 is the last index in the intersecting 

facets list 𝐿 and 𝑗 is the last index of the STL facets. This procedure filters out other non-

intersecting facets to optimize the operation time based on the current slicing height, 

zslice. As mentioned in Section 3.3.2, the process works by comparing each facet by 

zmin ≤ zslice ≤ zmax. If the condition is true, then the list stores the intersecting facet in 

list 𝐿  and vice versa. Starting from Step 2 until 14, the algorithm loops for each 

intersecting facet in the list 𝐿. Step 3 initializes working buffers to be used for the next 
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operations. At Step 4, the algorithm performs another loop for each side of a facet since 

a facet contains 3 sides (𝑢, 𝑣, 𝑤 ). Next, the algorithm determines whether the sides 

intersect with the slicing plane by performing dot product criterion mentioned in Section 

3.3.2. If any side intersects, Step 6 is executed. In Step 6, the function 𝑠𝑙𝑖𝑐𝑒(𝑠𝑖𝑑𝑒, zslice) 

slices the intersecting side of the facet and stores the result in buffer Pslice[𝑘]. The size of 

the point buffer Pslice is 3 to represent each sliced point for each side. Result of the slicing 

operation mainly consists of a line segment made of two points with double-precision 

floating number coordinates of Po and Pf. The algorithm executes Step 8 if the side does 

not intersect and stores null in Pslice[𝑘]. Then, Step 10 increments the index 𝑘 means that 

the index 0, 1, and 2, represent 𝑢, 𝑣, and 𝑤 respectively. Step 4 until Step 11 loops until 

each side of the facet are checked. The algorithm continues the process by executing Step 

12 which handles the errors defined in Table 3.1 and stores the corrected line segment in 

𝑙𝑖𝑛𝑒 variable. Step 13 converts the double-precision coordinates (Po and Pf) into pixel 

(unsigned integer) coordinates and stores it into a list of pixel line segments 𝑆 that will be 

used in the contour loop algorithm. 

 

3.4 Contour Loop Algorithm 

The contour loop algorithm basically is a head-to-tail search algorithm which 

connects a set of line segments that belongs to the same contour loop. By assigning the 

first line segment Po as the initial tail (Pinit) and Pf as the head (Pfind), the head will begin 

to search for next tail which has the same coordinate but in another line segment. When 

found, the search algorithm assigns the found line segment as the new head of the search 

algorithm. This process repeats until the head meets with the first initial tail Pinit that 

indicates a closed loop is formed. The contour loop algorithm is shown in the algorithm 

table below. 
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The arbitrary pixel line segments obtained by the slicing algorithm are put into a 

list which is first sorted by Po. Y value then Po. X value. The algorithm then, initializes an 

unsigned integer variable to identify and isolate each contour loops. Next, the algorithm 

assigned Po of the first line segment in the list as initial point Pinit of the first closed 

contour loop and its Pf as the search point to locate next neighbouring line segment from 

the list. In Step 5, the algorithm checks whether a closed loop is found else the algorithm 

proceeds to find next neighbouring line and hold its position in the list into an unsigned 

integer variable 𝑓𝑜𝑢𝑛𝑑. The function 𝐹𝑖𝑛𝑑 searches for neighbouring line from the list 

with an offset index starting from next line segment (𝑖 + 1) of the iteration until the end 

of the list. It uses Pfind as the searching point which can be equal to next line Po or Pf. This 

is because all the lines sliced during the slicing algorithm are arbitrary and it is difficult 

to know whether the point Po to Pf is in the same direction with the contour loop. When 

next line is found, the function returns an unsigned integer index of the found line as 

shown in Step 9. If the line is not found, then the function returns -1. Step 11 checks the 

inversion of the found line. Should the line inverts, then Pfind must be equal to the Pf of 

the found line. Vice versa, the line is in the right orientation. Next in Step 12, the function 

𝑆𝑤𝑎𝑝 is to swap the element in the list between the found line segment and the next line 

of the iteration (𝑖 + 1). If the line is inverted as previously checked in Step 11, the function 

𝑆𝑤𝑎𝑝 will also flip the found point such as Pf = Po and Po = Pf before swapping the two 

lines. Step 15 is mainly to assign the contour identity to the next line segment in the list 

since by this point; the next line segment has become a neighbouring line which was 
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previously found in Step 9. During next iteration, new Pfind will be assigned as the search 

parameter and the whole process will be repeated unless the comparison between Pfind 

and Pinit is equal to one another. This indicates a closed loop is found and it is necessary 

to increment the loop identity variable and assign new Pinit. 

 

3.5 Computational Time Measurement 

The proposed Contour Generation Algorithm is implemented in C++11 

programming language. The code is written and executed in Qt Creator 4.9.0 (Open-

Source) software and compiled with MinGW.  

In order to evaluate the performance of the proposed algorithm, computational 

time is collectively measured and plotted in milliseconds. Qt Creator provides real-time 

measurement library which is based on system clock with resolution of nanoseconds. It 

can be achieved by using <QElapsedTimer> object within Qt Creator. An instance qTimer 

of the <QElapsedTimer> needs to be created to start the measurement. The timer is 

inserted in before the function call for slicing algorithm. Using start() initiates the timer. 

After the function call, the measurement result is obtained by accessing the 

<QElapsedTimer> class member nsecsElapsed() which returns the int64 value of elapsed 

time since restart() is called. The value must be divided by one million to convert to 

milliseconds. For continuous measurement, the qTimer must be reset by calling restart() 

again to reset the timer counter back to zero. Pseudocode below shows the 

implementation for measuring both slicing and contour algorithm. 

#include <QElapsedTimer> 
.. 
QElapsedTimer* qTimer; 
double SliceResult, ContourResult; 
 
qTimer->start(); 
 
while(Slicing){ 
 qTimer->restart(); 
 Slice(height); 
 SliceResult   = qTimer->nsecsElapsed() / 1e6; 
 ContourLoop(); 
 ContourResult = qTimer->nsecsElapsed() / 1e6 – SliceResult;   
 height += delta_height;  
} 
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As shown in the pseudocode, the variables use for storing the results is double type which 

is 64-bit precision variable. Summation of both SliceResult and ContourResult give total 

computational time to generate the contour layer. These contour results are exported into 

a comma-separated value (CSV) file format during each iteration of slicing height until 

the maximum slicing height. Each CSV file contains contour line segments dataset 

(generated in Algorithm 2 in Section 3.4) according to respective slicing height. Other 

parameters such as number of intersecting facets at respective slicing height and STL 

model facet count is also included in the CSV result. 

The CSV formatted results are loaded into MATLAB 2016b using the MATLAB 

Script (attached in Appendix D) to plot the histogram of slicing time, contour loop time, 

total computational time, number of intersecting facets, and loop count. The MATLAB 

Script is also programmed to reconstruct a 3D figure based on generated line segments 

coordinates from the CSV files. 

 

3.6 Test Environment 

Proposed algorithm is programmed in VB.NET programming language. The 

algorithms are implemented on Intel i3-2350M CPU 2.30 GHz with 6 GB RAM 

workstation. For the validation process, the algorithms are re-written in C++11 and tested 

on Intel i7-6700 3.40 GHz workstation with 4 GB RAM based on specification mentioned 

in the referenced journal. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

Reduction of computational time in Contour Generation Algorithm is important 

in improving the performance contour layer generation. It is because the process can take 

up to 60% of the entire process planning time (Gregori et al., 2014; Kirschman & Jara-

Almonte, 1992). In this chapter, the performance of both slicing and contour loop 

algorithm are evaluated. The evaluation of the performance is based on the computational 

time required to complete each layer respective to their slicing height. Evaluation of the 

results are based on several STL model with different complexity which were used in the 

experiment. Each of these geometries/models are thoroughly analyzed based on the time 

performances of each algorithms including slicing algorithm and contour loop algorithm.  

