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ABSTRACT One of the most persistent challenges concerning network security is to build a model capable of
detecting intrusions in network systems. The issue has been extensively addressed in uncountable researches
and using various techniques, of which a commonly used technique is that based on detecting intrusions in
contrast to normal network traffic and the classification of network packets as either normal or abnormal.
However, the problem of improving the accuracy and efficiency of classification models remains open and
yet to be resolved. This study proposes a new binary classification model for intrusion detection, based
on hybridization of Artificial Bee Colony algorithm (ABC) and Dragonfly algorithm (DA) for training an
artificial neural network (ANN) in order to increase the classification accuracy rate for malicious and non-
malicious traffic in networks. At first the model selects the suitable biases and weights utilizing a hybrid
(ABC) and (DA). Next, the neural network is retrained using these ideal values in order for the intrusion
detection model to be able to recognize new attacks. Ten other metaheuristic algorithms were adapted to train
the neural network and their performances were compared with that of the proposed model. In addition, four
types of intrusion detection evaluation datasets were applied to evaluate the proposed model in comparison
to the others. The results of our experiments have demonstrated a significant improvement in inefficient
network intrusion detection over other classification methods.

INDEX TERMS Intrusion detection system (IDS), multilayer perceptron (MLP), metaheuristic algorithm
(MA), artificial bee colony algorithm (ABC), dragonfly algorithm (DA).

I. INTRODUCTION

As it stands the problem of cyber-attacks on networking
systems is undeniably quite prevalent and expanding with
time which make it imperative to establish intrusion detection
systems (IDS)s in any business and non-business environ-
ments a like nowadays. In 1980, Anderson [1] introduced
IDSs, which were later improved by Denning [2]. There
have been constant improvements of IDSs in the form of
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hardware or software since. The key function of the intru-
sion detection system (IDS) is to identify and respond to
intrusive and harmful actions faced by the system resources.
This is performed by monitoring and evaluating the activities
in the network [3]. The IDSs are classified into anomaly-
based and misuse-based [4], following the detection method.
The IDS searches for the attack fingerprint within a huge
database that contains the entire attack signatures to discover
the misuse. Contrarily, the IDS observes the variation in the
system behavior to detect abnormalities. The hybrid approach
combines the application of the aforementioned approaches.
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Generally, the hybrid or enhanced technique is superior com-
pared to individual or original methods [5].

Lately, data mining and machine learning techniques have
become important for improving the quality of the per-
formance of IDSs. They expedite the procedure of clas-
sifying the types of attacks and improve the efficiency
of the IDS. The key function of the data mining tech-
nique is to gather simulating data from huge data reposito-
ries and transform it into explicit and meaningful informa-
tion [6]. Clustering, classification, information preprocess-
ing and recognizing patterns are the most common tech-
niques applied in data mining. Classification is an impor-
tant method, where it is applied to precisely analyze the
intended category for individual samples of the data [7].
Classification involves discovery of the hidden data patterns.
This is a common task in data mining and machine learning
techniques [8], [9].

A number of approaches are available to identify abnor-
malities using data mining. Prominent examples of these
approaches are the artificial neural network, radial basis func-
tion [10], [11], multi-layer perceptron [12], recurrent neural
network [13], fuzzy neural network, evolving fuzzy neural
network [14], self-organizing map [15], [16], convolutional
neural network [17], support vector machines [18]-[20] and
SVM with modified versions [21], [22].

There have been many studies on biology and natural
phenomena such as swarm intelligence, which describe the
behavior of animals and insects [23]. This behavior encom-
passes actions intended for methodological assessment of dis-
covering food reserves, forming nests and shifting the nests
from their origin, as well as other activities. This facilitates
the enhancement of the IDS performance. With its improved
ability to impute cause of the attack, it is feasible to distin-
guish malicious and un-malicious conduct as well as identify
complex disputes [24].

The artificial neural network (ANN) is considered as
one of the widely used machine learning techniques, Also,
the ANN is known as the most significant part of artifi-
cial intelligence, which is divided into supervised learning
neural networks and unsupervised learning neural networks.
Essentially, the supervised network requires an individual’s
guidance, while the unsupervised network does not require
guidance [25]. The following parameters determine the per-
formance of its action [26]: the design of the system,
the training algorithm; attributes applied in the training. The
aforementioned parameters form the optimum pattern as a
challenging subject [27]. Besides, a training algorithm will
only reach a local minimum if any of these parameters are
selected appropriately and precisely. In light of this, a previ-
ous study reported several techniques, which are formulated
on the heuristic algorithms for acquiring ANNs models [28].

The ANN possesses several features that enable it to solve
a number of disputes including pattern classification, regres-
sion as well as forecasting. Moreover, the ANN has remark-
able attributes as following: capacity to study using instances,
flexibility to simplify and ability to resolve issues including,
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categorizing patterns, estimating functions and optimization
[29], [30].

One of the most used ANN models is the well-known
Multi-Layer Perceptron (MLP). The majority of applications
utilize a feed-forward type of NNs that implies the use of
the typical back-propagation (BP) learning method. This type
of training is commonly completed by applying the back-
propagation gradient-descent technique [31]. As the algo-
rithm depends on the gradient, several problems might arise
after applying this algorithm. One of the most notable prob-
lems is the chance to get stuck in a local minimum as a result
of the quite low speed of convergence [31].

Moreover, the BP algorithm has to be able to determine a
few essential learning parameters such as the rate of learning,
the momentum, and the prearranged structure. The BP algo-
rithm has a prefixed NNs structure, which means it trains only
its weights in its structure. As a result, there is no solution
as for how to design a nearly perfect NNs arrangement for
an application [32]. Global optimum search methods are
capable of avoiding local minima and are usually utilized
to regulate weights of MLPs, such as artificial bee colony
(ABC) [26], [32], particle swarm optimization (PSO) [33],
[34], evolutionary algorithms (EA), simulated annealing (SA)
and ant colony optimization (ACO), which means they can
also be used in order to dispose of the problems in standard
back-propagation algorithm.

The MLP is considered as one of the widely used machine
learning techniques to enhance the detection rate of the intru-
sion detection systems, the training process of MLPs for pat-
tern classification problems consists of two tasks, the first one
is the selection of appropriate architecture for the problem,
and the second is the adjustment of the connection weights
of the network, this study focuses on dealing with the fixed
structure of the MLP, in which numerous difficult hands-on
issues have been well elucidated. Nonetheless, the general
architecture of MLP still has limitations in terms of the local
optima and low convergence speed issues [35], [36]. As such,
the three major drawbacks of an intrusion detection system
based on Multi-layer perceptron neural networks (MLPNN)
are as follows:

. The error function of MLPNN is a multimodal function
that is frequently trapped into local minima.

. This type of MLPNN-based IDS demonstrates a slow
convergence speed.

. The occurrence of over-fitting, which usually creates an
overly complex model.

To overcome the shortcomings attributed to BP training
algorithm and prevent the fall into the trap of local min-
ima, the current study proposes the new hybrid algorithm
(HAD) algorithm to train MLP. At the same time, the new
approach using the HAD might provide an effective and
suitable alternative solution for MLP training and the problem
of global as well as local optima in a multimodal search space.
Our previous work evidenced that the HAD algorithm could
guarantee finding a global optimum solution [37], while the

130453



IEEE Access

W. A. H. M. Ghanem et al.: Efficient Intrusion Detection Model Based on Hybridization of ABC and DA for Training MLPs

BP algorithm could only guarantee finding the initial point at
the end of the slope of the search space (local optimum).

Therefore, based on the above-mentioned limitations and
weaknesses, this work proposed the new HADMLP-IDS
model, which is aimed to solve the problem of training MLP
and is evaluated against four IDS datasets. Two of the datasets
are new datasets, namely UNSW-NB15 and ISCX2012, and
two are conventional datasets, namely, KDD Cup 99 and
NSL-KDD. The new HADMLP-IDS technique improves the
intrusion detection rate as well as reduces the false alarm rate.
The study demonstrates the measures applied to solve the
dataset-related problems and steps taken to enhance the detec-
tion of intrusions. The main contributions in this research are
summarized as follows:

A new HAD algorithm is proposed to optimize the MLP
neural network. Moreover, it is aimed to achieve its effective-
ness by addressing the shortcomings of MLP in the field of
network intrusion detection.

The performance, reliability, and validity of the new
approach in detecting a new attack were assessed by using
two new datasets (ISCX2012 and UNSW-NB15), which were
then compared with the (KDD Cup 99 and NSL-KDD)
datasets. The new proposed model was compared with other
related works of evolutionary and swarm intelligence algo-
rithms. This was conducted by using the four of IDS datasets.
The proposed new HADMLP-IDS model has several advan-
tages as following: a high accuracy rate in detecting intrusions
on the network; possibility of detecting an unknown intru-
sion; and reduction in the false alarm rate.

The remainder of this paper is structured as follows:
Section 2 reviews the related work. Section 3 describes the
methodology of the study, then it outlines an overview of
the HADMLP-IDS framework, HAD, the neural network,
and discusses how HAD can be deployed to train the ANN.
Section 4 presents the experimental setup. Section 5 discusses
the results of the experiments we have carried out. And finally
section 6 summarizes the conclusions of the research.

Il. RELATED WORK

This section briefly introduces the relevant work to ANNs
used in IDSs, and then, we proceed to related work for
MLP. Stochastic population-based search methods of compu-
tational swarm intelligence (CSI) can be used to train neural
networks; they offer an alternative to trajectory driven meth-
ods. The combination of stochastic population-based search
methods and the artificial neural network learning process is
known as Stochastic Global Optimization (SGO). Stochastic
global optimizations are usually inspired from biological or
physical processes such as Ant Colony Optimization (ACO),
Artificial Bee Colony (ABC), Particle Swarm Optimiza-
tion (PSO), or Genetic Algorithms (GA). Many stochastic
population-based search methods showed improvements in
accuracy and efficiency computation, in comparison with the
trajectory-driven methods such as Back Propagation (BP)
and Levenberg Marquardt (LM) algorithms. Using such com-
putational swarm intelligence methods for neural network

130454

training, many problems associated with BP can be overrid-
den. However, Computational swarm intelligence methods
require many function evaluations for convergence and might
be slow [38].

This study introduces the use of a certain hybrid HAD
algorithm method for the training of neural networks in the
application of intrusion detection. To put this use in perspec-
tive and highlight the position of the introduced method in
the literature, the next paragraphs summarize related works
of applying swarm intelligence techniques to train neural
networks for the purpose of intrusion detection.

Many researchers have investigated the deployment of
ANNs for IDSs. Several ANN approaches have been used
in enhanced IDS environments. In article [39], Tian, Lihao,
and Jieqing, they developed a detection model based on
training BP neural network using Artificial Fish Swarming
Algorithm (AFSA). The algorithm optimizes the weights of
BP neural network, shortens the sample training time and
improves the classification accuracy.

Additionally, Shi et al. [40] have developed an approach
where the algorithm of particle swarm optimization (PSO)
is applied to improve back propagation (BP) neural network,
and principal components analysis (PCA) method is used to
deal with the original dataset. After optimization of BP neural
network, it is employed into the intrusion detection system.

Sheikhan and Jadidi [41] also have proposed an approach
for MLP-based IDS that can be used for intrusion detection
on an offline mode. This study uses a Multilayer Perceptron
(MLP) neural classifier to distinguish benign and malicious
traffic in a flow-based NIDS. A modified gravitational search
algorithm, as a modern heuristic technique, is employed to
optimize the interconnection weights of the neural anomaly
detector.

Tian and Liu [42], have presented an IDS using ANNS.
The ANN is also trained by a particle swarm optimization
(PSO) algorithm to identify attacks and unknown attacks.
The ANN trained by PSO showed higher accuracy and faster
convergence speed.

Authors Wang et al. [43], have proposed IDS based on
ANN trained by GA. Their model, which was encoded in
a binary system using a network audit dataset, has demon-
strated a very high detection rate.

Xu et al. [44], have equally introduced a hybrid classifier
composed of Kernel Principal Component Analysis (KPCA),
RBFNN and PSO. KPCA is used to reduce the dimensions of
the original sample data. RBF network is the core classifier
of data and PSO algorithm is used to optimize the parameters
of the RBF neural network.

