

CONTOUR GENERATION FOR MASK

PROJECTION STEREOLITHOGRAPHY

3D PRINTING

FAEIZ AZIZI BIN ADNAN

Master of Science

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : FAEIZ AZIZI BIN ADNAN

Date of Birth : 6 AUGUST 1990

Title : CONTOUR GENERATION FOR MASK PROJECTION

 STEREOLITHOGRAPHY 3D PRINTING

Academic Session : SEM II 2018/2019

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

900806-06-5377

Date: 12/07/19

 (Supervisor’s Signature)

Dr. Fadhlur Rahman Mohd Romlay

Date: 12/07/19

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis, and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Master of Science

 (Supervisor’s Signature)

Full Name : DR. FADHLUR RAHMAN BIN MOHD ROMLAY

Position : SENIOR LECTURER

Date : 12 July 2019

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : FAEIZ AZIZI BIN ADNAN

ID Number : MFM15002

Date : 12 July 2019

CONTOUR GENERATION FOR MASK PROJECTION

STEREOLITHOGRAPHY 3D PRINTING

FAEIZ AZIZI BIN ADNAN

Thesis submitted in fulfilment of the requirements

for the award of the degree of

Master of Science

Faculty of Mechanical & Manufacturing Engineering

UNIVERSITI MALAYSIA PAHANG

JULY 2019

ii

ACKNOWLEDGEMENTS

Here I would to express my deepest gratitude upon the thesis completion. It is all thanks

to my supportive parent. They have been supporting me all way from the beginning of

this study until the end. Without their support, I would not have managed to complete this

thesis. Their encouragement keeps me motivated throughout the study.

I would also like to thank my supervisor Dr. Fadhlur Rahman Bin Mohd Romlay for his

guidance during my study. The research field is totally new to me. For someone who has

no prior knowledge and skill for research works, I often find myself lost and misdirected.

Most of the time, Dr. Fadhlur patiently guided me and taught me how to be a good

researcher.

Next, I would like to thank Siti Noor Sheeren Binti Manan for her supports on my study.

She always kept pushing me to finish my study. This motivation helps me in pursuing the

thesis completion. Her support also encourages me to complete this study.

This research is funded by Universiti Malaysia Pahang (UMP) by the research grant

number RDU160387. I would like to thank UMP for the fund. Without it, this research

would be difficult to complete. This fund helped in purchasing the components needed

for this research. The fund also supported me to overcome my financial issues. Other than

that, UMP also provided excellent equipment and facilities to assist the research. I wish

that the government will increase their research budget allocations for UMP in the future

so that many more high impact researches can be produced. Also, special thanks to

Faculty of Manufacturing Engineering UMP for providing the space and equipment for

this study.

iii

ABSTRAK

Kemajuan terkini dalam teknologi pencetakan 3D telah membawa kepada penghasilan

mesin pencetakan 3D berasaskan pancaran-bertopeng. Proses ini menggunakan tenaga

cahaya UV bagi membentuk objek nyata dari resin penyembuhan-foto. Pancaran kontur

dijanakan dengan mengiris model CAD STL kepada lapisan-lapisan kontur 2D yang

kemudiannya disalurkan kepada alat pemancar lapisan demi lapisan berasaskan

ketinggian binaan. Pengkomputan bagi penjanaan lapisan-lapisan kontur 2D adalah

sangat intensif. Algoritma penjanaan kontur yang sedia ada memerlukan masa

pengkomputan yang lama. Ini kerana algoritma tersebut perlu mengiris dan mengkomput

setiap satu lapisan sesebuah model STL sebelum proses pencetakan bermula. Dalam

usaha bagi mengurangkan masa pengkomputan, algoritma yang baru dan lebih pantas

diperlukan. Lantaran itu, algoritma penjanaan kontur lantas dibentangkan di dalam kajian

ini. Kaedah ini menghasilkan satu lapisan kontur secara lantas apabila parameter

ketinggian binaan disuapkan ke dalam algoritma tersebut. Algoritma tersebut

mengandungi beberapa algoritma seperti algoritma pengirisan, algoritma pemetaan

garisan pixel, dan algoritma gelungan kontur. Algoritma pengirisan menggunakan model

persilangan garisan-satah untuk menghasilkan segmen garisan rawak apabila ia menerima

satu faset STL. Segmen-segmen garisan ini kemudiannya dipetakan berdasarkan resolusi

alat pemancar dengan menggunakan algoritma pemetaan garisan pixel. Kemudian,

garisan-garisan pixel tersebut dihubungkan untuk membentuk satu atau lebih gelungan

kontur melalui algorithm gelungan kontur. Hasil dari setiap algoritma-algoritma tersebut

dikaji secara mendalam. Pengukuran masa pengkomputan diambil menggunakan objek

<QElapsedTimer> di dalam Qt Creator dan diukur dalam millisaat. Keputusan hasil

kajian menyatakan algoritma-algoritma tersebut menjanakan lapisan-lapisan kontur

dengan tepat. Malah dengan menggunakan model STL berpoligon tinggi, algoritma

penjanaan kontur masih dapat menjanakan lapisan kontur secara purata 960.15% lebih

pantas dari algorithm Park dan 169.15% lebih pantas dari perisian komersial Slic3r.

iv

ABSTRACT

Recent advancement in 3D printing technology has led to the development of projection

mask stereolithography 3D printing process. This process harnesses the power of UV

light contour projection to cure photocurable resin. The contour projection is generated

by slicing STL CAD model into layers of 2D contours which is then fed into the UV

projection device layer-by-layer with respect to the build height. Generation of the layers

are computationally intensive. Existing contour generation algorithm requires long

computational time to generate the contour layers especially for high polygon models.

This is because the existing approach has to slice and compute every single layer of the

STL model before the printing process starts. In an effort to reduce the computational

time, a new and faster algorithm is required. Thus, a real-time contour generation

algorithm is presented in this research. The real-time contour generation approach

instantly generates single layer of contour whenever the build height parameter is fed into

the algorithm. The algorithm composes of multiple algorithms such as slicing algorithm,

pixel line mapping algorithm, and the contour loop algorithm. The proposed slicing

algorithm uses line-plane intersection model to generate arbitrary line segment when it

receives an STL facet. These line segments are mapped based on the projection device

display resolution by the pixel-line mapping algorithm. Then, the pixelated line segments

are connected to form single/multiple contour loops using contour loop algorithm. The

results of each algorithms are thoroughly evaluated. Computation time measurement is

taken using <QElapsedTimer> object in Qt Creator and measured in milliseconds. It is

later found that the algorithms able to correctly generates the contour projection layers.

Even with the high polygon STL model, the contour generation algorithm able to perform

on average 960.15% faster than Park algorithm and 169.18% faster than commercial

software Slic3r.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 DLP Projection Mask Stereolithography 1

1.2 Contour Generation Algorithm in Projection Mask Stereolithography 3

1.3 Problem Statement 4

1.4 Research Objectives 5

1.5 Research Scope 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Mask Projection Stereolithography 6

2.2.1 Photopolymerization 7

2.2.2 Curing Depth Model of Photopolymerization 7

vi

2.3 STL Format 13

2.3.1 Types of STL 13

2.3.2 Issues of STL 15

2.4 Slicing Algorithm 18

2.4.1 Fundamental of Slicing Algorithm 18

2.4.2 Facet-Plane Intersection Case Handling 20

2.4.3 Data Structure 21

2.4.4 Type of Slicing Algorithm 22

2.5 Contour Loop Algorithm 24

2.6 Summary 26

CHAPTER 3 METHODOLOGY 29

3.1 Introduction 29

3.2 STL Data Management 30

3.3 Slicing Algorithm 30

3.3.1 Case Handler for Facet-Plane Interaction 31

3.3.2 Formulation of Slicing 32

3.3.3 Line to Pixel Mapping 34

3.3.4 Algorithm Structure 37

3.4 Contour Loop Algorithm 38

3.5 Computational Time Measurement 40

3.6 Test Environment 41

CHAPTER 4 RESULTS AND DISCUSSION 42

4.1 Introduction 42

4.2 Sliced Model Output 42

vii

4.3 Slicing Algorithm Performance 45

4.4 Contour Loop Performance 48

4.4.1 Number of Intersecting Facet at Different Slicing Height 52

4.4.2 Contour Loop Counts 55

4.5 Total Computational Time 59

4.6 Visualization of Contour Generation Algorithm 63

4.7 Comparison of Slicing and Contour Loop algorithms 64

CHAPTER 5 CONCLUSION 68

5.1 Conclusion 68

5.2 Future Work 69

REFERENCES 71

APPENDIX A ADDITIONAL SLICING RESULT 76

APPENDIX B PSEUDOCODE (VB.NET) 79

APPENDIX C PSEUDOCODE (C++) 88

APPENDIX D PSEUDOCODE (MATLAB) 98

viii

LIST OF TABLES

Table 1.1 Classification of 3D printer 2

Table 3.1 Definition of interaction cases 31

Table 4.1 Time measurement for slicing algorithm 45

Table 4.2 Time measurement for contour loop algorithm 49

Table 4.3 Number of intersecting facet at each slicing height 52

Table 4.4 Number of loop counts at each slicing height 55

Table 4.5 Calculated normalized correlation of each STL model 59

Table 4.6 Total computational time required for each slicing height 60

Table 4.7 Time measurement and comparison for slicing algorithm 65

Table 4.8 Time measurement and comparison for contour loop algorithm 66

Table 4.9 Time measurement and comparison for total computational time 67

ix

LIST OF FIGURES

Figure 1.1 Staircase effect caused by uniform slicing thickness 4

Figure 2.1 Surface topology of the curing space 9

Figure 2.2 Curing profile of single axis laser scanning 10

Figure 2.3 Domain of single axis laser scanning model 11

Figure 2.4 Hole at a vertex and overlapping facets 16

Figure 2.5 Facet intersecting with slicing plane 19

Figure 2.6 Possible intersection cases 20

Figure 2.7 Circular approximation for layer error and thickness 24

Figure 3.1 Flowchart of Research Methodology 29

Figure 3.2 Possible facet-plane interaction 31

Figure 3.3 Facet-Plane intersection model 32

Figure 4.1 Sliced model (Sphere) with colour mapped total computational time 43

Figure 4.2 Sliced model (Dragon) with colour mapped total computational time 43

Figure 4.3 Sliced model (Tower) with colour mapped total computational time 44

Figure 4.4 Stacked contours Alien model (side slicing) 63

Figure 4.5 Stacked contours Dragon model (bottom-up slicing) 63

Figure 4.6 Stacked contours Liver model (bottom-up slicing) 64

Figure 4.7 Stacked contours Walnut model (bottom-up slicing) 64

x

LIST OF SYMBOLS

Cd Cure Depth

Dp Depth of Penetration

Emax Maximum Energy of Laser

Ec Critical Energy Dosage

α Photochemical Parameter

β Photonics Parameter

c Speed of Light

h Planck’s Constant

Nav Avogadro Constant

PL Laser Power

Wo Beam Width

kt Termination Constant

kp Propagation Constant

pc Extent of Polymerization

ϵ Molar Extinction Coefficient

λ Wavelength

ϕ Quantum Yield

PI Photoinitiator Concentration

zc Cure Depth

x X component

y Y component

z Z component

Po Starting point of the line segment

Pf Ending point of the line segment

s Interpolation parameter

AR Aspect Ratio

AR′ Modified Aspect Ratio

R,V,W Piecewise Variable

NC Normalized Correlation

O Big-O Notation

xi

LIST OF ABBREVIATIONS

2D Two-Dimensional

2PP Two-Photon Polymerization

3D Three-Dimensional

3DP Binder Jetting

AM Additive Manufacturing

ASCII American Standard Code for Information Interchange

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CLIP Continuous Liquid Interface Printing

CMM Coordinate Measurement Machine

CNC Computer Numerical Control

CPU

CSV

Central Processing Unit

Comma-separated Value

CT Contour Time

DIW Robocasting

DLP Digital Light Processing

DMD Digital Micro-mirror Device

EBM Electron Beam Melting

ECC Efficient Contour Construction

FDM Fused Deposition Modeling

GB Giga-Byte

IF Intersecting Facet

LC Loop Count

LM Layered Manufacturing

LOM Laminated Object Manufacturing

PC Personal Computer

RAM Random Access Memory

RP Rapid Prototyping

SD Standard Deviation

SLA Stereolithography 3D Printing

SLM Selective Laser Melting

xii

SLS Selective Laser Sintering

STL STereoLithography CAD format

UV Ultraviolet

1

CHAPTER 1

INTRODUCTION

1.1 DLP Projection Mask Stereolithography

Three-dimensional (3D) printing is an additive manufacturing (AM) process and

also known as rapid prototyping (RP). Unlike conventional subtractive manufacturing

method such as milling that cuts and removes material to manufacture the product, an

additive manufacturing process performs the opposite of the milling method. Instead of

removing material which cause material waste and tool weariness, the process stacks the

material on top of one layer and another. This is also called as layered manufacturing

(LM). Most of the material waste in 3D printing comes from its scaffold/support during

the printing process which is minimal compared to subtractive manufacturing.

In 1981, 3D printing was firstly introduced by Hideo Kodama (Kodama, 1981).

The study proposed a new method of fabrication using photopolymer which solidifies

upon exposure to ultraviolet (UV) light source (Xenon lamp and Mercury lamp)

controlled by XY interpolation mechanism for contour routing and elevated build plate

for Z-axis. Ever since then, researches have revolutionized the methods of 3D printing.

Table 1.1 shows the classification of 3D printing according to current technology of 3D

printing.

Recent advancement in 3D printing leads to the development of Digital Light

Processing (DLP) projection mask stereolithography which utilizes UV light to cure

photocurable resin into solid model. Like conventional 3D printing, it is a layer-by-layer

process. Instead of traversing along XY axis to construct the layer, the process uses

contour projection-based curing technique to uniformly cure each layer. Thus, this

improves the printing speed and maintain uniformity of the cured part. The printed part

2

generated by this technique becomes monolithic due to continuous curing process. Thus,

improving its mechanical properties and its quality. The DLP projection mask

stereolithography is known to have the best printing quality compared to other 3D

printing technique.

Table 1.1 Classification of 3D printer

Process Technique Materials

Extrusion

Fused deposition modeling

(FDM)

Thermoplastics filament (ABS,

PLA, etc.), glass, metal, etc.

Robocasting (DIW)
Plastics, ceramic, food, organic

cell, composites

Powder based

Selective laser sintering

(SLS)
Thermoplastics, metals

Selective laser melting

(SLM)
Metals

Electron beam melting

(EBM)
Metals

Binder jetting (3DP)
Any material in particulate

form

Lamination
Laminated object

manufacturing (LOM)

Sheets (paper, metal, plastic,

etc.)

Photopolymerization

Stereolithography (SLA) Photopolymers

Material jetting Photopolymers

Continuous liquid

interface printing (CLIP)
UV-curable resins

Two-photon

polymerization (2PP)
UV-curable resins

Source: Hemant et al. (2015); Wong et al. (2012)

All methods stated in Table 1.1 share similarities in its process thread or also

known as digital manufacturing pipeline. Before any of the printing process can takes

place, a Computer Aided Design (CAD) file containing the information of the desired

geometry will undergo a tessellation process that converts it into STL formatted file.

Contour generation algorithm is then implemented to slice the 3D model of STL file into

layers of contours which can be used for toolpath computation (for multi-axis 3D printer)

or layer projection (projection-based 3D printer). The STL file and contour generation

algorithm are considered as standard process flow for any 3D printing process.

3

1.2 Contour Generation Algorithm in Projection Mask Stereolithography

Contour generation process involves multiple algorithms to be implemented.

First, the process starts with slicing algorithm which slices each facet of an STL file into

multiple line segments with respect to the slicing height. Next, the process uses the

generated line segments to connect each line segment into one or more closed contour

loops using contour loop algorithm. Finally, a contour filling algorithm shades the closed

loop contours to form a mask which cures the photopolymer or UV curable resin. In the

past, researchers implemented the contour generation algorithm at the process planning

stage (Choi & Kwok, 1999; Pandey et al., 2003; Zhang & Joshi, 2015). Each level of

contours is generated before the printing process took place. However, in order for the

printed model to appear seamless, the slicing thickness must be very small. This

consumed a lot of memory utilized by the thousand layers of contours for the model to

appear seamless. Another flaw for this approach is that the possibility of backlash of the

elevation mechanism of Z-axis. For an open loop system, stepper motor is often used as

the main actuators. A stepper motor usually has the tendency to misstep at a point when

the rotor lag. This causes error in layer projection due to error in elevation height hence

affects the printed model.

There are two types of slicing algorithm which are: uniform slicing and adaptive

slicing. Adaptive slicing is an advanced slicing method which varies the slicing height

depending on the features of the geometry. The algorithm works differently than uniform

slicing. It performs comparison between layers and varies the slicing thickness depending

on the geometry features to generate close approximation of the 3D model. In both slicing

algorithms, issue of cusp height also commonly known as staircase effect often affecting

the surface roughness of the printed model. Figure 1.1 shows rough edges that appear

visible to naked eye if the layer resolution is low. This happens due to the DLP 3D printer

works in single Z-axis. The layer cures vertically as the build platform elevates upward

and the projected contour remains unchanged until it reaches the height for next contour.

Instead of smooth slope transition between layers, the layer cures into stack of layers.

Past study shows that layer stacking weakens the mechanical strength of the printed model

especially when the layer resolution is low (Dizon et al., 2018; Lederle et al., 2016).

Seamless layer formation is achievable by continuously generates new contour with

respect to the smallest change of elevation height. The resolution of the printing output is

4

subjected to the printer mechanism itself such as the pitch of the lead/ball screw, its

diameter, and the resolution of the motor rotation.

Figure 1.1 Staircase effect caused by uniform slicing thickness

The issue with STL slicing has been addressed multiple times by the rapid

prototyping research community. But, most of the issue addressed mainly focuses on the

quality of the printed model, improvements on the slicing process, and memory usage.