 

4.2 Sliced Model Output 

In this section, the 3D sliced models are presented with colour-map indicating the 

total computational time at each respective layer slicing height. A sphere model is used 

to prove that the XZ and YZ planes are in correct ratio with respect to XY plane. Figure 

4.1 below shows the results of Sphere slicing. 
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Figure 4.1 Sliced model (Sphere) with colour mapped total computational time 

 

Figure 4.2 Sliced model (Dragon) with colour mapped total computational time 

Figure 4.1 shows perfect formation of a Sphere model. Based on the measurement 

done in MATLAB, the dimension of the Sphere result is 1079 x 1079 x 1079 cubic pixel. 

This proves that the slicing height is in correct ratio with respect to XY plane. The Dragon 
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(Figure 4.2) model is properly formed when compared to its original STL file because 

there are no abnormalities in the layer result. For example, if abnormality occurs during 

algorithm execution, the layer formation will be disrupted and making the respective layer 

to show clear malformation. 

 

Figure 4.3 Sliced model (Tower) with colour mapped total computational time 

Figure 4.2 and Figure 4.3 above show result of the algorithm implementation. 

Other STL model case studies are included in the Appendix A section. As seen above, 

the colour indicates the total computational time in milliseconds required to generate each 

contour to show the feasibility of implementing this algorithm to an actual DLP 3D 

printer. The lines that appear on the surface of the model are sliced contour lines generated 

by the algorithms. Colour differences at certain slicing height are due to the complexity 

of the geometry that differed at each height. This often demands more computational 

loads to generate the contours. Hence, longer computational time. The computational time 

at each respective height will be further discussed in the next section. 

In previous discussion in Chapter 3, the algorithms are designed to work by 

referring to the current build plate height of the DLP 3D printer. In other words, the 

algorithms generate the contour instantly upon receiving the slicing height input value. 

This method is called instant slicing. The contour generation algorithm consists of two 
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different algorithms: slicing and contour loop, the performance of each algorithms is 

evaluated in the next sections. 

 

4.3 Slicing Algorithm Performance 

In Chapter 3, the slicing algorithm is presented and discussed in detail. In brief, 

the slicing algorithm works by filtering out other facets which do not intersect with the 

slicing plane and then slice each of the intersecting facets to form each respective line 

segments. By algorithms complexity analysis, the worst case for the instant slicing 

algorithm can be represented as O(n). Thus, it is expected that increasing number of 

elements will linearly increase the execution time. The performance graph below shows 

the result of slicing algorithm at each respective slice height. Total facet number of the 

STL model, the mean average, and the standard deviation (SD) are presented at the top 

of the graph. Table 4.1 shows the result of execution time measurement for the slicing 

algorithm at each slicing height. 

Table 4.1 Time measurement for slicing algorithm 
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By analyzing the pattern of each graph, all the graph above shows consistent 

slicing time regardless the slicing height when comparing the value of standard deviation 

(SD). There are some spikes caused by the operating system background processes which 

occupied the processor at the time. Each model above is sorted in ascending order of their 

total facet number (low polygon model to high polygon model). It is noticeable that 

increasing total facet number also increases the mean slicing time average. 

 

4.4 Contour Loop Performance 

The contour loop algorithm works by connecting all the arbitrary line segments 

generated by the slicing algorithm into one or more contour loops. Time measurement for 

the execution time is taken in milliseconds to measure how fast the algorithm is executed. 
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The results obtained are shown in Table 4.2 below which represents contour loop 

computational time at each slicing height for each STL model. 

Table 4.2 Time measurement for contour loop algorithm  
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As seen in the Table 4.2 above, the contour time results show unique pattern for 

each model. The Sphere model has consistent contour loop execution time. But, for the 

other models, there are inconsistencies in the contour loop time at certain slicing height. 

This is due to complex features of the models at certain height. The complexity of the 

model can be represented as the number of intersecting facets at each slicing height. More 
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complex layer will have more facets number. Thus, it requires more computational time 

due to high intersecting facet counts. 

 

4.4.1 Number of Intersecting Facet at Different Slicing Height 

Table 4.3 below show the number of intersecting facets which intersect with the 

slicing plane at different heights. Unique feature of the Sphere model can be seen in the 

results below. It is found that the Sphere model has the same number of intersecting facets 

regardless the slicing height. This relates to the consistencies in its contour loop algorithm 

results in previous section. The number of intersecting facet pattern shows by the Dragon 

model also closely resembles the pattern in its contour loop time. These similarities can 

also be observed in other STL models. 

Table 4.3 Number of intersecting facet at each slicing height 
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Table 4.3 Continued 

Model Performance Graph 
S

p
ir

a
l 

T
o
w

er
 

 

 

4.4.2 Contour Loop Counts 

After running the test, it is found that at each slicing height, there are different 

numbers of contour loops can be observed. Based on the proposed contour loop algorithm 

in Chapter 3, the contour loop counts are programmed to re-iterate to connect another 

closed loop contour. These re-iterations depend on the contour loop counts. As a result, 

this process requires more computational time compares to a single closed loop contour. 

The measurement of the contour loop counts at each respective slicing height are 

tabulated in Table 4.4 below. 

Table 4.4 Number of loop counts at each slicing height 
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In earlier section, it could be hypothesized that the computational time for contour 

loop algorithm has a similarity with the number of intersecting facets. Thus, to further 

support this statement, a normalized correlation method is used to measure the similarities 

between these two results. The Equation 4.1 is the equation of normalized correlation 

which is written as: 

 NC =
∑xnyn

√∑xn2∑yn2
 4.1 

where the x is the data of contour loop time, y is the intersecting facet number, n is the 

number of elements, and NC is the normalized correlation. The normalized correlation is 

also tested for the relations between contour loop time and contour loop counts by using 

the contour loop time as variable x and contour loop counts as y according to the previous 

Equation 4.1. By using this equation for each model, the results of normalized correlation 
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are tabulated in Table 4.5 where CT is the contour loop time, LC is the contour loop 

counts and IF is the number of intersecting facet. 

Table 4.5 Calculated normalized correlation of each STL model 

STL Model 
Normalized Correlation 

CT vs LC CT vs IF 

Sphere 0.93 0.93 

Dragon 0.77 0.93 

Eiffel Tower 0.92 0.96 

Gundam 0.89 0.96 

Speedster 0.87 0.96 

Heart 0.64 0.97 

Dreadnaught 0.86 0.94 

Worm 0.72 0.91 

Spiral Tower 0.49 0.89 

The results of normalized correlation for contour loop time against contour loop 

counts show that the strong correlation only implied to certain model such as Sphere, 

Eiffel Tower, Gundam, and Speedster. But the rest of the models show weak correlations. 

Thus, it can be concluded that the number of contour loop counts do not significantly 

affect the contour loop time. On the other hand, the number of intersecting facets for 

every model has strong correlations with the contour loop execution time. Hence, earlier 

hypothesis that states increasing number of intersecting facets also increase the contour 

loop algorithm computational time. 

 

4.5 Total Computational Time 

Overall, total computational time is measured by adding both slicing time and 

contour loop time to give the total time required (in milliseconds) to generate the contour 

at each slicing height for DLP 3D printing contour projection. The result is tabulated in 

Table 4.6 below based on different STL model. 
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Table 4.6 Total computational time required for each slicing height 
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Table 4.6 shows the total computational time required with respect to each slicing 

height. It can be observed that, increasing facet number also increases its mean 

computational time. It natural since more complex model will have more facet counts and 

requires more computational time. At certain slicing height, several peaks can be seen. 

This indicates that around that particular slicing height has a greater number of 

intersecting facets compared to the other slicing heights. 
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4.6 Visualization of Contour Generation Algorithm 

In this section, the top view of stacked generated contour for some STL models 

are shown to visualize the 3D model the DLP 3D printing process. 