In [45], the authors present a light-weight framework,
which is called deep-full-range (DFR), for the detection of
novel attacks, which uses deep learning for encrypted traffic
classification, and intrusion detection.

Vinayakumar et al. [46] proposed IDS based on a dis-
tributed deep learning model with DNNs for handling and
analyzing data in real-time. They collected host-based and
network-based features in real-time and used the proposed
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DNN model for detecting attacks and intrusions. They imple-
mented several experiments in order to compare the DNN
model with other classical ML methods. The experiments
were conducted on publicly available datasets including the
NSL-KDD and UNSW-NB15. The results showed that the
DNN outperformed other models for the binary classification
setup. Using the NSL-KDD, a DNN with 5 layers yielded a
detection accuracy of 78.9% for binary categorization. On the
UNSW-NB15, a DNN with 5 layers got a detection accuracy
of 76.1%.

In [47], a deep learning algorithm for intrusion detection
in networks was implemented and evaluated. The proposed
model is trained on the NSL-KDD dataset and the deep neural
network presented a much better model fitting and better
accuracy on the test set with a 0.793 accuracy, with just the
6 features out of the 41 features, the deep learning model gives
an accuracy of 0.759 on the test set with unseen intrusions.

Azizjon et al. [48] proposed IDS based on a deep learn-
ing approach using a one-dimensional Convolutional Neural
Network (IDCNN), the 1D-CNN was used for supervised
learning on time-series data by serializing TCP/IP packets
in a predetermined time range as an invasion Internet traffic
model for the IDS, where normal and abnormal network
traffics are categorized and labeled for supervised learning
in the 1D-CNN. The experiments were conducted on the
publicly available dataset UNSW-NB15. The results showed
that the 1D-CNN outperformed other models for the binary
classification. Using the UNSW-NB15, a 1D-CNN yielded a
detection accuracy of 0.9091.

Alazzam et al. [49] proposed a new wrapper feature selec-
tion algorithm for IDS using Pigeon Inspired Optimizer
(PIO). The proposed PIO feature selection is designed to
select the most important features needed to build a robust
IDS, while ensuring a high detection rate with reduced false
alarms.

Zhang et al. [50] proposed a unified model combining
Multiscale Convolutional Neural Network with Long Short-
Term Memory (MSCNN-LSTM). They attempted to use the
Multiscale Convolutional Neural Network (MSCNN) to ana-
lyze the spatial features of the data stream, and then use
Long Short-Term Memory (LSTM) network to process the
temporal features. Finally, the model employs the spatial-
temporal features to perform the classification. The exper-
iments were conducted on the publicly available dataset
UNSW-NB15.

Monshizadeh et al. [51] proposed a hybrid anomaly detec-
tion model, which is a platform that filters network traffic and
identifies malicious activities on the network. The platform
uses a combination of linear and learning algorithms com-
bined with a protocol analyzer. The linear algorithms filter
and extract distinctive attributes and features of the cyber-
attacks while the learning algorithms use these attributes and
features to identify new types of cyber-attacks.

Yang et al. [52] designed two deep learning approaches for
better feature learning that was employed for the detection
of malware behind encrypted TLS streams. They used an
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autoencoder to generate features and a Convolutional Neural
Network to apply these features to train the classifier.

In [53] the authors employed the kernel principal compo-
nent analysis for dimensionality reduction and feature extrac-
tion and combined the differential evolution (DE) algorithm
and gravitational search algorithm (GSA) to optimize the
parameters of HKELM. Then, a novel intrusion detection
approach, KPCA-DEGSA-HKELM, was obtained.

In [54] the authors proposed Dendron, which is used to
generate detection rules in order to classify the attacks using
decision trees and genetic algorithms to develop accurate
detection and linguistically interpretable rules.

Wang et al. [55] proposed the equality constrained-
optimization-based ELM (C-ELM), which is a modified ver-
sion of ELM by integration with the features of least squares
support vector machines and then applied C-ELM to net-
work intrusion detection. An adaptively incremental learning
strategy is proposed to derive the optimal number of hidden
neurons. The optimization criteria and a method of adaptively
increasing hidden neurons with dual research were devel-
oped.

In [56], the researchers proposed new IDS approach that
employed the multivariate control chart based on the fast min-
imum covariance determinant (MCD) algorithm to improve
the capabilities of the proposed control chart to quickly and
accurately detect the outliers, and kernel density estimation
(KDE) to adaptively follow the network traffic data pattern,
to reduce the occurrence of false alarms.

Mazini et al. [57] proposed a new hybrid method for an
anomaly network-based IDS (A-NIDS) using artificial bee
colony (ABC) and AdaBoost algorithm to gain a high detec-
tion rate and low false-positive rate. ABC algorithm is used
for feature selection and AdaBoost is used to evaluate and
classify the features.

In [58], Rababah and Srivastava proposed a new meta-
classifier detection model for an anomaly network-based
IDS which used different machine learning algorithms. First,
they applied information gain attribute evaluation method to
reduce the number of features and then used the combined
multiple classification models via a meta-classifier for the
stacking scheme in phase 2 by using Decision Tree and
Random Forest.

Shone et al. [59] proposed a new type of autoen-
coder, namely non-symmetric deep autoencoder (NDAE),
and utilized a deep learning classification model constructed
using stacked NDAEs. At the end of the stacked NDAE:s,
the authors attached the random forest algorithm that under-
takes the classification task based on the features learned from
the NDAE:s.

Further to the aforementioned work, we propose an IDS
model built using the most promising HAD algorithm to train
the MLP in solving the problems encountered by the MLPs
training algorithm. Our proposed model is able to detect
attacks and false alarm rates in ISCX 2012 and UNSW-NB15
datasets with higher accuracy. These datasets contain a new
emerging attack compared with the KDD99 and NSL-KDD
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datasets. Our experiments have shown that our new approach
performs better than all the other techniques in the literature.

ill. METHODOLOGY OF THE STUDY

The methodology of this study based on the design and imple-
mentation of a new intrusion detection system model, which
is trained by hybridization of artificial bee colony algorithm
and dragonfly algorithm, HAD. The objective of the study is
to design a completely new model that achieves best global
convergence whilst exhibits a strong robustness using HAD
algorithm for training the MLP.

A. DESIGN A HYBRID ALGORITHM OF ABC AND DA

A good metaheuristic algorithm includes a balanced combi-
nation of exploiting prior knowledge that has been gathered
at some point in the search process with exploring new areas
in the search space, which can yield more optimal results.
The Dragonfly Algorithm (DA) is a novel optimizer that tries
to inspire the social life of dragonfly insect in nature [60].
It seems to have a good ability to explore and exploit the
search space effectively by employing several factors affect-
ing the exploitation versus exploration balance as shown in
equation (1) and (2). However, the position update expression
in equation (3) uses Levy Flight, which results in large moves
leading to poor ability to exploit the local search space and
pushing the algorithm apart from the global optimum.

AXip1 = (s85; + aA; + cCi + fFi + eE) + woAX; (1)

X4l = Xi + AXry1 ()
Xi1 = X, + levy (d) x X, 3)

1
levy (x) = 0.01 x (11 x o)/ 1| B ()

o= (0 (1+p) xsin(z8/2)/T (14 8/2)
1
xp x P 7) P )

In equation (1), s is the separation weight, S;isthe separa-
tion of the ith individual, a is the alignment weight, A; is the
alignment of the ith individual, c is the cohesion weight, C;
is the cohesion of the ith individual, f is the food factor, F;
is the food source of the i’ individual, e is the enemy factor,
E; is the enemy position of the ith individual, w is the inertia
weight and finally ¢ refers to the iteration number. Where X is
the current position of the individual, and t is current iteration
and d is the dimension of the position vectors. Where r| and
rp are two random numbers in [0, 1], 8 is a constant (equal to
1.5 in this work).

On the other hand, the ABC has better ability in find-
ing local optima through the two phases of employee and
onlooker, which are considered local search operators. The
onlooker bees move straight to one of the better nectar source
areas of the employed bees. ABC is mostly based on selecting
the solutions that improve the local search. The main dif-
ference between the phases of employed bees and onlooker
bee is that the latter is based on the probability of a solution
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to have high fitness value in order to select it. Furthermore,
the global search is implemented in the ABC algorithm by the
scout phase, which leads to reducing the convergence speed
during the search process.

After careful reflection on the previous algorithms in
order to avoid their drawbacks, the result is a novel hybrid
algorithm for optimization named after the ABC and DA,
as (HAD). This algorithm is listed in Algorithm 1. Three
main phases comprises HAD: the DA phase, the onlooker bee
phase, and the modified scout bee phase.

Algorithm 1 Main HAD Algorithm

Input: Objective function f (x) and constraints
Initialization

1. Parameters initialization: MaxGen (Maximum Number
of Generation); FN (Number of Food Sources); limit; Sep-
aration weight; Alignment weight; Cohesion weight; Food
attraction weight; Enemy distraction weight.

2. Population initialization: The dragonflies’ population x;
(i=1,2... FN), Step vectors Ax; (i=1, 2... FN);

3. Set Prob = 0.1 and generation iter = 0;

Iterations

4. While iter < MaxGen do

5. fori=1,2,..., FN do

6. if rand < Prob then

7. Dragonfly Bee Phase ();
8. else

9. Onlooker Bee Phase ();
10. end if

11. Modified Scout Bee Phase ();
12. end for

13. iter = iter + I;

14. end while

The final stage

Output: The best solution;

The contribution of the new hybrid algorithm is based on
two improvements; first, to modify the scout bee phase in
the ABC algorithm in order to improve the search diversity
and counterbalance the shortfall of ABC algorithm in global
search efficacy. The modified version of the phase is shown
in Algorithm 4. The second improvement is to integrate the
dragonfly operator from DA into ABC as a replacement for
the first phase of the standard ABC (employee bee phase).
The improved operator is named as dragonfly-bee phase, and
is shown in Algorithm 2. The unmodified onlooker bee phase
is listed in Algorithm 3.

The pseudo-code of the modified scout bee phase is shown
in Algorithm 4. The role of this phase in the proposed algo-
rithm is similar to its role in the original ABC algorithm. After
finishing both the dragonfly-bee phase and the onlooker bee
phase, HAD will check to see if there is any exhausted source
to be abandoned. Special counters are used to decide whether
the source is to be deserted. These counters are incremented
in the previous phases whenever a dragonfly-bee cannot bring
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Algorithm 2 Dragonfly-Bee Phase

Calculate the objective values of all dragonflies

Update the food source and enemy

Update w, s, a, c, f, and e

Calculate S, A, C, F, and E

Update neighboring radius

if a dragonfly has at least one neighboring dragonfly
Update velocity vector using equation (1)
Update position vector using equation (2)

else
Update position vector using equation (3)

end if

Evaluate the fitness value of the candidate solution;

Apply a greedy selection process to select the best one;

If solution does not improve, triali = triali 4+ 1, otherwise

triali = 0;

Check and correct the new positions based on the bound-

aries of variables.

Algorithm 3 Onlooker Bee phase
Input: A dragonfly position xi
1. Select high fitness values from all x;
2. Calculate the probability values p for the selected x;
using P; = ( Zx’ - )
3. for each of cﬁc]zg(lmﬂy bee do

4. if rand(0, 1) < P then

5. Update a new produced solution xi by using
fit; =1+ abc (fiti) or(% +fi(0));

6. xij = xij + By (X — %) ;

7. Apply a greedy selection process to select the

best solution

8. end if

9. End for

Output: the new position xi

better new solutions. If the counter value is greater than the
parameter /imit, then the food source is replaced with a new
source, and the corresponding dragonfly-bee becomes a new
scout bee. Assuming the abandoned source is x;, the modified
scout bee then generates a new food source to replace x;, using
the equation:

xl.H'l = 0.5 x rand x (xf — —BestSolution) (6)

In HAD, it is supposed that only one source can be
exhausted in each cycle, and only one dragonfly-bee can be
a scout. If more than one counter exceeds the limit value,
then one of the maximum ones might be chosen program-
matically. The scout bee phase in the original ABC generates
the solution randomly, which provides diversity in the search.
However, this would reduce the convergence rate through the
iterations. The modified scout bee phase of HAD maintains
the diversity of the search by choosing a new food source
at random, therefore maintaining good exploration, but also
contributes to the exploitation by considering the best solu-
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tion so far and generating the new solution based on both the
current and best solutions as in Equation (6).

