
1

Optimisation of Two-sided Assembly Line Balancing with Resource

Constraints Using Modified Particle Swarm Optimisation

Muhammad Razif ABDULLAH MAKE1 and Mohd Fadzil Faisae AB RASHID1,*

1Department of Industrial Engineering, College of Engineering, Universiti Malaysia Pahang, 26300

Kuantan, Malaysia.

*Corresponding Author’s Email: ffaisae@ump.edu.my

Phone: +609-4246321 Fax: +609-4246222

Abstract

Two-sided Assembly Line Balancing (2S-ALB) is important in assembly plants that produce large-sized

high-volume products, such as in automotive production. The 2S-ALB problem involves different

assembly resources such as worker skills, tools, and machines required for the assembly. This research

modelled and optimised the 2S-ALB with resource constraints. In the end, besides having good

workload balance, the number of resources can also be optimised. For optimisation purpose, Particle

Swarm Optimisation was modified to reduce the dependencies on a single best solution. This was

conducted by replacing the best solution with top three solutions in the reproduction process.

Computational experiment result using 12 benchmark test problems indicated that the 2S-ALB with

resource constraints model was able to reduce the number of resources in an assembly line. Furthermore,

the proposed modified Particle Swarm Optimisation (MPSO) was capable of searching for minimum

solutions in 11 out of 12 test problems. The good performance of MPSO was attributed to its ability to

maintain the particle diversity over the iteration. The proposed 2S-ALB model and MPSO algorithm

were later validated using industrial case study. This research has a twofold contribution; novel 2S-

ALB with resource constraints model and also modified PSO algorithm with enhanced performance.

Keywords: Manufacturing systems, Assembly line balancing, Two-sided line, resource constraints,

Particle Swarm Optimisation

mailto:ffaisae@ump.edu.my

2

1. Introduction

Assembly line is a system that considers the arrangement of workstation, workers, tools or

machines, which successively outlines the operations for being completed. It has been widely used in

many manufacturing industries to cope with the increasing demands in manufacturing. The assembly

line is set up for the most optimum design to meet production demands. The assembly line system was

introduced around 1900 by Henry Ford for his automobile plants [1]. Since then, various evolutions and

progresses have been reported in regard to the assembly line. Commencing from that idea, the balancing

approach has been developed for the assembly line, known as Assembly Line Balancing (ALB).

Balancing an assembly line can be difficult for most industries. It not only refers to the assigning of a

task to a respective workstation but also towards enhancing production rates with the desired

performance level [2]. Nowadays, ALB has become more important to cope with global competitiveness

in the industry. It classically started in 1955, when Salveson firstly described the typical ALB problem

that focused on an efficient and fast solution approach for solving the line balancing problem [3]. The

great progress developed from time to time has extended the classification of the ALB problem.

Later, various versions of ALB problems have been formulated to suit different assembly line

problems [4]. One of the ALB branches is the assembly line that assembles large-sized and high-volume

products like an automotive assembly line. The assembly process is conducted on both left and right

sides of the product. This problem is known as two-sided assembly line balancing (2S-ALB) and was

first established by Bartholdi in 1993 [5]. Early work on 2S-ALB has inspired other researchers to study

and extend this work to the next level. The 2S-ALB was built from a single line production system,

which is identically paired parallel to the first side of the assembly line. Figure 1 illustrates the 2S-ALB

station features along the conveyor belt. Contrary to one-sided line, the assembly process in 2S-ALB

could be conducted either from the left or right side, depending on various constraints. The 2S-ALB

system is able to shorten and save space in the assembly lines, besides reducing the material handling

of tools and fixtures.

3

Recently, the 2S-ALB problem has grown rapidly and different ALB versions are adopted as

variations of the 2S-ALB problem. The 2S-ALB variation started with the general 2S-ALB as illustrated

in Figure 1. The general 2S-ALB consists of two workstations facing each other along the assembly

line. This version of the problem has its advantages, including shortening the assembly line, saving some

spaces, reducing throughput time and material handling, besides the cost of tools and fixtures. This

general 2S-ALB is well addressed in several research studies [3], [6]–[9].

Besides studying the general 2S-ALB, researchers also combined the 2S-ALB with the mixed-

model assembly line balancing (MALB). The MALB is particularly considered to level the workload in

every workstation on the line, besides levelling the part usage. It literally functions to achieve a balanced

workload at specific processing times for each assembly task, while attempting to minimise the variation

used by the different parts over time. This combination of 2S-ALB with MALB has broadly introduced

the implementation of different optimisations and line balancing solution approaches [10]–[12]. Another

combination with the 2S-ALB is the parallel assembly line balancing (P-ALB). The P-ALB is the

combination of two or more lines placed parallel to each other, which becomes an idea of sharing tools

and fixtures to complete the entire job. The two-sided P-ALB, which is the combination of 2S-ALB and

P-ALB, is to shorten the assembly line while steadily running during a breakdown [13]–[16]. This

combined problem was discussed by Ozcan, Gokcen, and Toklu (2010) [17] to provide much more

benefits: (i) it can help produce similar products or different models of the same production of the

adjacent lines, (ii) it can reduce the idle time and increase the efficiency of the assembly lines, (iii) it is

able to complete production with a different cycle time for each of the lines, (iv) it can improve visibility

and communication skills between operators, and (v) it is also able to reduce operator requirements.

Many studies have been conducted to work out the best optimum seeking approach,

implementing either heuristic or meta-heuristic method for 2S-ALB. In an early study, Kim et al. in

2000 used Genetic Algorithm (GA) as the optimisation algorithm [18]. Then in 2001, it has been

continued by Lee et al. employing the group assignment procedure [19]. The GA approach was also

implemented by Yılmaz Delice, Kızılkaya Aydoğan, & Özcan (2016), Kucukkoc & Zhang (2015a), and

Taha, El-Kharbotly, Sadek, & Afia (2011) to optimise 2S-ALB. Meanwhile, Baykasoglu and Dereli

4

adopted Ant Colony Optimisation (ACO) to optimise the 2S-ALB [22]. They have successfully applied

the ACO algorithm for a domestic product, which influences other researchers to deal with other sectors

apart from the large-sized automotive products. In addition, many other researchers also implemented

the ACO because of its good performance especially in combinatorial problems [15], [23], [24]. From

earlier reviews, GA and ACO algorithms have successfully dominated other optimisation methods in

terms of performance and also frequencies that make these algorithms more popular [13]. Besides that,

different algorithms were also implemented through several reported studies. For instance, Hu et al.

(2008) have been reported to implement the enumerative algorithm combined with the Hoffmann

heuristic method [25].