 

Figure 4.4 Stacked contours Alien model (side slicing) 

 

 

Figure 4.5 Stacked contours Dragon model (bottom-up slicing) 
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Figure 4.6 Stacked contours Liver model (bottom-up slicing) 

 

 

Figure 4.7 Stacked contours Walnut model (bottom-up slicing) 

 

4.7 Comparison of Slicing and Contour Loop algorithms 

Both of the slicing and contour algorithms are re-written in C++11 and tested on 

Intel i7-6700 3.40 GHz CPU with 4 GB RAM workstation for benchmarking with the 
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results obtained by the work from literature. The reason is to evaluate the performances 

of both algorithms compared to the algorithms result obtained by other researcher in their 

work. All the parameters such as the STL model, its facet count, and the number of slicing 

planes is exactly the same as the one used in their research paper. The proposed 

algorithms are measured using built-in <QElapsedTimer> library provided by the Qt 

Creator software to obtain the execution time in milliseconds. 

In the work of Minetto on Contour Generation algorithm, the author 

reimplemented other researcher algorithm (Park) written in C++ and executed on Intel i7 

3.4 GHz workstation. The results are measured based on minimum execution time for 

each algorithm in seconds. The results are also compared to commercial 3D printing 

software Slic3r (Minetto et al., 2017; Park, 2003). Using the data obtained by the author, 

our proposed algorithm results are validated in Table 4.7, Table 4.8, and Table 4.9 below. 

Table 4.7 Time measurement and comparison for slicing algorithm 

Model 
Facet 

Count 

Layer 

Count 

Slicing Algorithms (s) 

Park Slic3r Proposed 

Liver 38142 6242 1.28 0.32 1.48 

Femur 42150 3155 0.53 0.16 2.53 

Bunny 270021 1547 2.70 0.29 2.87 

Demon 935236 3126 20.12 1.28 20.15 

Rider 1281950 849 6.37 0.54 7.49 

Bolded value in Table 4.7 above shows the best runtime among the test results. 

Our proposed slicing algorithm is the slowest among other two algorithms with on 

average 22.72% slower than Park and 89.68% slower than Slic3r. This is because the 

proposed algorithm utilized vectors and 3D points computation instead of the commonly 

used extrapolation method which used more simplified mathematical equation to 

compute. However, since the proposed slicing algorithm uses vector coordinate 

computation, manipulating the slicing direction will be much easier compared to 

extrapolation. The extrapolation method works best for one direction slicing, but in order 

to modify the slicing angle, the algorithm has to change every single point that exist in 

the STL model. This heavy task will demand more computational time to be performed 

for each time the user wanted to change the slicing angle. Another reason is that the 

proposed slicing algorithm is the slowest because it includes point conversion (Line to 
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Pixel Mapping Algorithm) that changes the data type from Float to Unsigned Short that 

gives advantages in the proposed Contour Loop algorithm. 

Table 4.8 Time measurement and comparison for contour loop algorithm 

Model 
Facet 

Count 

Layer 

Count 

Contour Loop Algorithms (seconds) 

Park Slic3r Proposed 

Liver 38142 6242 35.97 3.57 0.003 

Femur 42150 3155 16.59 2.00 0.002 

Bunny 270021 1547 22.00 8.51 0.004 

Demon 935236 3126 140.77 69.49 0.022 

Rider 1281950 849 27.82 25.02 0.001 

As shown in Table 4.8 above, our proposed contour loop algorithm is the fastest 

compared to the rest of the algorithm with on average 1,199,972.73% faster than Park and 

649,822.73% faster than Slic3r. Our proposed algorithm uses simple head-to-tail contour 

algorithm. The key to the fast execution time of the proposed algorithm lies within the 

data type of the Line Segment. Normally, in the field of computational geometry 

programming, Float data type is often used by the programmers to reduce truncation 

errors and improve execution time. The Float data type has data size of 32-bit (4 Bytes) 

which capable of storing number ranging between -3.40282e+38 until +3.40282e+38. 

This large data type demands more processing time of the CPU compared to smaller size 

data type. Line-to-Pixel map algorithm which was discussed in Chapter 3 converted the 

floating-point data type into Unsigned Short data type. The Unsigned Short is a 16-bit (2 

Bytes) data type which is smaller than Float data type and it does not has decimal points. 

This data type able to store numbers ranging from 0 until 65535. The Line-to-Pixel map 

algorithm scales the floating points data to be within the range of Unsigned Short data. 

The main idea of the proposed contour loop algorithm is rejection of the use of Float data 

type. It is because in DLP 3D printing technology, the end device is always a projection 

device which are constrained by the number of pixels in each row. Current 

display/projection technology still has not exceeded 65535 pixels in each row. Hence, it 

is still within the range of Unsigned Short data type. Furthermore, the operation using 

Unsigned Short are much faster and more accurate compared to Float data type. Using 

this ideology, the proposed contour loop scales the contours depending on the display 

resolutions of the DLP 3D printer projection device. The algorithm is proven to be more 

than 100 times faster as shown in Table 4.8 above. 
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Table 4.9 Time measurement and comparison for total computational time 

Model 
Facet 

Count 

Layer 

Count 

Total Time for both algorithms 

(seconds) 

Park Slic3r Proposed 

Liver 38142 6242 37.24 3.89 1.483 

Femur 42150 3155 17.12 2.16 2.532 

Bunny 270021 1547 24.70 8.80 2.874 

Demon 935236 3126 160.89 70.77 20.174 

Rider 1281950 849 34.19 25.56 7.489 

Table 4.9 above shows the total execution time for both slicing and contour loop 

algorithm. The results are obtained by summing both results from slicing and contour 

loop algorithm. As seen in the Table 4.9, the proposed algorithms are the fastest algorithm 

by comparison with average 960.15% faster than Park and 169.18% faster Slic3r. Most 

of the computational time is consumed by the proposed slicing algorithm. However, the 

proposed slicing algorithm has its own merits as discussed earlier. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Conclusion 

Mask projection stereolithography is a recent discovery in 3D printing industry. 

It harnesses the power of UV light to cure the photocurable resin to form the solid 3D 

model. Each layer is projected through transparent glass into the resin vat and built layer-

by-layer until the process completes. STL CAD format is considered as de facto in 3D 

printing. This format is generated from multiple triangular meshes which are generated 

by tessellation process. The STL model undergoes contour generation algorithm to 

generate the necessary contour to be projected to the photocurable resin. In this study, a 

real-time contour generation algorithm is presented which involves series of algorithms. 

The algorithm consists of slicing algorithm, pixel-mapping algorithm, and contour loop 

algorithm. Each of these algorithms have been thoroughly studied, developed, and 

evaluated.  

The developed slicing algorithm is based on line-plane intersection model which 

is computationally efficient and simple. The slicing algorithm generates multiple arbitrary 

line segments that act as the bones of the contour. But the line segments are not digitally 

connected to each other. Thus, a contour loop algorithm is required to connect each of 

these line segments into one or multiple closed-loop contour.  

The line segments generated from the slicing algorithm are mapped referring the 

resolution of the projection device using the proposed pixel-mapping algorithm. The 

pixel-mapping algorithm remapped the line segments which use floating point 

coordinates into unsigned int pixel coordinate of the projection device. Then, these 

mapped line segments are connected using contour loop algorithm. 
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The contour loop algorithm is based on head-to-tail search algorithm. By 

assigning the first point from the list of line segments, the algorithm recursively searches 

and compares the remaining line segments and eventually form one or more closed-loop 

contour. The results of contour loop algorithm show that the algorithm is very fast and 

efficient regardless the facet number of the STL model. But the algorithm performs a bit 

slower when the layer has multiple closed-loop contours. 

The algorithms are executed on Intel i3-2350M CPU 2.30 GHz with 6 GB RAM 

workstation and written in VB.NET programming language. For peer result comparison 

with the algorithm obtained from the journal, the algorithms are re-written in C++11 and 

tested on Intel i7-6700 3.40 GHz workstation with 4 GB RAM similar to the referenced 

literature. The result finds that the proposed slicing algorithm is slower compares to the 

result from literature with on average 22.72% slower than Park and 89.68% slower than 

Slic3r software. For contour loop algorithm, the results are significantly faster than the 

one from the literature with on average 1,199,972.73% faster than Park and 649,822.73% 

faster than Slic3r. Thus, the total required time for contour generation has improved by 

960.15% compared to Park, and 169.18% compared to Slic3r software.  

