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Abstract  

Two-sided Assembly Line Balancing (2S-ALB) is important in assembly plants that produce large-sized 

high-volume products, such as in automotive production. The 2S-ALB problem involves different 

assembly resources such as worker skills, tools, and machines required for the assembly. This research 

modelled and optimised the 2S-ALB with resource constraints. In the end, besides having good 

workload balance, the number of resources can also be optimised. For optimisation purpose, Particle 

Swarm Optimisation was modified to reduce the dependencies on a single best solution. This was 

conducted by replacing the best solution with top three solutions in the reproduction process. 

Computational experiment result using 12 benchmark test problems indicated that the 2S-ALB with 

resource constraints model was able to reduce the number of resources in an assembly line. Furthermore, 

the proposed modified Particle Swarm Optimisation (MPSO) was capable of searching for minimum 

solutions in 11 out of 12 test problems. The good performance of MPSO was attributed to its ability to 

maintain the particle diversity over the iteration. The proposed 2S-ALB model and MPSO algorithm 

were later validated using industrial case study.  This research has a twofold contribution; novel 2S-

ALB with resource constraints model and also modified PSO algorithm with enhanced performance. 

Keywords: Manufacturing systems, Assembly line balancing, Two-sided line, resource constraints, 

Particle Swarm Optimisation 
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1. Introduction 

Assembly line is a system that considers the arrangement of workstation, workers, tools or 

machines, which successively outlines the operations for being completed. It has been widely used in 

many manufacturing industries to cope with the increasing demands in manufacturing. The assembly 

line is set up for the most optimum design to meet production demands. The assembly line system was 

introduced around 1900 by Henry Ford for his automobile plants [1]. Since then, various evolutions and 

progresses have been reported in regard to the assembly line. Commencing from that idea, the balancing 

approach has been developed for the assembly line, known as Assembly Line Balancing (ALB). 

Balancing an assembly line can be difficult for most industries. It not only refers to the assigning of a 

task to a respective workstation but also towards enhancing production rates with the desired 

performance level [2]. Nowadays, ALB has become more important to cope with global competitiveness 

in the industry. It classically started in 1955, when Salveson firstly described the typical ALB problem 

that focused on an efficient and fast solution approach for solving the line balancing problem [3]. The 

great progress developed from time to time has extended the classification of the ALB problem.  

Later, various versions of ALB problems have been formulated to suit different assembly line 

problems [4]. One of the ALB branches is the assembly line that assembles large-sized and high-volume 

products like an automotive assembly line. The assembly process is conducted on both left and right 

sides of the product. This problem is known as two-sided assembly line balancing (2S-ALB) and was 

first established by Bartholdi in 1993 [5]. Early work on 2S-ALB has inspired other researchers to study 

and extend this work to the next level. The 2S-ALB was built from a single line production system, 

which is identically paired parallel to the first side of the assembly line. Figure 1 illustrates the 2S-ALB 

station features along the conveyor belt. Contrary to one-sided line, the assembly process in 2S-ALB 

could be conducted either from the left or right side, depending on various constraints. The 2S-ALB 

system is able to shorten and save space in the assembly lines, besides reducing the material handling 

of tools and fixtures.  
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Recently, the 2S-ALB problem has grown rapidly and different ALB versions are adopted as 

variations of the 2S-ALB problem. The 2S-ALB variation started with the general 2S-ALB as illustrated 

in Figure 1. The general 2S-ALB consists of two workstations facing each other along the assembly 

line. This version of the problem has its advantages, including shortening the assembly line, saving some 

spaces, reducing throughput time and material handling, besides the cost of tools and fixtures. This 

general 2S-ALB is well addressed in several research studies [3], [6]–[9].  

Besides studying the general 2S-ALB, researchers also combined the 2S-ALB with the mixed-

model assembly line balancing (MALB). The MALB is particularly considered to level the workload in 

every workstation on the line, besides levelling the part usage. It literally functions to achieve a balanced 

workload at specific processing times for each assembly task, while attempting to minimise the variation 

used by the different parts over time. This combination of 2S-ALB with MALB has broadly introduced 

the implementation of different optimisations and line balancing solution approaches [10]–[12]. Another 

combination with the 2S-ALB is the parallel assembly line balancing (P-ALB). The P-ALB is the 

combination of two or more lines placed parallel to each other, which becomes an idea of sharing tools 

and fixtures to complete the entire job. The two-sided P-ALB, which is the combination of 2S-ALB and 

P-ALB, is to shorten the assembly line while steadily running during a breakdown [13]–[16]. This 

combined problem was discussed by Ozcan, Gokcen, and Toklu (2010) [17] to provide much more 

benefits: (i) it can help produce similar products or different models of the same production of the 

adjacent lines, (ii) it can reduce the idle time and increase the efficiency of the assembly lines, (iii) it is 

able to complete production with a different cycle time for each of the lines, (iv) it can improve visibility 

and communication skills between operators, and (v) it is also able to reduce operator requirements. 