In the meantime, Particle Swarm Optimisation (PSO) algorithm was also frequently

implemented for 2S-ALB. The PSO assisted with Taguchi has been implemented for 2S-ALB with

multi-skilled worker assignment [26]. Researchers also implemented ACO algorithm to optimise

stochastic 2S-ALB, instead of deterministic time in the majority of 2S-ALB works [27]. Meanwhile in

2012, Chutima and Chimklai proposed a PSO with Negative Knowledge (PSONK) for the optimisation

of complex combination with the 2S-ALB problem [11]. Y Delice, Kızılkaya Aydoğan, Özcan, and

İlkay (2017) also later implemented the PSONK but proposed a combined selection mechanism for the

assembly task. Besides that, different approaches have been proposed to improve the PSO performances

[29]–[31]. Although the advantages of PSO algorithm have been well reported, its application and

improvement are still needed. Generally, PSO is known as a fast optimiser with a robust algorithm,

which provides a high-quality solution. However, the high focus towards a single best solution in PSO

can lead to a premature convergence or local optima. This phenomenon is described where the

convergence is stopped earlier and is considered to express the solution as the best. This problem occurs

when the algorithm tries to figure out the path of searching direction while still following the best earlier

solution. The limitation in providing the best solution may occur due to fewer parameter settings, as the

PSO algorithm only requires a simple specification as a setting before generating a solution.

Despite the many studies on 2S-ALB conducted, the majority of these works assumed that the

assembly workstation has a similar capability to conduct the assembly process. In a real situation, there

5

are various constraints that need to be considered during the assembly line design. For example, the

workforce and machines have different skills and abilities in completing the assigned task. The proper

utilisation of resources depending on their skills and precedence has integrated the assembly line to be

fully optimised. Besides, with the appropriate use of the machine, it is also able to solve the inadequate

space problem for the assembly line in allocating the required machines on the workstation [6].

In order to overcome the limitation, this paper considered the resources required to conduct a

specific assembly task. By considering the assembly resource constraints, the number of resources could

be optimised. For optimisation purpose, the PSO is modified to reduce the dependence of the algorithm

on a single best solution. The proposed modification is expected to improve the algorithm exploration

ability. Section 2 of this paper presents the 2S-ALB with resource constraints problem. Section 3

presents the proposed Modified Particle Swarm Optimisation (MPSO) algorithm. The computational

experiment is set up and the results are discussed in Section 4. Finally, Section 5 summarises and

concludes the research work.

2. 2S-ALB with Resource Constraints Problem

The 2S-ALB is a modified structure that is essentially created from the one-sided ALB problem.

The main goal of this problem is to enhance the production rate and increase the line efficiency.

Flexibility to produce a high volume of large-sized product in two-sided assembly line configuration

practically provides many beneficial advantages, including the ability to shorten the line length, save

spaces on the lines, increase the line efficiency by reducing the number of workstations, and reduce the

material handling cost of tools and fixture. Normally in a two-sided assembly line, a pair of lines placed

opposite to each other will be represented. Figure 1 illustrates the two-sided assembly line possessing

left and right sides of the lines in which the workstation is clamped together between the moving

conveyor.

A comprehensive study in making the idea of balancing 2S-ALB problem has been presented

[32]. Commencing from a particular task relation called ‘precedence relation graph’ that is built with

6

circle and arrows, the example of precedence relation graph with nine tasks is depicted in Figure 2.

Each circle represents the assigned task, while the arrows linked represent each relation between the

task. The associated data of each processing time and operational direction are also specified on top of

each circle (assign task). Three types of operational direction will be considered: left (L), right (R) and

either (E). For left and right side, the execution is outright and should be actualised for the following

position. Meanwhile, for either side direction, the task could be executed on any side of the workstation,

either on the left side or the right side.

Then, an assembly data is presented in precedence matrix as shown in Table 1. This matrix

consists of one and zero values that represent the assembly relation information of the precedence graph.

In Table 1, the relation of each task is transformed from the precedence relation graph, adopting ‘i’ as

the present task and ‘j’ as the next assigned task. The value of one in the precedence matrix indicates

the predecessor link of ‘i’ task to the next task ‘j’. This means that there is a precedence relationship to

be examined. Meanwhile, the zero value implies no precedence relation between tasks i and j.

Besides the precedence matrix, a data matrix is also required to store the assembly information

for the 2S-ALB with resource constraints. The data matrix (Table 2) expresses the assembly information

such as processing time, assembly side, and resources details. For the side column, three different

operational direction values indicate different sides. In this column, value ‘1’ is for the left side

operation, value ‘2’ is for either side operation, while value ‘3’ is for the right-side operation. The

resource details are also coded in numbers to express different resources. It is important to note that the

number of resources for one assembly task is not limited to three as shown in Table 2. In the case where

the number of resources is larger, the matrix can be expanded to fit all the data.

2.1 Problem Assumptions and Notations

The general assumptions of the problem are as follows:

7

 Task times and resources used (machine, tools, worker) are known and deterministic.

 Tasks have preferences regarding the operational direction (side), i.e., left side, either side or

right side.

 Every task can be operated only after all its immediate predecessors are completed.

 The maximum operational cycle time is fixed and could not be exceeded.

 Every task cannot be split between workstations and must be assigned to exactly one

workstation.

 The tasks with positive zoning must be operated in the same workstation.

 The tasks with negative zoning could not be assigned to the same workstation.

 Parallel tasks and parallel stations are not allowed.

 The skill level of each worker is ignored to provide a similar working pace of assembly task.

 The working travel times are ignored and no inventory (work in progress) is allowed.

 Any breakdowns of machines and tools are not considered, and the assembly process is

constantly performed.

The notations used in this mathematical formulation are summarised as follows.

J : number of mated-workstation 1,2,...,j J

I : number of one-sided workstation 1,2,...,i I

F : 1, if there is any space available on the operating time, otherwise, 0

N : number of resource utilisation 1,2,...,n N

msX : 1, if mated-workstation j is utilised for both side of the line, otherwise, 0

sY : 1, if mated-workstation j is utilised for only one side of the line, otherwise, 0

tm : maximum processing time 1,2,...,t T

tr : operational time of the task on the workstation 𝑗

vp : maximum gap value in space availability

vq : minimum gap value in space availability

sR : 1, if resource is utilised in workstation 𝑗, otherwise, 0

2.2 Mathematical Formulation and Constraints

8

The mathematical model for 2S-ALB with resource constraints is presented below. In this

problem, four optimisation objectives are considered. The first optimisation objective as in Equation (1)

is to minimise the mated workstation, f1. The second optimisation objective in Equation (2) is to

minimise the number of the workstation, f2. A mated workstation consists of a pair of left and right

workstation on the assembly line. Meanwhile, the number of workstations calculates the total individual

workstation. The third optimisation objective is to minimise idle time, f3 as presented in Equation (3).