Overall, the contour generation algorithm proposed in this study shows promising 

results. According to the measured computational time, the algorithm can operate in real-

time due to fast computational time required to generate 2D contour at any slicing height. 

This allows the algorithm to solve the memory storage issue whilst achieving the highest 

printing resolution and mechanical properties. 

 

5.2 Future Work 

The proposed algorithm only covers the contour generation process of the mask 

projection stereolithography 3D printing process. It does not cover the support generation 

process which is crucial for stereolithography printing process. In order to fulfill the pre-

processing stage of the stereolithography, a support generation algorithm is required. 

Another improvement that can be made to the algorithm is the parallel 

computation. Current multi-core technology in modern CPU allows multi-tasking 
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operation. Thus, distributing the processes among cores can rapidly improve the 

computational time for the algorithm.  

One of most important features in 3D printing process is the dimensional accuracy 

of the printed product. It is important for the printer to deliver exact dimension as given 

by the STL model so that the printed product does not need to be reworked. The 

implementation of the proposed algorithm on real hardware has not yet been studied. 

Hence, its dimensional accuracy is also important topic for further improvement of the 

algorithm.  
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APPENDIX A 

ADDITIONAL SLICING RESULT 

 

Eiffel Tower (Facet: 149014) 

 

Gundam (Facet: 163724) 
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Speedster (Facet: 179352) 

 

Heart (Facet: 217600) 
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Dreadnaught (Facet: 293146) 

 

Worm (Facet: 567334) 
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APPENDIX B 

PSEUDOCODE (VB.NET) 

Facet Class 
 
Public Class Facet 
    Structure Point3D 
        Dim X As Double 
        Dim Y As Double 
        Dim Z As Double 
 
        'Constructor Point3D 
        Public Sub New(ByVal x As Double, ByVal y As Double, ByVal z As Double) 
            Me.X = x 
            Me.Y = y 
            Me.Z = z 
        End Sub 
 
        Public Shared Function Dot(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double 
            Return (p1.X * p2.X) + (p1.Y * p2.Y) + (p1.Z * p2.Z) 
        End Function 
 
        Public Shared Function Cross(ByRef p1 As Point3D, ByRef p2 As Point3D) As Point3D 
            Return New Point3D(p1.Y * p2.Z - p1.Z * p2.Y, p1.X * p2.Z - p1.Z * p2.X, p1.X * p2.Y - p1.Y * p2.X) 
        End Function 
 
        Public Shared Function LengthBetween(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double 
            Return Math.Sqrt(Math.Pow((p1.X - p2.X), 2) + Math.Pow((p1.Y - p2.Y), 2) + Math.Pow((p1.Z - p2.Z), 
2)) 
        End Function 
 
        Public Shared Function LengthSq(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double 
            Return Math.Pow((p1.X - p2.X), 2) + Math.Pow((p1.Y - p2.Y), 2) + Math.Pow((p1.Z - p2.Z), 2) 
        End Function 
 
        Public Shared Operator +(ByVal p1 As Point3D, ByVal p2 As Point3D) As Point3D 
            Return New Point3D(p1.X + p2.X, p1.Y + p2.Y, p1.Z + p2.Z) 
        End Operator 
 
        Public Shared Operator -(ByVal p1 As Point3D, ByVal p2 As Point3D) As Point3D 
            Return New Point3D(p1.X - p2.X, p1.Y - p2.Y, p1.Z - p2.Z) 
        End Operator 
 
        Public Shared Operator *(ByVal multiplier As Double, ByVal p1 As Point3D) As Point3D 
            Return New Point3D(p1.X * multiplier, p1.Y * multiplier, p1.Z * multiplier) 
        End Operator 
 
        Public Shared Operator *(ByVal p1 As Point3D, ByVal multiplier As Double) As Point3D 
            Return New Point3D(p1.X * multiplier, p1.Y * multiplier, p1.Z * multiplier) 
        End Operator 
 
        Public Overrides Function ToString() As String 
            Return String.Format("{0},{1},{2}", X, Y, Z) 
        End Function 
    End Structure 
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    Public ZMax As Double 
    Public ZMin As Double 
    Public Normal As Point3D 
    Public P1, P2, P3 As Point3D 
 
    Public Sub New(ByRef norm As Point3D, ByRef Point1 As Point3D, ByRef Point2 As Point3D, ByRef 
Point3 As Point3D) 
        Me.Normal = norm 
        Me.P1 = Point1 
        Me.P2 = Point2 
        Me.P3 = Point3 
        Me.ZMax = Math.Max(Point1.Z, Point2.Z) 
        Me.ZMax = Math.Max(Me.ZMax, Point3.Z) 
        Me.ZMin = Math.Min(Point1.Z, Point2.Z) 
        Me.ZMin = Math.Min(Me.ZMin, Point3.Z) 
    End Sub 
 
    Public Overrides Function ToString() As String 
        Return String.Format("[{0}] [{1}] [{2}]", P1, P2, P3) 
    End Function 
 
End Class 
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Pixel Line Class 
 
Public Class PixelClass 
    Structure VectorPixel 
        Dim X, Y As UInteger 
 
        Public Sub New(ByRef x As UInteger, ByRef y As UInteger) 
            Me.X = x 
            Me.Y = y 
        End Sub 
 
        Public Overrides Function ToString() As String 
            Return String.Format("[{0}, {1}]", X, Y) 
        End Function 
    End Structure 
 
    Public Po, Pf As VectorPixel 
    Public Group As UInteger 
 
    Public Sub New(ByRef P1 As VectorPixel, ByRef P2 As VectorPixel, ByRef id As UInteger) 
        Me.Po = P1 
        Me.Pf = P2 
        Me.Group = id 
    End Sub 
 
    Public Shared Function Compare(ByRef P1 As VectorPixel, ByRef P2 As VectorPixel) As Boolean 
        If P1.X = P2.X Then 
            If P1.Y = P2.Y Then 
                Return True 
            Else 
                Return False 
            End If 
        Else 
            Return False 
        End If 
    End Function 
 
    Public Overrides Function ToString() As String 
        Return String.Format("[{0}, {1}] [{2}, {3}] [{4}]", Po.X, Po.Y, Pf.X, Pf.Y, Group) 
    End Function 
 
End Class 
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Main Code 
 
Imports System 
Imports System.IO 
Imports System.ComponentModel 
Imports System.Text 
Imports DLP_3D_Printer.PixelClass 
Imports DLP_3D_Printer.Facet 
 
Public Class mainForm 
    'STL Facet Read variables 
    Dim FacetCount As UInteger = 0 
    Dim groupID As UInteger = 0 
    Dim exCount As UInteger = 0 
    Dim zSlice As Double = 0 
    Dim xMax, xMin, yMax, yMin, zMax, zMin As Double 
    Dim STL_list As New List(Of Facet) 
    Dim STL_intersect As New List(Of Facet) 
    Dim facetBuffer(4) As Byte 
    Dim header(80) As Byte 
    Dim nx(4), ny(4), nz(4) As Byte 
    Dim p1x(4), p1y(4), p1z(4) As Byte 
    Dim p2x(4), p2y(4), p2z(4) As Byte 
    Dim p3x(4), p3y(4), p3z(4) As Byte 
    Dim atb(2) As Byte 
 
    'Pixel Mapping variables 
    Dim resW As UInteger = 1920     'Temp Screen Width X 
    Dim resH As UInteger = 1080     'Temp Screen Height Y 
    Dim ARxy, ARwh, ARz As Double 
    Dim pixelList As List(Of PixelClass) 
    Dim zOut As UInteger = 0 
 
    Private Sub readBinary(ByVal fileSTL As String) 
        Dim result As UInteger = 0 
        Dim normal As New Point3D 
        Dim p1 As New Point3D 
        Dim p2 As New Point3D 
        Dim p3 As New Point3D 
        STL_list = New List(Of Facet) 
        FacetCount = 0 
        xMax = Double.MinValue 
        yMax = Double.MinValue 
        zMax = Double.MinValue 
        xMin = Double.MaxValue 
        yMin = Double.MaxValue 
        zMin = Double.MaxValue 
 