Many studies have been conducted to work out the best optimum seeking approach, 

implementing either heuristic or meta-heuristic method for 2S-ALB. In an early study, Kim et al. in 

2000 used Genetic Algorithm (GA) as the optimisation algorithm [18]. Then in 2001, it has been 

continued by Lee et al. employing the group assignment procedure [19]. The GA approach was also 

implemented by Yılmaz Delice, Kızılkaya Aydoğan, & Özcan (2016), Kucukkoc & Zhang (2015a), and 

Taha, El-Kharbotly, Sadek, & Afia (2011) to optimise 2S-ALB. Meanwhile, Baykasoglu and Dereli 
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adopted Ant Colony Optimisation (ACO) to optimise the 2S-ALB [22]. They have successfully applied 

the ACO algorithm for a domestic product, which influences other researchers to deal with other sectors 

apart from the large-sized automotive products. In addition, many other researchers also implemented 

the ACO because of its good performance especially in combinatorial problems [15], [23], [24]. From 

earlier reviews, GA and ACO algorithms have successfully dominated other optimisation methods in 

terms of performance and also frequencies that make these algorithms more popular [13]. Besides that, 

different algorithms were also implemented through several reported studies. For instance, Hu et al. 

(2008) have been reported to implement the enumerative algorithm combined with the Hoffmann 

heuristic method [25].  

In the meantime, Particle Swarm Optimisation (PSO) algorithm was also frequently 

implemented for 2S-ALB. The PSO assisted with Taguchi has been implemented for 2S-ALB with 

multi-skilled worker assignment [26]. Researchers also implemented ACO algorithm to optimise 

stochastic 2S-ALB, instead of deterministic time in the majority of 2S-ALB works [27]. Meanwhile in 

2012, Chutima and Chimklai proposed a PSO with Negative Knowledge (PSONK) for the optimisation 

of complex combination with the 2S-ALB problem [11]. Y Delice, Kızılkaya Aydoğan, Özcan, and 

İlkay (2017) also later implemented the PSONK but proposed a combined selection mechanism for the 

assembly task. Besides that, different approaches have been proposed to improve the PSO performances 

[29]–[31]. Although the advantages of PSO algorithm have been well reported, its application and 

improvement are still needed. Generally, PSO is known as a fast optimiser with a robust algorithm, 

which provides a high-quality solution. However, the high focus towards a single best solution in PSO 

can lead to a premature convergence or local optima. This phenomenon is described where the 

convergence is stopped earlier and is considered to express the solution as the best. This problem occurs 

when the algorithm tries to figure out the path of searching direction while still following the best earlier 

solution. The limitation in providing the best solution may occur due to fewer parameter settings, as the 

PSO algorithm only requires a simple specification as a setting before generating a solution.  

Despite the many studies on 2S-ALB conducted, the majority of these works assumed that the 

assembly workstation has a similar capability to conduct the assembly process. In a real situation, there 
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are various constraints that need to be considered during the assembly line design. For example, the 

workforce and machines have different skills and abilities in completing the assigned task. The proper 

utilisation of resources depending on their skills and precedence has integrated the assembly line to be 

fully optimised. Besides, with the appropriate use of the machine, it is also able to solve the inadequate 

space problem for the assembly line in allocating the required machines on the workstation [6].  

In order to overcome the limitation, this paper considered the resources required to conduct a 

specific assembly task. By considering the assembly resource constraints, the number of resources could 

be optimised. For optimisation purpose, the PSO is modified to reduce the dependence of the algorithm 

on a single best solution. The proposed modification is expected to improve the algorithm exploration 

ability. Section 2 of this paper presents the 2S-ALB with resource constraints problem. Section 3 

presents the proposed Modified Particle Swarm Optimisation (MPSO) algorithm. The computational 

experiment is set up and the results are discussed in Section 4. Finally, Section 5 summarises and 

concludes the research work. 

 

2. 2S-ALB with Resource Constraints Problem 

The 2S-ALB is a modified structure that is essentially created from the one-sided ALB problem. 

The main goal of this problem is to enhance the production rate and increase the line efficiency. 

Flexibility to produce a high volume of large-sized product in two-sided assembly line configuration 

practically provides many beneficial advantages, including the ability to shorten the line length, save 

spaces on the lines, increase the line efficiency by reducing the number of workstations, and reduce the 

material handling cost of tools and fixture. Normally in a two-sided assembly line, a pair of lines placed 

opposite to each other will be represented. Figure 1 illustrates the two-sided assembly line possessing 

left and right sides of the lines in which the workstation is clamped together between the moving 

conveyor. 

A comprehensive study in making the idea of balancing 2S-ALB problem has been presented 

[32]. Commencing from a particular task relation called ‘precedence relation graph’ that is built with 
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circle and arrows, the example of precedence relation graph with nine tasks is depicted in Figure 2. 

Each circle represents the assigned task, while the arrows linked represent each relation between the 

task. The associated data of each processing time and operational direction are also specified on top of 

each circle (assign task). Three types of operational direction will be considered: left (L), right (R) and 

either (E). For left and right side, the execution is outright and should be actualised for the following 

position. Meanwhile, for either side direction, the task could be executed on any side of the workstation, 

either on the left side or the right side. 

Then, an assembly data is presented in precedence matrix as shown in Table 1. This matrix 

consists of one and zero values that represent the assembly relation information of the precedence graph. 