Finally, the fourth optimisation objective to minimise the number of resources, f4 presented in Equation

(4). By using the number of resources as one of the optimisation objectives, the number of resources can

be minimised. This can be achieved by assigning the assembly task that uses a similar resource in one

workstation.

 1

1

J

ms

j

f X


 (1)

2

1 1

2
J I

ms s

j i

f JX Y
 

   (2)

   3

1 1

T T

t t v v

t t

f m r F p q
 

     (3)

4

1

N

s

n

f R


 (4)

   
1 2 1 2

0ik ik jk jk

K K

k x x k x x      , iji j ZP (5)

   
1 2 1 2

0ik ik jk jk

K K

k x x k x x      , iji j ZN (6)

1

n

i ijk jk

i

t x s CT


  (7)

   1

1

U
s f f

jk ujk u u u

u

s x t t CT t



   
jku Q (8)

 1,3,5,..., 1

1jk

k m

x
 

 j L  (9)

9

Besides the optimisation objectives in Equation (1) to (4), several constraints are also being

considered to ensure the feasibility of generated solution. Constraint (5) enables different tasks to be

assigned to the same workstation. Meanwhile, constraint (6) limits the assigned task on the same

workstation as different prescribed equipment. Constraints (7) and (8) are related to controls and ensure

the maximum operational cycle time not be exceeded. Constraints (9), (10) and (11) are engaged to each

assigned task to only one workstation which is either left or right.

In this work, weighted sum approach is used to deal with the multi-objective problem.

Therefore, the optimisation objectives considered in this work need to be normalised because they have

different ranges. For this purpose, the fi is normalised into [0, 1] range as follows:

min

max min

1

i i

i i

f f
f

f f





 (12)

The minimum and maximum optimisation objectives are defined as follows:

 2,4,6,...,

1jk

k m

x


 j R  (10)

1

1jk

k

x


 j E 
(11)

min1 0f  (13)

max min1 2f f (14)

min

1
2

max

n

ii
t

f
ct




 (15)

 max

1
2

max

n

ii

i

t
f

t




 (16)

min3 0f  (17)

10

The fitness function for this problem is presented as follows: The w1, w2, w3 and w4 were set at 0.25.

3. Modified Particle Swarm Optimisation

PSO is a meta-heuristic searching method that is inspired from the swarming behaviour of

flocking birds. This mechanism is particularly based on the migrating birds’ population and their flying

directions. Every single migrating bird is considered a particle, which usually adjusts its searching or

flying direction according to the previous flying experience. Each particle represents a potential solution

with a certain position (current solution), velocity (magnitude and direction towards the optimal

solution) and fitness value (performance measure of the specific problem). Compared to other

evolutionary approaches such as ACO and GA methods, PSO is respectively known to have a faster

convergence towards the optimal solution [33].

The PSO algorithm begins with the initialisation procedure, where each particle represents the

population in a D-dimensional vector as the constructed possible solution,  1 2, ,...,i i i iDX x x x and

velocity,  1 2, ,...,i i i iDV v v v . Then, each solution is evaluated according to the objective function.

Since the PSO is coded using a real number, a topological sort procedure is applied to match with the

combinatorial problem in 2S-ALB. For the example in Figure 2, let the X1 = (4.81, 7.90, 2.12, 6.91,

6.63, 4.09, 0.27, 3.54, 3.95). The topological sort begins with identifying the candidate task without

precedence. In Figure 2, Task 1, 2 and 3 are the candidate tasks. In this situation, the x11, x12 and x13 are

compared to determine the selected task. Since x12 is the highest, Task 2 is selected and stored in feasible

solution, F1 = [2]. The selected task is then removed from the precedence graph. This approach is

max max3 2 max

1

n

i

i

f f ct t


   (18)

min4 1typef r  (19)

max4f r (20)

1 1 2 2 3 3 4 4f w f w f w f w f    (21)

11

repeated until all the tasks from the graph are selected. For this example, the decoded feasible solution

is F1 = [2 5 1 4 8 3 6 9 7].

Next, the particle best solution (Pbest) and global best (Gbest) are updated. Pbest refers to the

current best solution for a particular particle, while the Gbest is the overall best solution. The Pbest and

Gbest solutions are used to update the velocity and position of the solution. The following formula is

used to update velocity (22) and position (23):

In Equation (22), t denotes the iteration number, while 𝑤 is the inertia weight for regulating the

previous effect of historical velocities. On the other hand, 𝑐1 and 𝑐2 are the acceleration coefficients,

while 𝑟1 and 𝑟2 are random numbers between [0, 1]. The Pbest, Gbest and particle position are updated

until the specific iteration number is reached.

Previously, a lot of studies proposed different approaches to reducing premature convergence

in PSO. Premature convergence in soft computing occurs because of the lack of diversity in the solution

during the iteration process. In PSO, this phenomenon is directly related to velocity and position-

updating procedures. The solution position is influenced by the Pbest and Gbest with some randomness

by r1 and r2. The Pbest, however, only influences a specific particle, compared with Gbest that affects

all the particles to move towards it. In the case where Gbest is not updated (no better solution found) in

a few consecutive iterations, there is a possibility for the majority of the particles to reach the Gbest.

This situation will reduce the solution diversity.

To overcome this problem, this work proposed to consider the top three best solutions instead

of the only single solution in Gbest. For this purpose, the single solution in Gbest is replaced with the

average of the three best solutions.

 1 2 3 / 3t t t tGbest g g g   (24)

   1

1 1 2 2

t t t t t t

i i i i iV wV c r Pbest X c r Gbest X      (22)

1 1t t t

i i iX X V   (23)

12

In Equation (24), 1 2 3, ,t t tg g g refer to the solution particle in the first, second and third ranks

respectively for the tth iteration. In the modified PSO, the Gbest is replaced with the new Gbest in

Equation (24). The reason to consider the top three solutions for Gbest is to improve the solution

diversity. In the proposed mechanism, the particle position will follow the average position from the

three best solutions. Furthermore, the possibility for all three solutions not being updated is small

compared with the single Gbest solution in the original PSO. This mechanism makes the search direction

more diverse and reduces the chance of getting trapped in local optima.

To prove this concept, a simple test using Rastrigin function is conducted. For this function, the

optimum point is (0, 0). In this test, only six particles are used. The first particle is set as (0, 0) while the

remaining five particles are randomly generated using the same pseudorandom for both PSO and MPSO.

The purpose of setting the first particle as the optimum point is to observe the particle movement over

the iteration. For this purpose, the iteration is set only to 10. The particle position for the first, fifth and

tenth iterations are captured. All other parameters for PSO and MPSO are the same.