None of the researches addressed the issue of computational time for the slicing algorithm

which can consume up to 60% of the entire process planning time (Gregori et al., 2014;

Kirschman & Jara-Almonte, 1992). Optimizing the computational time taken for slicing

algorithm can improves the performance of the DLP 3D Printer and allows the contour

generation algorithm to be implemented in real-time.

1.3 Problem Statement

Mask projection stereolithography process is a layer stacking process. Each layer

is cured one by one until the printing process completed. In mask projection

stereolithography printing process, these layers become monolithic due to continuous

curing process. The contour layers are generated by intensive computational process.

However, existing contour generation algorithm requires long computational time due to

every layer had to be computed before the printing process. Higher resolution printing

will require more computational time. More computational time is also required for high

polygon STL model. Thus, a real-time contour generation algorithm is presented in an

effort to reduce the computational time to generate the contour layer for mask projection

stereolithography 3D printing process.

5

1.4 Research Objectives

The following objectives is developed to achieve the aim of the study. Objectives

are classified into three stages which are:

i. To develop the real-time contour generation algorithm for projection mask

stereolithography 3D printing process based on STL CAD model

ii. To evaluate the performances of the proposed algorithm based on

computational time measurement

iii. To validate the performances of the proposed algorithm against literature

1.5 Research Scope

The scope of this research covers the projection aspect of the DLP 3D printing

process. The algorithm for developing the contour projection is thoroughly studied and

measured based on its computational time. Generated contour is directly generated from

a raw STL model without any support generation algorithm. Each model tested are sliced

with respect to only Z-component of the printer. This research does not cover the slicing

process with different slicing orientation. The main objective is the development of real-

time contour generation algorithm which will give results of the generated contour layers

based on specific STL model. This will be thoroughly studied and discussed. Next, in

order to evaluate the performance of the algorithm, execution time measurements of the

algorithms are recorded. Finally, to results of computational time measurements are

compared with the result obtained from the journal using similar STL model and same

specifications for the workstation.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter describes critical review on process of photopolymerization in order

to get better understanding on photopolymerization process before the implementation of

the contour generation algorithm. The understanding of the photopolymerization

chemistry will contributes on how the algorithm should be constructed. Other than that,

this chapter also discusses on previous works done by other researchers in slicing and

contour loop algorithms to develop the best approach in constructing the algorithm. The

methodology and analysis which were developed by other researchers can be useful to

support this work. Literature review on algorithms also give fundamental knowledge on

how the slicing and contour generation algorithm work.

2.2 Mask Projection Stereolithography

The mask projection stereolithography is an additive manufacturing technique

which harness UV-light projection to solidify photocurable resin into solid model. This

method does not require any tooling or fixture as in milling process (Mu et al., 2017). The

difference between the mask projection and traditional stereolithography process is that

the use of digital micromirror device (DMD) by Texas Instrument to generate the

projection (Pan et al., 2012). Traditional Stereolithography (SLA) process requires CNC

routing for traversing the UV laser beam onto the resin to build each layer. This is time

consuming due to traversing laser beam. Instead of traversing the laser, mask projection

projects the whole contour onto the resin and uniformly cures the layer.

7

2.2.1 Photopolymerization

The process of polymerization using photopolymer is called photopolymerization

process. Photopolymer usually consists of oligomer/binder, photoinitiator, and monomer.

Typical photopolymer mixture contains at about 50-80% of oligomer, 10-40% monomer,

and the rest of the portion is photoinitiator. In photopolymer, the oligomer usually used

as ink, adhesives, and coating purpose. There are several families of oligomer which are:

Methacrylate, Styrene, Vinylalcohol, Olefine, Polypropylene, and Glycerol family

(Pandey, 2014). The oligomer also defines the basic property of the photopolymer such

as glass transition, stress-strain, and adhesion. Meanwhile, the monomer defines the

wetting property, crosslink, elasticity, and the viscosity. The photoinitiator formulation

usually around 0.1-5% of the whole composition of photopolymer (Kitano, 2012).

Photoinitiator is highly reactive substance to light exposure usually UV light.

There are also studies have been conducted for visible light photopolymerization (Gao et

al., 1999). There are two types of photoinitiator: radical and cationic. Upon exposure to

UV light, the photoinitiator generates free radicals that react with the monomers to form

reactive species. Reactive species forms chain with another monomer causes chain

reaction which forms the polymer. This chain reaction terminates when a reactive species

reacts with each other forming dead radicals. Oxygen inhibition also causes this chain

reactive to stop. When the oxygen reacts with the reactive radical, it forms an unreactive

peroxide that terminates the chain reaction (Boddapati, 2010; Dendukuri et al., 2008).

2.2.2 Curing Depth Model of Photopolymerization

The photopolymerization curing depth model defines the fundamental equation

governing the relationship between irradiance and the chemical reaction of the

photopolymerization process. Back in 1992, Jacobs presented the standard design

equation of stereolithography using Beer-Lambert law. The standard design equation

presented is as follows:

 Cd = Dp ln (Emax Ec)⁄ 2.1

8

where Cd is the curing depth of the resin. Dp is the depth of penetration which governs by

Beer-Lambert law that suggests the irradiance at the resin surface is reduced by 1/𝑒 with

respect to depth of the resin due to light absorption by the resin. Emax is the maximum

energy of the laser, and Ec is the critical dosage of the resin (Jacobs, 1992).

The study on photocuring model of stereolithography also has been done by Lee

et al. (2001). The study focuses on derivation of the photocuring mathematical model and

incorporates both photochemical properties and the light intensity as the curing

parameter. Multifunctional monomer that has been used in the study was 2,2-bis{4-[2-

hydroxy-3-(methacryloxy)propoxy]phenyl}-propane (Bis-GMA). Photoinitiator that has

been used was 2-benzyl-2-N,N-(dimethylamino)-1-(4-morpholinophenyl)-1-butanone

(DBMP). In the experiment, the photopolymer mixtures were exposed to scanning He-

Cd 325 nm UV laser. The photopolymer contains the mixtures of DBMP which was

varied from 0.34 until 99.70 mmol/l that corresponded to 0.01 to 3.00 wt% of the solution.

The conducted experiments also varied the laser dosage ranging from 0.931, 1.702, and

22.255 J/cm2. It was found that the concentration of photoinitiator in the photopolymer

enhances the cure depth but only up to its critical point before the reaction rate starts to

plateau. It was due to high concentration of photoinitiator that limits the UV laser

penetration depths. High photoinitiator concentration gives greater photon absorption but

localizes the free radical concentration near the surface of the resin thus limiting the laser

penetration. The authors distinguished the photochemical parameters and the photonics

parameters as α and β which were derived as:

 α2 =
kt[ln(1 − pc)]

2

kp
2ϕϵ

 2.2

 β2 =
chNavPL

λWo
2(2π)1/2

 2.3

where in Equation 2.2, the kt represents the termination constant and kp is the

propagation constant of the photopolymerization process. The pc is the extent of

polymerization. Molar extinction coefficient, ϵ of the DBMP which has been used is

23000 M-1cm-1. Whereas, the ϕ represents the quantum yield of the photoinitiator.

Together, these parameters describe the photochemical terms of the photopolymer in a

single non-dimensional variable, α. Equation 2.3 describes the photonics term of the UV

9

laser exposure with λ as the wavelength of the laser emission, Wo as the beam width, the

c is the speed of light, h as the Planck’s constant, Nav is the Avogadro constant, and PL

as the laser power. Using both parameters, the authors have derived the equation that

defines the cure depth as the function of both photochemical and photonics parameters as

state in the equation below:

 zc =
2

2.303ϵ[PI]
ln (

Emax[PI]
1
2⁄

αβ
) 2.4

Equation 2.4 is the derivation of the cure depth based on the photochemical and photonics

parameters. In the equation, [PI] stands for the photoinitiator concentration and Emax

represents maximum energy per unit area of the laser exposure. The presented cure depth

model in Equation 2.4 is equivalent to the model presented by Jacobs (1992) in Equation

2.1. The authors also presented a 3D map of the curing relationship between the

photoinitiator concentration and the energy dosage with respect to the curing depth.

Figure 2.1 Surface topology of the curing space

Source: Lee et al. (2001)

Figure 2.1 shows that the increase in energy dosage will increase the cure depth.

The same goes for photoinitiator concentration. At the beginning, increasing the

10

photoinitiator concentration, rapid increase of the cure depth can be seen. However, up to

some point, the cure depth starts to plateau with respect to increasing photoinitiator

concentration (Lee et al., 2001). The surface topology that has been presented helps

researchers to develop an optimal photopolymer formulation and algorithms for

stereolithography 3D printing process.

In 2005, a study was conducted on stereolithography cure process modelling

(Tang, 2005). In his work, the author claims that previous curing model presented by

Jacobs is an oversimplification of the whole process. The model presented by Jacobs only

considers the exposure threshold terms whilst disregarding the effect of photochemical

process as presented by Lee. The author also stated that the process of

photopolymerization is an exothermic. It means that the process generates heat during the

reaction. Plus, the photopolymer resins often have low thermal conductivities. This causes

thermally initiated polymerization to occur which reduces the resolution of the printed

model and causing thermal stresses on the printed model. Hence, the mathematical model

which incorporates the photopolymerization, mass diffusion, and heat transfer were

developed starting with consideration of single axis laser scanning along X-axis on X-Z

plane. The curing profile of a single axis laser scanning is shown in Figure 2.2 and Figure

2.3 below.

Figure 2.2 Curing profile of single axis laser scanning

Source: Tang (2005)

11

Figure 2.3 Domain of single axis laser scanning model

Source: Tang (2005)

Since the curing profile is assumed to be symmetrical, only half of the laser beam

is taken as the domain. Derivation of the curing model is based on the energy balance,

mass balance for the monomer, and the mass balance of radicals as shown in equations

below:

 ρCP
∂T

∂t
= k {

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
} + ∆HPRP 2.5

∂[M]

∂t
= DM {

∂2[M]

∂x2
+
∂2[M]

∂y2
+
∂2[M]

∂z2
} + (−RP) 2.6

∂[P •]

∂t
= DP• {

∂2[P •]

∂x2
+
∂2[P •]

∂y2
+
∂2[P •]

∂z2
} + (−Ri) 2.7

Free radical photopolymerization kinetic models are presented with the derivation based

on photochemical reaction during initiation phase, propagation phase, and termination

phase. The reaction is described as:

PI
 hv
→ R •

M+ R •
 ki
→ P1

Initiation

2.8

Pn • +M
 kp
→ Pn+1 • Propagation

Pn • +Pm •
 ktc
→ Mn+m Termination by Combination

12

Pn • +Pm •
 ktd
→ Mn +Mm

Termination by

Disproportionation

 𝑅 • +𝐼𝑛
 𝑘𝑖𝑛
→ 𝑄 Inhibition

where in the Equation 2.8 above, the PI is the photoinitiator that decays upon exposure to

light energy into the initial radicals [R •]. The radical reacts with a monomer [M] to start

a polymer chain Pn • in the initiation phase. The polymer chain propagates to react with

another monomer forming longer polymer chain. There are 3 cases of termination of the

propagation phase. Either it is caused by reaction with another polymer chain by

combination or disproportionation, or radicals inhibition commonly caused by oxygen

inhibition that forms a non-reactive peroxy (Tang, 2005; Tang et al., 2004). Similar work

has been done by Boddapati (2010). The author used the same principle but also

incorporates oxygen inhibition model in the curing depth model.

Kang et al. (2012) presented pixel-based curing model for projection-based

stereolithography printing process. The model is developed by applying Beer-Lambert

law to model the depth of light penetration through liquid curable resin. Gaussian

distribution is also used to model the light distribution profile. The light distribution is

constrained to the square pixel shape of the projection device. The mathematical model

of pixel-based curing includes time, critical energy dosage, light intensity, penetration

depth, and other photochemical parameters. These are the important parameters that

needs to be taken into account when developing the contour generation algorithm because

the curing model will define the final shape of the printed model.

Tumbleston et al. (2015) presented slightly different curing model but with

oxygen inhibition taken into consideration. The model is also based on Beer-Lambert law

which model the depth of penetration of the light. The curing technique in the authors

work on continuous liquid interface production takes advantages of the oxygen inhibition

to accurately control the curing and provides continuous layer separation. Thus, this

allows the printer to continuously cure every contour layer and allows faster printing time.

The oxygen inhibition is modelled as dead zone which is a controlled uncured region for

each layer.

13

2.3 STL Format

STereoLithography (STL) is a CAD file format that was developed by Albert

Consulting Group for 3D Systems. The format was introduced as a means to transfer CAD

data into rapid prototyping machine when Chuck Hall invented the first stereolithography

(SLA) 3D printing machine back in 1987. Since then, STL has become a de facto in rapid

prototyping industry and still widely supported by modern CAD software such as

Autodesk, SolidWorks, Blender, CATIA, Rhinoceros 3D, and several other CAD

software (Cătălin IANCU et al., 2010; Jacob et al., 1999; Królikowski & Grzesiak, 2014;

Wu & Cheung, 2006). The popularity gained was due to its non-encrypted data, open-

source, and simplicity (Hayasi & Asiabanpour, 2009). Most of other CAD formats are

encrypted and licenses are required for the software developer to incorporate the CAD

format compatibility in their applications.

STL is also known as the abbreviation for “Standard Tessellation Language” by

some scholars. It is because the STL file is constructed using a tessellation process.

Tessellation is a process that converts the surface geometry of a CAD model into meshes

of small triangle. This triangle is called Facet. It has three vertices in 3D Cartesian

Coordinate System that form the triangle. Together all the Facets made up a shell

representation of the original CAD model. Tessellation process can also be applied to

point clouds data usually obtained from Coordinate Measuring Machine (CMM) to

construct an STL model. This is done by connecting all the point clouds into triangular

mesh to construct the meshed surface geometry of the model (Cătălin IANCU et al., 2010;

Koc et al., 2000; Tyvaert et al., 1999; Wu & Cheung, 2006). Thus, this make the STL

formatted CAD models more robust and simpler.

2.3.1 Types of STL

The STL has two different types of data format which are ASCII and Binary. The

ASCII STL format are human readable text format. ASCII STL format begins with solid

name syntax. Usually, a model name is optional and often omitted with white spaces.

Next, the syntax followed by facet syntax along with its normal vector coordinates.

Vertices are enclosed with outer loop and endloop syntaxes. The vertex indicates a

beginning for each vertex which are used as P1(x, y, z) , P2(x, y, z) , and P3(x, y, z)

14

respectively in the proposed algorithms. The 𝑛 and 𝑣 is a formatted floating number of

sign-mantissa-“e”-sign-exponent, e.g. “2.999381e-002” separated with white spaces.

Each facet data will end with an endfacet syntax. Depending on the complexity of the

geometry, an STL file may consists of more than one facet; usually thousands. When a

new facet syntax is located after the previous endfacet syntax, this indicates the start of a

new facet. Finally, an STL file normally ends with endsolid name syntax (Cătălin IANCU

et al., 2010; Wu & Cheung, 2006). An example of ASCII STL format is shown below.

solid name
facet normal ni nj nk
 outer loop
 vertex v1x v1y v1z
 vertex v2x v2y v2z
 vertex v3x v3y v3z
 endloop
endfacet
endsolid name

Due to ASCII STL using ASCII text as its data, it often has larger file size compared to

its Binary counterpart.

On the other hand, Binary STL file uses structured data format using binary

representation of the data. The data can be read in Bytes with the first 80 Bytes of the

Binary STL file is the header of the file. Most of the time, the first 80 Bytes are skipped

to improve the reading time. In some cases, the header section contains the metadata of

the STL file which is not as important as the facets data. After that, Binary STL contains

another 4 Bytes of data that represents the facets count of the STL file. The facets count

is read as Unsigned Integer data type in programming code. Then, the facets data starts

with 12 Bytes of Normal vector data in which each 4 Bytes are the vector components for

X, Y, and Z respectively. Each vector components are read and casted as Float data type.

Next, the following 12 Bytes of data contains the first vertex of the facet with each 4

Bytes as its vector components similar to the Normal vector. The second and third vertex

follow similar structure to the Normal and first vertex data structure. Then, the Binary

STL allocated another 2 Bytes for attribute data for the facet. Overall, each facet data has

the size of exactly 50 Bytes. Each 50 Bytes until the end of Binary STL file contains only

the facet data of the STL model (Cătălin IANCU et al., 2010). The structure of Binary

STL file is shown below.

15

Byte[80] - Header
Byte[4] - Facets Count

For each facet

Byte[12] - Normal vector(x, y, z)
 Byte[12] - First Vertex (x, y, z)
 Byte[12] - Second Vertex(x, y, z)
 Byte[12] - Third Vertex (x, y, z)
 Byte[2] - Attribute
Loop

The Binary STL has several advantages over ASCII STL data format because the data is

more compact and reading time is faster than the ASCII STL data format. The 4 Bytes

facets count gives useful information regarding the STL model. The Binary STL file sizes

are smaller than ASCII STL file.

Recent advancement in rapid prototyping technology demands more information

from an STL model such as colour. Thus, in the work of DX Wang, they proposed a

Colour STL format derived from Binary STL format. Using the 2 Bytes in the attributes,

an RGB565 colour code was inserted to represent the colour of the specified facet as

shown below.

Byte[80] - Header
Byte[4] - Facets Count

For each facet

Byte[12] - Normal vector(x, y, z)
 Byte[12] - First Vertex (x, y, z)
 Byte[12] - Second Vertex(x, y, z)
 Byte[12] - Third Vertex (x, y, z)
 Byte[2] - RGB565 Colour
Loop

These bytes have the range of 65536 different colour levels that can be coded (Wang et

al., 2006). However, the Colour STL format is rarely found because of its limited colour

palette and inaccurate representation of the model colouring caused by arbitrary triangular

meshes.