Algorithm 4 Modified Scout Bee Phase
Input: A dragonfly position x;
1. Update a new produced solution x; using Equation (6)
2. Apply a greedy selection process to select the best solu-
tion.
Output: the new position x;

Start

Initialization
Dragonfly-bee phase

v

Onlooker bee phase

v

Modified Scout bee phase

Is
termination No

condition
met?
¢ Yes

Output the best solution

v

End

—

FIGURE 1. The flowchart of the HAD algorithm.

The proposed HAD algorithm is illustrated in Figure 1.
This algorithm includes four phases: initialization, dragonfly-
bee phase, onlooker bee phase, and modified scout bee phase,
where the onlooker phase is the same phase inherited from the
standard ABC algorithm. Thus, the new HAD algorithm is
essentially an integration of the effective two global search
phases (dragonfly-bee and modified scout bee) and local
search phase (onlooker bee) for effective global optimization.

An initialization phase is used to define all the parameters
including (control, ABC, and DA parameters) and assign
them suitable values. The HAD algorithm adopts all parame-
ters from the original ABC and DA algorithms and adds one
new control parameter: probability parameter Prob, which is
used in the HAD algorithm in order to balance the applica-
tion of the dragonfly-bee phase and onlooker bee phase and
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balance between exploration and exploitation. This probabil-
ity parameter is set to 0.1 in this work.

B. PERCEPTRON NEURAL NETWORKS FEEDFORWARD

The most popular form of ANN models is the feedforward
neural networks, which can perceive and estimate computa-
tional models using their multi parallel layered architecture.
Each layer contains a set of nodes (neurons - to act as pro-
cessing nodes - distributed across a series of fully connected
stacked layers. The special class of neural networks is MLP.

Input Layer

Hidden Layer

Output Layer

W&B MLP Representation
A

4 A
‘E|W13 ||W14||W16”W17”W18|‘
o _/

~

Weights, W

Biases, B

FIGURE 2. Solution representation of HADMLP-IDS model.

In MLP, neurons must be organized in unidirectional mode.
MLP data transmission occurs between three classes of par-
allel layers: input, hidden layers, and output layers. Fig-
ure 2 shows a neural network with a single hidden layer.
The connections between layers should be distinguished by
some weights that are a range [—1, 1]. All the neurons of the
MLP carry out two functions: summation and activation. The
outcome of inputs, weights, and bias are summed using the
summation function in Equation (7).

=3,

where n represents the number of inputs, x; represents the
input variable i, B; represents a bias term, and w;; represents
the connection weight. An activation function should be insti-
gated using the output of Equation (7). There are several
formulations of activation functions that can be utilized in
MLP. The most common one from past works is the sigmoid
function [61]-[63], which is illustrated in Equation (8).

wiixi + B; 7

i)y =1/1+e" ®)
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Thus, the concluding output of the neuron i can be obtained
by Equation (9):

i =£Q" o+ B) ©)

Once the architecture of MLP is designed, the learning step
is implemented to tune and update the weights of the network.
These weights are rationalized to evaluation the outcomes
and minimize the error of the outputs. Learning (training)
procedure of the MLP is a challenging task that can represent
the capability of the MLP for tackling various categories of
optimizing problems.

C. HAD FOR TRAINING MLPs

This section describes in details the proposed intrusion
detection model, HAD based MLP trainer (HADMLP_IDS).
As mentioned before, HAD is used to train the MLP net-
work. Thus, two critical points must be addressed before
we start: how to encode the solution in HAD optimizer, and
how to present the fitness function. All the solutions of the
proposed model are encoded as one-dimensional vectors of
randomly generated real values range [0, 1]. Figure 2 depicts
the way of representing the encoding strategy of HAD in the
HADMLP-IDS model. Figure 2 shows the encoded vector
with connection weights and bias series of the solutions,
which in turn corresponds to the weights and biases of the
trained MLP model. The total number of weights and biases
in the target network determines the length of these vectors.
A similar encoding strategy is used for HADMLP-IDS. The
next objective is to carefully consider the choice of the fitness
function. In order to acquire the fitness of the HAD algorithm,
they must be sent to the MLP network as the connection
weights.

The MLP can evaluate these vectors according to the train-
ing data set. Finally, the neural networks will gain the fitness
values of the corresponding solutions. In this study, the mean
squared error (MSE) is utilized as the fitness function in
the HADMLP-IDS trainer for evaluating the fineness of the
model. The aim is to reduce the MSE value as much as
possible. For training samples, the MSE scale can be obtained
using the actual and expected solution variance from the
generated solutions (MLPs). The MSE calculated by Equa-
tion (10).

MSE = l/n Y i) (10)

where y; represents the actual value, y; represents the pre-
dicted one, and n represents the total number of instances.

IV. THE EXPERIMENTAL FRAMEWORK

The implementation and evaluation of the proposed model
was conducted using a laptop loaded with Core i5 2.4 GHz
CPU and 8 GB RAM, and MATLAB R2014a running on
a Windows 7. To evaluate the performance of HADMLP-
IDS model, four of experiments were performed. A different
dataset was used in each experiment for the offline evaluation
of the IDSs, namely KDD Cup 99, NSL-KDD, ISCX2012,
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and UNSW-NB135, against eleven of the metaheuristic algo-
rithms which are have been adapted with ANNs by the same
method that’s used to adapting the framework of the current
proposal.

A. IDS DATASETS

Unlike the datasets for general classification problems,
the evaluation of the final neural network model for the spe-
cial purpose of intrusion detection dictates the use of special
benchmark datasets for this specific application. This section
briefly explains four available datasets for testing IDSs.

1) KDD CUP 99 DATASET

The most popular and widely used dataset regarding the
detection of intruders and anomalies is the KDD Cup
1999 Dataset, which was created and developed in 1999 by
Lee and Stolfo [64]. This dataset was built on the informa-
tion obtained from MIT Lincoln Laboratory, under Defense
Advanced Research Projects Agency (DARPA ITO) and Air
Force Research Laboratory (AFRL/SNHS) sponsorship. It is
made out of a set of records that can be approximated at about
5 million. It represents TCP/IP packet connections, where
each packet connection contains 41 attributes (features) out
of which 38 are numeric and 3 are symbolic.

The KDD Cup *99 Dataset has 23 attacks, which have been
categorized into four types of assault data: Denial of ser-
vice (DOS), probing (PROBE), and User to Root (U2R) and
Remote to Local (R2L). The set of KDD Cup °99 attributes is
divided into three parts: basic, content and traffic attributes,
respectively. Basic attributes contain all attributes obtained
from the packet headers, whereas the content attributes
include those extracted from packets payload in order to find
dubious behavior in the payload section. The traffic attributes
are also classified into two types: the “same host’” and “‘same
service”’. Each of them is aiding to determine whether the
connection is with the same host or the same service respec-
tively [65], [66].

In this research, four subsets of the KDD Cup ’99 dataset
have been used, which were created and randomized by [67],
and are used by many researchers [68]-[71]. Every single
data subset houses approximately 4000 records, of which
nearly half of the data (50 to 55%) belong to the normal
category and the leftovers are mere attacks. Dataset 1 is used
for training, while datasets 2, 3, and 4 are utilized for testing.
The classes of all the datasets, number of records and the
percentage of occurrence of the feature classes are tabulated
in Table 1.

2) NSL-KDD DATASET

NSL-KDD was proposed to resolve many of the inherent
problems of the KDD’99 dataset. It has a reasonable size,
which makes it affordable to apply the full set in one pass;
hence, evaluation results of different research work will be
consistent and comparable [72], [73]. The NSL-KDD dataset
has also the following benefits over the original KDD dataset:
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TABLE 1. Distribution statistics of the kdd cup 99 training and testing
datasets.

Type Dataset 1 Dataset 2 Dataset 3 Dataset 4
yp Actual % Actual % Actual % Actual %
Dos 1000 25% 1203 30% 1050 26% 903 23%

Probe 563 14% 400 10% 491 12% 475 12%
R2L 122 3% 55 1% 30 1% 62 2%
U2R 15 0% 45 1% 30 1% 10 0%
Normal 2300 58% 2300 57% 2400 60% 2550 64%
Total 4000 100% 4003 100% 4001 100% 4000 100%

« No redundant records in the training set, so classifiers
will not be biased towards more frequent records.

« No duplicate records in the testing set; thus the per-
formance of the learners will not be influenced by the
methods which have better detection rates on frequent
records.

o Each level of difficulty group would have a number of
records that is inversely proportional to the percentage of
records in the original KDD dataset. Therefore, it caters
for more accurate evaluation of different learning tech-
niques, simply due to the diversity in range of classifi-
cation rates of distinct machine learning.

This dataset is formed from the different parts of the origi-
nal KDD Cup 99 dataset, without the redundancies and dupli-
cations. In addition, the problem of having an unbalanced
distribution in each class, either in the training set or the
testing set, was solved, to improve the accuracy of the IDS
evaluation. The NSL-KDD dataset includes 41 attributes,
which are labeled normal connections or attack types. The
NSL-KDD dataset is divided into training and testing sets,
and it has four attack classes: DoS, U2R, R2L, and probe [74],
[75]. This dataset is available in (http://nsl.cs.unb.ca/NSL-
KDDy). Table 2 shows the distribution of the records in the
NSL-KDD dataset for the training and testing sets.

TABLE 2. Distribution statistics of the NSL-KDD training and testing
datasets.

Train NSL-KDD Test NSL-KDD

Actual % Actual %
Attack 11743 46.61% 12829 56.90%
Normal 13449 53.38% 9714 43.09%
Total 25192 100% 22543 100%

3) ISCX 2012 DATASET

In order to overcome the limitations of the KDD cup
1999 dataset, the ISCX 2012 IDS intrusion evaluation dataset
at Information Security Center of excellence (ISCX) is further
used to test and evaluate the performance of the proposed
approach for intrusion detection.

The entire ISCX labeled dataset comprises nearly
1512000 packets with 20 features and covers seven days
of network activity (i.e. normal and intrusion). The ISCX
2012 dataset is available in the packet capture form. Features
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are extracted from the packet format by using tcptrace utility
(http://www.tcptrace.org) and applying the following com-
mand:

teptrace csv — 1 filenamel.7z > filenamel .csv.

The author of the dataset decided to select incoming pack-
ets for a particular host and particular days as presented
in Table 3. The training data contains 54344 normal traces and
27171 attack traces while the testing data contains 16992 nor-
mal traces and 13583 additional attack traces [76].

TABLE 3. Distribution statistics of the ISCX 2012 training and testing
datasets.

Dat Tramn ISCX 2012 Test ISCX 2012

ate Normal Attack Normal Attack
11" 0 0 0 0
12 2775 1388 1388 690
13" 27144 13572 3393 6786
14" 5028 2514 2514 1257
15" 12459 6229 6229 3115
16" 0 0 0 0
17" 6938 3468 3468 1735

54344 27171 16992 13583
Total
81515 30575

4) UNSW-NB15 DATASET

This dataset is a hybrid of modern synthesized attack activi-
ties and normal traffic (available at http://www.cybersecurity.
unsw.adfa.edu.au/ADFA%20NB15%20Data  sets). The
UNSW-NBI15 dataset was created in 2015 by the researchers
Nour and Jill using IXIA PerfectStorm tool in the Cyber
Range Lab of the Australian Centre for Cyber Security.
Similar to the KDD’99 and NSL-KDD datasets, UNSW-
NB15 dataset has more than forty features. However, It is
important to mention that the first two datasets share only
slight common features with the UNSW-NB15 dataset, and
the rest of the features are different, which makes it harder to
compare them [77].

The UNSW-NB15 dataset includes nine different modern
attack types (compared to 23 attack types in KDD’99 and
NSL-KDD datasets) and wide varieties of real normal activ-
ities as well as 44 features in addition to the class label,
consisting total of 2,540,044 records. The features of UNSW-
NBI15 are classified into six groups: Basic Features (BF),
Content Features (CF), Flow Features (FF), Time Features
(TF), Additional Generated Features (AGF) and class fea-
tures. The Additional Generated Features are further classi-
fied into two sub-groups, namely the Connection Features
and the General Purpose Features.