Figure 3(a) and 3(b) present the particle movement for PSO and MPSO. In Figure 3(a), all

particles move directly towards the Gbest (i.e. point (0, 0)) during the fifth iteration. During iteration

10, the particles only search the solution around the Gbest within a limited range. Meanwhile in MPSO,

the particles are capable of maintaining the diversity in the fifth and tenth iterations (Figure 3(b)).

Although the searching range over the iteration becomes smaller, the particles in MPSO do not directly

move towards the best solution. Therefore, it is expected that the MPSO will have better exploration

ability. The procedure of MPSO is presented as follows:

Procedure of Modified PSO

Initialise MPSO parameters: Population size (npop), coefficients (w, c1, c2), iteration counter

(iter = 0) and maximum iteration (itermax)

Initialise random velocity, Vi and position, Xi for i = 1,2,…, npop

While iter ≤ itermax

iter = iter +1

Decode the Xi into feasible assembly sequence, Fi

Evaluate the fitness function for ith solution, fi

13

 Update personal solution, Pbesti

 Update top three global solutions, g1, g2 and g3

 Update  1 2 3 / 3t t t tGbest g g g  

Update velocity

    1

1 1 2 2

t t t t t t

i i i i iV wV c r Pbest X c r Gbest X     

 Update position

1 1t t t

i i iX X V  

End

3.1 Coefficient Tuning

MPSO algorithm consists of three coefficients that determine the algorithm performance. They

are inertia (w), cognitive (c1) and social (c2) coefficients that found in Equation (22). The inertia

coefficient determines how much the current velocity influence the position. Meanwhile, the cognitive

and social coefficients control the exploration and exploitation of the candidate solution in search space,

respectively. In order to identify the best coefficient value for MPSO to optimise 2S-ALB with resource

constraint, an experiment using Taguchi design was conducted. For this experiment, the coefficients

were set to three levels as in Table 3. For this purpose, a Taguchi design with L9 orthogonal array was

used.

To assess the coefficient performance, three sample problems were chosen from different

problem size category [18], [34]. The selected problems were optimised using MPSO with different

coefficient values. For each experiment setting, 20 repetitions were made and the mean of fitness were

calculated as output parameter. Based on experiment conducted, the mean fitness for each experiment

is presented in Table 4.

Taguchi analysis using “smaller is better” Signal-to-Noise ratio was used to analyse the output.

Figure 4 shows the main effect plot signal-to-noise ratio. Based on the main effect plot, c1 coefficient

gives the highest effect, then followed by c2 and w. According to the figure, the MPSO performance was

14

better when using lower inertia weight, w. A lower w allows the solution to be more diverse and open

to changes. Meanwhile, for c1 and c2, the medium level was preferable in both coefficients. This

indicated that the exploration and exploitation level must be balanced to achieve a good quality solution.

Based on main effect plots, the optimum coefficients level for MPSO are w = 0.8, c1 = 1.4 and c2 = 1.4.

4. Results and Discussion

4.1 Computational Experiment

A computational experiment is conducted to measure the performance of the modified PSO

(MPSO) to optimise 2S-ALB with resource constraints. For this purpose, 12 benchmark test problems

are selected according to small, medium and large sizes. The test problems are adopted from different

sources [3], [5], [7], [18], [19], [34], [35]. Based on the range of problem size used in the literature, the

small-sized problem is an assembly problem with less than 20 tasks. Meanwhile, the large-sized problem

is the problem with more than 80 tasks. The assembly problem in between 20 to 80 tasks is considered

as medium size. The detail of the test problems is presented in Table 5. Due to the lack of large-sized

test problems, problem T83 and T111 are adopted from a simple ALB problem and the assembly

directions (i.e. left, right or either) are randomly generated. These benchmark problems, however, did

not consider the resources required to conduct an assembly task. Therefore, the assembly resources are

also randomly generated for each of the assembly tasks.

The performance of MPSO is then compared against GA, ACO and PSO. These algorithms are

chosen because of their popularity in optimising 2S-ALB problem. According to the earlier survey on

the ALB problem, 70% of the problem was optimised using GA, ACO and PSO algorithms [36]. The

recent survey on 2S-ALB also reveals that the GA and ACO were the popular algorithms to optimise

2S-ALB according to the frequencies [13]. For computational purpose, the population size for all

algorithms is 30 and the maximum iteration is 500. The optimisation run is repeated for 20 times with

different pseudorandom for each of the cases.

15

The optimisation results for the 2S-ALB with precedence constraints are presented in Table 6

until Table 8 based on the problem size. For the result of small-sized problem in Table 6, all algorithms

are able to generate the same fitness and objective function value for T4 and T9 problems. On the other

hand, for the T12 problem, MPSO shows the best fitness compared with other algorithms. For this

problem, MPSO is able to search for a solution with a smaller number of resources while maintaining

other optimisation objectives. In the T16 problem, all algorithms are able to converge to the best

solution, but ACO has better performance in terms of consistency. For this problem, ACO is able to

reach the optimum solution for every optimisation run.

The results of medium-sized problem in Table 7 indicate that the MPSO and ACO lead in terms

of algorithm performance. The MPSO reaches minimum fitness and minimum average fitness in three

cases. In the meantime, the ACO found the minimum fitness in two cases, while the minimum average

in only one case. In T24, all algorithms are able to search for minimum fitness, but again the ACO has

better consistency. In T47 and T65 problems, the MPSO dominates the best minimum and average

fitness compared with other algorithms. Meanwhile in T70, the ACO is able to search for better

minimum fitness, but the proposed MPSO has better average fitness and standard deviation.

Table 8 presents the optimisation result for the large-sized problem. For this class of problem,

MPSO is consistently able to search for better minimum fitness compared with comparison algorithms.

In terms of average fitness, the MPSO has a better average in three cases, while the ACO has a better

average in the remaining one case. The MPSO consistently found the minimum mated workstation,

number of workstation and idle time in all cases of the large-sized problem.

Next, a standard competition ranking method was used to analyse the results. In this approach,

the algorithm with the best result was assigned as Rank 1, while the worst being Rank 4. In the case

where the performance is tied, a similar rank will be given, and the next position will be left empty.

Table 9 presents the frequency of the rank for every algorithm in terms of minimum and average fitness.

16

Based on Table 9, the proposed MPSO is only ranked in Rank 1 and Rank 2 for both minimum

and average fitness. For minimum fitness, the MPSO is able to search for the best solution in 91.6% of

the problems. At the same time, the MPSO obtains better average fitness in 75 % of the problems, while

the remaining 25 % is in the second place. The MPSO also has a better average rank for minimum and

average fitness. In both categories, the MPSO obtained 1.08 and 1.25 in average rank, respectively.