2.3.2 Issues of STL

Problems that occur in STL format are still being discussed up until now by

numerous researchers ever since it was introduced back in 1987. STL format is known to

16

have issues with incorrect and inconsistency in its normal vector. This occurs when the

CAD software generated facet normal vector differs from the calculated normal based on

the facet vertices (Huang et al., 2002; Kumar & Dutta, 1997; Wu & Cheung, 2006). Most

of the time, programmer would prefer calculated normal based on the facet vertices

coordinates rather than the generated facet normal due to this inconsistency problem.

Thus, the generated facet normal is often ignored or skipped.

Another known error that occurs in STL format is when there is a gap or crack

between the facets as shown in Figure below. This error is caused by truncation error in

the CAD software generated vertices. Each facet usually shares at least one of its vertices

with another facet within close proximity. According to STL rule, for two adjacent facets,

there will be two shared vertices (Barequet & Sharir, 1995; Bloomenthal, 1988; Huang et

al., 2002; Leong et al., 1996; Piegl & Richard, 1995). The mismatch of these vertices due

to truncation error forms a crack or hole in the tessellated model (Kumar & Dutta, 1997;

Wu & Cheung, 2006). Although this error can be fixed using algorithms such as K-

Nearest Neighbors (k-NN) algorithm, it is still less efficient compared to other CAD

formats. The truncation error of the vertices also causes the facets to overlap due to

incorrect vertex generated in either facet as shown in Figure below.

Figure 2.4 Hole at a vertex and overlapping facets

Source: Szilvśi-Nagy & Mátyási (2003)

Aside from the gap error and inconsistent normal, the major flaw in STL format

is that every facet is generated in random order or arbitrarily. There are no pointers that

show the relationship and proximity between each element (Szilvśi-Nagy & Mátyási,

2003). This leads to difficulty in processing the STL model since it will require complex

algorithm to piece the facet together as if piecing a puzzle which is time consuming. This,

in fact, lower the performances of the operation involving STL model. Some researchers

suggested to use Octree data structure to correctly assign and store each facet for

optimized slicing and other processes (Wong et al., 2017).

17

STL files are also known to consume large memory allocation to be stored. This

make it less portable compared to other CAD formats (Wu & Cheung, 2006). Typical

high polygon STL model consists of 1,175,288 facets has the file size of 56 MB in Binary

STL and 273 MB in ASCII STL. In ASCII STL format, each chunk of data is stored as

char or character which consume 1 Byte or 8 Bits for every chunk of data. This is wasteful

for the case of numerical data. For example, each digit in the number “0.12345e+3” is

individually regarded as char based on ASCII code. Thus, this number will consume 10

Bytes of memory. Although it is human readable, it is still inefficient in terms of resource.

Thus, the Binary STL is developed in order to reduce this wasteful memory consumption

by storing the numerical data in float data type which are 4 Bytes or 32 Bits. However,

the Binary STL file size is still larger compared to other CAD formats. Redundancy of

the STL vertices also contributes to the large STL file size.

Recent advancement in 3D application demands more information out of a CAD

model. The information that often required by most modern CAD software nowadays

demand information on the multiple material type, multiple colour information, surface

texture, and etc. (Cătălin IANCU et al., 2010). This information which are lacking in STL

model leads to its major downfall compared to other CAD formats which are more robust

and practical. An attempt has been done to improve the STL format. One of it is the usage

of 2 Bytes of attributes data to indicate the colour of the facet. However, the colour is

only limited to 16-Bits colour RGB565 palette. The triangular shaped facet also causes

inaccuracy in color representation of the STL model (Wang et al., 2006). Up until now,

STL format is still unable to fulfill these new demands from the modern CAD software.

Based on the literature done on issues involving STL format, we can classify that

there are two distinct cause of errors mentioned above. One, where the errors are caused

by the CAD software generation process of STL format. The errors involving cracks and

overlapping facets are caused by bad tessellation algorithm by the CAD software itself.

Hence, it is unfair to regard it as a downfall of the STL model. These errors can be

prevented if the CAD software performs a verification or linkage check algorithm on the

generated STL model to detect the error. The other type of error that can be classified, is

the limitations by the STL format itself such as the file sizes, arbitrary facets, and lack of

required information. This is in fact, the major downfall of the STL format which has not

been changed for the last 30 years since it was introduced.

18

2.4 Slicing Algorithm

Projection stereolithography 3D printing machine requires the 3D model to

undergo process planning stage before the printing process. This process planning stage

has a series of tasks which include: model orienting and positioning, slicing the model

into 2D contours based on Z-axis of the printer workspace, and if necessary, add support

structures (Kulkarni et al., 2000; Minetto et al., 2017). Slicing thickness is the crucial

parameter that needs to be properly set as it defines the quality of the printed model. Large

slicing thickness leads to “stair-case” effect. Small slicing thickness or higher slicing

resolution provides accuracy and better printing quality but consumes larger memory and

higher computational time. To overcome this issue, the slicing process must be

computationally fast and efficient.

The process of converting triangular facet into line segment is called slicing

process. The slicing process use an algorithm that relies on computation of the

intersecting points between the slicing plane and the STL facet. Each facet is made of

three vertices. When paired, the vertices become lines which form the triangle facet.

When these lines intersect with the slicing plane, it will intersect at single intersection

point. If two of the lines intersect with the slicing plane at the same time, connecting both

intersection points form a line segment that exist on the slicing plane. An STL file

contains multiple facets. Multiple interactions between the facet and the slicing plane

form the 2D contour on the slicing plane that can be process into contour projection for

DLP 3D printing process. In other application, these 2D contour can also be used for G-

Code generation for CAD/CAM process in a CNC machine (Pandey et al., 2003).

2.4.1 Fundamental of Slicing Algorithm

The slicing algorithm relies on mathematical computation to compute the

intersection points that form the line segments. It is derived based on line-plane

intersection model in calculus math as represented by the Figure 2.5 below.

19

Figure 2.5 Facet intersecting with slicing plane

Source: Manmadhachary et al. (2016)

Figure 2.5 shows an STL facet intersecting with the slicing plane located at certain slicing

height. The pair between the vertices Pa, Pb, and Pc are the lines intersecting with the

plane. The two points that exist on the plane are the projected contour line of a single

facet. This contour line is called as line segment. As can be seen, the line from Pa to Pb

does not intersects with the plane, thus, no intersection point can be computed. To check

whether the line intersects or vice versa, the height of the slicing plane must be in between

the z coordinates of the two vertices. The closed loop contours at this particular slicing

height are generated by multiple intersection between the STL facets at that slicing height

(Manmadhachary et al., 2016). However, the set of these line segments are not

programmatically connected. A contour loop algorithm is required to connect each of the

generated line segment to form single/multiple closed loop contours.

In many literatures (Huang et. al, 2012; Hu, 2017), the most commonly used

mathematical equation is the linear extrapolation method where the equation is defined

as:

x − x1
x2 − x1

=
y − y1
y2 − y1

=
z − z1
z2 − z1

 2.9

In the above equation, the subscript 1 denotes the beginning of the line segment and

subscript 2 denotes the end point of the line segment. By setting the slicing height, z, the

unknown x and y can be solved. Thus, the intersection point is P(x, y) as long the x and

20

y exist in between P1 and P2 (Huang et al., 2012; Xu et al., 2017). This method is often

used due to simple and fast computation. However, there are a few drawbacks of using

this method. For example, the STL formatted CAD model uses fixed position vectors of

its facets. Thus, to change the slicing orientation of the model will requires each position

vectors to be modified. This process can be time consuming especially for high polygon

model.

2.4.2 Facet-Plane Intersection Case Handling

The slicing algorithm involves intersection between the slicing plane and the STL

facet. Studies have shown that certain type of intersection between these two causes

geometrical errors and redundancies during the contour generation process (Jing Hu,

2017; Topçu et al., 2011). Thus, these facet-plane intersections are classified into 5 cases

as shown in Figure 2.6 below. Each of the cases are treated with each respective case

handling.

Figure 2.6 Possible intersection cases

Source: Topçu et al. (2011)

Case I describes the case where the facet is in parallel with the slicing plane. Thus,

all sides intersect with the slicing plane. Usually facet with this case usually omitted

because there will be another facet that shares the same side with the one in parallel. This

normally occurs at the flat surface of the STL model. Commonly, at top and bottom side.

Case I can also be used by directly storing all vertices as the contour points. But, to avoid

redundancy of contour points, the facet is often omitted.

Case II describes the scenario where one side of the facet is in parallel with the

slicing plane and two vertices intersect with the slicing plane. This case is usually handled

by removing or ignoring the side in parallel with the slicing plane. The other two non-

parallel sides are then sliced to generate the required line segment. Case II sometime

21

shares its parallel side with the facet in Case I. Most of the time Case II is given priority

over Case I.

Case III shows the facet intersects with the slicing plane at one side and one of its

vertices. In this case, all sides are considered intersecting with the slicing plane. This issue

will cause errors to the line segment generation because the line segment only requires

two distinct points to form a line. Since the intersection happens at the vertex, two similar

points will be generated. Removing one of the points can solve the issue.

Case IV shows an ideal case where only two sides intersect with the slicing plane.

Slicing the two sides will produce only two distinct points that form the right line

segment. The side that does not intersects is ignored.

Case V represents the occurrence where only one vertex of the facet touches the

slicing plane. The algorithm might assume this condition as two sides intersecting with

the slicing plane. Slicing this facet will produces two similar points. Thus, the line

segment will end up becoming a single point in the 2D space. This leads to redundancies

of contour points for contour generation process.

2.4.3 Data Structure

The STL files usually contain large quantity of facets information. These facets

need to be properly managed so that the algorithm will performs better. Choosing the

right data structure to store the facet information allows the algorithm to quickly access

the necessary data needed without having to look into each element in the list. Aside from

that, different STL models have different numbers of facet. Thus, the data structure should

be able to scale itself to match the size of data. An array data structure requires fixed size

allocation before the data can be stored. If the allocation size is too big, it will consume a

lot of computer memory. On the other hand, if the size is too small, to program might

crash due to array overflow when handling large STL file.

Huang et al. (2012) implemented hash table data structure in their work on slicing

algorithm for G-Code generation for CNC Milling using STL file. The hash table stores

the results of the slicing algorithm according to the incremental of the slicing height. The

code is executed on a low-end PC operating on Intel Core 2 1.6 GHz RAM 2GB running

22

on Windows XP SP3. The result shows that the execution time increases with respect to

slicing thickness. Based on comparison, the result shows slight improvement than the

original method. Considering that the program runs on low-end PC, the results are

relatively fast with the implementation of hash table data structure. However, the test is

implemented only on a single STL model. The cylinder-like shaped STL model always

has single contour loop at each slicing height. STL model with multiple contour loops are

not tested and reported in the journal.

Wong et al. (2017) utilized Octree data structure in their work on real-time slicing

for light painting rendering application using STL formatted CAD model. The use of

Octree data structure is mainly to reduce computational time for STL slicing. The

algorithm first determines the axis-aligned bounding box of the STL model. The

bounding box is set to be the root of the Octree structure. Then, the model is recursively

subdivided into eight octants as the nodes of the tree. Each of these nodes contains a

collection of facets of the STL model bounded by each respective node boundary. The

algorithm is implemented using 4 different STL models having different number of

facets. The number of tree levels are varied and the computational time of each cases are

recorded. It is later found that, model with a greater number of facets requires more

computational time to be sliced. Varying the tree level can reduce the computational time

but only up to a certain limit. It is observed that after 3 tree level, the computational time

started to rise due to more time is spent on the divide-and-conquer approach.

Pan et al. (2014) used linked list data structure in the development of rapid

prototyping STL model slicing software. The linked list is used to store the facet and also

contains a pointer that points to the next pairing facet. This kind of implementation can

be advantageous since the algorithm does not need contour loop algorithm to connect

each line segment because the facets are already arranged in such manner. But, since the

slicing height varies, the pairing might also change. Thus, the list needs to be

reconstructed which is also time consuming (Ye et al., 2017).

2.4.4 Type of Slicing Algorithm

Many methods have been developed on slicing algorithm to improve its

computational time, accuracy, and memory efficiency. Among popular methods proposed

23

by the researchers are uniform slicing, adaptive slicing, and direct slicing algorithm.

These methods have its own advantages and limitations.

Uniform slicing has been popularized since the early years the slicing algorithm

has been presented. It utilizes constant slicing thickness for all of the layers (Choi &

Kwok, 1999). It is the simplest method for slicing approach. However, stair-case effect is

known to occur when using this method. The stair-case effect is the case where there are

losses of geometric data in between the slicing thickness interval since the fixed slicing

thickness skipped these intervals. Some important features of the geometric model might

be skipped which resulted in lower accuracy of the printed model. Reducing the slicing

thickness can mitigate this effect (Zheng et al., 2018; Zhou et al., 2004) but the slicing

output will consume more memory to store the slicing results.

In an effort to reduce the stair-case effect whilst reducing the memory

consumption, adaptive slicing method is introduced. Adaptive slicing method uses

variable slicing thickness that depends on the value of allowable cusp height. Pandey

explained the concept of cusp height in their work on adaptive slicing algorithm. The cusp

height is based on theoretical calculation of surface roughness and the build orientation.

By limiting the allowable surface roughness parameter, variable slicing thickness can be

obtained (Pandey et al., 2003). Zhou presented their work on non-uniform cusp height

which is different than the work of Pandey. The non-uniform cusp height is based on

circular approximation and user specified allowable cusp height as shown in Figure 2.7.

The layer thickness model presented are able to solve the containment issues that occur

during the printing process (Zhou et al., 2004).

24

Figure 2.7 Circular approximation for layer error and thickness

Source: Zhou et al. (2004)

The adaptive slicing technique reduces memory consumption by also eliminating the

repetitive features of the geometric model. For example, a cube STL model will always

has the same contour from bottom to top when the slicing orientation is perpendicular to

the cube. Thus, adaptive slicing eliminates the needs to reconstruct the same contour that

can cause memory inefficiency.

Direct slicing algorithm is more recent approach in CAD slicing. This approach

does not require tessellated CAD model such as STL format. Instead, the algorithm is

implemented on the original CAD format without involving any tessellation process. This

is because the tessellation process is a surface approximation process of the original CAD

model. This approximation often leads to reduction in geometric accuracy (Jing Hu,

2017). Other reason the direct slicing algorithm is proposed due to the size of the STL

file. Complex STL file often requires a lot of memory space to be stored compares to

other CAD formats (Choi & Kwok, 1999). The direct slicing algorithm can be

implemented using either uniform or adaptive slicing technique. The only difference is

the CAD format.

2.5 Contour Loop Algorithm

In order to complete the contour generation for the projection mask

stereolithography process, each line segments generated by the slicing algorithm must be

connected to form closed-loop contours (Tian et al., 2018). These line segments are in

25

arbitrary order due to STL facets are sorted in similar fashion (Zhang & Joshi, 2015). It

is also possible to have multiple closed-loop contours at the same slicing height. Thus, it

is crucial to differentiate to which group does a contour loop belongs to because the

contours will define the geometrical features of the printed model.

One of the most common and naïve methods applied by the previous researchers

are the head-to-tail search algorithm (Choi & Kwok, 1999; Wang et al., 2006). The

algorithm works by joining neighboring line segments until closed-loop contour is

formed. Each line segments contain two distinct points Po to Pf. The Po of the first line

segments from the list is assigned as the head of the contour group. Then, the algorithm

searches for the similar point that matches the Pf of the first line. The algorithm stops

when the found Pf matches the assigned head. This indicates a closed-loop contour. Then,

the remaining line segments are considered as new contour group and the algorithm

assigns new head for the next contour group. The process will repeat until every line

segment from the list is checked. The head-to-tail contour loop algorithm is known to

have the worst case of O(nk). This happen when the algorithm has to loop through each

line segment from the list if the neighboring line is located at the end of the list. Since the

k element decreases as n element increases, on average, this algorithm will run as O(n).

However, a study was done back in 2002 by Huang proves that STL formatted CAD

model are susceptible to flaws such as cracks which may appear in between two side-by-

side facets (Huang et al., 2002). Thus, the resulting line segments give incorrect pairs

hence breaking the closed-contour loop formation. Even the smallest truncation errors

between the pairs can be catastrophic to the head-to-tail contour loop algorithm.

An algorithm that uses shortest distance calculation is introduced to prevent the

mispairing issue. This method is applied in the work of Manmadhachary in an attempt to

improve surface smoothness of rapid prototyping printed medical product

(Manmadhachary et al., 2016). The shortest distance approach eliminates truncation error

that can cause contour dysconnectivity. The equation used for the shortest distance is

defined as:

 D = √(x − xt)2 + (y − yt)2 2.10

The equation above is used in comparison to compare the points of current line segment

with the next line segment. If the point coincides, the value of D should be near or equal

26

to zero (Vatani et al., 2009). However, the computation uses square root function which

is more computationally intensive than normal mathematical operation. Thus, the shortest

distance requires more computational time compared to the naïve head-to-tail search

algorithm. It is a tradeoff between error-tolerance and the performance of the algorithm.

Zhang & Joshi introduced Efficient Contour Construction (ECC) algorithm in

their work. The authors used linked list data structure for the ECC algorithm. The

algorithm checks for the insertion position to construct the contour. The insertion process

is decided by checking the first and last elements from the intersection linked list (Zhang

& Joshi, 2015). The contour grouping process which differs between which group does

the contour loop belongs is not clearly stated in the ECC algorithm. There could be more

than one closed loop contour at different slicing height depending on the geometry

features.

2.6 Summary

Mask projection stereolithography 3D printing process uses UV-light projection

to cure photocurable resin. The curing process is called photopolymerization.

Photopolymer resin used in this process contains 50-80% oligomer, 10-40% monomer,

and the rest is photoinitiator. Each of the components in the photopolymer defines the

properties of the printed model. Photoinitiator is the photo-reactive substance that initiates

the polymerization process upon exposure to light with specific wavelength. The

concentration of the photoinitiator in the photopolymer mixture highly affects the curing

depth of the photopolymer as shown in Figure 2.1. Other parameters which affect the

curing process include the light intensity, the critical energy dosage, time, and other

photochemical parameters. This shows that the photopolymerization is a time dependent

process. Thus, the proposed algorithm must be fast enough to keep up with the

photopolymerization process. The elevation speed of the printer must also correlate to the

curing speed in order to generate accurate printed model.