        Using myReader As New FileStream(fileSTL, FileMode.Open) 
            myReader.Seek(0, SeekOrigin.Begin) 
            Dim remains As Integer = CType(myReader.Length, Integer) 
            Dim i As UInteger = 0 
 
            If remains > 0 Then 
                myReader.Read(header, 0, 80) 
                myReader.Read(facetBuffer, 0, 4) 
                exCount = BitConverter.ToInt32(facetBuffer, 0) 
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                FacetCount = exCount 
 
                For k As UInteger = 0 To exCount - 1 
                    myReader.Read(nx, 0, 4) 
                    myReader.Read(ny, 0, 4) 
                    myReader.Read(nz, 0, 4) 
                    myReader.Read(p1x, 0, 4) 
                    myReader.Read(p1y, 0, 4) 
                    myReader.Read(p1z, 0, 4) 
                    myReader.Read(p2x, 0, 4) 
                    myReader.Read(p2y, 0, 4) 
                    myReader.Read(p2z, 0, 4) 
                    myReader.Read(p3x, 0, 4) 
                    myReader.Read(p3y, 0, 4) 
                    myReader.Read(p3z, 0, 4) 
                    myReader.Read(atb, 0, 2) 
 
                    normal.X = BitConverter.ToSingle(nx, 0) 
                    normal.Y = BitConverter.ToSingle(ny, 0) 
                    normal.Z = BitConverter.ToSingle(nz, 0) 
                    p1.X = BitConverter.ToSingle(p1x, 0) 
                    p1.Y = BitConverter.ToSingle(p1y, 0) 
                    p1.Z = BitConverter.ToSingle(p1z, 0) 
                    p2.X = BitConverter.ToSingle(p2x, 0) 
                    p2.Y = BitConverter.ToSingle(p2y, 0) 
                    p2.Z = BitConverter.ToSingle(p2z, 0) 
                    p3.X = BitConverter.ToSingle(p3x, 0) 
                    p3.Y = BitConverter.ToSingle(p3y, 0) 
                    p3.Z = BitConverter.ToSingle(p3z, 0) 
 
                    'Object X max/min 
                    xMax = Math.Max(xMax, p1.X) 
                    xMax = Math.Max(xMax, p2.X) 
                    xMax = Math.Max(xMax, p3.X) 
                    xMin = Math.Min(xMin, p1.X) 
                    xMin = Math.Min(xMin, p2.X) 
                    xMin = Math.Min(xMin, p3.X) 
 
                    'Object Y max/min 
                    yMax = Math.Max(yMax, p1.Y) 
                    yMax = Math.Max(yMax, p2.Y) 
                    yMax = Math.Max(yMax, p3.Y) 
                    yMin = Math.Min(yMin, p1.Y) 
                    yMin = Math.Min(yMin, p2.Y) 
                    yMin = Math.Min(yMin, p3.Y) 
 
                    'Object Z max/min 
                    zMax = Math.Max(zMax, p1.Z) 
                    zMax = Math.Max(zMax, p2.Z) 
                    zMax = Math.Max(zMax, p3.Z) 
                    zMin = Math.Min(zMin, p1.Z) 
                    zMin = Math.Min(zMin, p2.Z) 
                    zMin = Math.Min(zMin, p3.Z) 
 
                    STL_list.Add(New Facet(normal, p1, p2, p3)) 
 
                Next 
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            End If 
        End Using 
 
        STL_list = STL_list.OrderBy(Function(x) x.ZMin).ToList() 
 
    End Sub 
 
    Private Sub Slice(ByVal sliceZ As Double) 
        Dim si As Double 
        Dim n, u, Po, Pf, Vo As Point3D 
 
        initializeMatrix() 
        STL_intersect = New List(Of Facet) 
        STL_intersect = STL_list.FindAll(Function(x) x.ZMin < sliceZ And x.ZMax > sliceZ) 
 
        n = New Point3D(0, 0, 1) 
        Vo = New Point3D(0, 0, sliceZ) 
 
        For Each facet_tri In STL_intersect 
            Dim pFlag As Boolean() = {False, False, False} 
            Dim pBuffer(3) As Point3D 
            Dim vLength(3) As Double 
            Dim pointCount As Byte = 0 
 
            For k As Byte = 0 To 2 
                Select Case k 
                    Case 0 
                        Po = facet_tri.P1 
                        Pf = facet_tri.P2 
                    Case 1 
                        Po = facet_tri.P2 
                        Pf = facet_tri.P3 
                    Case 2 
                        Po = facet_tri.P3 
                        Pf = facet_tri.P1 
                End Select 
 
                u = Pf - Po 
                If Point3D.Dot(n, u) <> 0 Then  'If there is intersection 
                    si = Point3D.Dot(n, Vo - Po) / Point3D.Dot(n, u) 
                    If si >= 0 And si <= 1 Then 
                        pBuffer(k) = Po + si * u 
                        pFlag(k) = True 
                        pointCount += 1 
                    End If 
                End If 
            Next 
 
            'Case Handler 
            Select Case pointCount 
                Case 2 
                    If pFlag(0) And pFlag(1) Then 
                        HashConvert(pBuffer(0), pBuffer(1)) 
                    End If 
                    If pFlag(1) And pFlag(2) Then 
                        HashConvert(pBuffer(1), pBuffer(2)) 
                    End If 
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                    If pFlag(2) And pFlag(0) Then 
                        HashConvert(pBuffer(2), pBuffer(0)) 
                    End If 
                    Continue For 
                Case 3 
                    'Find which pairs will produce longest vector 
                    vLength(0) = Point3D.LengthSq(pBuffer(0), pBuffer(1)) 
                    vLength(1) = Point3D.LengthSq(pBuffer(1), pBuffer(2)) 
                    vLength(2) = Point3D.LengthSq(pBuffer(2), pBuffer(0)) 
 
                    If vLength(0) > vLength(1) Then 
                        If vLength(0) >= vLength(2) Then 
                            HashConvert(pBuffer(0), pBuffer(1)) 
                        Else 
                            HashConvert(pBuffer(2), pBuffer(0)) 
                        End If 
                    Else 
                        If vLength(1) >= vLength(2) Then 
                            HashConvert(pBuffer(1), pBuffer(2)) 
                        Else 
                            HashConvert(pBuffer(2), pBuffer(0)) 
                        End If 
                    End If 
                    Continue For 
                Case Else 
                    Continue For 
            End Select 
        Next 
 
        If pixelList.Count > 0 Then 
            generateContour(pixelList) 
        End If 
    End Sub 
 
    Private Sub initializeMatrix() 
        ARwh = resW / resH 
        ARxy = (xMax - xMin) / (yMax - yMin) 
 
        If ARxy >= ARwh Then 
            ARz = (zMax - zMin) / (xMax - xMin) 
            zOut = (zSlice - zMin) / (zMax - zMin) * (resW - 1) * ARz 
        Else 
            ARz = (zMax - zMin) / (yMax - yMin) 
            zOut = (zSlice - zMin) / (zMax - zMin) * (resH - 1) * ARz 
        End If 
        pixelList = New List(Of PixelClass) 
    End Sub 
 
    Private Sub HashConvert(ByRef Point1 As Point3D, ByRef Point2 As Point3D) 
        Dim po, pf As VectorPixel 
 
        If ARxy >= ARwh Then 
            'Fit to Width (X) 
            po.X = (Point1.X - xMin) / (xMax - xMin) * (resW - 1) 
            po.Y = (Point1.Y - yMin) / (yMax - yMin) * ((resW - 1) / ARxy) 
            pf.X = (Point2.X - xMin) / (xMax - xMin) * (resW - 1) 
            pf.Y = (Point2.Y - yMin) / (yMax - yMin) * ((resW - 1) / ARxy) 
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        Else 
            'Fit to Height (Y) 
            po.X = (Point1.X - xMin) / (xMax - xMin) * ((resH - 1) * ARxy) 
            po.Y = (Point1.Y - yMin) / (yMax - yMin) * (resH - 1) 
            pf.X = (Point2.X - xMin) / (xMax - xMin) * ((resH - 1) * ARxy) 
            pf.Y = (Point2.Y - yMin) / (yMax - yMin) * (resH - 1) 
        End If 
 