The nearest challenger to MPSO is the ACO algorithm. The ACO obtains the average Rank 2.00

for minimum fitness, while 1.75 for average fitness. Meanwhile, the PSO algorithm also has the same

average rank as ACO for minimum fitness, but in the last position for average fitness. It shows that the

PSO converges to the different angles in the search space for the different optimisation runs. For this

reason, the PSO comes out with a different solution for different runs that makes the fitness too diverse.

For different angles, this behaviour has its own advantage because the algorithm will explore different

sides of the search space. However, it requires a high number of repetitions for the optimisation run.

Figure 5 and Figure 6 present the average rank by problem size for minimum and average

fitness. In general, these figures show that for ACO, GA and PSO, the performance of the algorithm

becomes worse when the problem size increases. This trend is related to the size of the search space.

When the problem size increases, the number of possible solutions excessively increases because of

permutation combination. This makes the searching process harder thus requiring an efficient algorithm.

In contrast, the MPSO is able to maintain the performance throughout the different problem sizes.

Figures 7, 8 and 9 present the mean convergence for small, medium and large-sized problems,

respectively. For the small-sized problem, the MMFO convergence is almost stagnant at iteration 180.

Meanwhile in the medium-sized problem, the MMFO convergence is roughly stable at iteration 300.

Even then, a few small improvements still occur until the end. For the large-sized problem, the

convergence can still be observed to occur until the end of the run.

In the small-sized problem where the search space is also relatively small, the MMFO algorithm

manages to converge faster. This can be observed from the steep slope for the first 75 iterations in Figure

7. On the other hand, the early MMFO convergence in medium-sized problem is intermixed between

17

steep and short flat slopes. Meanwhile, the longer flat slope can be observed in large-sized problem with

periodical steep slopes. The patterns of convergence in small, medium and large-sized problems are

affected by the size of search space. When the problem size increases, the number of possible solutions

also increases. Furthermore, in the small-sized problems, tiny changes in the assembly sequence give

more effect on the fitness value compared with the larger-sized problems because of the ratio between

the changes and problem size.

4.2 Case Study Validation

A case study has been conducted to validate the proposed model and algorithm to optimise 2S-

ALB with resource constraints. The case study was conducted at an automotive assembler and focused

on underbody assembly, which consisted of 34 assembly tasks. The assembly process in the studied line

was conducted manually and mainly involved spot welding process. The existing assembly data is

presented in Table 10. Currently, the production line is targeted to assemble 25 units of rear axle per

day. Considering nine working hours per day, the desired cycle time should not exceed 22 minutes.

This problem has been modelled using the proposed 2S-ALB model and then optimised using

the MPSO algorithm. Since the company is expected to produce 25 units per day, the desired cycle time

of 22 minutes is used for the optimisation. Table 11 shows assembly tasks assignment for existing and

optimised layout. Based on the existing layout, the actual cycle time is 25 minutes, obtained at stations

2R and 5R. Meanwhile for the optimised layout, the actual cycle time achieved is 21 minutes, which is

found at stations 2L, 2R and 3L. The optimised layout still utilised 5-mated workstations and 10

workstations as in the existing layout, but came out with better cycle time, idle time and total number of

resources used. According to the optimised layout, there were 14.7 % and 75 % reduction of resource

numbers and total idle time, respectively.

18

Figure 10 shows the sensitivity of the obtained solution from MPSO optimisation. In this test,

cycle time for 2S-ALB was simulated 5000 times by randomly varying assembly tasks time between 5

to 10 % using Gaussian distribution. The nonconformance percentage represents the cases that simulated

cycle times exceeding the desired cycle time (i.e. 22 minutes). Based on the figure, to achieve

nonconformance of less than 10 %, the maximum assembly time variation is 8.34 %.

The case study results indicated that the proposed 2S-ALB with resource constraints model can be

implemented for real-life problems. The result also proved that the proposed MPSO is capable of

suggesting better production layout with less cycle time, idle time and also total number of resources.

In addition, the solution provided by MPSO has good flexibility in terms of assembly time variation.

5. Conclusion & Future Work

This paper presented a 2S-ALB with resource constraints. In contrast to the majority of existing

works that assume all workstations have similar capabilities, this research considers the assembly

resources including tools, machines, and workers to be minimised during the line balancing. For

optimisation purposes, MPSO was introduced by considering the top three solutions as the global best

(Gbest) instead of one best solution in PSO algorithm. This change was made to maintain the solution

diversity over the iterations.

A computational experiment was conducted by using 12 benchmark test problems from small,

medium and large sizes. The optimisation results of MPSO were compared with results from popular

algorithms for 2S-ALB, including GA, ACO and PSO algorithms. The computational experiment results

indicated that the proposed MPSO has the capacity to search for the best solution in 11 out of 12 test

problems. Unlike the comparison algorithms, the MPSO is capable of maintaining performance even

when the problem size increases. Besides that, the results also indicated that the proposed model for 2S-

ALB with resource constraints can reduce the number of resources in an assembly line. This is important

to set up the assembly line in an efficient way. This result has been proven via case study, where the

optimised solution by MPSO is the able to reduce number of resources up to 14.7 % compared with the

19

existing layout. At the same time, the optimised case study problem also managed to reduce cycle time

and idle time.

The modification on the Gbest has made the MPSO become more dynamic in terms of search

direction. This change has two-fold advantages. The first advantage is that the proposed MPSO has

better exploration, which increases the chances to obtain an optimum solution. Meanwhile, the second

advantage is that the possibility for the algorithm to get trapped in local optima could be reduced. This

work however, has a drawback in terms of multi-objective handling. Since this work implemented the

weighted sum approach for the multi-objective problem, the result highly depends on the weight used

for each optimisation objective. Currently, a similar weight is assigned to all optimisation objectives. In

the future, a study to determine a suitable weight for different optimisation objectives should be

proposed. Finally, the Pareto optimality concept for multi-objective handling is suggested to have a

better view on the optimum solution.

Acknowledgement

The authors would like to acknowledge the Ministry of Higher Education, Malaysia and Universiti

Malaysia Pahang for funding this research under FRGS grant RDU1901108

(FRGS/1/2019/TK03/UMP/02/3).

References

1. Alavidoost, M. H., Tarimoradi, M., and Zarandi, M. H. F., “Fuzzy adaptive genetic algorithm

for multi-objective assembly line balancing problems,” Applied Soft Computing, vol. 34, pp.

655–677, (2015).

2. Saif, U., Guan, Z., Wang, B., and Mirza, J., “Pareto lexicographic α-robust approach and its

application in robust multi objective assembly line balancing problem,” Frontiers of Mechanical

Engineering, vol. 9, no. 3, pp. 257–264, (2014).