STL file is a de facto CAD format in 3D printing industry. There are two types of

conventional STL format which are Binary STL and ASCII STL. Each STL model

consists of multiple facets which are made of a normal vector and three vertices that form

the facet. Ever since it was first developed back in 1987, STL format remains unchanged.

27

There are a lot of known issues with the STL format. Among the flaws associated with

the STL format is the possibility of crack due to mismatch of the facet coordinates. The

proposed algorithm must be able to correct this error since it can cause failures during the

contour formation.

Slicing algorithm is an algorithm that slices the 3D CAD model into layers of

contour. In mask projection stereolithography, the 3D model is sliced into multiple 2D

contour layers. These layers are used in the mask projection to cure each layer of the 3D

model with respect to the build height. The fundamental equation used in slicing process

uses linear extrapolation method. This method is simple and straightforward. However,

this method is susceptible to division by zero which may cause the program to crash. As

discussed earlier in Section 2.4.2, there are several cases of interaction between the slicing

plane and the facet. Each of these cases must be handled properly in order to generate the

correct 2D contour representation of the 3D model. Most commonly studied slicing

algorithm are the uniform slicing and adaptive slicing. However, these methods cause

stair-case effect and requires long computational time. Since the curing process is

continuous, the printer must also continuously track the changes of the curing depth hence

modifies the contour layer according to the cure depth.

The process of STL slicing only generates multiple arbitrary line segments. Thus,

a contour loop algorithm is needed to reconnect the line segments into one or multiple

closed loop contours. Based on literature, many researchers proposed the head-to-tail

search algorithm which is simple and naïve. Considering that there are cases of cracks

occurring in the STL format, the naïve approach will not be sufficient due to error caused

by slicing. Manmadhachary et al. (2016) proposed shortest distance approach to find and

connect the line segments. But the shortest distance is more computational intensives. In

this research, the proposed contour loop algorithm uses pixel line mapping algorithm to

map the line segment based on pixel coordinate of the projection device and uses head-

to-tail search algorithm to efficiently connect every line segment.

The issue of computational time in Contour Generation process is rarely been

discussed by the rapid prototyping community. The process can make up to 60% of the

whole process planning stage (Gregori et al., 2014; Kirschman & Jara-Almonte, 1992;

Minetto et al., 2017). One of the factors which contributes to long computational time is

usually caused by bad STL file which needs to be checked and corrected as discussed in

28

Section 2.3.2. Hence, the algorithm will have to include error-checking routine which can

be complex and demands more computational time. Another factor is due to the nature of

STL facets which are arbitrary and unorganized. This causes the algorithm to take longer

time to find facet that intersects with the slicing plane. As discussed in Section 2.4.3,

using more organized data structure which handles the facets data can improve the

computational time for Contour Generation.

29

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, the slicing, contour loop, and line to pixel map algorithms are

thoroughly discussed and elaborated based on the fundamentals of the algorithm and the

structure of the algorithm. This chapter also discusses the structure of STL formatted

CAD models and how the data from this CAD models are read and stored in the concept

of programming.

Figure 3.1 Flowchart of Research Methodology

Figure 3.1 shows the methodology flows of this research starting with the development

of Slicing algorithm. In this phase, the slicing algorithm is developed based on its

30

fundamental equation, facet data handling, and facet-plane interaction cases handler.

Next, in the Contour Loop algorithm development phase, the algorithm is constructed by

implementing pixel line algorithm and head-to-tail search algorithm. This phase is

followed by implementation for both Slicing and Contour Loop algorithms on actual STL

CAD format. Then, the algorithm is tested with different complexity STL model.

Computation time is measured and later tabulated. Finally, the results are validated and

compared with the existing results obtain from literature.

3.2 STL Data Management

Managing a huge number of facets require proper encapsulation of the data.

Hence, the proposed algorithm introduces a list of facet class to store the facet data. These

data will be read by the slicing algorithm. Each facet class stores the vertices (P1, P2, P3)

and maximum/minimum Z coordinates between the three vertices. The use of

maximum/minimum Z value is to filter out other facets except the ones intersecting with

the slicing plane by comparison of zmin ≤ zslice ≤ zmax for each facet in the STL file.

This is to reduce the number of facets from the list by taking only a portion of it and

improves the performance of the slicing algorithm.

3.3 Slicing Algorithm

A slicer is an algorithm that slices each triangular facet in STL model which

intersects with the slicing plane. The slicing process of each intersecting facet generates

line segments which lie on the slicing plane. These line segments are arbitrary because

all facets in STL model are also randomly ordered. Hence, the line segment requires a

contour loop algorithm to connect each line segment into single or multiple closed loop

contours which will be discussed in the next section. By adjusting the slicing plane height,

different contour can be generated. This allows layer-by-layer contour generation for

layered manufacturing process.

31

3.3.1 Case Handler for Facet-Plane Interaction

As discussed in Section 2.4.2, the cases of facet-plane intersection can be

categorized into 5 cases (6 cases including Case IV in Figure 3.2). This section focuses

on how each facet-plane interaction cases is handles in the proposed Contour Generation

Algorithm. The most common issue contributing to slicing error is caused by interaction

between facet and the slicing plane. A line segment requires only two distinct points.

However, some cases of facet-plane interaction cause the slicing algorithm to generate

more/less than two distinct points. Known cases of facet-plane interactions are defined in

Figure 3.2 and Table 3.1.

Figure 3.2 Possible facet-plane interaction

Table 3.1 Definition of interaction cases

Case Interaction of facet and plane Possible Point

I Line through one side of the facet 4

II Line bisecting the facet through one vertex 3

III Line bisecting the facet through two sides 2

IV No intersection 0

V Vertex intersection 2

VI Parallel intersection 6

Table 3.1 defines the number of points that is generated considering all six possibilities.

As stated in Table 3.1, both Case I and VI have a side/sides which in parallel with the

plane. This parallel intersection must be eliminated to avoid redundant points. Case VI is

ignored because all the sides are in parallel. Case VI occurs at flat surfaces and usually

found during slicing the base of the model. It can also be detected when zmin = zmax. For

Case I, the parallel side is eliminated and the other two sides are sliced. The method of

eliminating parallel side is using a dot product criterion which will be discussed later.

32

Next, Case II happens when the slicing plane intersects at one vertex of the facet and one

side passing through the plane. Case II generates three intersection points which are

redundancy for line generation. During the slicing routine, the vertex intersection

generates two similar points and one distinct point. In the proposed slicing algorithm, the

algorithm compares the cross combination between the three generated points to see

which of the combinations give the longest line and later stores the combination as a line

segment. Intersection at vertex can also be seen in Case V. A two similar point cannot

forms a line segment. Hence, Case V is ignored. The same goes for Case IV which is

already been filtered out using Z-comparison in the previous section.

3.3.2 Formulation of Slicing

Figure 3.3 Facet-Plane intersection model

The fundamental of the proposed slicing algorithm is based on line-plane

intersection mathematical equation which differs than the one discussed in Section 2.4.1.

Consider one side of the facet as a line connecting two vertices from P1 to P2. In 3D

environment, a line can be either parallel to a plane or intersects at one point on the plane

(see Figure 3.3). Parametric equation of a line with Po as the initial point and Pf as the

final point is given as:

 P(s) = Po + s(Pf − Po) 3.1

33

Assume that point Q in Figure 3.3 lies on the same slicing plane where its x and y

coordinate can be randomly set (usually set at the origin), and zslice is the slicing plane

height. By adjusting the zslice value, slicing algorithm can be implemented at any height

of the STL model. Slicing plane normal is given by unit vector n̂ = 〈0, 0, 1〉 which is for

the case of slicing with respect to Z-axis. Unit vector n̂ can be change to alter the slicing

plane direction. In Figure 3.3, the line 𝐮, 𝐯, and 𝐰 are direction vectors connecting the

three vertices (P1, P2, and P3) in clockwise order (P1, P2, P3, P1) respectively to represent

the sides of the facet. The algorithm initially checks for any intersection which exists

between the facet sides and the slicing plane by computing the dot product criterion, n̂ ∙

𝐮 = 0 , n̂ ∙ 𝐯 = 0 , n̂ ∙ 𝐰 = 0 respectively. These criterions eliminate the facet parallel

sides for both Case I and Case VI as mentioned earlier. The output of the criterion

becomes zero when there is no intersection between the direction vector and the slicing

plane. Should the line intersect with the plane as seen in Figure 3.3, the criterion output

is not equal to zero. As seen in Figure 3.3, the direction vector 𝐮 from point P1 to P2

intersects with the plane at point P(su). Substituting P1 as the initial point Po, P2 as the

final point Pf and su as the parameter s, Equation 3.1 now becomes:

 P(su) = P1 + su(P2 − P1) 3.2

Equation 3.2 above is a parametric equation of the intersection point P(su). By using a

direction vector 𝐠 that lies on the same plane, it is known that n̂ ∙ 𝐠 = 0 because the vector

is in parallel to the plane. The vector can also be represented as 𝐠 = 𝐡 + su𝐮. Hence, n̂ ∙

𝐠 = n̂ ∙ (𝐡 + su𝐮) = 0. Rearranging this equation, the parameter su can be written as:

 su =
−n̂ ∙ 𝐡

n̂ ∙ 𝐮
 3.3

Vector 𝐡 is given by 𝐡 = P1 − Q and vector 𝐮 is given by 𝐮 = P2 − P1. Substituting both

vector 𝐡 and 𝐮 into Equation 3.3 yield:

 su =
n̂ ∙ (Q − P1)

n̂ ∙ (P2 − P1)
 3.4

Now, the intersection point P(su) can be computed. Based on the previous derivation, it

is known that vector 𝐠 is a direction vector from point Q to the intersection point. This

34

means that 𝐠 = P(s) − Q. Vector 𝐡 is a direction vector from point Q to the initial point

of the vector 𝐮 which is 𝐡 = Po − Q. Hence, 𝐠 = 𝐡 + s𝐮 where 𝐮 = Pf − Po. Finally, the

general form of the Equation 3.4 above can be derived as:

 s =
n̂ ∙ (Q − Po)

n̂ ∙ (Pf − Po)
 3.5

Hence, applying Equation 3.1 and 3.5 to another intersecting side of the facet yield

another intersection point P(sv) forming a line segment 𝐿 on the slicing plane. However,

the value su and sv must be within the range 0 ≤ s ≤ 1 to ensure that the intersection

points exists only within the line between Po and Pf.

3.3.3 Line to Pixel Mapping

The generated line segments are floating numbers, which is computationally

expensive, and tends to cause truncation errors that disrupt the performance of the contour

generation algorithm. In this context, the floating numbers are irrelevant because the

resolutions of the geometry are eventually subjected to the projection device resolution.

The algorithm proposed novel method of reducing computational time by converting the

line segments floating number coordinates to pixel coordinates.

The Pixel Mapping method starts by computing both aspect ratio of the projection

device ARdevice and the aspect ratio of the object ARobject. This allows the algorithm to

detect whether to geometry can be fit to neither height nor width of the projection device

while preserving the aspect ratio of the geometry. The aspect ratios are given by:

ARdevice =

width

height
 3.6

 ARobject =
xmax − xmin
ymax − ymin

 3.7

In Equation 3.6 and 3.7, these values are used as comparison to determine whether the

object should be fit to width or height. If the ARobject has higher proportion than

ARdevice, it means that the object has longer width and must be fit to width and vice versa

35

when the ARobject is less than ARdevice . Using this condition, a new variable R is

introduced to represent the conditions as:

 R = {
width − 1; ARobject ≥ ARdevice
height − 1; ARobject < ARdevice

 3.8

The R value is minus by one because the pixel coordinates are zero based integer and its

value is conditional depending on the comparison of ARobject with ARdevice. Consider a

case of fit-to-width ARobject ≥ ARdevice ; the following equation can be used to map the

floating number of x-coordinate into a horizontal pixel position (the width) of the

projection device:

 xpixel =
Px − xmin

xmax − xmin
∙ R 3.9

However, y-coordinate must be scaled with modified value of height′ to retain the

original aspect ratio of the object. This means, the ARdevice must equal to ARobject .

Hence, the new ARdevice value is defined as:

 AR′device = ARobject =
width′

height′
 3.10

For this case, the width’ = R where R = width − 1 because it is a fit-to-width condition.

Hence, using Equation 3.10 the modified height is written as:

 height′ =
width′

ARobject
=

R

ARobject
 3.11

The equation of y-coordinate now can be derived as:

 ypixel =
Py − ymin

ymax − ymin
∙

R

ARobject
 3.12

36

Based on Equation 3.12, the ypixel is now scaled to modified value of height for

perseverance of its original aspect ratio and it represents the vertical pixel position of the

projection device.

Next, for the case of fit-to-height where ARobject < ARdevice and the variable

R = height − 1, the algorithm must use full scale of projection device height for y-axis

and a modification of the width for the x-axis. The equation for ypixel can be written as:

 ypixel =
Py − ymin

ymax − ymin
∙ R 3.13

But the xpixel must be scaled with modified value by using Equation 3.10 which now

becomes:

 width′ = height′ ∙ ARobject = R ∙ ARobject 3.14

The equation of xpixel is now derived as:

xpixel =

Px − xmin
xmax − xmin

∙ R ∙ ARobject 3.15

Comparing the Equation 3.9 and 3.15, and Equation 3.12 and 3.13, two new conditional

variables are introduced to generalize both equations for xpixel and ypixel which are:

V = {

 1 ; ARobject ≥ ARdevice
ARobject; ARobject < ARdevice

 3.16

W = {

ARobject
−1 ; ARobject ≥ ARdevice

 1 ; ARobject < ARdevice
 3.17

Finally, the equations for xpixel and ypixel are rewritten as:

xpixel =

Px − xmin
xmax − xmin

∙ R ∙ V 3.18

ypixel =

Py − ymin

ymax − ymin
∙ R ∙ W 3.19

37

In the algorithm, Equation 3.18 and 3.19 map the floating number coordinates of

the line segment 𝐿 for both Po and Pf to a new pixel line segment coordinates. These pixel

coordinates are store as an unsigned integer value to eliminate the decimal point of its

original value so that it can be used for the pixel mapping of the projection device.

3.3.4 Algorithm Structure

This section discusses complete implementation of the slicing algorithm. All the

fundamentals of the slicing algorithm have been previously explained starting from issues

regarding STL models, the fundamentals of slicing, and the line to pixel mapping

fundamental. Figure below shows the structure of the algorithm which will be thoroughly

discussed in this section.

In Step 1, the algorithm first starts by obtaining a list of intersecting facets 𝐿 from

a list of STL Facet Class (as in Section 3.2) where 𝑛 is the last index in the intersecting

facets list 𝐿 and 𝑗 is the last index of the STL facets. This procedure filters out other non-

intersecting facets to optimize the operation time based on the current slicing height,

zslice. As mentioned in Section 3.3.2, the process works by comparing each facet by

zmin ≤ zslice ≤ zmax. If the condition is true, then the list stores the intersecting facet in

list 𝐿 and vice versa. Starting from Step 2 until 14, the algorithm loops for each

intersecting facet in the list 𝐿. Step 3 initializes working buffers to be used for the next

38

operations. At Step 4, the algorithm performs another loop for each side of a facet since

a facet contains 3 sides (𝑢, 𝑣, 𝑤). Next, the algorithm determines whether the sides

intersect with the slicing plane by performing dot product criterion mentioned in Section

3.3.2. If any side intersects, Step 6 is executed. In Step 6, the function 𝑠𝑙𝑖𝑐𝑒(𝑠𝑖𝑑𝑒, zslice)

slices the intersecting side of the facet and stores the result in buffer Pslice[𝑘]. The size of

the point buffer Pslice is 3 to represent each sliced point for each side. Result of the slicing

operation mainly consists of a line segment made of two points with double-precision

floating number coordinates of Po and Pf. The algorithm executes Step 8 if the side does

not intersect and stores null in Pslice[𝑘]. Then, Step 10 increments the index 𝑘 means that

the index 0, 1, and 2, represent 𝑢, 𝑣, and 𝑤 respectively. Step 4 until Step 11 loops until

each side of the facet are checked. The algorithm continues the process by executing Step

12 which handles the errors defined in Table 3.1 and stores the corrected line segment in

𝑙𝑖𝑛𝑒 variable. Step 13 converts the double-precision coordinates (Po and Pf) into pixel

(unsigned integer) coordinates and stores it into a list of pixel line segments 𝑆 that will be

used in the contour loop algorithm.

3.4 Contour Loop Algorithm

The contour loop algorithm basically is a head-to-tail search algorithm which

connects a set of line segments that belongs to the same contour loop. By assigning the

first line segment Po as the initial tail (Pinit) and Pf as the head (Pfind), the head will begin

to search for next tail which has the same coordinate but in another line segment. When

found, the search algorithm assigns the found line segment as the new head of the search

algorithm. This process repeats until the head meets with the first initial tail Pinit that

indicates a closed loop is formed. The contour loop algorithm is shown in the algorithm

table below.