The UNSW-NBI15 dataset has been divided into two
subsets, the first represents the training dataset and con-
tains 175,341 records (56000 Attacks and 119341 Normal).
The second dataset contains 82,332 records (45332 Attacks
and 37000 Normal) and represents the testing dataset. Both
the training and testing datasets have 45 features. The dis-
tribution of these datasets us shown again in Table 4 after
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aggregating the attack types into one class. It is important to
note that the first feature (the id attribute) was not mentioned
in the full UNSW-NB15 dataset features and also the features
scrip, sport, dstip, stime and [time are missing in the training
and testing dataset [78], [79].

TABLE 4. Distribution statistics of the UNSW-NB15 training and testing
datasets.

Train UNSW NB15 Test UNSW NBI15

Actual % Actual %
Attack 119341 68.06% 45332 55.06%
Normal 56000 31.94% 37000 44.94%
Total 175341 100% 82332 100%

V. RESULTS AND EVALUATION OF HAD IN TRAINING
MLP NEURAL NETWORKS

The design elements explained in the previous section are
used to implement multilayer-perceptron training algorithms:
HADMLP-IDS, named after the hybrid metaheuristics devel-
oped in the previous section. The MLP prefix highlights the
fact that the algorithm is being used to train an MLP - for
the purpose of intrusion detection. This section is devoted to
evaluating this algorithm against a number of standard IDS
datasets. Before listing our findings, we would explain the
common setup in which all experimental evaluations were
conducted.

Firstly, each evaluation experiment compares 11 algo-
rithms, including the proposed one, against four different IDS
benchmark datasets: KDD CUP 1999, NSL-KDD, UNSW-
NB15, and ISCX2012. These datasets range from old to the
very recent, and have been introduced in section (4.1). For
the ISCX2012 dataset, there is a set of five experiments, as the
dataset comprises subsets of traffic on five different days. The
compared algorithms include the following list: ABC, ACO,
ALO, CS, DE, EHO, GSA, HAD, MFO, SCA, and WOA.
Each of these algorithms is applied for training an MLP and
trained as well as tested using the above datasets.

Secondly, the results of each experiment are presented in
three forms: a table that lists the numerical values of the
performance indicators for each algorithm; a plot that visually
represents the convergence performance of each algorithm; a
set of confusion matrices for HADMLP-IDS algorithm and
some of the other algorithms. Each algorithm was run for
a maximum of 100 iterations, and the results are calculated
based on 100runs.

The aforementioned performance indicators include the
accuracy ACC, detection rate DR, false alarm rate FAR,
sensitivity, specificity, and precision. The FAR, DR, and
ACC are calculated based on certain types of instances: true
positives TP, false positives FP, true negatives TN, and false
negatives FN. These four main criteria were collected from
the confusion matrix. The confusion matrix summarizes the
classification results. Table 5 shows the confusion matrix for
binary classification.
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The definitions of these types are given in Table 6, while
the definitions of all performance indicators are given in
Equations (11-16).

TABLE 5. The confusion matrix for binary classification.

ACTUAL TOTAL
Normal Attacks
PREDICTED Normal TN FN TN+FN
Attacks FP TP FP + TP
TOTAL TN+FP FN+TP

TABLE 6. Definitions of measurement types used to calculate
performance indicators.

Type of measurement Definition

True positive (TP) Indicates the amount of attack data
detectedis actually attack data.
Truenegative (TN) [Indicatesthe amount of normal data

detectedis actually normal data.
Representsthe normal data that is
detected as attack data.

Represents the attack data that is detected
as normal data.

False positive (FP)

False negative (FN)

TP + TN
ACC = (11)
TP+ TN + FP + FN
P
L (12)
TP+ FN
FP
FAR = ————— (13)
FP+ 1IN
Specifici ™ (14)
eclfic = -
pecictly = TN T FP
Sensitivi I (15)
ensiny = -
VI = Tp L FN
- TP
Precision = —— (16)
TP + FP

Thirdly, most of the benchmarking datasets contain data of
different ranges; hence, there is a need to normalize feature
values so that they can be effectively applied for training
MLPs. The min-max normalization method is shown in Equa-
tion (17) below, where x is mapped from the interval [a, b] to
[c, d].

,_(x—a)x(d—c)
B b—a

Finally, one of the most important factors that influence the
outcome of a neural network is the network structure in terms
of the number of nodes in the hidden layer(s). For all experi-
ments in this chapter, the formula shown in Equation (18) is
used to determine the number of nodes in the hidden layer of
the trained MLP. N is the number of attributes in the datasets
(number of input nodes) and H is the number of hidden nodes.

+c (17)

H=2%N+1 (18)
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As mentioned earlier, the results of evaluating the proposed
algorithms comprise of eight sets: one for the evaluation
against the KDD CUP 99 dataset, one for NSL-KDD dataset,
five sets for ISCX2012 datasets (one subset per day for net-
work traffic over five days), and a the last set is for the UNSW
NB15 dataset. Each set’s result is laid out in the following
section and comprises of a table, a plot, and a confusion
matrix.

A. THE KDD CUP 1999 RESULTS

Tables 7-10 show the detailed performance measurements of
every compared algorithm when trying to detect anomalies
via an MLP trained by our algorithm. Tables 7-10 illustrate
the results of four main experiments, where each experiment
executes three sub tests (dataset 1 for training and dataset 2,
3, and 4 for the purpose of testing) that were conducted using
the KDD Cup 99 dataset.

The results of the proposed algorithm are shaded in grey.
The results in Tables 7-10 are calculated based on the def-
initions in Table 6 and Equations (11-16). The TP, TN, FN
and FP measurements are averaged over 100 iterations the
remaining columns are derived from these basic measure-
ments. The most important indicators are the classification
accuracy, the detection rate, and the false alarm rate. The last
three columns in the table highlight the rank of each algorithm
according to these three indicators; the smaller the better. It is
obvious from the results that the new proposed algorithm is
of the top-performing MLP trainers.

The classification process is mainly affected by the data
set, so different subsets of data will lead to different results,
especially if the data set includes new attacks. Accordingly,
the proposed approach was tested with a different classifica-
tion of the data set to obtain a reliable evaluation.

Table 7 presents the results of the three first experiments,
which were carried out using dataset 1 for training and
datasets 2, 3 and 4 for testing. Intrusion detection model
(HADMLP-IDS) performance was evaluated based on three
criteria: Accuracy (ACC), Detection Rate (DR), and False
Warning Rate (FAR). The experiment results have clearly
demonstrated the superiority of the HADMLP-IDS model
against the other models in terms of accuracy (97.2% and
94.4% respectively), HADMLP-IDS was also ranked the
fourth and third with respect to the detection rate at around
(99.6% and 98.7% respectively), and it is ranked the first
and third best with respect to false alarm rate of (0.060 and
0.120 respectively). On the other hand, HADMLP-IDS model
did not outperform the other models when tested on dataset
4 in terms of accuracy, detection rate, and false alarm rate
(72.7%, 65.9%, and 0.223 respectively).

Table 8 lists the results of the second experiment using
dataset 2 for training and the datasets 1, 3 and 4 as the
testing datasets to evaluate the proposed model. The results
for dataset 1 and 3 indicated that the HADMLP-IDS ranked
the top with respect to accuracy, scoring 84.7% and 95.2%
respectively. Whilst using dataset 4 it ranked the second best
after WOAMLP-IDS, with a score of 88.2%. With dataset

130461



IEEE Access

W. A. H. M. Ghanem et al.: Efficient Intrusion Detection Model Based on Hybridization of ABC and DA for Training MLPs

TABLE 7. Performance measurements of 11 algorithms used to train an MLP to detect anomalies in the KDD CUP 99 dataset, by training across dataset

1 and testing across data sets 2, 3, and 4.

No. Alg. TP TN FN FP Sen. Spe.  Pre. Acc Dr Far AR DR FR
Testing Dataset: 2
1 ABCMLP-IDS 2228 1224 72 479 097 0.72 0.82 86.2% 96.9% 0.281 6 10 7
2 ACOMLP-IDS 2299 1117 1 586 1.00 0.66 0.80 85.3% 100.0% 0.344 7 1 10
3 ALOMLP-IDS 2288 1378 12 325 099 0.81 0.88 91.6% 99.5% 0.191 4 5 6
4 CSMLP-IDS 2295 1421 5 282 1.00 083 0.89 92.8% 99.8% 0.166 3 3 5
5 DEMLP-IDS = 2241 1125 59 578 097 0.66 0.79 84.1% 97.4% 0.339 9 7 9
6 EHOMLP-IDS 2234 1431 66 272 097 0.84 0.89 91.6% 97.1% 0.160 5 9 4
7  GSAMLP-IDS 1784 1530 516 173 0.78 0.90 091 82.8% 77.6% 0.102 11 11 2
8 HADMLP-IDS 2290 1601 10 102 1.00 094 096 97.2% 99.6% 0.060 1 4 1
9 MFOMLP-IDS 2299 1455 1 248 1.00 0.85 0.90 93.8% 100.0% 0.146 2 1 3
10 SCAMLP-IDS 2267 1127 33 576 0.99 0.66 0.80 84.8% 98.6% 0.338 8 6 8
11 WOAMLP-IDS 2241 1114 59 589 097 0.65 079 83.8% 97.4% 0.346 10 7 11
Testing Dataset: 3
1  ABCMLP-IDS 2361 362 40 1238 098 0.23 0.66 68.1% 98.3% 0.774 10 4 11
2 ACOMLP-IDS 2307 1141 94 459 096 0.71 0.83  86.2% 96.1% 0.287 4 5 7
3 ALOMLP-IDS 2265 1165 136 435 094 0.73 0.84 85.7% 94.3% 0.272 6 6 6
4 CSMLP-IDS 2382 1236 19 364 099 077 0.87 90.4% 99.2% 0.228 2 2 4
5 DEMLP-IDS 107 3469 396 29 021 099 0.79 89.4% 21.3% 0.008 3 11 1
6 EHOMLP-IDS 1315 834 1086 766  0.55 0.52  0.63 53.7% 54.8% 0.479 11 10 8
7  GSAMLP-IDS 2039 1271 362 329 085 0.79 0.86 82.7% 84.9% 0.206 7 9 3
8 HADMLP-IDS 2370 1408 31 192 099 0.88 093 94.4% 98.7% 0.120 1 3 2
9 MFOMLP-IDS 2242 1205 159 395 093 0.75 0.85 86.2% 93.4% 0.247 5 7 5
10 SCAMLP-IDS 2401 549 0 1051 1.00 034 070 73.7% 100.0% 0.657 9 1 10
11 WOAMLP-IDS 2219 739 182 861 092 046 072 73.9% 92.4% 0.538 8 8 9
Testing Dataset: 4
1 ABCMLP-IDS 1604 1742 96 558 094 076 0.74 83.7% 94.4% 0.243 3 7 4
2  ACOMLP-IDS 1690 1443 10 857 099 0.63 0.66 78.3% 99.4% 0.373 5 2 6
3 ALOMLP-IDS 1610 1375 90 925 095 0.60 0.64 74.6% 94.7% 0.402 6 4 7
4 CSMLP-IDS 1672 856 28 1444 098 0.37 0.54 63.2% 98.4% 0.628 9 3 10
5 DEMLP-IDS 1609 2038 91 262 095 089 086 91.2% 94.6% 0.114 1 5 1
6 EHOMLP-IDS 987 1250 713 1050 0.58 0.54 048  55.9% 58.1% 0.457 11 11 8
7  GSAMLP-IDS 1571 1847 129 453 092 0.80 0.78 85.5% 92.4% 0.197 2 9 2
8 HADMLP-IDS 1121 1786 579 514 0.66 0.78 0.69 72.7% 65.9% 0.223 7 10 3
9 MFOMLP-IDS 1577 1676 123 624 093 073 0.72 81.3% 92.8% 0.271 4 8 5
10 SCAMLP-IDS 1700 1076 0 1224 1.00 0.47 0.58 69.4% 100.0% 0.532 8 1 9
11 WOAMLP-IDS 1609 686 91 1614 0.95 0.30 0.50 57.4% 94.6% 0.702 10 5 11

3 and 4 HADMLP-IDS ranked the first with respect to the
detection rate with scores of 93.8% and 93.5% respectively.
However with dataset 1 it came as the third after DEMLP-
IDS and CSMLP-IDS with a score of 84.5%. The results also
revealed that HADMLP-IDS on dataset 1, 3, and 4 ranked the
first, third and eighth respectively with respect to false alarm
rate with scores of 0.152, 0.027, and 0.157 respectively.
Table 9 shows the results of the third experiment, which
utilized dataset 3 for training and the other data sets for
testing purposes. Using dataset 1, CSMLP-IDS has clearly
triumphal other models in terms of detection rate, followed
by HADMLP-IDS, where it has the first rank with scores
87.4% and 87.0%, respectively. Nonetheless, it ranked fifth
and ninth in terms of accuracy and FAR, scoring 72.0% and
0.544 respectively. The performance of the model on data set
2 indicated that it had best performance with respect to the
three performance measures (ACC, DR, and FAR) with val-
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ues of (98.4%, 98.7%, and 0.019 respectively). Additionally,
with dataset 4 HADMLP-IDC ranked third best with respect
to accuracy (88.2%), the ninth in detection rate (86.8%) and
the second with respect to false alarm rate (0.107).