        If Not Compare(po, pf) Then 
            pixelList.Add(New PixelClass(po, pf, 0)) 
        End If 
    End Sub 
 
 
    Private Sub generateContour(ByRef list As List(Of PixelClass)) 
        Dim isInverse As Boolean = False 
        Dim findInt As Integer = 0 
        Dim initPoint As VectorPixel 
        Dim searchPoint As VectorPixel 
 
        groupID = 0 
        list = list.OrderBy(Function(X) X.Po.Y).ToList 
        list = list.OrderBy(Function(X) X.Po.X).ToList 
        initPoint = list.Item(0).Po 
        For i As Integer = 0 To list.Count - 2 
            'Assign search point 
            searchPoint = list.Item(i).Pf 
 
            'Closed Loop check 
            If Compare(searchPoint, initPoint) Then 
                groupID += 1 
                initPoint = list.Item(i + 1).Po 
            Else 
                'Find next pair 
                findInt = FindPair(i, searchPoint, list) 
                If findInt <> -1 Then 
                    'Check if the point is inverted 
                    isInverse = Compare(searchPoint, list.Item(findInt).Pf) 
                    SwapPoint(findInt, i + 1, isInverse, list) 
                End If 
            End If 
            list.Item(i + 1).Group = groupID 
        Next 
 
    End Sub 
 
    Private Function FindPair(ByRef offset As UInteger, ByRef point As VectorPixel, ByRef list As List(Of 
PixelClass)) As Integer 
        For i As Integer = offset + 1 To list.Count - 1 
            If Compare(point, list.Item(i).Po) Or Compare(point, list.Item(i).Pf) Then 
                Return i 
            End If 
        Next 
        Return -1 
    End Function 
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    Private Sub SwapPoint(ByRef foundPoint As UInteger, ByVal nextPoint As UInteger, ByRef Inverse As 
Boolean, ByRef list As List(Of PixelClass)) 
        Dim buffer As PixelClass = list.Item(foundPoint) 
        list.Item(foundPoint) = list.Item(nextPoint) 
 
        If Inverse Then 
            list.Item(nextPoint) = New PixelClass(buffer.Pf, buffer.Po, 0) 
        Else 
            list.Item(nextPoint) = New PixelClass(buffer.Po, buffer.Pf, 0) 
        End If 
    End Sub 
 
End Class  
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APPENDIX C 

PSEUDOCODE (C++) 

Point3D Class 
 
#include "point3d.h" 
#include <string> 
 
using namespace std; 
 
point3d::point3d(){} 
 
point3d::point3d(float x, float y, float z):X(x),Y(y),Z(z){} 
 
point3d::point3d(char* input){ 
    char x[4] = {input[0],input[1],input[2],input[3]}; 
    char y[4] = {input[4],input[5],input[6],input[7]}; 
    char z[4] = {input[8],input[9],input[10],input[11]}; 
 
    this->X = *((float*)x); 
    this->Y = *((float*)y); 
    this->Z = *((float*)z); 
} 
 
float point3d::dot(point3d Pa){ 
    return ((this->X * Pa.X) + (this->Y * Pa.Y) + (this->Z * Pa.Z)); 
} 
 
point3d point3d::operator +(const point3d &Pa){ 
    return point3d(this->X+Pa.X, this->Y+Pa.Y, this->Z+Pa.Z); 
} 
 
point3d point3d::operator -(const point3d &Pa){ 
    return point3d(this->X-Pa.X, this->Y-Pa.Y, this->Z-Pa.Z); 
} 
 
point3d point3d::operator *(const float &mult){ 
    return point3d((this->X * mult), (this->Y * mult), (this->Z * mult)); 
} 
 
string point3d::toString(){ 
    string buffer = ""; 
    buffer+=to_string(this->X); buffer += " "; 
    buffer+=to_string(this->Y); buffer += " "; 
    buffer+=to_string(this->Z); buffer += " "; 
    return buffer; 
} 
 
point3d::~point3d(){} 
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Facet Class 
 
#include "facet.h" 
#include <math.h> 
 
using namespace std; 
 
facet::facet(){} 
 
facet::facet(point3d p1, point3d p2, point3d p3, point3d norm):P1(p1),P2(p2), P3(p3), Norm(norm) 
{ 
    this->Xmax = max(p1.X, p2.X); this->Xmax = max(this->Xmax, p3.X); 
    this->Xmin = min(p1.X, p2.X); this->Xmin = min(this->Xmin, p3.X); 
    this->Ymax = max(p1.Y, p2.Y); this->Ymax = max(this->Ymax, p3.Y); 
    this->Ymin = min(p1.Y, p2.Y); this->Ymin = min(this->Ymin, p3.Y); 
    this->Zmax = max(p1.Z, p2.Z); this->Zmax = max(this->Zmax, p3.Z); 
    this->Zmin = min(p1.Z, p2.Z); this->Zmin = min(this->Zmin, p3.Z); 
} 
 
facet::facet(char *input){ 
    point3d gNorm(input); 
    point3d gP1(input+12); 
    point3d gP2(input+24); 
    point3d gP3(input+36); 
 
    this->Norm = gNorm; 
    this->P1 = gP1; 
    this->P2 = gP2; 
    this->P3 = gP3; 
 
    this->Xmax = max(gP1.X, gP2.X); this->Xmax = max(this->Xmax, gP3.X); 
    this->Xmin = min(gP1.X, gP2.X); this->Xmin = min(this->Xmin, gP3.X); 
    this->Ymax = max(gP1.Y, gP2.Y); this->Ymax = max(this->Ymax, gP3.Y); 
    this->Ymin = min(gP1.Y, gP2.Y); this->Ymin = min(this->Ymin, gP3.Y); 
    this->Zmax = max(gP1.Z, gP2.Z); this->Zmax = max(this->Zmax, gP3.Z); 
    this->Zmin = min(gP1.Z, gP2.Z); this->Zmin = min(this->Zmin, gP3.Z); 
} 
 
string facet::toString(){ 
    string buffer="Facet\n"; 
    buffer+= this->P1.toString() + "\n"; 
    buffer+= this->P2.toString() + "\n"; 
    buffer+= this->P3.toString() + "\n"; 
    //buffer+= this->Norm.toString() + " "; 
    buffer+= to_string(this->Zmax) + " "; 
    buffer+= to_string(this->Zmin) + "\n"; 
    return buffer; 
} 
 
bool facet::operator<(const facet &other){ 
    return this->Zmin < other.Zmin; 
} 
 
bool facet::isIntersect(float &height){ 
    if((height < this->Zmax) && (height > this->Zmin)){ 
        return true; 
    } else{ 
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        return false; 
    } 
} 
 
facet::~facet(){} 
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Point2D Class 
 
#include "point2d.h" 
#include "math.h" 
 
point2d::point2d(){} 
 
point2d::~point2d(){} 
 
point2d::point2d(unsigned short &xx, unsigned short &yy):X(xx), Y(yy){} 
 
string point2d::toString(){ 
    return "(" + to_string(this->X) + "," + to_string(this->Y) + ")"; 
} 
 
float point2d::length(point2d &other){ 
    return (powf(this->X - other.X, 2) + powf(this->Y - other.Y, 2)); 
} 
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Pixel Line Class 
 
#include "pixelline.h" 
 
pixelLine::pixelLine(){} 
 
pixelLine::pixelLine(const point2d a, const point2d b, const unsigned int id){ 
    this->Po = a; 
    this->Pf = b; 
    this->Id = id; 
} 
 
string pixelLine::toString(){ 
    string buffer=""; 
    buffer += this->Po.toString() + " "; 
    buffer += this->Pf.toString() + " "; 
    buffer += "[" + to_string(this->Id) + "]"; 
    return buffer; 
} 
 
pixelLine::~pixelLine(){} 
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Slicer Class 
 