39

The arbitrary pixel line segments obtained by the slicing algorithm are put into a

list which is first sorted by Po. Y value then Po. X value. The algorithm then, initializes an

unsigned integer variable to identify and isolate each contour loops. Next, the algorithm

assigned Po of the first line segment in the list as initial point Pinit of the first closed

contour loop and its Pf as the search point to locate next neighbouring line segment from

the list. In Step 5, the algorithm checks whether a closed loop is found else the algorithm

proceeds to find next neighbouring line and hold its position in the list into an unsigned

integer variable 𝑓𝑜𝑢𝑛𝑑. The function 𝐹𝑖𝑛𝑑 searches for neighbouring line from the list

with an offset index starting from next line segment (𝑖 + 1) of the iteration until the end

of the list. It uses Pfind as the searching point which can be equal to next line Po or Pf. This

is because all the lines sliced during the slicing algorithm are arbitrary and it is difficult

to know whether the point Po to Pf is in the same direction with the contour loop. When

next line is found, the function returns an unsigned integer index of the found line as

shown in Step 9. If the line is not found, then the function returns -1. Step 11 checks the

inversion of the found line. Should the line inverts, then Pfind must be equal to the Pf of

the found line. Vice versa, the line is in the right orientation. Next in Step 12, the function

𝑆𝑤𝑎𝑝 is to swap the element in the list between the found line segment and the next line

of the iteration (𝑖 + 1). If the line is inverted as previously checked in Step 11, the function

𝑆𝑤𝑎𝑝 will also flip the found point such as Pf = Po and Po = Pf before swapping the two

lines. Step 15 is mainly to assign the contour identity to the next line segment in the list

since by this point; the next line segment has become a neighbouring line which was

40

previously found in Step 9. During next iteration, new Pfind will be assigned as the search

parameter and the whole process will be repeated unless the comparison between Pfind

and Pinit is equal to one another. This indicates a closed loop is found and it is necessary

to increment the loop identity variable and assign new Pinit.

3.5 Computational Time Measurement

The proposed Contour Generation Algorithm is implemented in C++11

programming language. The code is written and executed in Qt Creator 4.9.0 (Open-

Source) software and compiled with MinGW.

In order to evaluate the performance of the proposed algorithm, computational

time is collectively measured and plotted in milliseconds. Qt Creator provides real-time

measurement library which is based on system clock with resolution of nanoseconds. It

can be achieved by using <QElapsedTimer> object within Qt Creator. An instance qTimer

of the <QElapsedTimer> needs to be created to start the measurement. The timer is

inserted in before the function call for slicing algorithm. Using start() initiates the timer.

After the function call, the measurement result is obtained by accessing the

<QElapsedTimer> class member nsecsElapsed() which returns the int64 value of elapsed

time since restart() is called. The value must be divided by one million to convert to

milliseconds. For continuous measurement, the qTimer must be reset by calling restart()

again to reset the timer counter back to zero. Pseudocode below shows the

implementation for measuring both slicing and contour algorithm.

#include <QElapsedTimer>
..
QElapsedTimer* qTimer;
double SliceResult, ContourResult;

qTimer->start();

while(Slicing){
 qTimer->restart();
 Slice(height);
 SliceResult = qTimer->nsecsElapsed() / 1e6;
 ContourLoop();
 ContourResult = qTimer->nsecsElapsed() / 1e6 – SliceResult;
 height += delta_height;
}

41

As shown in the pseudocode, the variables use for storing the results is double type which

is 64-bit precision variable. Summation of both SliceResult and ContourResult give total

computational time to generate the contour layer. These contour results are exported into

a comma-separated value (CSV) file format during each iteration of slicing height until

the maximum slicing height. Each CSV file contains contour line segments dataset

(generated in Algorithm 2 in Section 3.4) according to respective slicing height. Other

parameters such as number of intersecting facets at respective slicing height and STL

model facet count is also included in the CSV result.

The CSV formatted results are loaded into MATLAB 2016b using the MATLAB

Script (attached in Appendix D) to plot the histogram of slicing time, contour loop time,

total computational time, number of intersecting facets, and loop count. The MATLAB

Script is also programmed to reconstruct a 3D figure based on generated line segments

coordinates from the CSV files.

3.6 Test Environment

Proposed algorithm is programmed in VB.NET programming language. The

algorithms are implemented on Intel i3-2350M CPU 2.30 GHz with 6 GB RAM

workstation. For the validation process, the algorithms are re-written in C++11 and tested

on Intel i7-6700 3.40 GHz workstation with 4 GB RAM based on specification mentioned

in the referenced journal.

42

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

Reduction of computational time in Contour Generation Algorithm is important

in improving the performance contour layer generation. It is because the process can take

up to 60% of the entire process planning time (Gregori et al., 2014; Kirschman & Jara-

Almonte, 1992). In this chapter, the performance of both slicing and contour loop

algorithm are evaluated. The evaluation of the performance is based on the computational

time required to complete each layer respective to their slicing height. Evaluation of the

results are based on several STL model with different complexity which were used in the

experiment. Each of these geometries/models are thoroughly analyzed based on the time

performances of each algorithms including slicing algorithm and contour loop algorithm.

4.2 Sliced Model Output

In this section, the 3D sliced models are presented with colour-map indicating the

total computational time at each respective layer slicing height. A sphere model is used

to prove that the XZ and YZ planes are in correct ratio with respect to XY plane. Figure

4.1 below shows the results of Sphere slicing.

43

Figure 4.1 Sliced model (Sphere) with colour mapped total computational time

Figure 4.2 Sliced model (Dragon) with colour mapped total computational time

Figure 4.1 shows perfect formation of a Sphere model. Based on the measurement

done in MATLAB, the dimension of the Sphere result is 1079 x 1079 x 1079 cubic pixel.

This proves that the slicing height is in correct ratio with respect to XY plane. The Dragon

44

(Figure 4.2) model is properly formed when compared to its original STL file because

there are no abnormalities in the layer result. For example, if abnormality occurs during

algorithm execution, the layer formation will be disrupted and making the respective layer

to show clear malformation.

Figure 4.3 Sliced model (Tower) with colour mapped total computational time

Figure 4.2 and Figure 4.3 above show result of the algorithm implementation.

Other STL model case studies are included in the Appendix A section. As seen above,

the colour indicates the total computational time in milliseconds required to generate each

contour to show the feasibility of implementing this algorithm to an actual DLP 3D

printer. The lines that appear on the surface of the model are sliced contour lines generated

by the algorithms. Colour differences at certain slicing height are due to the complexity

of the geometry that differed at each height. This often demands more computational

loads to generate the contours. Hence, longer computational time. The computational time

at each respective height will be further discussed in the next section.

In previous discussion in Chapter 3, the algorithms are designed to work by

referring to the current build plate height of the DLP 3D printer. In other words, the

algorithms generate the contour instantly upon receiving the slicing height input value.

This method is called instant slicing. The contour generation algorithm consists of two

45

different algorithms: slicing and contour loop, the performance of each algorithms is

evaluated in the next sections.

4.3 Slicing Algorithm Performance

In Chapter 3, the slicing algorithm is presented and discussed in detail. In brief,

the slicing algorithm works by filtering out other facets which do not intersect with the

slicing plane and then slice each of the intersecting facets to form each respective line

segments. By algorithms complexity analysis, the worst case for the instant slicing

algorithm can be represented as O(n). Thus, it is expected that increasing number of

elements will linearly increase the execution time. The performance graph below shows

the result of slicing algorithm at each respective slice height. Total facet number of the

STL model, the mean average, and the standard deviation (SD) are presented at the top

of the graph. Table 4.1 shows the result of execution time measurement for the slicing

algorithm at each slicing height.

Table 4.1 Time measurement for slicing algorithm

Model Performance Graph

S
p

h
er

e

46

Table 4.1 Continued

Model Performance Graph
D

ra
g
o
n

E
if

fe
l

T
o
w

er

G
u

n
d

a
m

47

Table 4.1 Continued

Model Performance Graph
S

p
ee

d
st

er

H
ea

rt

D
re

a
d

n
a
u

g
h

t

48

Table 4.1 Continued

Model Performance Graph
W

o
rm

S
p

ir
a
l

T
o
w

er

By analyzing the pattern of each graph, all the graph above shows consistent

slicing time regardless the slicing height when comparing the value of standard deviation

(SD). There are some spikes caused by the operating system background processes which

occupied the processor at the time. Each model above is sorted in ascending order of their

total facet number (low polygon model to high polygon model). It is noticeable that

increasing total facet number also increases the mean slicing time average.

4.4 Contour Loop Performance

The contour loop algorithm works by connecting all the arbitrary line segments

generated by the slicing algorithm into one or more contour loops. Time measurement for

the execution time is taken in milliseconds to measure how fast the algorithm is executed.

49

The results obtained are shown in Table 4.2 below which represents contour loop

computational time at each slicing height for each STL model.

Table 4.2 Time measurement for contour loop algorithm

Model Performance Graph

S
p

h
er

e

D
ra

g
o
n

E
if

fe
l

T
o
w

er

50

Table 4.2 Continued

Model Performance Graph
G

u
n

d
a
m

S
p

ee
d

st
er

H
ea

rt

51

Table 4.2 Continued

Model Performance Graph
D

re
a
d

n
a
u

g
h

t

W
o
rm

S
p

ir
a
l

T
o
w

er

As seen in the Table 4.2 above, the contour time results show unique pattern for

each model. The Sphere model has consistent contour loop execution time. But, for the

other models, there are inconsistencies in the contour loop time at certain slicing height.

This is due to complex features of the models at certain height. The complexity of the

model can be represented as the number of intersecting facets at each slicing height. More

52

complex layer will have more facets number. Thus, it requires more computational time

due to high intersecting facet counts.

4.4.1 Number of Intersecting Facet at Different Slicing Height

Table 4.3 below show the number of intersecting facets which intersect with the

slicing plane at different heights. Unique feature of the Sphere model can be seen in the

results below. It is found that the Sphere model has the same number of intersecting facets

regardless the slicing height. This relates to the consistencies in its contour loop algorithm

results in previous section. The number of intersecting facet pattern shows by the Dragon

model also closely resembles the pattern in its contour loop time. These similarities can

also be observed in other STL models.

Table 4.3 Number of intersecting facet at each slicing height

Model Performance Graph

S
p

h
er

e

D
ra

g
o
n

53

Table 4.3 Continued

Model Performance Graph
E

if
fe

l
T

o
w

er

G
u

n
d

a
m

S
p

ee
d

st
er

54

Table 4.3 Continued

Model Performance Graph
H

ea
rt

D
re

a
d

n
a
u

g
h

t

W
o
rm

55

Table 4.3 Continued

Model Performance Graph
S

p
ir

a
l

T
o
w

er

4.4.2 Contour Loop Counts

After running the test, it is found that at each slicing height, there are different

numbers of contour loops can be observed. Based on the proposed contour loop algorithm

in Chapter 3, the contour loop counts are programmed to re-iterate to connect another

closed loop contour. These re-iterations depend on the contour loop counts. As a result,

this process requires more computational time compares to a single closed loop contour.

The measurement of the contour loop counts at each respective slicing height are

tabulated in Table 4.4 below.

Table 4.4 Number of loop counts at each slicing height

Model Performance Graph

S
p

h
er

e

56

Table 4.4 Continued

Model Performance Graph
D

ra
g
o
n

E
if

fe
l

T
o
w

er

G
u

n
d

a
m

57

Table 4.4 Continued

Model Performance Graph
S

p
ee

d
st

er

H
ea

rt

D
re

a
d

n
a
u

g
h

t

58

Table 4.4 Continued

Model Performance Graph
W

o
rm

S
p

ir
a
l

T
o
w

er

In earlier section, it could be hypothesized that the computational time for contour

loop algorithm has a similarity with the number of intersecting facets. Thus, to further

support this statement, a normalized correlation method is used to measure the similarities

between these two results. The Equation 4.1 is the equation of normalized correlation

which is written as:

 NC =
∑xnyn

√∑xn2∑yn2
 4.1

where the x is the data of contour loop time, y is the intersecting facet number, n is the

number of elements, and NC is the normalized correlation. The normalized correlation is

also tested for the relations between contour loop time and contour loop counts by using

the contour loop time as variable x and contour loop counts as y according to the previous

Equation 4.1. By using this equation for each model, the results of normalized correlation

59

are tabulated in Table 4.5 where CT is the contour loop time, LC is the contour loop

counts and IF is the number of intersecting facet.

Table 4.5 Calculated normalized correlation of each STL model

STL Model
Normalized Correlation

CT vs LC CT vs IF

Sphere 0.93 0.93

Dragon 0.77 0.93

Eiffel Tower 0.92 0.96

Gundam 0.89 0.96

Speedster 0.87 0.96

Heart 0.64 0.97

Dreadnaught 0.86 0.94

Worm 0.72 0.91

Spiral Tower 0.49 0.89

The results of normalized correlation for contour loop time against contour loop

counts show that the strong correlation only implied to certain model such as Sphere,

Eiffel Tower, Gundam, and Speedster. But the rest of the models show weak correlations.

Thus, it can be concluded that the number of contour loop counts do not significantly

affect the contour loop time. On the other hand, the number of intersecting facets for

every model has strong correlations with the contour loop execution time. Hence, earlier

hypothesis that states increasing number of intersecting facets also increase the contour

loop algorithm computational time.

4.5 Total Computational Time

Overall, total computational time is measured by adding both slicing time and

contour loop time to give the total time required (in milliseconds) to generate the contour

at each slicing height for DLP 3D printing contour projection. The result is tabulated in

Table 4.6 below based on different STL model.

60

Table 4.6 Total computational time required for each slicing height

Model Performance Graph
S

p
h

er
e

D
ra

g
o
n

E
if

fe
l

T
o
w

er

61

Table 4.6 Continued

Model Performance Graph
G

u
n

d
a
m

S
p

ee
d

st
er

H
ea

rt

62

Table 4.6 Continued

Model Performance Graph
D

re
a
d

n
a
u

g
h

t

W
o
rm

S
p

ir
a
l

T
o
w

er

Table 4.6 shows the total computational time required with respect to each slicing

height. It can be observed that, increasing facet number also increases its mean

computational time. It natural since more complex model will have more facet counts and

requires more computational time. At certain slicing height, several peaks can be seen.

This indicates that around that particular slicing height has a greater number of

intersecting facets compared to the other slicing heights.

63

4.6 Visualization of Contour Generation Algorithm

In this section, the top view of stacked generated contour for some STL models

are shown to visualize the 3D model the DLP 3D printing process.

Figure 4.4 Stacked contours Alien model (side slicing)

Figure 4.5 Stacked contours Dragon model (bottom-up slicing)

64

Figure 4.6 Stacked contours Liver model (bottom-up slicing)

Figure 4.7 Stacked contours Walnut model (bottom-up slicing)

4.7 Comparison of Slicing and Contour Loop algorithms

Both of the slicing and contour algorithms are re-written in C++11 and tested on

Intel i7-6700 3.40 GHz CPU with 4 GB RAM workstation for benchmarking with the

65

results obtained by the work from literature. The reason is to evaluate the performances

of both algorithms compared to the algorithms result obtained by other researcher in their

work. All the parameters such as the STL model, its facet count, and the number of slicing

planes is exactly the same as the one used in their research paper. The proposed

algorithms are measured using built-in <QElapsedTimer> library provided by the Qt

Creator software to obtain the execution time in milliseconds.

In the work of Minetto on Contour Generation algorithm, the author

reimplemented other researcher algorithm (Park) written in C++ and executed on Intel i7

3.4 GHz workstation. The results are measured based on minimum execution time for

each algorithm in seconds. The results are also compared to commercial 3D printing

software Slic3r (Minetto et al., 2017; Park, 2003). Using the data obtained by the author,

our proposed algorithm results are validated in Table 4.7, Table 4.8, and Table 4.9 below.

Table 4.7 Time measurement and comparison for slicing algorithm

Model
Facet

Count

Layer

Count

Slicing Algorithms (s)

Park Slic3r Proposed

Liver 38142 6242 1.28 0.32 1.48

Femur 42150 3155 0.53 0.16 2.53

Bunny 270021 1547 2.70 0.29 2.87

Demon 935236 3126 20.12 1.28 20.15

Rider 1281950 849 6.37 0.54 7.49

Bolded value in Table 4.7 above shows the best runtime among the test results.

Our proposed slicing algorithm is the slowest among other two algorithms with on

average 22.72% slower than Park and 89.68% slower than Slic3r. This is because the

proposed algorithm utilized vectors and 3D points computation instead of the commonly

used extrapolation method which used more simplified mathematical equation to

compute. However, since the proposed slicing algorithm uses vector coordinate

computation, manipulating the slicing direction will be much easier compared to

extrapolation. The extrapolation method works best for one direction slicing, but in order

to modify the slicing angle, the algorithm has to change every single point that exist in

the STL model. This heavy task will demand more computational time to be performed

for each time the user wanted to change the slicing angle. Another reason is that the

proposed slicing algorithm is the slowest because it includes point conversion (Line to

66

Pixel Mapping Algorithm) that changes the data type from Float to Unsigned Short that

gives advantages in the proposed Contour Loop algorithm.

Table 4.8 Time measurement and comparison for contour loop algorithm

Model
Facet

Count

Layer

Count

Contour Loop Algorithms (seconds)

Park Slic3r Proposed

Liver 38142 6242 35.97 3.57 0.003

Femur 42150 3155 16.59 2.00 0.002

Bunny 270021 1547 22.00 8.51 0.004

Demon 935236 3126 140.77 69.49 0.022

Rider 1281950 849 27.82 25.02 0.001

As shown in Table 4.8 above, our proposed contour loop algorithm is the fastest

compared to the rest of the algorithm with on average 1,199,972.73% faster than Park and

649,822.73% faster than Slic3r. Our proposed algorithm uses simple head-to-tail contour

algorithm. The key to the fast execution time of the proposed algorithm lies within the

data type of the Line Segment. Normally, in the field of computational geometry

programming, Float data type is often used by the programmers to reduce truncation

errors and improve execution time. The Float data type has data size of 32-bit (4 Bytes)

which capable of storing number ranging between -3.40282e+38 until +3.40282e+38.

This large data type demands more processing time of the CPU compared to smaller size

data type. Line-to-Pixel map algorithm which was discussed in Chapter 3 converted the

floating-point data type into Unsigned Short data type. The Unsigned Short is a 16-bit (2

Bytes) data type which is smaller than Float data type and it does not has decimal points.

This data type able to store numbers ranging from 0 until 65535. The Line-to-Pixel map

algorithm scales the floating points data to be within the range of Unsigned Short data.