Table 10 presents the results of dataset 4 and dataset 1, 2,
and 3 that were used for training and testing, respectively.
Our findings have substantiated the superiority of HADMLP-
IDS against all other algorithms in terms of accuracy, where
the HADMLP-IDS had the ranked top with 82.6%, 95.5%,
and 94.9% respectively. As far as detection rate is concerned,
HADMLP-IDS had the second, fifth, and third ranks, scor-
ing 82.3%, 95.6%, and 95.8% respectively. Moreover, with
respect to false alarm rate, HADMLP-IDS approach had the
best performance compared to the other ten models, where
HADMLP-IDS achieved fourth, third and first ranks using the
three datasets (1, 2, and 3) with FAR scores of 0.168, 0.047,
and 0.064, respectively.
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TABLE 8. Performance measurements of 11 algorithms used to train an MLP to detect anomalies in the KDD CUP 99 dataset, by training across dataset

2 and testing across data sets 1, 3, and 4.

No. Alg. TP TN FN FP Sen. Spe. Pre. Acc Dr Far AR DR FR
Testing Dataset: 1
1 ABCMLP-IDS 1754 920 796 530 0.69 0.63 0.77 66.9% 68.8% 0.366 10 10 10
2 ACOMLP-IDS 1499 1168 1051 282 0.59 0.81 0.84 66.7% 58.8% 0.194 11 11 5
3 ALOMLP-IDS 1836 1185 714 265 0.72 0.82 087 755% 72.0% 0.183 7 9 4
4 CSMLP-IDS 2181 1135 369 315 0.86 0.78 0.87 829% 85.5% 0.217 3 2 6
5 DEMLP-IDS 2222 1132 328 318 0.87 0.78 0.87 839% 87.1% 0.219 2 1 7
6 EHOMLP-IDS 2076 964 474 486 0.81 0.66 0.81 76.0% 81.4% 0.335 6 5 8
7 GSAMLP-IDS 1910 1218 640 232 0.75 0.84 0.89 782% 74.9% 0.160 5 7 3
8 HADMLP-IDS 2156 1230 394 220 0.85 0.85 091 84.7% 84.5% 0.152 1 3 1
9 MFOMLP-IDS 2013 1227 537 223 0.79 0.85 090 81.0% 789% 0.154 4 6 2
10 SCAMLP-IDS 2079 931 471 519 0.82 0.64 0.80 753% 81.5% 0.358 8 4 9
11 WOAMLP-IDS 1897 810 653 640 0.74 0.56 0.75 67.7% 74.4% 0.441 9 8 11
Testing Dataset: 3
1 ABCMLP-IDS 1961 1428 440 172 0.82 0.89 092 84.7% 81.7% 0.108 8 7 8
2 ACOMLP-IDS 1873 1473 528 127 0.78 0.92 0.94 83.6% 78.0% 0.079 9 10 6
3 ALOMLP-IDS 1966 1556 435 44 0.82 0.97 0.98 88.0% 81.9% 0.028 4 6 4
4 CSMLP-IDS 2216 1441 185 159 0.92 0.90 093 91.4% 92.3% 0.099 2 2 7
5 DEMLP-IDS 2005 1397 396 203 0.84 0.87 091 85.0% 83.5% 0.127 7 5 9
6 EHOMLP-IDS 1905 1546 496 54 0.79 0.97 097 86.3% 79.3% 0.034 6 9 5
7 GSAMLP-IDS 2039 1018 362 582 0.85 0.64 0.78 76.4% 84.9% 0.364 11 4 11
8 HADMLP-IDS 2253 1557 148 43 094 097 098 952% 93.8% 0.027 1 1 3
9 MFOMLP-IDS 1632 1597 769 3 0.68 1.00 1.00 80.7% 68.0% 0.002 10 11 1
10 SCAMLP-IDS 1919 1595 482 5 0.80 1.00 1.00 87.8% 79.9% 0.003 5 8 2
11 WOAMLP-IDS 2206 1344 195 256 0.92 0.84 090 88.7% 91.9% 0.160 3 3 10
Testing Dataset: 4
1 ABCMLP-IDS 1447 1978 253 322 0.85 0.86 0.82 85.6% 85.1% 0.140 8 9 6
2 ACOMLP-IDS 1398 2084 302 216 0.82 091 0.87 87.1% 82.2% 0.094 7 10 3
3 ALOMLP-IDS 1517 2005 183 295 0.89 0.87 0.84 88.1% 89.2% 0.128 3 6 5
4 CSMLP-IDS 1570 1950 130 350 0.92 0.85 0.82 88.0% 92.4% 0.152 4 4 7
5 DEMLP-IDS 1573 1806 127 494 0.93 0.79 0.76 84.5% 92.5% 0.215 9 3 9
6 EHOMLP-IDS 1387 2129 313 171 0.82 0.93 0.89 87.9% 81.6% 0.074 6 11 2
7 GSAMLP-IDS 1586 1587 114 713 0.93 0.69 0.69 79.3% 933% 0.310 11 2 11
8 HADMLP-IDS 1590 1939 110 361 0.94 0.84 0.81 88.2% 93.5% 0.157 2 1 8
9 MFOMLP-IDS 1491 2028 209 272 0.88 0.88 0.85 88.0% 87.7% 0.118 5 7 4
10 SCAMLP-IDS 1536 1662 164 638 0.90 0.72 0.71 80.0% 90.4% 0.277 10 5 10
11 WOAMLP-IDS 1456 2131 244 169 0.86 0.93 090 89.7% 85.6% 0.073 1 8 1
As illustrated in Table 11, HADMLP_IDS has particularly Dot KODGp 9
shown superior performance over the other models in terms of .
the average classification accuracy, detection rate, and false Miee)
alarm rate for the four datasets. It ranked the first with respect [i':;mp,w_

to accuracy with 88.7% and 0.141 for a false alarm rate.
While the HADMLP_IDS was ranked second with respect to
the detection rate at a score of 90.2%. The superiority was
evaluated using our proposed approach, which achieved a
distinctive gain in terms of the three performance measures
we have previously stated - ACC, FAR, and DR. After all,
the main criteria for measuring the efficacy of our algorithm
over the other standard algorithms would be by comparing its
ability to train the neural network and reduce the error rate.
Figure 3 shows the convergence plots for all models.
The below plot is for one of the experiments carried out
on the KDD Cup 99 data set. The main purpose of the
below illustration is to ascertain each model’s ability to
evade a local minimum and its speed of convergence. Fig-
ure 4 illustrates the confusion matrices for the proposed
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FIGURE 3. Convergence curves of all models based on averages of MSE
for the benchmark classification KDD Cup 99 datasets.

model in comparison to other models. It should be noted
that their choice was random and the goal was to demon-
strate the performing trainers against the KDD CUP 99
dataset.
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TABLE 9. Performance measurements of 11 algorithms used to train an MLP to detect anomalies in the KDD CUP 99 dataset, by training across dataset

3 and testing across data sets 1, 2, and 4.

No. Alg. TP TN FN FP Sen. Spe. Pre. Acc Dr Far AR DR FR
Testing Dataset: 1
1 ABCMLP-IDS 1733 1197 817 253 0.68 0.83 0.87 733% 68.0% 0.174 3 8 1
2 ACOMLP-IDS 1596 1059 954 391 0.63 073 080 664% 62.6% 0.270 8 9 5
3 ALOMLP-IDS 2027 982 523 468 0.79 0.68 081 752% 79.5% 0.323 1 5 6
4 CSMLP-IDS 2229 504 321 946  0.87 0.35 0.70 68.3%  87.4%  0.652 7 1 11
5 DEMLP-IDS 2066 791 484 659 0.81 055 0.76 71.4% 81.0% 0.454 6 3 8
6 EHOMLP-IDS 1394 1193 1156 257 0.55 0.82 0.84 64.7% 54.7% 0.177 10 11 2
7 GSAMLP-IDS 1902 1065 648 385 0.75 0.73 0.83 742% 74.6% 0.266 2 7 4
8 HADMLP-IDS 2219 661 331 789  0.87 046 0.74 72.0% 87.0% 0.544 5 2 9
9 MFOMLP-IDS 2029 869 521 581 0.80 0.60 0.78 72.5%  79.6% 0.401 4 4 7
10 SCAMLP-IDS 2010 565 540 885 0.79 039 0.69 644% 78.8% 0.610 11 6 10
11 WOAMLP-IDS 1563 1072 987 378 0.61 0.74 0.81 659% 61.3% 0.261 9 10 3
Testing Dataset: 2
1 ABCMLP-IDS 2112 1592 188 111 092 093 095 925% 91.8%  0.065 7 11 3
2 ACOMLP-IDS 2204 1556 96 147 096 091 094 939% 958% 0.086 3 7 5
3 ALOMLP-IDS 2218 805 82 898 096 047 0.71 755% 96.4%  0.527 11 6 11
4 CSMLP-IDS 2176 1564 124 139 095 092 094 934% 94.6% 0.082 6 8 4
5 DEMLP-IDS 2241 1512 59 191 097 0.89 092 938% 97.4% 0.112 5 3 7
6 EHOMLP-IDS 2224 1637 76 66 097 096 097 96.5%  96.7%  0.039 2 5 2
7 GSAMLP-IDS 2251 1007 49 696 098 059 076 81.4% 97.9% 0.409 9 2 10
8 HADMLP-IDS 2269 1670 31 33 0.99 098 099 98.4% 98.7% 0.019 1 1 1
9 MFOMLP-IDS 2231 1523 69 180 097 0.89 093 938% 97.0% 0.106 4 4 6
10 SCAMLP-IDS 2137 1441 163 262 093 0.85 0.89 89.4% 929% 0.154 8 9 8
11 WOAMLP-IDS 2121 1028 179 675 092 060 076 78.7% 922% 0396 10 10 9
Testing Dataset: 4
1 ABCMLP-IDS 1447 1976 253 324 085 0.86 0.82 85.6% 85.1% 0.141 8 10 5
2 ACOMLP-IDS 1408 2111 292 189 0.83 0.92 0.88 88.0% 82.8% 0.082 5 11 1
3 ALOMLP-IDS 1616 1242 84 1058 095 0.54 0.60 71.5% 95.1% 0.460 11 3 11
4 CSMLP-IDS 1570 1950 130 350 092 0.85 0.82 88.0% 92.4% 0.152 4 6 6
5 DEMLP-IDS 1662 1841 38 459 098 0.80 0.78 87.6% 97.8% 0.200 6 1 8
6 EHOMLP-IDS 1534 2038 166 262 090 0.89 0.85 893% 90.2% 0.114 2 7 3
7 GSAMLP-IDS 1586 1587 114 713093 0.69 0.69 79.3% 933% 0.310 9 4 9
8 HADMLP-IDS 1476 2053 224 247 0.87 0.89 0.86 88.2% 86.8% 0.107 3 9 2
9 MFOMLP-IDS 1631 1980 69 320 096 0.86 0.84 903% 959% 0.139 1 2 4
10 SCAMLP-IDS 1480 1949 220 351 087 0.85 0.81 85.7% 87.1% 0.153 7 8 7
11 WOAMLP-IDS 1585 1488 115 812 093 0.65 0.66 768% 932% 0.353 10 5 10

B. THE NSL-KDD RESULTS
This section introduces the comparative effectiveness of 11
meta-heuristics that ran against the NSL-KDD intrusion
detection benchmark dataset. It demonstrates the perfor-
mance measurements and their visual representation. A sam-
ple of four confusion matrices was included in our model,
in addition to other best performing models. The HADMLP-
IDS model is the best performing model using this dataset.
The findings listed in Table 12 undoubtedly substantiates that
with respect to ACC and FAR, HADMLP-IDS ranked the
top scoring 91.7% and 0.108, respectively. HADMLP_IDS
ranked the best third when it came to detection rate at 93.6%.
The HADMLP-IDS is the top-performing model in this
dataset. Table 12 evidence that in regard to ACC and FAR
the HADMLP-IDS model was ranked first across the two
measurements at scores of 91.7% and 0.108, respectively,
while the HADMLP_IDS model was ranked the third with
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respect to detection rate at a score of 93.6%. The EHOMLP-
IDS was almost similar to HADMLP_IDS with regard to
the accuracy of 87.9% and a false alarm rate of 0.117, fol-
lowed by ALOMLP-IDS with a detection rate of 95.5%.
The EHOMLP-IDS model ranked the second with respect
to ACC as well as FAR, and the eighth with respect to DR.
Additionally, the ALOMLP-IDS model ranked 6th, 2nd and
10th with respect to ACC, DR, and FAR respectively.