#include "slicer.h" 
#include <iostream> 
#include <fstream> 
#include <algorithm> 
#include <limits> 
 
using namespace std; 
 
Slicer::Slicer(){} 
 
void Slicer::Initialize(){ 
    this->facetList.clear(); 
    this->facetCount = 0; 
} 
 
void Slicer::ReadSTL(string filename){ 
    ifstream stlFile; 
    char fCount[4]; 
    char inputFacet[50]; 
 
    Initialize(); 
 
    stlFile.open(filename, ios::binary); 
 
    if(stlFile.is_open()){ 
        stlFile.seekg(0); 
        stlFile.ignore(80); 
        stlFile.read(fCount, 4); 
        this->facetCount = *((unsigned long*)fCount); 
 
        for(unsigned long i = 0; i < this->facetCount; i++){ 
            stlFile.read(inputFacet, 50); 
            facet ex(inputFacet); 
            this->facetList.push_back(ex); 
        }; 
    } 
 
    stlFile.close(); 
    this->facetList.shrink_to_fit(); 
    sort(facetList.begin(),facetList.end()); 
    DefineBoundary(); 
 
} 
 
void Slicer::Slice(float &height){ 
    this->LineList.clear(); 
    vector<facet*> intersectList; 
    point2d *aPo, *aPf, pConvert[3]; 
    point3d n(0,0,1), u, *Po, *Pf, Vo(0,0,height); 
    float si = 0; 
    GenerateList(height, intersectList); 
 
    for(unsigned int i = 0; i < intersectList.size(); i++){ 
        bool pFlag[3] = {false,false,false}; 
        point3d pBuffer[3]; 
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        float vLength[3]; 
        unsigned short pointCount = 0; 
 
        for(unsigned short k = 0; k < 3; k++){ 
            switch(k){ 
            case 0: 
                Po = &intersectList[i]->P1; 
                Pf = &intersectList[i]->P2; 
                break; 
            case 1: 
                Po = &intersectList[i]->P2; 
                Pf = &intersectList[i]->P3; 
                break; 
            case 2: 
                Po = &intersectList[i]->P3; 
                Pf = &intersectList[i]->P1; 
                break; 
            }; 
 
            u = (*Pf) - (*Po); 
            if(n.dot(u) != 0){ 
                si = n.dot(Vo - (*Po)) / n.dot(u); 
                if((si >= 0) && (si <= 1)){ 
                    pBuffer[k] = (*Po) + (u * si); 
                    pConvert[k] = Convert(pBuffer[k]); 
                    pFlag[k] = true; 
                    pointCount++; 
                } 
            }; 
        }; 
 
        switch(pointCount){ 
        case 0: 
        case 1: 
            break; 
        case 2: 
            if(pFlag[0] && pFlag[1]){ 
                aPo = &pConvert[0]; aPf = &pConvert[1]; 
            } 
            if(pFlag[1] && pFlag[2]){ 
                aPo = &pConvert[1]; aPf = &pConvert[2]; 
            } 
            if(pFlag[2] && pFlag[0]){ 
                aPo = &pConvert[2]; aPf = &pConvert[0]; 
            } 
 
            if(!Compare(*aPo, *aPf)){ 
                this->LineList.push_back(pixelLine(*aPo, *aPf, 0)); 
            } 
            break; 
        case 3: 
            vLength[0] = pConvert[0].length(pConvert[1]); 
            vLength[1] = pConvert[1].length(pConvert[2]); 
            vLength[2] = pConvert[2].length(pConvert[0]); 
 
            if(vLength[0] > vLength[1]){ 
                if(vLength[0] >= vLength[2]){ 
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                    aPo = &pConvert[0]; aPf = &pConvert[1]; 
                }else { 
                    aPo = &pConvert[2]; aPf = &pConvert[0]; 
                } 
            } else { 
                if(vLength[1] >= vLength[2]){ 
                    aPo = &pConvert[1]; aPf = &pConvert[2]; 
                } else { 
                    aPo = &pConvert[2]; aPf = &pConvert[0]; 
                } 
            } 
 
            if(!Compare(*aPo, *aPf)){ 
                this->LineList.push_back(pixelLine(*aPo, *aPf, 0)); 
            } 
            break; 
        }; 
    }; 
 
    if(LineList.size() != 0){ 
        Contour(); 
    } 
} 
 
void Slicer::GenerateList(float &height, vector<facet*> &objectList){ 
    objectList.clear(); 
    for(unsigned int i = 0; i < this->facetList.size(); i++){ 
        if(this->facetList[i].isIntersect(height)){ 
            objectList.push_back(&facetList[i]); 
        } 
    } 
} 
 
void Slicer::DefineBoundary(){ 
    upperX = upperY = upperZ = numeric_limits<float>::lowest(); 
    lowerX = lowerY = lowerZ = numeric_limits<float>::max(); 
 
    for(unsigned int i = 0; i < this->facetList.size(); i++){ 
        upperX = max(upperX, this->facetList[i].Xmax); 
        lowerX = min(lowerX, this->facetList[i].Xmin); 
        upperY = max(upperY, this->facetList[i].Ymax); 
        lowerY = min(lowerY, this->facetList[i].Ymin); 
        upperZ = max(upperZ, this->facetList[i].Zmax); 
        lowerZ = min(lowerZ, this->facetList[i].Zmin); 
    } 
 
    this->ARxy = (upperX - lowerX) / (upperY - lowerY); 
} 
 
void Slicer::SetResolution(const unsigned short width, const unsigned short height){ 
    this->resW = width; 
    this->resH = height; 
    this->ARwh = (float)width / (float)height; 
} 
 
point2d Slicer::Convert(point3d &Pa){ 
    unsigned short px, py; 
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    if(ARxy >= ARwh){ 
        px = (Pa.X - lowerX) / (upperX - lowerX) * (resW - 1); 
        py = (Pa.Y - lowerY) / (upperY - lowerY) * ((resW - 1) / ARxy); 
    } else { 
        px = (Pa.X - lowerX) / (upperX - lowerX) * ((resH - 1) * ARxy); 
        py = (Pa.Y - lowerY) / (upperY - lowerY) * (resH - 1); 
    } 
 
    return point2d(px,py); 
} 
 
bool Slicer::Compare(point2d &a, point2d &b){ 
    if(a.X == b.X){ 
        if(a.Y == b.Y){ 
            return true; 
        } 
    } 
    return false; 
} 
 
void Slicer::Contour(){ 
    unsigned short id = 0; 
    point2d *searchPoint, *initPoint; 
 
    initPoint = &this->LineList[0].Po; 
    for(unsigned int i = 0; i < this->LineList.size() - 1; i++){ 
        searchPoint = &this->LineList[i].Pf; 
 
        if(Compare(*searchPoint, *initPoint)){ 
            id++; 
            initPoint = &this->LineList[i + 1].Po; 
        } else { 
            int findInt = FindPair(i, *searchPoint); 
            if(findInt != -1){ 
                bool isInverse = Compare(*searchPoint, this->LineList[findInt].Pf); 
                SwapPoint(findInt, i+1, isInverse, this->LineList); 
            } else { 
                cout << "Point Not Found at: " << i << endl; 
            } 
        } 
        this->LineList[i+1].Id = id; 
    } 
} 
 
int Slicer::FindPair(unsigned int &startIndex, point2d &searchPoint){ 
    for(unsigned int i = startIndex + 1; i < this->LineList.size(); i++){ 
        if((Compare(searchPoint, this->LineList[i].Po)) || (Compare(searchPoint, this->LineList[i].Pf))){ 
            return i; 
        } 
    } 
    return -1; 
} 
 
void Slicer::SwapPoint(const unsigned int foundPoint, const unsigned int nextPoint, bool inverse, 
vector<pixelLine> &list){ 
    swap(list[foundPoint], list[nextPoint]); 
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    if(inverse){ 
        swap(list[nextPoint].Po, list[nextPoint].Pf); 
    } 
} 
 