The main idea of the proposed contour loop algorithm is rejection of the use of Float data

type. It is because in DLP 3D printing technology, the end device is always a projection

device which are constrained by the number of pixels in each row. Current

display/projection technology still has not exceeded 65535 pixels in each row. Hence, it

is still within the range of Unsigned Short data type. Furthermore, the operation using

Unsigned Short are much faster and more accurate compared to Float data type. Using

this ideology, the proposed contour loop scales the contours depending on the display

resolutions of the DLP 3D printer projection device. The algorithm is proven to be more

than 100 times faster as shown in Table 4.8 above.

67

Table 4.9 Time measurement and comparison for total computational time

Model
Facet

Count

Layer

Count

Total Time for both algorithms

(seconds)

Park Slic3r Proposed

Liver 38142 6242 37.24 3.89 1.483

Femur 42150 3155 17.12 2.16 2.532

Bunny 270021 1547 24.70 8.80 2.874

Demon 935236 3126 160.89 70.77 20.174

Rider 1281950 849 34.19 25.56 7.489

Table 4.9 above shows the total execution time for both slicing and contour loop

algorithm. The results are obtained by summing both results from slicing and contour

loop algorithm. As seen in the Table 4.9, the proposed algorithms are the fastest algorithm

by comparison with average 960.15% faster than Park and 169.18% faster Slic3r. Most

of the computational time is consumed by the proposed slicing algorithm. However, the

proposed slicing algorithm has its own merits as discussed earlier.

68

CHAPTER 5

CONCLUSION

5.1 Conclusion

Mask projection stereolithography is a recent discovery in 3D printing industry.

It harnesses the power of UV light to cure the photocurable resin to form the solid 3D

model. Each layer is projected through transparent glass into the resin vat and built layer-

by-layer until the process completes. STL CAD format is considered as de facto in 3D

printing. This format is generated from multiple triangular meshes which are generated

by tessellation process. The STL model undergoes contour generation algorithm to

generate the necessary contour to be projected to the photocurable resin. In this study, a

real-time contour generation algorithm is presented which involves series of algorithms.

The algorithm consists of slicing algorithm, pixel-mapping algorithm, and contour loop

algorithm. Each of these algorithms have been thoroughly studied, developed, and

evaluated.

The developed slicing algorithm is based on line-plane intersection model which

is computationally efficient and simple. The slicing algorithm generates multiple arbitrary

line segments that act as the bones of the contour. But the line segments are not digitally

connected to each other. Thus, a contour loop algorithm is required to connect each of

these line segments into one or multiple closed-loop contour.

The line segments generated from the slicing algorithm are mapped referring the

resolution of the projection device using the proposed pixel-mapping algorithm. The

pixel-mapping algorithm remapped the line segments which use floating point

coordinates into unsigned int pixel coordinate of the projection device. Then, these

mapped line segments are connected using contour loop algorithm.

69

The contour loop algorithm is based on head-to-tail search algorithm. By

assigning the first point from the list of line segments, the algorithm recursively searches

and compares the remaining line segments and eventually form one or more closed-loop

contour. The results of contour loop algorithm show that the algorithm is very fast and

efficient regardless the facet number of the STL model. But the algorithm performs a bit

slower when the layer has multiple closed-loop contours.

The algorithms are executed on Intel i3-2350M CPU 2.30 GHz with 6 GB RAM

workstation and written in VB.NET programming language. For peer result comparison

with the algorithm obtained from the journal, the algorithms are re-written in C++11 and

tested on Intel i7-6700 3.40 GHz workstation with 4 GB RAM similar to the referenced

literature. The result finds that the proposed slicing algorithm is slower compares to the

result from literature with on average 22.72% slower than Park and 89.68% slower than

Slic3r software. For contour loop algorithm, the results are significantly faster than the

one from the literature with on average 1,199,972.73% faster than Park and 649,822.73%

faster than Slic3r. Thus, the total required time for contour generation has improved by

960.15% compared to Park, and 169.18% compared to Slic3r software.

Overall, the contour generation algorithm proposed in this study shows promising

results. According to the measured computational time, the algorithm can operate in real-

time due to fast computational time required to generate 2D contour at any slicing height.

This allows the algorithm to solve the memory storage issue whilst achieving the highest

printing resolution and mechanical properties.

5.2 Future Work

The proposed algorithm only covers the contour generation process of the mask

projection stereolithography 3D printing process. It does not cover the support generation

process which is crucial for stereolithography printing process. In order to fulfill the pre-

processing stage of the stereolithography, a support generation algorithm is required.

Another improvement that can be made to the algorithm is the parallel

computation. Current multi-core technology in modern CPU allows multi-tasking

70

operation. Thus, distributing the processes among cores can rapidly improve the

computational time for the algorithm.

One of most important features in 3D printing process is the dimensional accuracy

of the printed product. It is important for the printer to deliver exact dimension as given

by the STL model so that the printed product does not need to be reworked. The

implementation of the proposed algorithm on real hardware has not yet been studied.

Hence, its dimensional accuracy is also important topic for further improvement of the

algorithm.

71

REFERENCES

Barequet, G., & Sharir, M. (1995). Filling gaps in the boundary of a polyhedron. Computer

Aided Geometric Design, 12(2), 207–229. https://doi.org/10.1016/0167-8396(94)00011-G

Bloomenthal, J. (1988). Polygonization of implicit surfaces. Computer Aided Geometric Design,

5(4), 341–355. https://doi.org/10.1016/0167-8396(88)90013-1

Boddapati, A. (2010). Modeling Cure Depth During Photopolymerization of Multifunctional

Acrylates. Georgia Institute of Technology.

Cătălin IANCU, P., Daniela IANCU, E., & Alin STĂNCIOIU, D. (2010). From Cad Model to

3D Print Via STL Format. Academica Brâncuşi Târgu Jiu, 1(1), 1844–640.

Choi, S. H., & Kwok, K. T. (1999). A Memory Efficient Slicing Algorithm for Large STL Files.

In Proceedings of the 31st International Conference on Computers and Industrial

Engineering (pp. 155–162).

Dendukuri, D., Panda, P., Haghgooie, R., Kim, J. M., Hatton, T. A., & Doyle, P. S. (2008).

Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic

device. Macromolecules, 41(22), 8547–8556. https://doi.org/10.1021/ma801219w

Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical

characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67.

https://doi.org/10.1016/j.addma.2017.12.002

Gao, F., Yang, Y., & Li, L. (1999). Visible light photopolymerization of Methylmethacrylate

coninitiated with titanocene and ketocoumarin dye. Chinese Journal of Polymer Science,

17(5), 465–470.

Gregori, R. M. M. H., Volpato, N., Minetto, R., & Silva, M. V. G. Da. (2014). Slicing Triangle

Meshes: An Asymptotically Optimal Algorithm. 2014 14th International Conference on

Computational Science and Its Applications, 252–255.

https://doi.org/10.1109/ICCSA.2014.58

Hayasi, M. T., & Asiabanpour, B. (2009). Machine path generation using direct slicing from

design-by-feature solid model for rapid prototyping. International Journal of Advanced

Manufacturing Technology, 45(1–2), 170–180. https://doi.org/10.1007/s00170-009-1944-8

Hemant, P., Kulkarni, P., & Thokale, M. (2015). 3D Printing Technology. International Journal

of Multidisciplinary Research and Development, 2(3), 351–358. Retrieved from

http://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/technology/

Huang, S. H., Zhang, L. C., & Han, M. (2002). An effective error-tolerance slicing algorithm

72

for STL files. International Journal of Advanced Manufacturing Technology, 20(5), 363–

367. https://doi.org/10.1007/s001700200164

Huang, X., Yao, Y., & Hu, Q. (2012). Research on the rapid slicing algorithm for NC milling

based on STL model. Communications in Computer and Information Science, 325

CCIS(PART 3), 263–271. https://doi.org/10.1007/978-3-642-34387-2_30

Jacob, G. G. K., Kai, C. C., & Mei, T. (1999). Development of a new rapid prototyping

interface. Computers in Industry, 39(1), 61–70. https://doi.org/10.1016/S0166-

3615(98)00124-9

Jacobs, P. F. (1992). Fundamentals of Stereolithography. Society of Manufacturing Engineers,

(July), 196–211. https://doi.org/10.1017/CBO9781107415324.004

Jing Hu. (2017). Study On STL-Based Slicing Process For 3D Printing. Solid Freeform

Fabrication, 885–895.

Kang, H. W., Park, J. H., & Cho, D. W. (2012). A pixel based solidification model for

projection based stereolithography technology. Sensors and Actuators, A: Physical, 178,

223–229. https://doi.org/10.1016/j.sna.2012.01.016

Kirschman, C., & Jara-Almonte, C. (1992). A parallel slicing algorithm for solid freeform

fabrication processes. Solid Freeform Fabrication Symposium.

Kitano, H. (2012). Advances In light-induced polymerizations : I . Shadow cure in free radical

photopolymerizations , II . Experimental and modeling studies of photoinitiator systems

for effective polymerizations with LEDs. PhD Dissertation, 195.

Koc, B., Ma, Y., & Lee, Y. S. (2000). Smoothing STL files by Max-Fit biarc curves for rapid

prototyping. Rapid Prototyping Journal, 6(3), 186–203.

https://doi.org/10.1108/13552540010337065

Kodama, H. (1981). Automatic method for fabricating a three-dimensional plastic model with

photo-hardening polymer. Review of Scientific Instruments, 52(11), 1770–1773.

https://doi.org/10.1063/1.1136492

Królikowski, M., & Grzesiak, D. (2014). Technological Restrictions of Lightweight Lattice

Structures Manufactured by Selective Laser Melting of Metals. Advances in

Manufacturing Science and Technology, 38(2). https://doi.org/10.2478/amst-2014-0012

Kulkarni, P., Marsan, A., & Dutta, D. (2000). Review of process planning techniques in layered

manufacturing. Rapid Prototyping Journal. https://doi.org/10.1108/13552540010309859

Kumar, V., & Dutta, D. (1997). An assessment of data formats for layered manufacturing.

73

Advances in Engineering Software, 28(3), 151–164. https://doi.org/10.1016/S0965-

9978(96)00050-6

Lederle, F., Meyer, F., Brunotte, G.-P., Kaldun, C., & Hübner, E. G. (2016). Improved

mechanical properties of 3D-printed parts by fused deposition modeling processed under

the exclusion of oxygen. Progress in Additive Manufacturing, 1(1–2), 3–7.

https://doi.org/10.1007/s40964-016-0010-y

Lee, J. H., Prud’homme, R. K., & Aksay, I. a. (2001). Cure depth in photopolymerization:

Experiments and theory. Journal of Materials Research, 16(12), 3536–3544.

https://doi.org/10.1557/JMR.2001.0485

Leong, K. F., Chua, C. K., & Ng, Y. M. (1996). A study of stereolithography file errors and

repair. Part 1. Generic solution. International Journal of Advanced Manufacturing

Technology, 12(6), 407–414. https://doi.org/10.1007/BF01186929

Manmadhachary, A., Ravi Kumar, Y., & Krishnanand, L. (2016). Improve the accuracy, surface

smoothing and material adaption in STL file for RP medical models. Journal of

Manufacturing Processes, 21, 46–55. https://doi.org/10.1016/j.jmapro.2015.11.006

Minetto, R., Volpato, N., Stolfi, J., Gregori, R. M. M. H., & da Silva, M. V. G. (2017). An

optimal algorithm for 3D triangle mesh slicing. CAD Computer Aided Design, 92, 1–10.

https://doi.org/10.1016/j.cad.2017.07.001

Mu, Q., Wang, L., Dunn, C. K., Kuang, X., Duan, F., Zhang, Z., … Wang, T. (2017). Digital

light processing 3D printing of conductive complex structures. Additive Manufacturing,

18, 74–83. https://doi.org/10.1016/j.addma.2017.08.011

Pan, X., Chen, K., & Chen, D. (2014). Development of rapid prototyping slicing software based

on STL model. Proceedings of the 2014 IEEE 18th International Conference on Computer

Supported Cooperative Work in Design, CSCWD 2014, (51175395), 191–195.

https://doi.org/10.1109/CSCWD.2014.6846840

Pan, Y., Zhou, C., & Chen, Y. (2012). A Fast Mask Projection Stereolithography Process for

Fabricating Digital Models in Minutes. Journal of Manufacturing Science and

Engineering, 134(5), 051011. https://doi.org/10.1115/1.4007465

Pandey, P. M., Reddy, N. V., & Dhande, S. G. (2003). Real time adaptive slicing for fused

deposition modelling. International Journal of Machine Tools and Manufacture, 43(1),

61–71. https://doi.org/10.1016/S0890-6955(02)00164-5

Pandey, R. (2014). Photopolymers in 3D printing applications.

Park, S. C. (2003). Tool-path generation for Z-constant contour machining. CAD Computer

Aided Design, 35(1), 27–36. https://doi.org/10.1016/S0010-4485(01)00173-7

74

Piegl, L. A., & Richard, A. M. (1995). Tessellating trimmed nurbs surfaces. Computer-Aided

Design, 27(1), 16–26. https://doi.org/10.1016/0010-4485(95)90749-6

Ranellucci, A., & Lenox, J. (2011). Slic3r - G-code generator for 3D printers. Retrieved from

http://www.slic3r.org/

Szilvśi-Nagy, M., & Mátyási, G. (2003). Analysis of STL files. Mathematical and Computer

Modelling, 38(7–9), 945–960. https://doi.org/10.1016/S0895-7177(03)90079-3

Tang, Y. (2005). Stereolithography Cure Process Modeling. Georgia Institute of Technology.

Tang, Y., Henderson, C. L., Muzzy, J., & Rosen, D. W. (2004). Stereolithography Cure Process

Modeling Using Acrylate Resin. Fifteenth Solid Freeform Fabrication (SFF) Symposium,

612–623. https://doi.org/10.1017/CBO9781107415324.004

Tian, R., Liu, S., & Zhang, Y. (2018). Research on fast grouping slice algorithm for STL model

in rapid prototyping. Journal of Physics: Conference Series, 1074, 012165.

https://doi.org/10.1088/1742-6596/1074/1/012165

Topçu, O., Taşcıoğlu, Y., & Ünver, H. Ö. (2011). A Method for Slicing CAD Models in Binary

STL Format. 6th International Advanced Technologies Symposium (IATS’11), (May),

141–148. Retrieved from http://web.firat.edu.tr/iats/cd/subjects/Manufacturing/MTE-

31.pdf

Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly,

D., … Desimone, J. M. (2015). Continuous liquid interface production of 3D objects.

Science, 347(6228), 1349–1352.

Tyvaert, I., Fadel, G., & Rouhaud, E. (1999). A methodology to create STL files from data point

clouds generated with a coordinate measuring machine. Annual Interantional Solid

Freeform Fabrication Symposium, 47–58.

Vatani, M., Rahimi, A. R., Brazandeh, F., & Sanati Nezhad, A. (2009). An enhanced slicing

algorithm using nearest distance analysis for layer manufacturing. Proceedings of World

Academy of Science, Engineering and Technology, 37(1), 721–726. Retrieved from

http://www.waset.ac.nz/journals/waset/v49/v49-130.pdf

Wang, D. X., Guo, D. M., Jia, Z. Y., & Leng, H. W. (2006). Slicing of CAD models in color

STL format. Computers in Industry, 57(1), 3–10.

https://doi.org/10.1016/j.compind.2005.03.007

Wong, H.-T. T., Huang, Y., Tsang, S.-C., & Lam, M.-L. (2017). Real-time model slicing in

arbitrary direction using octree. ACM SIGGRAPH 2017 Posters on - SIGGRAPH ’17, 1–

2. https://doi.org/10.1145/3102163.3102185

75

Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN Mechanical

Engineering, 2012, 1–10. https://doi.org/10.5402/2012/208760

Wu, T., & Cheung, E. H. M. (2006). Enhanced STL. International Journal of Advanced

Manufacturing Technology, 29(11–12), 1143–1150. https://doi.org/10.1007/s00170-005-

0001-5

Xu, H., Weihua, J., Li, M., & Li, W. (2017). A slicing model algorithm based on STL model for

additive manufacturing processes. Proceedings of 2016 IEEE Advanced Information

Management, Communicates, Electronic and Automation Control Conference, IMCEC

2016, 1607–1610. https://doi.org/10.1109/IMCEC.2016.7867489

Ye, H., Zhou, C., & Xu, W. (2017). Image-Based Slicing and Tool Path Planning for Hybrid

Stereolithography Additive Manufacturing. Journal of Manufacturing Science and

Engineering, 139(7), 071006. https://doi.org/10.1115/1.4035795

Zhang, Z., & Joshi, S. (2015). An improved slicing algorithm with efficient contour

construction using STL files. International Journal of Advanced Manufacturing

Technology, 80(5–8), 1347–1362. https://doi.org/10.1007/s00170-015-7071-9

Zheng, X., Cheng, K., Zhou, X., Lin, J., & Jing, X. (2018). An adaptive direct slicing method

based on tilted voxel of two-photon polymerization. International Journal of Advanced

Manufacturing Technology, 96(1–4), 521–530. https://doi.org/10.1007/s00170-017-1507-3

Zhou, M. Y., Xi, J. T., & Yan, J. Q. (2004). Adaptive direct slicing with non-uniform cusp

heights for rapid prototyping. International Journal of Advanced Manufacturing

Technology, 23(1–2), 20–27. https://doi.org/10.1007/s00170-002-1523-8

76

APPENDIX A

ADDITIONAL SLICING RESULT

Eiffel Tower (Facet: 149014)

Gundam (Facet: 163724)

77

Speedster (Facet: 179352)

Heart (Facet: 217600)

78

Dreadnaught (Facet: 293146)

Worm (Facet: 567334)

79

APPENDIX B

PSEUDOCODE (VB.NET)

Facet Class

Public Class Facet
 Structure Point3D
 Dim X As Double
 Dim Y As Double
 Dim Z As Double

 'Constructor Point3D
 Public Sub New(ByVal x As Double, ByVal y As Double, ByVal z As Double)
 Me.X = x
 Me.Y = y
 Me.Z = z
 End Sub