3. Tuncel, G. and Aydin, D., “Two-sided assembly line balancing using teaching-learning based

optimization algorithm,” Computers and Industrial Engineering, vol. 74, no. 1, pp. 291–299,

(2014).

20

4. Saif, U., Guan, Z., Wang, B., Mirza, J., and Huang, S., “A survey on assembly lines and its

types,” Frontiers of Mechanical Engineering, vol. 9, no. 2, pp. 95–105, (2014).

5. Bartholdi, J. J., “Balancing two-sided assembly lines: A case study,” International Journal of

Production Research, vol. 31, no. 10, pp. 2447–2461, (1993).

6. Purnomo, H. D., Wee, H., Rau, H., Dwi, H., Wee, H., and Rau, H., “Two-sided assembly lines

balancing with assignment restrictions,” Mathematical and Computer Modelling, vol. 57, no. 1–

2, pp. 189–199, (2013).

7. Chutima, P. and Naruemitwong, W., “A Pareto biogeography-based optimisation for multi-

objective two-sided assembly line sequencing problems with a learning effect,” Computers and

Industrial Engineering, vol. 69, no. 1, pp. 89–104, (2014).

8. Khorasanian, D., Hejazi, S. R., and Moslehi, G., “Two-sided assembly line balancing considering

the relationships between tasks,” Computers and Industrial Engineering, vol. 66, no. 4, pp.

1096–1105, (2013).

9. Duan, X., Wu, B., Hu, Y., Liu, J., and Xiong, J., “An improved artificial bee colony algorithm

with MaxTF heuristic rule for two-sided assembly line balancing problem,” Frontiers of

Mechanical Engineering, vol. In Press, (2018).

10. Yuan, B., Zhang, C., Shao, X., and Jiang, Z., “An effective hybrid honey bee mating optimization

algorithm for balancing mixed-model two-sided assembly lines,” Computers & Operations

Research, vol. 53, pp. 32–41, (2015).

11. Chutima, P. and Chimklai, P., “Multi-objective two-sided mixed-model assembly line balancing

using particle swarm optimisation with negative knowledge,” Computers and Industrial

Engineering, vol. 62, no. 1, pp. 39–55, (2012).

12. Simaria, A. S. and Vilarinho, P. M., “2-ANTBAL: An ant colony optimisation algorithm for

balancing two-sided assembly lines,” Computers & Industrial Engineering, vol. 56, no. 2, pp.

489–506, (2009).

13. Abdullah Make, M. R., Ab. Rashid, M. F. F., and Razali, M. M., “A review of two-sided

assembly line balancing problem,” The International Journal of Advanced Manufacturing

Technology, vol. 89, no. 5–8, pp. 1743–1763, (2017).

14. Tapkan, P., Özbakir, L., and Baykasoʇlu, A., “Bee algorithms for parallel two-sided assembly

line balancing problem with walking times,” Applied Soft Computing Journal, vol. 39, pp. 275–

291, (2016).

15. Kucukkoc, I. and Zhang, D. Z., “Type-E parallel two-sided assembly line balancing problem:

21

Mathematical model and ant colony optimisation based approach with optimised parameters,”

Computers and Industrial Engineering, vol. 84, pp. 56–69, (2015).

16. Kucukkoc, I. and Zhang, D. Z., “A mathematical model and genetic algorithm-based approach

for parallel two-sided assembly line balancing problem,” Production Planning and Control, vol.

26, no. 11, pp. 874–894, (2015).

17. Özcan, U., Gökcen, H., and Toklu, B., “Balancing parallel two-sided assembly lines,”

International Journal of Production Research, vol. 48, no. 16, pp. 4767–4784, (2010).

18. Kim, Y. K., Kim, Y., and Kim, Y. J., “Two-sided assembly line balancing: A genetic algorithm

approach,” Production Planning & Control, vol. 11, no. 1, pp. 44–53, (2000).

19. Lee, T. O., Kim, Y., and Kim, Y. K., “Two-sided assembly line balancing to maximize work

relatedness and slackness,” Computers and Industrial Engineering, vol. 40, no. 3, pp. 273–292,

(2001).

20. Delice, Y., Kızılkaya Aydoğan, E., and Özcan, U., “Stochastic two-sided U-type assembly line

balancing: a genetic algorithm approach,” International Journal of Production Research, vol.

54, no. 11, pp. 3429–3451, (2016).

21. Taha, R. B., El-Kharbotly, A. K., Sadek, Y. M., and Afia, N. H., “A Genetic Algorithm for

solving two-sided assembly line balancing problems,” Ain Shams Engineering Journal, vol. 2,

no. 3–4, pp. 227–240, (2011).

22. Baykasoglu, A. and Dereli, T., “Two-sided assembly line balancing using an ant-colony-based

heuristic,” International Journal of Advanced Manufacturing Technology, vol. 36, no. 5–6, pp.

582–588, (2008).

23. Kucukkoc, I. and Zhang, D. Z., “Mixed-model parallel two-sided assembly line balancing

problem: A flexible agent-based ant colony optimization approach,” Computers and Industrial

Engineering, vol. 97, pp. 58–72, (2016).

24. Zhang, Z., Hu, J., and Cheng, W., “An ant colony algorithm for two-sided assembly line

balancing problem type-II,” Advances in Intelligent Systems and Computing, vol. 213, pp. 369–

378, (2014).

25. Hu, X., Wu, E., and Jin, Y., “A station-oriented enumerative algorithm for two-sided assembly

line balancing,” European Journal of Operational Research, vol. 186, no. 1, pp. 435–440,

(2008).

26. Fattahi, P., Samouei, P., and Zandieh, M., “Simultaneous Multi-skilled Worker Assignment and

Mixed-model Two-sided Assembly Line Balancing,” International Journal of Engineering, vol.

22

29, no. 2, pp. 211–221, (2016).

27. Chiang, W., Urban, T. L., and Luo, C., “Balancing stochastic two-sided assembly lines,”

International Journal of Production Research, vol. 54, no. 20, pp. 6232–6250, (2016).

28. Delice, Y., Kızılkaya Aydoğan, E., Özcan, U., and İlkay, M. S., “A modified particle swarm

optimization algorithm to mixed-model two-sided assembly line balancing,” Journal of

Intelligent Manufacturing, vol. 28, no. 1, pp. 23–36, (2017).

29. Delice, Y., Aydoğan, E. K., Özcan, U., and İlkay, M. S., “Balancing two-sided U-type assembly

lines using modified particle swarm optimization algorithm,” 4OR, vol. 15, no. 1, pp. 37–66,

(2017).

30. Li, Z., Janardhanan, M. N., Tang, Q., and Nielsen, P., “Co-evolutionary particle swarm

optimization algorithm for two-sided robotic assembly line balancing problem,” Advances in

Mechanical Engineering, vol. 8, no. 9, pp. 1–14, (2016).