Slicer::~Slicer(){} 
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APPENDIX D 

PSEUDOCODE (MATLAB) 

MATLAB Script 
 
%% CONTOUR PLOT 
clear; 
cd 'C:\Users\DELL\Documents\DLP Folder\Vector'; 
filename = 'Dragon'; 
myvars   = dir(sprintf('%s*.csv', filename));       %Get list of CSV file 
disp(filename); 
figure(1); 
set(1, 'Name', sprintf('%s', filename),...          %Create new figure 
    'Color', [1 1 1],'pos', [350 200 600 400]); 
 
% Initialize Slice Height, Slice Time, and Contour Time variables 
STime   = zeros(length(myvars), 1); 
CTime   = zeros(length(myvars), 1); 
HSlice  = zeros(length(myvars), 1); 
IFacet  = zeros(length(myvars), 1); 
GNumber = zeros(length(myvars), 1); 
TTime   = zeros(length(myvars), 1); 
 
for i = 1 : length(myvars)                          %Iterate for each file                 
    CurrentFile = csvread(myvars(i,1).name);        %Load working file 
    Gmax = max(CurrentFile(:, 4));                  %Get Max Group number 
    G = 0;                                          %Initialize G 
     
    % Acquire Slice Height, Slice Time, and Contour Time 
    HSlice(i)  = CurrentFile(1, 3); 
    NFacet     = CurrentFile(1, 5); 
    IFacet(i)  = CurrentFile(1, 6); 
    STime(i)   = CurrentFile(1, 7); 
    CTime(i)   = CurrentFile(1, 8); 
    GNumber(i) = Gmax + 1; 
    TTime(i) = STime(i) + CTime(i); 
     
    while G <= Gmax 
        % Filter Array based on Group Number at Column 4 
        t = find(CurrentFile(:, 4) == G); 
     
        % Get XYZ (Column 1 2 3) 
        X = CurrentFile(t, 1); 
        Y = CurrentFile(t, 2); 
        Z = CurrentFile(t, 3); 
     
        % Plot Contour for each layer with color mapping 
        Ubound = 100; 
        Lbound = Ubound / 2; 
        if (TTime(i) > Ubound) 
            yr = 255; 
            yg = 0; 
        end 
        if (TTime(i) >= Lbound) && (TTime(i) <= Ubound) 
            m = -255 / (Ubound - Lbound); 
            c = 255 - Lbound * m; 
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            yr = 255; 
            yg = round(m * TTime(i) + c); 
        end 
        if (TTime(i) < Lbound) 
            yg = 255; 
            yr = round(255 / Lbound * TTime(i)); 
        end 
        colors_p = [yr, yg, 0] / 255; 
        fill3(X, Y, Z, colors_p); 
        G = G + 1; 
        hold on;                                    %Stack plotting 
    end 
end 
a = [linspace(0, 1, 32); ones(1, 32); zeros(1, 32)]'; 
b = [ones(1, 32); linspace(1, 0, 32); zeros(1, 32)]'; 
c = [a; b]; 
colormap(c); 
val = linspace(0, Ubound, 11); 
colorbar('YTickLabel', val); 
axis equal; 
set(gca, 'Color', [0.9 0.9 0.9]);                   %Set grid BG color 
set(gca, 'View', [45 30]);                          %Set rotation axis 
grid on;                                            %Enable grid 
hold off;                                           %Disable stack plot 
saveas(gcf,sprintf('%s_1-Fig.png',filename));       %Save figure 
 
%% RESULT GRAPH PLOTS 
% Plot Slice Time 
figure(2); 
set(2,'Name','Slice Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, STime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');   
xlabel('Slice Height'); 
ylabel('Slice Time (ms)'); 
xlim([min(HSlice) max(HSlice)]); 
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(STime), std(STime))); %edited for 
single plot 
grid on; 
saveas(gcf,sprintf('%s_2-ST.png',filename));      %Save figure 
 
% Plot Contour Time 
figure(3); 
set(3,'Name','Contour Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, CTime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');  
xlabel('Slice Height'); 
ylabel('Contour Time (ms)'); 
xlim([min(HSlice) max(HSlice)]); 
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(CTime), std(CTime))) 
grid on;                                               
saveas(gcf,sprintf('%s_3-CT.png',filename));      %Save figure 
 
% Plot Total Time 
figure(4); 
set(4,'Name','Total Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, TTime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');  
xlabel('Slice Height'); 
ylabel('Total Time (ms)'); 
xlim([min(HSlice) max(HSlice)]); 
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title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(TTime), std(TTime))) 
grid on;  
saveas(gcf,sprintf('%s_4-TT.png',filename));      %Save figure 
 
% Plot Intersecting Facet           
figure(5); 
set(5,'Name','Intersecting Facet vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, IFacet, 1, 'FaceColor', barColor, 'EdgeColor', 'k'); 
xlabel('Slice Height'); 
ylabel('Intersecting Facet'); 
xlim([min(HSlice) max(HSlice)]); 
grid on;                                                
saveas(gcf,sprintf('%s_5-IF.png',filename));      %Save figure 
 
% Plot Loop Count 
figure(6); 
set(6,'Name','Loop Number vs Slice Height','pos',[350 200 500 200]); %edited for single plot 
bar(HSlice, GNumber, 1, 'FaceColor', barColor, 'EdgeColor', 'k'); 
xlabel('Slice Height'); 
ylabel('Loop Count'); 
xlim([min(HSlice) max(HSlice)]); 
grid on;  
saveas(gcf,sprintf('%s_6-LC.png',filename));      %Save figure 
 
%% CALL FUNCTION 
[it, rw] = max(CTime); 
zs = HSlice(rw, 1); 
funcContour(zs, filename); 
 
disp('Slice Time VS Loop Count'); 
disp(NCorr(STime,GNumber)); 
disp('Slice Time VS Intersecting Facet'); 
disp(NCorr(STime,IFacet)); 
disp('Contour Time VS Loop Count'); 
disp(NCorr(CTime,GNumber)); 
disp('Contour Time VS Intersecting Facet'); 
disp(NCorr(CTime,IFacet)); 
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function funcContour(zSlice, filename) 
    myvars = dir(sprintf('%s*.csv', filename));         %Get list of CSV file 
    figure(8); 
    set(8, 'Name', sprintf('Contour Time (%s)',...      %Create new figure 
        filename), 'Color', [1 1 1],'pos', [350 200 600 400]);                               
 
    for i = 1 : length(myvars)                          %Iterate for each file                 
        CurrentFile = csvread(myvars(i,1).name);        %Load working file 
        Gmax = max(CurrentFile(:, 4));                  %Get Max Group number 
        G = 0;                                          %Initialize G 
         
        if zSlice == CurrentFile(1, 3) 
            CTprev   = CurrentFile(1, 8); 
            CTheight = CurrentFile(1, 3); 
            CIfacet  = CurrentFile(1, 6); 
            GHigh    = Gmax + 1; 
            hold off; 
            while G <= Gmax 
                % Filter Array based on Group Number at Column 4 
                t = find(CurrentFile(:, 4) == G); 
     
                % Get XYZ (Column 1 2 3) 
                X = CurrentFile(t, 1); 
                Y = CurrentFile(t, 2); 
     
                % Plot Contour 
                plot(X, Y, 'k', 'LineWidth', 1); 
                hold on; 
                G = G + 1; 
            end 
            break; 
        end 
    end 
    title(sprintf('C.Time = %0.2fms,  Z = %d,  Loop = %d,  Facet = %d', CTprev, CTheight,... 
        GHigh, CIfacet)); 
    axis equal; 
    grid on; 
    xlabel('X-axis'); 
    ylabel('Y-axis'); 
    saveas(gcf,sprintf('%s_8-HCT.png',filename));      %Save figure 
end 
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