 Public Shared Function Dot(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double
 Return (p1.X * p2.X) + (p1.Y * p2.Y) + (p1.Z * p2.Z)
 End Function

 Public Shared Function Cross(ByRef p1 As Point3D, ByRef p2 As Point3D) As Point3D
 Return New Point3D(p1.Y * p2.Z - p1.Z * p2.Y, p1.X * p2.Z - p1.Z * p2.X, p1.X * p2.Y - p1.Y * p2.X)
 End Function

 Public Shared Function LengthBetween(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double
 Return Math.Sqrt(Math.Pow((p1.X - p2.X), 2) + Math.Pow((p1.Y - p2.Y), 2) + Math.Pow((p1.Z - p2.Z),
2))
 End Function

 Public Shared Function LengthSq(ByRef p1 As Point3D, ByRef p2 As Point3D) As Double
 Return Math.Pow((p1.X - p2.X), 2) + Math.Pow((p1.Y - p2.Y), 2) + Math.Pow((p1.Z - p2.Z), 2)
 End Function

 Public Shared Operator +(ByVal p1 As Point3D, ByVal p2 As Point3D) As Point3D
 Return New Point3D(p1.X + p2.X, p1.Y + p2.Y, p1.Z + p2.Z)
 End Operator

 Public Shared Operator -(ByVal p1 As Point3D, ByVal p2 As Point3D) As Point3D
 Return New Point3D(p1.X - p2.X, p1.Y - p2.Y, p1.Z - p2.Z)
 End Operator

 Public Shared Operator *(ByVal multiplier As Double, ByVal p1 As Point3D) As Point3D
 Return New Point3D(p1.X * multiplier, p1.Y * multiplier, p1.Z * multiplier)
 End Operator

 Public Shared Operator *(ByVal p1 As Point3D, ByVal multiplier As Double) As Point3D
 Return New Point3D(p1.X * multiplier, p1.Y * multiplier, p1.Z * multiplier)
 End Operator

 Public Overrides Function ToString() As String
 Return String.Format("{0},{1},{2}", X, Y, Z)
 End Function
 End Structure

80

 Public ZMax As Double
 Public ZMin As Double
 Public Normal As Point3D
 Public P1, P2, P3 As Point3D

 Public Sub New(ByRef norm As Point3D, ByRef Point1 As Point3D, ByRef Point2 As Point3D, ByRef
Point3 As Point3D)
 Me.Normal = norm
 Me.P1 = Point1
 Me.P2 = Point2
 Me.P3 = Point3
 Me.ZMax = Math.Max(Point1.Z, Point2.Z)
 Me.ZMax = Math.Max(Me.ZMax, Point3.Z)
 Me.ZMin = Math.Min(Point1.Z, Point2.Z)
 Me.ZMin = Math.Min(Me.ZMin, Point3.Z)
 End Sub

 Public Overrides Function ToString() As String
 Return String.Format("[{0}] [{1}] [{2}]", P1, P2, P3)
 End Function

End Class

81

Pixel Line Class

Public Class PixelClass
 Structure VectorPixel
 Dim X, Y As UInteger

 Public Sub New(ByRef x As UInteger, ByRef y As UInteger)
 Me.X = x
 Me.Y = y
 End Sub

 Public Overrides Function ToString() As String
 Return String.Format("[{0}, {1}]", X, Y)
 End Function
 End Structure

 Public Po, Pf As VectorPixel
 Public Group As UInteger

 Public Sub New(ByRef P1 As VectorPixel, ByRef P2 As VectorPixel, ByRef id As UInteger)
 Me.Po = P1
 Me.Pf = P2
 Me.Group = id
 End Sub

 Public Shared Function Compare(ByRef P1 As VectorPixel, ByRef P2 As VectorPixel) As Boolean
 If P1.X = P2.X Then
 If P1.Y = P2.Y Then
 Return True
 Else
 Return False
 End If
 Else
 Return False
 End If
 End Function

 Public Overrides Function ToString() As String
 Return String.Format("[{0}, {1}] [{2}, {3}] [{4}]", Po.X, Po.Y, Pf.X, Pf.Y, Group)
 End Function

End Class

82

Main Code

Imports System
Imports System.IO
Imports System.ComponentModel
Imports System.Text
Imports DLP_3D_Printer.PixelClass
Imports DLP_3D_Printer.Facet

Public Class mainForm
 'STL Facet Read variables
 Dim FacetCount As UInteger = 0
 Dim groupID As UInteger = 0
 Dim exCount As UInteger = 0
 Dim zSlice As Double = 0
 Dim xMax, xMin, yMax, yMin, zMax, zMin As Double
 Dim STL_list As New List(Of Facet)
 Dim STL_intersect As New List(Of Facet)
 Dim facetBuffer(4) As Byte
 Dim header(80) As Byte
 Dim nx(4), ny(4), nz(4) As Byte
 Dim p1x(4), p1y(4), p1z(4) As Byte
 Dim p2x(4), p2y(4), p2z(4) As Byte
 Dim p3x(4), p3y(4), p3z(4) As Byte
 Dim atb(2) As Byte

 'Pixel Mapping variables
 Dim resW As UInteger = 1920 'Temp Screen Width X
 Dim resH As UInteger = 1080 'Temp Screen Height Y
 Dim ARxy, ARwh, ARz As Double
 Dim pixelList As List(Of PixelClass)
 Dim zOut As UInteger = 0

 Private Sub readBinary(ByVal fileSTL As String)
 Dim result As UInteger = 0
 Dim normal As New Point3D
 Dim p1 As New Point3D
 Dim p2 As New Point3D
 Dim p3 As New Point3D
 STL_list = New List(Of Facet)
 FacetCount = 0
 xMax = Double.MinValue
 yMax = Double.MinValue
 zMax = Double.MinValue
 xMin = Double.MaxValue
 yMin = Double.MaxValue
 zMin = Double.MaxValue

 Using myReader As New FileStream(fileSTL, FileMode.Open)
 myReader.Seek(0, SeekOrigin.Begin)
 Dim remains As Integer = CType(myReader.Length, Integer)
 Dim i As UInteger = 0

 If remains > 0 Then
 myReader.Read(header, 0, 80)
 myReader.Read(facetBuffer, 0, 4)
 exCount = BitConverter.ToInt32(facetBuffer, 0)

83

 FacetCount = exCount

 For k As UInteger = 0 To exCount - 1
 myReader.Read(nx, 0, 4)
 myReader.Read(ny, 0, 4)
 myReader.Read(nz, 0, 4)
 myReader.Read(p1x, 0, 4)
 myReader.Read(p1y, 0, 4)
 myReader.Read(p1z, 0, 4)
 myReader.Read(p2x, 0, 4)
 myReader.Read(p2y, 0, 4)
 myReader.Read(p2z, 0, 4)
 myReader.Read(p3x, 0, 4)
 myReader.Read(p3y, 0, 4)
 myReader.Read(p3z, 0, 4)
 myReader.Read(atb, 0, 2)

 normal.X = BitConverter.ToSingle(nx, 0)
 normal.Y = BitConverter.ToSingle(ny, 0)
 normal.Z = BitConverter.ToSingle(nz, 0)
 p1.X = BitConverter.ToSingle(p1x, 0)
 p1.Y = BitConverter.ToSingle(p1y, 0)
 p1.Z = BitConverter.ToSingle(p1z, 0)
 p2.X = BitConverter.ToSingle(p2x, 0)
 p2.Y = BitConverter.ToSingle(p2y, 0)
 p2.Z = BitConverter.ToSingle(p2z, 0)
 p3.X = BitConverter.ToSingle(p3x, 0)
 p3.Y = BitConverter.ToSingle(p3y, 0)
 p3.Z = BitConverter.ToSingle(p3z, 0)

 'Object X max/min
 xMax = Math.Max(xMax, p1.X)
 xMax = Math.Max(xMax, p2.X)
 xMax = Math.Max(xMax, p3.X)
 xMin = Math.Min(xMin, p1.X)
 xMin = Math.Min(xMin, p2.X)
 xMin = Math.Min(xMin, p3.X)

 'Object Y max/min
 yMax = Math.Max(yMax, p1.Y)
 yMax = Math.Max(yMax, p2.Y)
 yMax = Math.Max(yMax, p3.Y)
 yMin = Math.Min(yMin, p1.Y)
 yMin = Math.Min(yMin, p2.Y)
 yMin = Math.Min(yMin, p3.Y)

 'Object Z max/min
 zMax = Math.Max(zMax, p1.Z)
 zMax = Math.Max(zMax, p2.Z)
 zMax = Math.Max(zMax, p3.Z)
 zMin = Math.Min(zMin, p1.Z)
 zMin = Math.Min(zMin, p2.Z)
 zMin = Math.Min(zMin, p3.Z)

 STL_list.Add(New Facet(normal, p1, p2, p3))

 Next

84

 End If
 End Using

 STL_list = STL_list.OrderBy(Function(x) x.ZMin).ToList()

 End Sub

 Private Sub Slice(ByVal sliceZ As Double)
 Dim si As Double
 Dim n, u, Po, Pf, Vo As Point3D

 initializeMatrix()
 STL_intersect = New List(Of Facet)
 STL_intersect = STL_list.FindAll(Function(x) x.ZMin < sliceZ And x.ZMax > sliceZ)

 n = New Point3D(0, 0, 1)
 Vo = New Point3D(0, 0, sliceZ)

 For Each facet_tri In STL_intersect
 Dim pFlag As Boolean() = {False, False, False}
 Dim pBuffer(3) As Point3D
 Dim vLength(3) As Double
 Dim pointCount As Byte = 0

 For k As Byte = 0 To 2
 Select Case k
 Case 0
 Po = facet_tri.P1
 Pf = facet_tri.P2
 Case 1
 Po = facet_tri.P2
 Pf = facet_tri.P3
 Case 2
 Po = facet_tri.P3
 Pf = facet_tri.P1
 End Select

 u = Pf - Po
 If Point3D.Dot(n, u) <> 0 Then 'If there is intersection
 si = Point3D.Dot(n, Vo - Po) / Point3D.Dot(n, u)
 If si >= 0 And si <= 1 Then
 pBuffer(k) = Po + si * u
 pFlag(k) = True
 pointCount += 1
 End If
 End If
 Next

 'Case Handler
 Select Case pointCount
 Case 2
 If pFlag(0) And pFlag(1) Then
 HashConvert(pBuffer(0), pBuffer(1))
 End If
 If pFlag(1) And pFlag(2) Then
 HashConvert(pBuffer(1), pBuffer(2))
 End If

85

 If pFlag(2) And pFlag(0) Then
 HashConvert(pBuffer(2), pBuffer(0))
 End If
 Continue For
 Case 3
 'Find which pairs will produce longest vector
 vLength(0) = Point3D.LengthSq(pBuffer(0), pBuffer(1))
 vLength(1) = Point3D.LengthSq(pBuffer(1), pBuffer(2))
 vLength(2) = Point3D.LengthSq(pBuffer(2), pBuffer(0))

 If vLength(0) > vLength(1) Then
 If vLength(0) >= vLength(2) Then
 HashConvert(pBuffer(0), pBuffer(1))
 Else
 HashConvert(pBuffer(2), pBuffer(0))
 End If
 Else
 If vLength(1) >= vLength(2) Then
 HashConvert(pBuffer(1), pBuffer(2))
 Else
 HashConvert(pBuffer(2), pBuffer(0))
 End If
 End If
 Continue For
 Case Else
 Continue For
 End Select
 Next

 If pixelList.Count > 0 Then
 generateContour(pixelList)
 End If
 End Sub

 Private Sub initializeMatrix()
 ARwh = resW / resH
 ARxy = (xMax - xMin) / (yMax - yMin)

 If ARxy >= ARwh Then
 ARz = (zMax - zMin) / (xMax - xMin)
 zOut = (zSlice - zMin) / (zMax - zMin) * (resW - 1) * ARz
 Else
 ARz = (zMax - zMin) / (yMax - yMin)
 zOut = (zSlice - zMin) / (zMax - zMin) * (resH - 1) * ARz
 End If
 pixelList = New List(Of PixelClass)
 End Sub

 Private Sub HashConvert(ByRef Point1 As Point3D, ByRef Point2 As Point3D)
 Dim po, pf As VectorPixel

 If ARxy >= ARwh Then
 'Fit to Width (X)
 po.X = (Point1.X - xMin) / (xMax - xMin) * (resW - 1)
 po.Y = (Point1.Y - yMin) / (yMax - yMin) * ((resW - 1) / ARxy)
 pf.X = (Point2.X - xMin) / (xMax - xMin) * (resW - 1)
 pf.Y = (Point2.Y - yMin) / (yMax - yMin) * ((resW - 1) / ARxy)

86

 Else
 'Fit to Height (Y)
 po.X = (Point1.X - xMin) / (xMax - xMin) * ((resH - 1) * ARxy)
 po.Y = (Point1.Y - yMin) / (yMax - yMin) * (resH - 1)
 pf.X = (Point2.X - xMin) / (xMax - xMin) * ((resH - 1) * ARxy)
 pf.Y = (Point2.Y - yMin) / (yMax - yMin) * (resH - 1)
 End If

 If Not Compare(po, pf) Then
 pixelList.Add(New PixelClass(po, pf, 0))
 End If
 End Sub

 Private Sub generateContour(ByRef list As List(Of PixelClass))
 Dim isInverse As Boolean = False
 Dim findInt As Integer = 0
 Dim initPoint As VectorPixel
 Dim searchPoint As VectorPixel

 groupID = 0
 list = list.OrderBy(Function(X) X.Po.Y).ToList
 list = list.OrderBy(Function(X) X.Po.X).ToList
 initPoint = list.Item(0).Po
 For i As Integer = 0 To list.Count - 2
 'Assign search point
 searchPoint = list.Item(i).Pf

 'Closed Loop check
 If Compare(searchPoint, initPoint) Then
 groupID += 1
 initPoint = list.Item(i + 1).Po
 Else
 'Find next pair
 findInt = FindPair(i, searchPoint, list)
 If findInt <> -1 Then
 'Check if the point is inverted
 isInverse = Compare(searchPoint, list.Item(findInt).Pf)
 SwapPoint(findInt, i + 1, isInverse, list)
 End If
 End If
 list.Item(i + 1).Group = groupID
 Next

 End Sub

 Private Function FindPair(ByRef offset As UInteger, ByRef point As VectorPixel, ByRef list As List(Of
PixelClass)) As Integer
 For i As Integer = offset + 1 To list.Count - 1
 If Compare(point, list.Item(i).Po) Or Compare(point, list.Item(i).Pf) Then
 Return i
 End If
 Next
 Return -1
 End Function

87

 Private Sub SwapPoint(ByRef foundPoint As UInteger, ByVal nextPoint As UInteger, ByRef Inverse As
Boolean, ByRef list As List(Of PixelClass))
 Dim buffer As PixelClass = list.Item(foundPoint)
 list.Item(foundPoint) = list.Item(nextPoint)

 If Inverse Then
 list.Item(nextPoint) = New PixelClass(buffer.Pf, buffer.Po, 0)
 Else
 list.Item(nextPoint) = New PixelClass(buffer.Po, buffer.Pf, 0)
 End If
 End Sub

End Class

88

APPENDIX C

PSEUDOCODE (C++)

Point3D Class

#include "point3d.h"
#include <string>

using namespace std;

point3d::point3d(){}

point3d::point3d(float x, float y, float z):X(x),Y(y),Z(z){}

point3d::point3d(char* input){
 char x[4] = {input[0],input[1],input[2],input[3]};
 char y[4] = {input[4],input[5],input[6],input[7]};
 char z[4] = {input[8],input[9],input[10],input[11]};

 this->X = *((float*)x);
 this->Y = *((float*)y);
 this->Z = *((float*)z);
}

float point3d::dot(point3d Pa){
 return ((this->X * Pa.X) + (this->Y * Pa.Y) + (this->Z * Pa.Z));
}

point3d point3d::operator +(const point3d &Pa){
 return point3d(this->X+Pa.X, this->Y+Pa.Y, this->Z+Pa.Z);
}

point3d point3d::operator -(const point3d &Pa){
 return point3d(this->X-Pa.X, this->Y-Pa.Y, this->Z-Pa.Z);
}

point3d point3d::operator *(const float &mult){
 return point3d((this->X * mult), (this->Y * mult), (this->Z * mult));
}

string point3d::toString(){
 string buffer = "";
 buffer+=to_string(this->X); buffer += " ";
 buffer+=to_string(this->Y); buffer += " ";
 buffer+=to_string(this->Z); buffer += " ";
 return buffer;
}

point3d::~point3d(){}

89

Facet Class

#include "facet.h"
#include <math.h>

using namespace std;

facet::facet(){}

facet::facet(point3d p1, point3d p2, point3d p3, point3d norm):P1(p1),P2(p2), P3(p3), Norm(norm)
{
 this->Xmax = max(p1.X, p2.X); this->Xmax = max(this->Xmax, p3.X);
 this->Xmin = min(p1.X, p2.X); this->Xmin = min(this->Xmin, p3.X);
 this->Ymax = max(p1.Y, p2.Y); this->Ymax = max(this->Ymax, p3.Y);
 this->Ymin = min(p1.Y, p2.Y); this->Ymin = min(this->Ymin, p3.Y);
 this->Zmax = max(p1.Z, p2.Z); this->Zmax = max(this->Zmax, p3.Z);
 this->Zmin = min(p1.Z, p2.Z); this->Zmin = min(this->Zmin, p3.Z);
}

facet::facet(char *input){
 point3d gNorm(input);
 point3d gP1(input+12);
 point3d gP2(input+24);
 point3d gP3(input+36);

 this->Norm = gNorm;
 this->P1 = gP1;
 this->P2 = gP2;
 this->P3 = gP3;

 this->Xmax = max(gP1.X, gP2.X); this->Xmax = max(this->Xmax, gP3.X);
 this->Xmin = min(gP1.X, gP2.X); this->Xmin = min(this->Xmin, gP3.X);
 this->Ymax = max(gP1.Y, gP2.Y); this->Ymax = max(this->Ymax, gP3.Y);
 this->Ymin = min(gP1.Y, gP2.Y); this->Ymin = min(this->Ymin, gP3.Y);
 this->Zmax = max(gP1.Z, gP2.Z); this->Zmax = max(this->Zmax, gP3.Z);
 this->Zmin = min(gP1.Z, gP2.Z); this->Zmin = min(this->Zmin, gP3.Z);
}

string facet::toString(){
 string buffer="Facet\n";
 buffer+= this->P1.toString() + "\n";
 buffer+= this->P2.toString() + "\n";
 buffer+= this->P3.toString() + "\n";
 //buffer+= this->Norm.toString() + " ";
 buffer+= to_string(this->Zmax) + " ";
 buffer+= to_string(this->Zmin) + "\n";
 return buffer;
}

bool facet::operator<(const facet &other){
 return this->Zmin < other.Zmin;
}

bool facet::isIntersect(float &height){
 if((height < this->Zmax) && (height > this->Zmin)){
 return true;
 } else{