31. Tang, Q., Li, Z., Zhang, L., and Floudas, C. A., “A hybrid particle swarm optimization algorithm

for large-sized two-sided assembly line balancing problem,” ICIC Express Letters, vol. 8, no. 7,

pp. 1981–1986, (2014).

32. Make, M. R. A., Rashid, M. F. F., and Razali, M. M., “Modelling of Two-sided Assembly Line

Balancing Problem with Resource Constraints,” in IOP Conference Series: Materials Science

and Engineering, 2016, vol. 160, no. 1.

33. Adnan, M. A. and Razzaque, M. A., “A comparative study of Particle Swarm Optimization and

Cuckoo Search techniques through problem-specific distance function,” in 2013 International

Conference of Information and Communication Technology, ICoICT 2013, 2013, pp. 88–92.

34. Scholl, A., “Benchmark Data Sets by Scholl,” Assembly Line Balancing Data Dets & Research

Topics, 1993. http://assembly-line-balancing.mansci.de/salbp/benchmark-data-sets-1993/.

35. Rubiano-Ovalle, O. and Arroyo-Almanza, A., “Solving a two-sided assembly line balancing

problem using memetic algorithms,” Ingenieria y Universidad, vol. 13, no. 2, pp. 267–280,

(2009).

36. Rashid, M. F. F., Hutabarat, W., and Tiwari, A., “A review on assembly sequence planning and

assembly line balancing optimisation using soft computing approaches,” The International

Journal of Advanced Manufacturing Technology, vol. 59, no. 1–4, pp. 335–349, (2012).

23

LIST OF FIGURES CAPTION

Figure 1. Two-sided assembly line

Figure 2. Precedence relation graph

Figure 3(a). Particle movement for PSO

Figure 3(b). Particle movement for MPSO

Figure 4. Main effect plot for Signal-to-Noise ratios

Figure 5. Minimum fitness by problem size

Figure 6. Average fitness by problem size

Figure 7. Convergence plot of small size problem

Figure 8. Convergence plot of medium size problem

Figure 9. Convergence plot of large size problem

Figure 10. Sensitivity of optimised layout

LIST OF TABLES CAPTION

Table 1. Precedence matrix

Table 2. Data matrix

Table 3. Coefficient level for Taguchi design

Table 4. L9 Taguchi orthogonal array

Table 5. Test problem category and sources

Table 6. Small-sized problem comparison

Table 7. Medium-sized problem comparison

Table 8. Large-sized problem comparison

Table 9. Frequency of the rank for different algorithms

Table 10. Assembly data for underbody assembly

Table 11. Assembly task assignment for existing and optimised layouts

24

LIST OF FIGURES

Figure 1. Two-sided assembly line

Figure 2. Precedence relation graph

25

Figure 3(a). Particle movement for PSO

Figure 3(b). Particle movement for MPSO

26

Figure 4. Main effect plot for Signal-to-Noise ratios

Figure 5. Minimum fitness by problem size

27

Figure 6. Average fitness by problem size

0 50 100 150 200 250 300 350 400 450 500

0.30

0.35

0.40

0.45

F
it

n
e

s
s

Iteration

 ACO

 GA

 PSO

 MPSO

Figure 7. Convergence plot of small size problem

28

0 50 100 150 200 250 300 350 400 450 500

0.25

0.30

0.35

0.40

0.45

F
it

n
e

s
s

Iteration

 ACO

 GA

 PSO

 MPSO

Figure 8. Convergence plot of medium size problem

0 50 100 150 200 250 300 350 400 450 500

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

F
it

n
e
s
s

Iteration

 ACO

 GA

 PSO

 MPSO

Figure 9. Convergence plot of large size problem

29

Figure 10. Sensitivity of optimised layout

30

LIST OF TABLES

Table 1. Precedence matrix

i/j 1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 0 0 0 0

2 0 0 0 0 1 1 0 0 0

3 0 0 0 0 0 1 0 0 0

4 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 1 1 0

6 0 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

Table 2. Data matrix

Task Time Side Resources

1 2 1 1 2 0

2 3 3 3 0 0

3 2 2 2 3 0

4 3 1 1 0 0

5 1 3 3 0 0

6 1 2 2 3 0

7 2 2 1 2 3

8 2 1 2 0 0

9 1 2 1 3 0

31

Table 3. Coefficient level for Taguchi design

Coefficient Low Medium High

w 0.8 1 1.2

c1 1 1.4 1.8

c2 1 1.4 1.8

Table 4. L9 Taguchi orthogonal array

Experiment No. w c1 c2 Mean fitness

1 0.8 1 1 0.3729

2 0.8 1.4 1.4 0.2853

3 0.8 1.8 1.8 0.3351

4 1 1 1.4 0.3123

5 1 1.4 1.8 0.3249

6 1 1.8 1 0.4124

7 1.2 1 1.8 0.4692

8 1.2 1.4 1 0.3243

9 1.2 1.8 1.4 0.3255

Table 5. Test problem category and sources

Size Problem Number of task Data source

Small T4 4 [7]

T9 9 [18]

T12 12 [18]

T16 16 [19]

Medium T24 24 [18]

T47 47 [35]

T65 65 [19]

T70 70 [3]

Large T83 83 [34]

T111 111 [34]

T148 148 [5]

T205 205 [19]