On the other hand, two models performed poorly in the
NSL-KDD dataset: ABCMLP-IDS with an inferior ACC
of 73.8% preceded by ACOMLP-IDS with an inferior ACC
of 81.0%, GSAMLP-IDS with an inferior FAR of 0.310 pre-
ceded by ALOMLP-IDS with an inferior FAR of 0.291 and
ABCMLP-IDS algorithm with an inferior DR of 70.2% pre-
ceded by ACOMLP-IDS model with an inferior DR of 83.6%.
Figure 5 demonstrates the convergence plots of all models
using the NSL-KDD dataset. Core evidence of this figure is
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TABLE 10. Performance measurements of 11 algorithms used to train an MLP to detect anomalies in the KDD CUP 99 dataset, by training across dataset

4 and testing across data sets 1, 2, and 3.

No. Alg. TP TN FN FP Sen. Spe. Pre. ACC DR FAR AR DR FR
Testing Dataset: 1
1 ABCMLP-IDS 1496 655 1054 795 0.59 045 0.65 53.8% 58.7% 0.548 11 10 10
2 ACOMLP-IDS 1558 1259 992 191 0.61 0.87 089 704% 61.1% 0.132 6 8 1
3 ALOMLP-IDS 1315 1238 1235 212 052 0.85 0.86 63.8% 51.6% 0.146 9 11 2
4 CSMLP-IDS 2036 1061 514 389 0.80 0.73 084 774% 79.8% 0.268 2 4 6
5 DEMLP-IDS 1717 1208 833 242 0.67 0.83 088 73.1% 673% 0.167 5 7 3
6 EHOMLP-IDS 1534 915 1016 535 060 0.63 0.74 61.2% 60.2% 0369 10 9 8
7  GSAMLP-IDS 2251 537 299 913 0.88 037 0.71 69.7% 883% 0.630 7 1 11
8 HADMLP-IDS 2098 1206 452 244 082 0.83 090 82.6% 82.3% 0.168 1 2 4
9 MFOMLP-IDS 2048 922 502 528 0.80 0.64 0.80 743% 803% 0364 3 3 7
10 SCAMLP-IDS 1856 1070 694 380 0.73 074 083 732% 72.8% 0262 4 6 5
11 WOAMLP-IDS 1942 833 608 617 076 057 0.76 69.4% 762% 0426 8 5 9
Testing Dataset: 2
1 ABCMLP-IDS 2250 965 50 738 098 057 0.75 80.3% 97.8% 0433 11 3 11
2 ACOMLP-IDS 2094 1586 206 117 091 093 095 91.9% 91.0% 0.069 5 9 5
3 ALOMLP-IDS 1971 1626 329 77 086 095 096 89.9% 857% 0.045 7 11 2
4 CSMLP-IDS 2176 1564 124 139 095 092 094 93.4% 94.6% 0.082 4 6 6
5 DEMLP-IDS 2137 1640 163 63 093 09 097 944% 929% 0.037 2 7 1
6 EHOMLP-IDS 2073 1595 227 108 090 094 0.95 91.6% 90.1% 0.063 6 10 4
7  GSAMLP-IDS 2251 1007 49 696 098 0.59 0.76 81.4% 97.9% 0409 10 2 10
8 HADMLP-IDS 2198 1623 102 80 096 095 096 955% 95.6% 0.047 1 5 3
9 MFOMLP-IDS 2256 1492 44 211 098 0.88 091 93.6% 98.1% 0.124 3 1 7
10 SCAMLP-IDS 2137 1441 163 262 093 085 089 894% 92.9% 0.154 8 7 8
11 WOAMLP-IDS 2201 1195 99 508 096 0.70 0.81 84.8% 95.7% 0298 9 4 9
Testing Dataset: 3
1 ABCMLP-IDS 1961 1428 440 172 0.82 0.89 092 84.7% 81.7% 0.108 8§ 8 5
2 ACOMLP-IDS 1912 1352 489 248 0.80 0.85 0.89 81.6% 79.6% 0.155 11 10 7
3 ALOMLP-IDS 2265 1431 136 169 094 089 0.93 92.4% 94.3% 0.106 3 5 4
4 CSMLP-IDS 2362 1275 39 325 098 080 0.88 90.9% 984% 0.203 5 1 11
5 DEMLP-IDS 2271 1325 130 275 095 0.83 0.89 89.9% 94.6% 0.172 6 4 10
6 EHOMLP-IDS 1848 1451 553 149 0.77 091 093 82.5% 77.0% 0.093 10 11 3
7 GSAMLP-IDS 2167 1337 234 263 090 0.84 0.89 87.6% 903% 0.164 7 7 9
8 HADMLP-IDS 2300 1498 101 102 096 094 0.96 949% 95.8% 0.064 1 3 1
9 MFOMLP-IDS 2305 1350 96 250 0.96 0.84 090 91.4% 96.0% 0.156 4 2 8
10  SCAMLP-IDS 1952 1374 449 226 0.81 086 090 83.1% 81.3% 0.141 9 9 6
11 WOAMLP-IDS 2204 1494 197 106 092 093 095 924% 91.8% 0.066 2 6 2

to know the models’ ability to avoid a local minimum and
the speed of convergence rate for each model. Figure 6 illus-
trates the confusion matrices for the new proposed model in
addition to other models. It should be noted that their choice
was random and the goal was to demonstrate the performing
trainers against the NSL-KDD dataset.

C. THE UNSW-NB15 RESULTS

In this section, the proposed model is evaluated using the most
recent UNSW-NB 15 standard data set for intrusion detection.
So that the evaluation is fair and equitable we have used
the same 11 meta-heuristics algorithms applied in previous
experiments to run against the UNSW-NB 15 in order to
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demonstrate the performance measurements and their visual
representation.

The HADMLP-IDS has proven to be the best performing
model with this data set, which has also been substantiated
by all previous results. Audited the consideration of the last
three columns of Table 13 showing the ranks per ACC and
FAR, HADMLP-IDS model was ranked top at ACC and FAR,
scoring 94.4% and 0.049 respectively. Whereas, HADMLP-
IDS was ranked second best in DR at 95.72%. HADMLP-
IDS model was followed by WOAMLP-IDS at accuracy
of 92.5%, detection rate of 92.0% and a false alarm rate
0f 0.070. The WOAMLP-IDS was ranked second with respect
to ACC, fourth with respect to DR, and third with respect
to FAR. ALOMLP-IDS model closely followed with FAR
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FIGURE 4. The confusion matrices against the KDD Cup 99 dataset.
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FIGURE 5. Convergence curves of all models based on averages of MSE
for the benchmark classification NSL-KDD datasets.

of 0.059. It was ranked fifth in ACC, eighth in DR and sec-
ond with respect to FAR. While the DEMLP-IDS model
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TABLE 11. The average of the evaluation variables (ACC, FAR, and DR) for
the four datasets.

No. Alg. ACC DR FAR AR DR FR
1 ABCMLP-IDS 78.8% 84.0% 0.282 9 8 8
2 ACOMLP-IDS 81.6% 82.3% 0.180 5 10 3
3 ALOMLP-IDS 81.0% 86.2% 0.234 6 7 6
4 CSMLP-IDS 85.0% 92.9% 0244 4 1 7
5 DEMLP-IDS 85.7% 84.0% 0.180 2 9 2
6 EHOMLP-IDS 78.1% 76.8% 0.199 10 11 5
7 GSAMLP-IDS 79.9% 87.5% 0.294 7 5 9
8 HADMLP-IDS 88.7% 90.2% 0.141 1 2 1
9 MFOMLP-IDS 85.6% 89.0% 0.186 3 3 4
10 SCAMLP-IDS 79.7% 88.0% 0303 &8 4 10
11 WOAMLP-IDS 77.4% 87.2% 0.338 11 6 11

was ranked first with respect to DR with a score of 94.0%,
but seventh with respect to ACC, and tenth with respect
to FAR. On the other hand, the ACOMLP-IDS performed
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FIGURE 6. The confusion matrices against the NSL-KDD Dataset.

relatively poorly with UNSW-NB15 dataset in comparison to
the other algorithms with an accuracy of 83.8%, a detection
rate of 77.3%. The worst models in this experiment in terms
of false alarm rates were DEMLP_IDS and EHOMLP_IDS
scoring 0.203 and 0.235. Figure 7 demonstrates the conver-
gence plots of all the models, for the UNSW-NB15 datasets,
the main reason behind it is to assess each model’s ability
to avoid a local minimum, as well as illustrating the speed
of convergence rate for each model. Figure 8 illustrates the
confusion matrices for the new proposed model in addition
to other models. It should be noted that their choice was
random and the goal was to demonstrate the performing
trainers against the UNSW-NB15 dataset.

D. THE ISCX 2012 RESULTS
Similar to the previous set of results, this section introduces
the numerical performance measurements and their visual
representation for the 11 metaheuristics algorithms when run
against the ISCX2012 intrusion detection benchmark dataset.
As before, sample confusion matrices are also given for
the proposed models in addition to another best performing
algorithm, while the confusion matrices to the remaining 11
algorithms are given in tables (14 — 18).

However, the ISCX2012 dataset is different from the other
dataset because it was divided due to the large size into a
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FIGURE 7. Convergence curves of all models based on averages of MSE
for the benchmark classification UNSW-NB15 datasets.

number of subsets, each of which corresponds to the collected
traffic in a single day. Five days were used in the experimental
evaluation of the tested metaheuristics: 12, 13, 14, 15, and 17.
The respective subsets are named ISCX2012-12, ISCX2012-
13, ISCX2012-14, ISCX2012-15, and ISCX2012-17. Conse-
quently, the results of this section include five sets for each
of ISCX2012 subsets.

Tables 14-18 lists the detailed performance measurements
of the evaluated 11 models, one table per day. The score of
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TABLE 12. The measurements of performance of 11 algorithms used to train the MLP to detect anomalies in the NSL-KDD dataset.