90

 return false;
 }
}

facet::~facet(){}

91

Point2D Class

#include "point2d.h"
#include "math.h"

point2d::point2d(){}

point2d::~point2d(){}

point2d::point2d(unsigned short &xx, unsigned short &yy):X(xx), Y(yy){}

string point2d::toString(){
 return "(" + to_string(this->X) + "," + to_string(this->Y) + ")";
}

float point2d::length(point2d &other){
 return (powf(this->X - other.X, 2) + powf(this->Y - other.Y, 2));
}

92

Pixel Line Class

#include "pixelline.h"

pixelLine::pixelLine(){}

pixelLine::pixelLine(const point2d a, const point2d b, const unsigned int id){
 this->Po = a;
 this->Pf = b;
 this->Id = id;
}

string pixelLine::toString(){
 string buffer="";
 buffer += this->Po.toString() + " ";
 buffer += this->Pf.toString() + " ";
 buffer += "[" + to_string(this->Id) + "]";
 return buffer;
}

pixelLine::~pixelLine(){}

93

Slicer Class

#include "slicer.h"
#include <iostream>
#include <fstream>
#include <algorithm>
#include <limits>

using namespace std;

Slicer::Slicer(){}

void Slicer::Initialize(){
 this->facetList.clear();
 this->facetCount = 0;
}

void Slicer::ReadSTL(string filename){
 ifstream stlFile;
 char fCount[4];
 char inputFacet[50];

 Initialize();

 stlFile.open(filename, ios::binary);

 if(stlFile.is_open()){
 stlFile.seekg(0);
 stlFile.ignore(80);
 stlFile.read(fCount, 4);
 this->facetCount = *((unsigned long*)fCount);

 for(unsigned long i = 0; i < this->facetCount; i++){
 stlFile.read(inputFacet, 50);
 facet ex(inputFacet);
 this->facetList.push_back(ex);
 };
 }

 stlFile.close();
 this->facetList.shrink_to_fit();
 sort(facetList.begin(),facetList.end());
 DefineBoundary();

}

void Slicer::Slice(float &height){
 this->LineList.clear();
 vector<facet*> intersectList;
 point2d *aPo, *aPf, pConvert[3];
 point3d n(0,0,1), u, *Po, *Pf, Vo(0,0,height);
 float si = 0;
 GenerateList(height, intersectList);

 for(unsigned int i = 0; i < intersectList.size(); i++){
 bool pFlag[3] = {false,false,false};
 point3d pBuffer[3];

94

 float vLength[3];
 unsigned short pointCount = 0;

 for(unsigned short k = 0; k < 3; k++){
 switch(k){
 case 0:
 Po = &intersectList[i]->P1;
 Pf = &intersectList[i]->P2;
 break;
 case 1:
 Po = &intersectList[i]->P2;
 Pf = &intersectList[i]->P3;
 break;
 case 2:
 Po = &intersectList[i]->P3;
 Pf = &intersectList[i]->P1;
 break;
 };

 u = (*Pf) - (*Po);
 if(n.dot(u) != 0){
 si = n.dot(Vo - (*Po)) / n.dot(u);
 if((si >= 0) && (si <= 1)){
 pBuffer[k] = (*Po) + (u * si);
 pConvert[k] = Convert(pBuffer[k]);
 pFlag[k] = true;
 pointCount++;
 }
 };
 };

 switch(pointCount){
 case 0:
 case 1:
 break;
 case 2:
 if(pFlag[0] && pFlag[1]){
 aPo = &pConvert[0]; aPf = &pConvert[1];
 }
 if(pFlag[1] && pFlag[2]){
 aPo = &pConvert[1]; aPf = &pConvert[2];
 }
 if(pFlag[2] && pFlag[0]){
 aPo = &pConvert[2]; aPf = &pConvert[0];
 }

 if(!Compare(*aPo, *aPf)){
 this->LineList.push_back(pixelLine(*aPo, *aPf, 0));
 }
 break;
 case 3:
 vLength[0] = pConvert[0].length(pConvert[1]);
 vLength[1] = pConvert[1].length(pConvert[2]);
 vLength[2] = pConvert[2].length(pConvert[0]);

 if(vLength[0] > vLength[1]){
 if(vLength[0] >= vLength[2]){

95

 aPo = &pConvert[0]; aPf = &pConvert[1];
 }else {
 aPo = &pConvert[2]; aPf = &pConvert[0];
 }
 } else {
 if(vLength[1] >= vLength[2]){
 aPo = &pConvert[1]; aPf = &pConvert[2];
 } else {
 aPo = &pConvert[2]; aPf = &pConvert[0];
 }
 }

 if(!Compare(*aPo, *aPf)){
 this->LineList.push_back(pixelLine(*aPo, *aPf, 0));
 }
 break;
 };
 };

 if(LineList.size() != 0){
 Contour();
 }
}

void Slicer::GenerateList(float &height, vector<facet*> &objectList){
 objectList.clear();
 for(unsigned int i = 0; i < this->facetList.size(); i++){
 if(this->facetList[i].isIntersect(height)){
 objectList.push_back(&facetList[i]);
 }
 }
}

void Slicer::DefineBoundary(){
 upperX = upperY = upperZ = numeric_limits<float>::lowest();
 lowerX = lowerY = lowerZ = numeric_limits<float>::max();

 for(unsigned int i = 0; i < this->facetList.size(); i++){
 upperX = max(upperX, this->facetList[i].Xmax);
 lowerX = min(lowerX, this->facetList[i].Xmin);
 upperY = max(upperY, this->facetList[i].Ymax);
 lowerY = min(lowerY, this->facetList[i].Ymin);
 upperZ = max(upperZ, this->facetList[i].Zmax);
 lowerZ = min(lowerZ, this->facetList[i].Zmin);
 }

 this->ARxy = (upperX - lowerX) / (upperY - lowerY);
}

void Slicer::SetResolution(const unsigned short width, const unsigned short height){
 this->resW = width;
 this->resH = height;
 this->ARwh = (float)width / (float)height;
}

point2d Slicer::Convert(point3d &Pa){
 unsigned short px, py;

96

 if(ARxy >= ARwh){
 px = (Pa.X - lowerX) / (upperX - lowerX) * (resW - 1);
 py = (Pa.Y - lowerY) / (upperY - lowerY) * ((resW - 1) / ARxy);
 } else {
 px = (Pa.X - lowerX) / (upperX - lowerX) * ((resH - 1) * ARxy);
 py = (Pa.Y - lowerY) / (upperY - lowerY) * (resH - 1);
 }

 return point2d(px,py);
}

bool Slicer::Compare(point2d &a, point2d &b){
 if(a.X == b.X){
 if(a.Y == b.Y){
 return true;
 }
 }
 return false;
}

void Slicer::Contour(){
 unsigned short id = 0;
 point2d *searchPoint, *initPoint;

 initPoint = &this->LineList[0].Po;
 for(unsigned int i = 0; i < this->LineList.size() - 1; i++){
 searchPoint = &this->LineList[i].Pf;

 if(Compare(*searchPoint, *initPoint)){
 id++;
 initPoint = &this->LineList[i + 1].Po;
 } else {
 int findInt = FindPair(i, *searchPoint);
 if(findInt != -1){
 bool isInverse = Compare(*searchPoint, this->LineList[findInt].Pf);
 SwapPoint(findInt, i+1, isInverse, this->LineList);
 } else {
 cout << "Point Not Found at: " << i << endl;
 }
 }
 this->LineList[i+1].Id = id;
 }
}

int Slicer::FindPair(unsigned int &startIndex, point2d &searchPoint){
 for(unsigned int i = startIndex + 1; i < this->LineList.size(); i++){
 if((Compare(searchPoint, this->LineList[i].Po)) || (Compare(searchPoint, this->LineList[i].Pf))){
 return i;
 }
 }
 return -1;
}

void Slicer::SwapPoint(const unsigned int foundPoint, const unsigned int nextPoint, bool inverse,
vector<pixelLine> &list){
 swap(list[foundPoint], list[nextPoint]);

97

 if(inverse){
 swap(list[nextPoint].Po, list[nextPoint].Pf);
 }
}

Slicer::~Slicer(){}

98

APPENDIX D

PSEUDOCODE (MATLAB)

MATLAB Script

%% CONTOUR PLOT
clear;
cd 'C:\Users\DELL\Documents\DLP Folder\Vector';
filename = 'Dragon';
myvars = dir(sprintf('%s*.csv', filename)); %Get list of CSV file
disp(filename);
figure(1);
set(1, 'Name', sprintf('%s', filename),... %Create new figure
 'Color', [1 1 1],'pos', [350 200 600 400]);

% Initialize Slice Height, Slice Time, and Contour Time variables
STime = zeros(length(myvars), 1);
CTime = zeros(length(myvars), 1);
HSlice = zeros(length(myvars), 1);
IFacet = zeros(length(myvars), 1);
GNumber = zeros(length(myvars), 1);
TTime = zeros(length(myvars), 1);

for i = 1 : length(myvars) %Iterate for each file
 CurrentFile = csvread(myvars(i,1).name); %Load working file
 Gmax = max(CurrentFile(:, 4)); %Get Max Group number
 G = 0; %Initialize G

 % Acquire Slice Height, Slice Time, and Contour Time
 HSlice(i) = CurrentFile(1, 3);
 NFacet = CurrentFile(1, 5);
 IFacet(i) = CurrentFile(1, 6);
 STime(i) = CurrentFile(1, 7);
 CTime(i) = CurrentFile(1, 8);
 GNumber(i) = Gmax + 1;
 TTime(i) = STime(i) + CTime(i);

 while G <= Gmax
 % Filter Array based on Group Number at Column 4
 t = find(CurrentFile(:, 4) == G);

 % Get XYZ (Column 1 2 3)
 X = CurrentFile(t, 1);
 Y = CurrentFile(t, 2);
 Z = CurrentFile(t, 3);

 % Plot Contour for each layer with color mapping
 Ubound = 100;
 Lbound = Ubound / 2;
 if (TTime(i) > Ubound)
 yr = 255;
 yg = 0;
 end
 if (TTime(i) >= Lbound) && (TTime(i) <= Ubound)
 m = -255 / (Ubound - Lbound);
 c = 255 - Lbound * m;

99

 yr = 255;
 yg = round(m * TTime(i) + c);
 end
 if (TTime(i) < Lbound)
 yg = 255;
 yr = round(255 / Lbound * TTime(i));
 end
 colors_p = [yr, yg, 0] / 255;
 fill3(X, Y, Z, colors_p);
 G = G + 1;
 hold on; %Stack plotting
 end
end
a = [linspace(0, 1, 32); ones(1, 32); zeros(1, 32)]';
b = [ones(1, 32); linspace(1, 0, 32); zeros(1, 32)]';
c = [a; b];
colormap(c);
val = linspace(0, Ubound, 11);
colorbar('YTickLabel', val);
axis equal;
set(gca, 'Color', [0.9 0.9 0.9]); %Set grid BG color
set(gca, 'View', [45 30]); %Set rotation axis
grid on; %Enable grid
hold off; %Disable stack plot
saveas(gcf,sprintf('%s_1-Fig.png',filename)); %Save figure

%% RESULT GRAPH PLOTS
% Plot Slice Time
figure(2);
set(2,'Name','Slice Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, STime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Slice Time (ms)');
xlim([min(HSlice) max(HSlice)]);
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(STime), std(STime))); %edited for
single plot
grid on;
saveas(gcf,sprintf('%s_2-ST.png',filename)); %Save figure

% Plot Contour Time
figure(3);
set(3,'Name','Contour Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, CTime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Contour Time (ms)');
xlim([min(HSlice) max(HSlice)]);
title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(CTime), std(CTime)))
grid on;
saveas(gcf,sprintf('%s_3-CT.png',filename)); %Save figure

% Plot Total Time
figure(4);
set(4,'Name','Total Time vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, TTime, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Total Time (ms)');
xlim([min(HSlice) max(HSlice)]);

100

title(sprintf('Facet = %d, Mean = %0.2fms, SD = %0.2f', NFacet, mean(TTime), std(TTime)))
grid on;
saveas(gcf,sprintf('%s_4-TT.png',filename)); %Save figure

% Plot Intersecting Facet
figure(5);
set(5,'Name','Intersecting Facet vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, IFacet, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Intersecting Facet');
xlim([min(HSlice) max(HSlice)]);
grid on;
saveas(gcf,sprintf('%s_5-IF.png',filename)); %Save figure

% Plot Loop Count
figure(6);
set(6,'Name','Loop Number vs Slice Height','pos',[350 200 500 200]); %edited for single plot
bar(HSlice, GNumber, 1, 'FaceColor', barColor, 'EdgeColor', 'k');
xlabel('Slice Height');
ylabel('Loop Count');
xlim([min(HSlice) max(HSlice)]);
grid on;
saveas(gcf,sprintf('%s_6-LC.png',filename)); %Save figure

%% CALL FUNCTION
[it, rw] = max(CTime);
zs = HSlice(rw, 1);
funcContour(zs, filename);

disp('Slice Time VS Loop Count');
disp(NCorr(STime,GNumber));
disp('Slice Time VS Intersecting Facet');
disp(NCorr(STime,IFacet));
disp('Contour Time VS Loop Count');
disp(NCorr(CTime,GNumber));
disp('Contour Time VS Intersecting Facet');
disp(NCorr(CTime,IFacet));

101

function funcContour(zSlice, filename)
 myvars = dir(sprintf('%s*.csv', filename)); %Get list of CSV file
 figure(8);
 set(8, 'Name', sprintf('Contour Time (%s)',... %Create new figure
 filename), 'Color', [1 1 1],'pos', [350 200 600 400]);

 for i = 1 : length(myvars) %Iterate for each file
 CurrentFile = csvread(myvars(i,1).name); %Load working file
 Gmax = max(CurrentFile(:, 4)); %Get Max Group number
 G = 0; %Initialize G

 if zSlice == CurrentFile(1, 3)
 CTprev = CurrentFile(1, 8);
 CTheight = CurrentFile(1, 3);
 CIfacet = CurrentFile(1, 6);
 GHigh = Gmax + 1;
 hold off;
 while G <= Gmax
 % Filter Array based on Group Number at Column 4
 t = find(CurrentFile(:, 4) == G);

 % Get XYZ (Column 1 2 3)
 X = CurrentFile(t, 1);
 Y = CurrentFile(t, 2);

 % Plot Contour
 plot(X, Y, 'k', 'LineWidth', 1);
 hold on;
 G = G + 1;
 end
 break;
 end
 end
 title(sprintf('C.Time = %0.2fms, Z = %d, Loop = %d, Facet = %d', CTprev, CTheight,...
 GHigh, CIfacet));
 axis equal;
 grid on;
 xlabel('X-axis');
 ylabel('Y-axis');
 saveas(gcf,sprintf('%s_8-HCT.png',filename)); %Save figure
end

	ACKNOWLEDGEMENTS
	ABSTRAK
	ABSTRACT
	TABLE OF CONTENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 DLP Projection Mask Stereolithography
	1.2 Contour Generation Algorithm in Projection Mask Stereolithography
	1.3 Problem Statement
	1.4 Research Objectives
	1.5 Research Scope

	CHAPTER 2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Mask Projection Stereolithography
	2.2.1 Photopolymerization
	2.2.2 Curing Depth Model of Photopolymerization

	2.3 STL Format
	2.3.1 Types of STL
	2.3.2 Issues of STL

	2.4 Slicing Algorithm
	2.4.1 Fundamental of Slicing Algorithm
	2.4.2 Facet-Plane Intersection Case Handling
	2.4.3 Data Structure
	2.4.4 Type of Slicing Algorithm

	2.5 Contour Loop Algorithm
	2.6 Summary

	CHAPTER 3 METHODOLOGY
	3.1 Introduction
	3.2 STL Data Management
	3.3 Slicing Algorithm
	3.3.1 Case Handler for Facet-Plane Interaction
	3.3.2 Formulation of Slicing
	3.3.3 Line to Pixel Mapping
	3.3.4 Algorithm Structure

	3.4 Contour Loop Algorithm
	3.5 Computational Time Measurement
	3.6 Test Environment

	CHAPTER 4 RESULTS AND DISCUSSION
	4.1 Introduction
	4.2 Sliced Model Output
	4.3 Slicing Algorithm Performance
	4.4 Contour Loop Performance
	4.4.1 Number of Intersecting Facet at Different Slicing Height
	4.4.2 Contour Loop Counts

	4.5 Total Computational Time
	4.6 Visualization of Contour Generation Algorithm
	4.7 Comparison of Slicing and Contour Loop algorithms

	CHAPTER 5 CONCLUSION
	5.1 Conclusion
	5.2 Future Work
	REFERENCES
	APPENDIX A ADDITIONAL SLICING RESULT
	APPENDIX B PSEUDOCODE (VB.NET)
	APPENDIX C PSEUDOCODE (C++)
	APPENDIX D PSEUDOCODE (MATLAB)