32

Table 6. Small-sized problem comparison

Test

Problem
Algorithm

Minimum

fitness

Maximum

fitness

Average

fitness

Standard

deviation
f1 f2 f3 f4

T4

ACO 0.5505 0.5505 0.5505 0.0000 1 2 7 4

GA 0.5505 0.5505 0.5505 0.0000 1 2 7 4

PSO 0.5505 0.5505 0.5505 0.0000 1 2 7 4

MPSO 0.5505 0.5505 0.5505 0.0000 1 2 7 4

T9

ACO 0.3094 0.3094 0.3094 0.0000 2 4 3 8

GA 0.3094 0.3094 0.3094 0.0000 2 4 3 8

PSO 0.3094 0.3094 0.3094 0.0000 2 4 3 8

MPSO 0.3094 0.3094 0.3094 0.0000 2 4 3 8

T12

ACO 0.2531 0.2531 0.2531 0.0000 2 4 3 11

GA 0.2531 0.2531 0.2531 0.0000 2 4 3 11

PSO 0.2531 0.4380 0.3051 0.0733 2 4 3 11

MPSO 0.2455 0.2531 0.2470 0.0031 2 4 3 10

T16

ACO 0.2151 0.2151 0.2151 0.0000 2 4 6 12

GA 0.2151 0.4710 0.2506 0.0873 2 4 6 12

PSO 0.2151 0.5076 0.4099 0.1065 2 4 6 12

MPSO 0.2151 0.4068 0.2343 0.0590 2 4 6 12

33

Table 7. Medium-sized problem comparison

Test

Problem
Algorithm

Minimum

fitness

Maximum

fitness

Average

fitness

Standard

deviation
f1 f2 f3 f4

T24

ACO 0.1899 0.1930 0.1920 0.0011 2 4 4 26

GA 0.1899 0.1970 0.1927 0.0025 2 4 4 26

PSO 0.1899 0.2144 0.2023 0.0096 2 4 4 26

MPSO 0.1899 0.2073 0.1925 0.0053 2 4 4 26

T47

ACO 0.2697 0.3186 0.2989 0.0216 5 9 11702 88

GA 0.3031 0.3270 0.3164 0.0079 5 10 13415 90

PSO 0.2973 0.3231 0.3059 0.0077 5 10 10945 95

MPSO 0.1731 0.1776 0.1753 0.0020 4 8 2237 73

T65

ACO 0.2586 0.2718 0.2674 0.0041 6 12 565 118

GA 0.2612 0.3857 0.3332 0.0566 6 12 649 113

PSO 0.2524 0.3822 0.2725 0.0388 6 12 469 113

MPSO 0.2491 0.2603 0.2569 0.0052 6 12 385 116

T70

ACO 0.4230 0.4432 0.4339 0.0052 6 10 273 97

GA 0.5492 0.6939 0.6205 0.0577 6 11 646 106

PSO 0.4277 0.4556 0.4379 0.0096 6 10 303 99

MPSO 0.4260 0.4393 0.4316 0.0048 6 10 293 98

34

Table 8. Large-sized problem comparison

Test

Problem
Algorithm

Minimum

fitness

Maximum

fitness

Average

fitness

Standard

deviation
f1 f2 f3 f4

T83

ACO 0.4420 0.4497 0.4472 0.0032 6 11 39716 109

GA 0.4886 0.4917 0.4906 0.0014 6 12 47593 118

PSO 0.4329 0.4951 0.4598 0.0309 6 11 37109 107

MPSO 0.4324 0.4524 0.4400 0.0079 6 11 36944 107

T111

ACO 0.3931 0.4206 0.4115 0.0109 7 13 67520 144

GA 0.3212 0.4126 0.3737 0.0474 6 12 50709 136

PSO 0.3177 0.4249 0.3952 0.0439 6 12 48681 135

MPSO 0.2989 0.3276 0.3200 0.0120 6 12 37365 135

T148

ACO 0.2648 0.3682 0.3070 0.0553 5 10 565 119

GA 0.2609 0.4228 0.3580 0.0865 5 10 515 118

PSO 0.3623 0.4134 0.4003 0.0214 6 11 938 123

MPSO 0.2533 0.3608 0.3092 0.0460 5 10 405 122

T205

ACO 0.2343 0.2399 0.2362 0.0023 5 10 4375 127

GA 0.2363 0.3532 0.3236 0.0492 5 10 4575 126

PSO 0.2343 0.3514 0.2990 0.0594 5 10 4375 127

MPSO 0.2308 0.2366 0.2348 0.0023 5 10 4055 126

35

Table 9. Frequency of the rank for different algorithms

Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Average Rank

Minimum fitness

ACO 5 3 3 1 2.00

GA 4 2 1 5 2.58

PSO 4 5 2 1 2.00

MPSO 11 1 0 0 1.08

Average fitness

ACO 5 6 0 1 1.75

GA 2 2 3 5 2.92

PSO 2 0 6 4 3.00

MPSO 9 3 0 0 1.25

36

Table 10. Assembly data for underbody assembly

Task Precedence Time

(minute)

Side Resource

1 - 9 Left M1

2 1 3 Left M2

3 - 5 Either M1

4 2 7 Left M3

5 - 8 Either M1

6 - 6 Right M2

7 5 3 Either M1, M3

8 4 12 Left M1, M2

9 3 4 Either M1, M4

10 8 2 Left M3

11 7 7 Either M1

12 6 2 Right M2

13 12 3 Right M4

14 11 12 Either M3

15 10 16 Left M3

16 9 5 Either M4

17 14 2 Either M3

18 17 5 Right M3, M4

19 13 2 Right M4, M5

20 15, 16 2 Left M5

21 20 2 Left M6

22 20 3 Either M7

23 21 7 Left M5, M7

24 22 4 Either M7, M8

25 18, 19 9 Either M5

26 25 4 Right M6, M10

27 23 6 Left M7

28 24 4 Either M8

29 27, 28 6 Left M7

30 26 2 Either M7, M8

31 30 11 Either M8, M9

32 26 4 Right M6, M7

33 32 5 Right M9, M10

34 31 3 Either M9, M11

37

Table 11. Assembly task assignment for existing and optimised layouts

Layout Station Task
Time

(minute)
Resource

Cycle

time

(minute)

Total

idle

(minute)

Existing

Layout

1L 1, 2, 3, 4 24 M1, M2, M3

25 64

1R 5, 6, 7 17 M1, M2, M3

2L 8, 9, 10 18 M1, M2, M3, M4

2R
11, 12, 13,

14
25 M1, M2, M3, M4

3L 15, 16 21 M3, M4

3R 17, 18, 19 9 M3, M4, M5

4L
20, 21, 22,

23, 24
18 M5, M6, M7, M8

4R 25, 26 13 M5, M6, M10

5L 27, 28, 29 16 M7, M8

5R
30, 31, 32,

33, 34
25

M6, M7, M8, M9,

M10, M11

Optimized

Layout

1L 1, 2, 5 20 M1, M2

21 16

1R 3, 6, 7, 12 20 M1, M2, M3

2L 4, 8, 10 21 M1, M2, M3

2R 11, 14, 17 21 M1, M3

3L 15, 20 21 M3, M5

3R
9, 13, 16,

18, 19
19 M1, M3, M4, M5

4L
21, 22, 24,

28, 30
17 M6, M7, M8

4R 25, 26, 32 17 M5, M6, M7, M10

5L 23, 27, 29 19 M5, M7

5R 31, 33, 34 19 M8, M9, M10, M11

38

Biographies

Muhammad Razif Abdullah Make is a part time MSc graduate researcher in College of Engineering,

Universiti Malaysia Pahang. He is currently a mechanical engineer at a plantation company in

Malaysia.

Mohd Fadzil Faisae Ab Rashid is an Associate Professor and Researcher in the Department of Industrial

Engineering, College of Engineering, Universiti Malaysia Pahang. His research interest is in

manufacturing system optimization. He is also a Chartered Engineer under the Institution of

Mechanical Engineers.