No. Alg. TP TN FN FP Sen. Spe. Pre. ACC DR FAR AR DR FR
1 ABCMLP-IDS 9004 7642 3829 2068 0.70 0.79 0.81 73.8% 70.2% 0.213 11 11 5
2  ACOMLP-IDS 10727 7531 2106 2179 0.84 0.78 0.83 81.0% 83.6% 0.224 10 10 8
3 ALOMLP-IDS 12258 6889 575 2821 096 0.71 0.81 84.9% 955% 0.291 6 2 10
4 CSMLP-IDS 11726 7845 1107 1865 091 0.81 0.86 86.8% 91.4% 0.192 3 5 4
5 DEMLP-IDS 11486 7640 1347 2070 090 0.79 0.85 84.8% 89.5% 0.213 7 7 6
6 EHOMLP-IDS 11228 8576 1605 1134 0.87 0.88 091 879% 87.5% 0.117 2 8 2
7  GSAMLP-IDS 12332 6697 501 3013 096 0.69 0.80 84.4% 96.1% 0.310 8 1 11
8 HADMLP-IDS 12008 8665 825 1045 094 0.89 092 91.7% 93.6% 0.108 1 3 1
9 MFOMLP-IDS 11206 8249 1627 1461 087 0.85 0.88 86.3% 87.3% 0.151 4 9 3
10 SCAMLP-IDS 11633 7593 1200 2117 091 0.78 0.85 85.3% 90.7% 0.218 5 6 7
11 WOAMLP-IDS 11744 6913 1089 2797 092 071 0.81 82.8% 91.5% 0.288 9 4 9

TABLE 13. The measurements of performance of 11 algorithms used to train the MLP to detect anomalies in the UNSW-NB15 dataset.

No. Alg. TP TN FN FP Sen. Spe. Pre. ACC DR FAR AR DR FR
1 ABCMLP-IDS 37782 32530 7550 4470 0.83 088 0.89 854% 83.3% 0.121 9 9 8
2  ACOMLP-IDS 35039 33958 10293 3042 0.77 092 092 83.8% 77.3% 0.082 11 11 4
3 ALOMLP-IDS 37206 36683 6126 2317 086 0.94 094 89.8% 859% 0.059 5 8 2
4 CSMLP-IDS 41433 31901 3899 5099 091 086 0.89 89.1% 91.4% 0.138 6 5 9
5 DEMLP-IDS 42629 29493 2703 7507 094 0.80 0.85 87.6% 94.0% 0.203 7 1 10
6 EHOMLP-IDS 41276 28319 4056 8681 091 0.77 0.83 84.5% 91.1% 0.235 10 7 11
7  GSAMLP-IDS 37689 33527 7643 3473 083 091 092 86.5% 83.1% 0.094 8 10 5
8 HADMLP-IDS 43436 34243 2896 1757 094 0.95 096 94.4% 93.7% 0.049 1 2 1
9 MFOMLP-IDS 41359 32849 3973 4151 091 0.89 091 90.1% 91.2% 0.112 4 6 6
10 SCAMLP-IDS 41933 32782 3399 4218 093 0.89 091 90.8% 92.5% 0.114 3 3 7
11  WOAMLP-IDS 36191 39985 3141 3015 0.92 093 092 925% 92.0% 0.070 2 4 3

the new proposed model is shaded in gray, and the last three
columns show the rank of each algorithm with respect to
the three main performance indicators: ACC, DR, and FAR.
The results of this dataset are quite unique compared to the
results against all other datasets (KDD CUP 99, NSL-KDD
and UNSW-NB15).

On the one hand, several models perform outstandingly in
most of the days. For example, accuracies of 100% and false
alarm rates of zero can be found on several rows of the 12th,
14th, 15th, and 17th day. On the other hand, unlike the case in
the other datasets, HAD-MLP outperforms other models on
some days. The superior performance of these two algorithms
is remarkable on this dataset particularly.

For the 12th day (Table 14), six models have surprisingly
achieved the same perfect score of 100% detection rate, but
the only HADMLP-IDS model that has achieved the perfect
score of 100% accuracy as well as zero false alarms.

This result is unusual and seems particular for this set of
data. In terms of accuracy, DEMLP-IDS did the best at a score
of 99.9%, followed by CSMLP-IDS accuracy of 99.9% and
then GSAMLP-IDS at a score of 99.5%. But the ALOMLP-
IDS and ACOMLP-IDS record the worst scores of 65.2% and
65.6%, respectively. In terms of false alarm rate, ABCMLP-
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IDS and MFOMLP-IDS did the worst at a score of 0.096 and
0.024, respectively.

The results for the second set of data on the 13th day are
less impressive (Table 15). In terms of accuracy, HADMLP-
IDS did the best at a score of 88.5%, followed by ABCMLP-
IDS accuracy of 88.5% and then ALOMLP-IDS at a score
of 88.5%. GSAMLP-IDS and EHOMLP-IDS models are
ranked the eleventh and tenth at an accuracy of 29.7% and
30.4%, respectively. In terms of detection rate, HADMLP-
IDS is ranked the fourth 88.8%, whereas WOAMLP-IDS in
ranked the first 91.6%, followed by ABCMLP-IDS 90.6%.
HADMLP-IDS model has ranked the seventh at a false alarm
rate of 0.120. whilst, MFOMLP-IDS and DEMLP-IDS are
ranked the first and second at FAR of 0.006 and 0.012,
respectively, except for HADMLP-IDS, none of the two algo-
rithms scored well on the ACC and DR. Overall, combining
the three performance indicators (assuming they have equal
importance), ABCMLP-IDS performed the best, followed by
HADMLP-IDS then ALOMLP-IDS with respect to the 13th
day ISCX2012 dataset.

On the dataset of the 14th day (Table 16), the proposed
model is ranked at the top with superior performance across
the three main performance indicators: ACC, DR, and FAR.
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TABLE 14. The measurements of performance of 11 algorithms used to train the MLP to detect anomalies in the ISCX2012-12 dataset.

No. Alg. TP TN FN FP Sen.  Spe. Pre. ACC DR FAR AR DR FR
1 ABCMLP-IDS 694 1255 0 133 1.00 0.90 0.84 93.6% 100.0% 0.096 7 1 11
2 ACOMLP-IDS 0 1366 694 22 0.00 0.98 0.00 65.6% 0.0% 0.016 10 10 8
3 ALOMLP-IDS 0 1358 694 30 0.00 0.98 0.00 652% 0.0% 0.022 11 10 9
4 CSMLP-IDS 694 1385 0 3 1.00 1.00 1.00  99.9% 100.0% 0.002 3 1 4
5 DEMLP-IDS 694 1386 0 2 1.00 1.00 1.00 99.9% 100.0% 0.001 2 1 3
6 EHOMLP-IDS 94 1388 600 0 0.14 1.00 1.00 71.2% 13.5% 0.000 9 9 1
7 GSAMLP-IDS 694 1377 0 11 1.00 0.99 0.98 99.5% 100.0% 0.008 4 1 6
8§ HADMLP-IDS 694 1388 0 0 1.00 1.00 1.00 100.0% 100.0% 0.000 1 1 1
9 MFOMLP-IDS 694 1355 0 33 1.00 0.98 095 98.4% 100.0% 0.024 5 1 10
10 SCAMLP-IDS 627 1368 67 20 0.90 0.99 097 95.8% 90.3% 0.014 6 7 7
11 WOAMLP-IDS 273 1378 421 10 0.39 0.99 0.96 79.3% 39.3% 0.007 8 8 5

TABLE 15. The measurements of performance of 11 algorithms used to train the MLP to detect anomalies in the ISCX2012-13 dataset.

No. Alg. TP TN FN FP Sen. Spe. Pre. ACC DR FAR AR DR FR
1 ABCMLP-IDS 6150 2861 636 532 091 0.84 0.92 885% 90.6% 0.157 2 2 9
2 ACOMLP-IDS 3723 3060 3063 333 0.55 0.90 0.92 66.6% 549% 0.098 8 9 4
3 ALOMLP-IDS 6034 2975 752 418 0.89 0.88 0.94 885% 889% 0.123 3 3 8
4 CSMLP-IDS 5606 3271 1180 122 0.83 0.96 098 87.2% 82.6% 0.036 5 5 3
5 DEMLP-IDS 5303 3353 1483 40 0.78 0.99 0.99 85.0% 78.1% 0.012 6 6 2
6 EHOMLP-IDS 45 3046 6741 347 0.01 0.90 0.11 30.4% 0.7% 0.102 10 10 5
7 GSAMLP-IDS 4 3020 6782 373 0.00 0.89 0.01 29.7% 0.1% 0.110 11 11 6
8 HADMLP-IDS 6028 2985 758 408 0.89 0.88 094 88.5% 88.8% 0.120 1 4 7
9 MFOMLP-IDS 3906 3371 2880 22 0.58 0.99 0.99 715% 57.6% 0.006 7 7 1
10 SCAMLP-IDS 3774 2102 3012 1291 0.56 0.62 0.75 57.7% 55.6% 0.380 9 8 11
11 WOAMLP-IDS 6216 2789 570 604 092 0.82 091 885% 91.6% 0.178 4 1 10

TABLE 16. The measurements of performance of 11 algorithms used to train the MLP to detect anomalies in the ISCX2012-14 dataset.

No. Alg. P TN FN FP Sen. Spe. Pre. Acc Dr Far AR DR FR
1 ABCMLP-IDS 1131 2496 126 18 090 099 098 96.2% 90.0% 0.007 6 6
2 ACOMLP-IDS 173 2420 1084 94 0.14 096 065 68.8% 13.8% 0.037 11 10
3 ALOMLP-IDS 127 2510 1130 4 0.10 1.00 097 699% 10.1% 0.002 10 11 4
4 CSMLP-IDS 1253 2477 4 37 1.00 0.99 097 989% 99.7% 0.015 2 3 7
5 DEMLP-IDS 137 2514 1120 0 0.11 1.00 1.00 70.3% 10.9% 0.000 9 10 1
6 EHOMLP-IDS 1057 2501 200 13 0.84 099 099 944% 84.1% 0.005 7 8 5
7 GSAMLP-IDS 1186 2512 71 2 094 1.00 1.00 98.1% 94.4% 0.001 5 6 3
8§ HADMLP-IDS 1257 2514 0 0 1.00 1.00 1.00 100.0% 100.0% 0.000 1 1 1
9 MFOMLP-IDS 1227 2293 30 221 098 091 085 933% 97.6% 0.088 8 5 11
10 SCAMLP-IDS 1252 2449 5 65 1.00 097 095 98.1% 99.6% 0.026 4 4 9
11 WOAMLP-IDS 1254 2476 3 38 1.00 098 097 989% 99.8% 0.015 2 2 8

HADMLP-IDS is the best performing model here with a max-
imum score of 100% accuracy, 100% detection rate, and zero
false alarm rate. WOAMLP-IDS followed with an accuracy
of 98.9%, a detection rate of 99.8% and a false alarm rate of
0.015.

The results of the 15th day (Table 17) for the proposed
model are very similar to the 14th day, the HADMLP-
IDS records the best performing model with a maximum
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score of 100% accuracy, 100% detection rate, and zero false
alarm rate. Except that EHOMLPIDS and CSMLPIDS model
shares with HADMLPIDS the best performance at a false
alarm rate of around zero. Also, the DEMLP-IDS shares with
HADMLPIDS the best performance at a detection rate of
100%.

Last, the results of the 17th day (Table 18) is quite different
from the previous datasets and deviate from their pattern.
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TABLE 17. The measurements of performance of 11 algorithms used to train the MLP to detect anomalies in the ISCX2012-15 dataset.

No. Alg. P TN EN FP Sen. Spe. Pre. Acc Dr Far AR DR FR
1 ABCMLPIDS 1564 5551 1551 678 0.50 0.89 0.70 76.1% 50.2% 0.109 11 11 7
2 ACOMLP-IDS 2959 5465 156 764 095 0.88 0.79 90.2% 95.0% 0.123 8 8 9
3 ALOMLP-IDS 3113 6023 2 206 1.00 097 094 978% 99.9% 0.033 2 3 4
4 CSMLP-IDS 2256 6228 859 1 0.72  1.00 1.00 90.8% 72.4% 0.000 7 10 3
5 DEMLP-IDS 3115 5214 0 1015 1.00 0.84 0.75 89.1% 100.0% 0.163 9 1 11
6 EHOMLP-IDS 2814 6229 301 0 0.90 1.00 1.00 96.8% 90.3% 0.000 4 9 1
7  GSAMLP-IDS 3113 5564 2 665 1.00 0.89 0.82 929% 99.9% 0.107 5 3 6
8 HADMLP-IDS 3115 6229 0 0 1.00 1.00 1.00 100.0% 100.0% 0.000 1 1 1
9 MFOMLP-IDS 2963 5327 152 902 095 0.86 0.77 88.7% 951% 0.145 10 7 10
10 SCAMLP-IDS 3010 5519 105 710 097 0.89 0.81 91.3% 96.6% 0.114 6 6 8
11 WOAMLP-IDS 3109 5939 6 290 1.00 095 091 96.8% 99.8% 0.047 3 5 5

TABLE 18. The measurements of performance of 11 algorithms used to train the MLP to detect anomalies in the 1ISCX2012-17 dataset.

No. Alg. P TN FN FP  Sen. Spe. Pre. Acc Dr Far AR DR FR
1 ABCMLP-IDS 0 3238 1735 230 0.00 093 0.00 622% 0.0% 0.066 11 10 11
2 ACOMLP-IDS 14 3306 1721 162 0.01 095 0.08 63.8% 0.8% 0.047 10 8 9
3 ALOMLP-IDS 1735 3401 0 67 1.00 098 096 98.7% 100.0% 0.019 2 1
4 CSMLP-IDS 12 3468 1723 0 0.01 1.00 1.00 66.9% 0.7% 0.000 8 9 1
5 DEMLP-IDS 0 3556 1463 184 0.00 095 0.00 68.3% 0.0% 0.049 5 10 10
6 EHOMLP-IDS 21 3468 1714 0 0.01 1.00 1.00 67.1% 1.2% 0.000 7 6 1
7  GSAMLP-IDS 17 3400 1718 68 0.01 098 020 657% 1.0% 0.020 9 7 8
8 HADMLP-IDS 27 3468 1708 0.02 1.00 1.00 67.2% 56.0% 0.000 6 5 1
9 MFOMLP-IDS 1722 3461 13 7 0.99 1.00 1.00 99.6% 99.3% 0.002 1 2 5

10 SCAMLP-IDS 1628 3425 107 43 094 099 097 97.1% 93.8% 0.012 4 4 6
11 WOAMLP-IDS 1640 3468 95 0 0.95 1.00 1.00 98.2% 94.5% 0.000 3 3 1

ALOMLP-IDS and MFOMLP-IDS are here the best per-
formers with an accuracy of 98.7% and 99.96%, respec-
tively, a detection rate of 100% and 99.89%, respectively, and
zero false alarms were recorded by these models CSMLP-
IDS, EHOMLP-IDS, and WOAMLP-IDS. WOAMLP-IDS
followed closely with an accuracy of 98.2%, a detection rate
of 94.5% and zero false alarms. The HADMLP-IDS show
relatively inferior performance compared to their previous
scores and to other models with respect to this final subset
of data. The ABCMLP-IDS and ACOMLP-IDS with the
17th day dataset recorded worst ACC, DR and FAR scores
for ABCMLP-IDS are 62.2%, 0% and 0.066, respectively,
while those for ACOMLP-IDS are 63.8%, 0.8% and 0.047,
respectively. These last results suggest an important point:
although the HADMLP-IDS shows less impressive results
than the other models with respect to the ISCX2012 dataset,
itis generally more consistent, across the various data subsets,
and sometimes even the absolute best. This conclusion is
also consistent with the results from the other benchmarking
datasets.

Figure 9 demonstrates the comparative performance of
the 11 algorithms against the whole ISCX 2012 dataset in
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terms of the average of ACC, DR, and FAR measurements,
which is a tabular layout to visualize the performance of
the supervised classifiers. The content of this matrix is the
basic measurements of TP, TN, FN, and FP, which is caused
by the mapping between the number of correct and wrong
predictions of the classifier for both positive (attack) and
negative (normal) instances of the testing data. The general
template of a confusion matrix is demonstrated in Table 5.
Figure 9 demonstrates the average performance of the
11 models against the whole datasets of ISCX 2012 (ISCX
2012-12, ISCX 2012-13, ISCX 2012-14, ISCX 2012-15,
and ISCX 2012-17). The figure indicates that the proposed
model outperformed all other models against all datasets
of type ISCX 2012. This was measured in terms of accu-
racy and detection rate. It was ranked second with respect
to accuracy at 91.14% score, the second best with respect
to detection rate at 88.96% score, and the third best with
respect to false alarm rate at a score of 0.024. Moreover, the
CSMLP-IDS and EHOMLP-IDS outperformed all models
in terms of false alarm rate, where the CSMLP-IDS was
ranked the first with score of 0.0106 and the EHOMLP-
IDS was ranked the second with score of 0.021, However,
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FIGURE 8. The confusion matrices against the UNSW-NB15 dataset.
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FIGURE 9. The average of the evaluation variables (ACC, FAR, and DR) of 11 MLP trainer algorithms for

all ISCX 2012 dataset.

the performance of these two models in terms of accuracy and
detection rate is quite poor compared to our model. We can
conclude from these results that overall, the outstanding per-
formance of our model is more stable in terms of the three
measurement criteria. For example, although WOAMLP-IDS
showed better ACC than our model, it was weak in terms of
DR and FAR.
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The confusion matrices of the best performing models
are presented in Tables (14-18). Figure 10 shows the best
and worst results for the proposed intrusion detector. Fig-
ure 10 (a) and (b) separately indicate the binary classifi-
cation performance of the proposed IDS against the ISCX
2012-12th and ISCX 2012-13th datasets, respectively. Fig-
ure 10 (a) shows the result obtained from ISCX 2012-12th
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FIGURE 10. The confusion matrices against the ISCX 2012 dataset.

with HADMLP-IDS model which correctly detects 100%
of all attack records and 100% of all normal records with-
out false alarms. Figure 10 (b) shows the result obtained
from ISCX 2012-13th with the HADMLP-IDS model, which
detects 93.7% of all attack records and does not detect 6.3%
of all attacks. In the case of normal traffic, 79.7% of all
normal records are detected correctly and 20.3% of them are
detected wrongly.

Figure 11 shows the convergence curves of the MSEs
within 100 iterations for the ISCX 2012-12th. This fig-
ure confirms that, in terms of MSE, our proposed HAD-
MLP algorithm has the best convergence rate and the least
classification error compared with the rest of the algorithms.
The algorithm for training MLPs doesn’t needs only robust
exploration ability, but also rigorous exploitation ability. The
results of the classification accuracy, detection rate, and false
positive rate obtained by HADMLP-IDS model and the rest
of the models, it is shown that HADMLP-IDS performs
better than the rest of the models due to the more precise
exploitation ability of the HAD algorithm, while, the rest of
the models still suffers from the problem of becoming trapped
in local minima that means has leading to an unstable perfor-
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FIGURE 11. Convergence curves of all models based on averages of MSE
for the benchmark classification ISCX 2012-12th day datasets.

mance. The results obtained from all ISCX 2012 datasets by
the proposed model prove that it has both strong exploita-
tion and good exploration abilities. These results mean that
HADMLP-IDS is capable of solving the problem of becom-
ing trapped in local minima and that it gives a fast conver-
gence speed.

Therefore, the proposed method offers the best robust
exploration and rigorous exploitation capabilities. The pro-
posed training algorithm HAD is effective and feasible for
application to IDS research.

E. COMPARISON OF PROPOSED METHOD WITH
EXISTING STATE-OF-ARTS

The comparisons between the performance results of the
proposed method with the more recent proposed techniques
of intrusion detection systems from literature are listed
in Table 19. This comparison shows the contribution and
superiority of our method on publicly available datasets
including the KDDCup 99, NSL-KDD, ISCX 2012 and
UNSW-NB15 datasets. The proposed model has the best per-
formance in terms of ACC, DR, and FAR. The data were cor-
rectly classified by the proposed approach compared to those
classified by the static approaches. Moreover, HADMLP-IDS
exhibited a significantly lower FAR than some of the recent
state-of-arts.

VI. CONCLUSION AND FUTURE WORK

This research introduced a new model for an intrusion detec-
tion system, called the HADMLP-IDS model which is based
on training MLP using a fresh hybrid metaheuristic that
combines the Artificial Bee Colony (ABC) algorithm with
the Dragonfly Algorithm (DA). In this work, the new model
has been evaluated by using the confusion matrix based on
TP, TN, FN, and FP that was obtained using the KDD Cup
99, NSL-KDD, UNSW-NB15, and ISCX2012 datasets. The
performance of the new model was also assessed against a
number of other intrusion detection models designed with
a similar principle. In this work ten models have been used
to train MLP, namely ABC, ACO, ALO, CS, DE, EHO,
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TABLE 19. Comparison results with other methods.

No. Ref Year Dataset Method ACC DR FAR
1 [48] 2020 UNSW NBI15 1D-CNN 90.91 N/A N/A
2 [48] 2020 UNSW NBI15 I1D-CNN+LSTM 89.93 N/A N/A
3 [53] 2020 UNSW NBI15 KPCA-DEGSA-HKELM 89.01 N/A 2.41
4 [54] 2018 UNSW NBI5 Dendron 84.33 N/A 2.61
5 [55] 2018 UNSW NBI15 CAI 82.74 N/A  36.46
6 [56] 2020 UNSW NBI15 T2 Hotelling's 91.01 N/A  0.2748
7 [49] 2020 UNSW NBI15 Sigmoid PIO 91.3 N/A  0.052
8 [50] 2020 UNSW NBI15 MSCNN-LSTM 89.8 N/A  0.474
9 [49] 2020 UNSW NBI15 Cosine_PIO 91.7 N/A  0.034
10 [46] 2019 UNSW-NBI5 SVM-rbf 65.3 N/A N/A
11 [46] 2019 UNSW-NBI5 DNN 78.4 N/A N/A
Proposed model UNSW-NBI15 HADMLP-IDS 94 .4 93.7  0.049
1 [571 2019 ISCX 2012 AdaBoost 83 73 N/A
2 [52] 2018 ISCX 2012 ACNN 0.8351 N/A N/A
3 [80] 2017 ISCX 2012 SLFN N/A 88.18  5.56
4 [14] 2019 ISCX 2012 DeepFullRange 0.826 N/A N/A
5 [51] 2019 ISCX 2012 ELM50 58.76 N/A  0.513
6 [51] 2019 ISCX 2012 MLP50 87.22 N/A  0.145
Proposed model ISCX 2012 HADMLP-IDS 91.14 88.96 0.024
1 [49] 2020 KDDCUP 99 Sigmoid PIO 94.7 N/A  0.097
2 [49] 2020 KDDCUP 99 Cosine PIO 96 N/A  0.076
3 [46] 2019 KDDCUP 99 SVM-rbf N/A 87.7 N/A
4 [46] 2019 KDDCUP 99 DNN N/A 92.9 N/A
Proposed model KDDCUP 99 HADMLP-IDS 88.7 90.2  0.141
1 [46] 2019 NSL-KDD SVM-rbf 83.7 N/A N/A
2 [46] 2019 NSL-KDD DNN 80.1 N/A N/A
3 [47] 2019 NSL-KDD Deep Neural Network 0.772 N/A N/A
4 [47] 2019 NSL-KDD PCA + Deep Neural Network  0.793  N/A N/A
5 [56] 2020 NSL-KDD T2 Hotelling's 91.71 N/A  0.0624
6 [49] 2020 NSL-KDD Sigmoid PIO 0.869 N/A  0.064
7 [47] 2020 NSL-KDD Cosine_PIO 0.883 N/A  0.088
8 [59] 2018 NSL-KDD Deep belief networks N/A 88.1 N/A
9 [58] 2020 NSL-KDD Hybrid model N/A 86.2 0.134
Proposed model NSL-KDD HADMLP-IDS 91.7 93.6 0.108

N/A: Not available

GSA, MFO, SCA, and WOA. The HADMLP-IDS model
trained with the KDD Cup 99, NSL-KDD, UNSW-NB15, and
ISCX?2012 datasets has achieved a detection rates of 90.2%,
93.6%, 93.7%, and 89% as well as the false alarm rate of
0.141, 0.108, 0.049, and 0.024 respectively. Our model has
attained better results than those obtained by other models.
The result has shown the potential efficacy and capability of
the model for developing practical IDSs. Nevertheless, this
work has only evaluated the model using intrusion detection
datasets where an adequate feature selection technique has
not been included. Therefore, future work should focus on
minimizing the number of selected features and application
of the proposed model to develop an effective IDS.
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