In Table 1, the relation of each task is transformed from the precedence relation graph, adopting ‘i’ as 

the present task and ‘j’ as the next assigned task. The value of one in the precedence matrix indicates 

the predecessor link of ‘i’ task to the next task ‘j’. This means that there is a precedence relationship to 

be examined. Meanwhile, the zero value implies no precedence relation between tasks i and j. 

 

 

Besides the precedence matrix, a data matrix is also required to store the assembly information 

for the 2S-ALB with resource constraints. The data matrix (Table 2) expresses the assembly information 

such as processing time, assembly side, and resources details. For the side column, three different 

operational direction values indicate different sides. In this column, value ‘1’ is for the left side 

operation, value ‘2’ is for either side operation, while value ‘3’ is for the right-side operation. The 

resource details are also coded in numbers to express different resources. It is important to note that the 

number of resources for one assembly task is not limited to three as shown in Table 2. In the case where 

the number of resources is larger, the matrix can be expanded to fit all the data.  

 

2.1 Problem Assumptions and Notations 

The general assumptions of the problem are as follows: 
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 Task times and resources used (machine, tools, worker) are known and deterministic. 

 Tasks have preferences regarding the operational direction (side), i.e., left side, either side or 

right side. 

 Every task can be operated only after all its immediate predecessors are completed. 

 The maximum operational cycle time is fixed and could not be exceeded. 

 Every task cannot be split between workstations and must be assigned to exactly one 

workstation. 

 The tasks with positive zoning must be operated in the same workstation. 

 The tasks with negative zoning could not be assigned to the same workstation. 

 Parallel tasks and parallel stations are not allowed. 

 The skill level of each worker is ignored to provide a similar working pace of assembly task.  

 The working travel times are ignored and no inventory (work in progress) is allowed. 

 Any breakdowns of machines and tools are not considered, and the assembly process is 

constantly performed. 

The notations used in this mathematical formulation are summarised as follows. 

J  : number of mated-workstation 1,2,...,j J  

I  : number of one-sided workstation 1,2,...,i I  

F  : 1, if there is any space available on the operating time, otherwise, 0 

N  : number of resource utilisation 1,2,...,n N  

msX  : 1, if mated-workstation j is utilised for both side of the line, otherwise, 0  

sY  : 1, if mated-workstation j is utilised for only one side of the line, otherwise, 0 

tm  : maximum processing time 1,2,...,t T  

tr  : operational time of the task on the workstation 𝑗 

vp  : maximum gap value in space availability 

vq  : minimum gap value in space availability  

sR  : 1, if resource is utilised in workstation 𝑗, otherwise, 0  

 

2.2 Mathematical Formulation and Constraints 
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The mathematical model for 2S-ALB with resource constraints is presented below. In this 

problem, four optimisation objectives are considered. The first optimisation objective as in Equation (1) 

is to minimise the mated workstation, f1. The second optimisation objective in Equation (2) is to 

minimise the number of the workstation, f2. A mated workstation consists of a pair of left and right 

workstation on the assembly line. Meanwhile, the number of workstations calculates the total individual 

workstation. The third optimisation objective is to minimise idle time, f3 as presented in Equation (3). 

Finally, the fourth optimisation objective to minimise the number of resources, f4 presented in Equation 

(4). By using the number of resources as one of the optimisation objectives, the number of resources can 

be minimised. This can be achieved by assigning the assembly task that uses a similar resource in one 

workstation.  
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Besides the optimisation objectives in Equation (1) to (4), several constraints are also being 

considered to ensure the feasibility of generated solution. Constraint (5) enables different tasks to be 

assigned to the same workstation. Meanwhile, constraint (6) limits the assigned task on the same 

workstation as different prescribed equipment. Constraints (7) and (8) are related to controls and ensure 

the maximum operational cycle time not be exceeded. Constraints (9), (10) and (11) are engaged to each 

assigned task to only one workstation which is either left or right. 

In this work, weighted sum approach is used to deal with the multi-objective problem. 

Therefore, the optimisation objectives considered in this work need to be normalised because they have 

different ranges. For this purpose, the fi is normalised into [0, 1] range as follows: 

min

max min
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The fitness function for this problem is presented as follows: The w1, w2, w3 and w4 were set at 0.25. 

 

3. Modified Particle Swarm Optimisation 

PSO is a meta-heuristic searching method that is inspired from the swarming behaviour of 

flocking birds. This mechanism is particularly based on the migrating birds’ population and their flying 

directions. Every single migrating bird is considered a particle, which usually adjusts its searching or 

flying direction according to the previous flying experience. Each particle represents a potential solution 

with a certain position (current solution), velocity (magnitude and direction towards the optimal 

solution) and fitness value (performance measure of the specific problem). Compared to other 

evolutionary approaches such as ACO and GA methods, PSO is respectively known to have a faster 

convergence towards the optimal solution [33]. 

The PSO algorithm begins with the initialisation procedure, where each particle represents the 

population in a D-dimensional vector as the constructed possible solution,  1 2, ,...,i i i iDX x x x and 

velocity,  1 2, ,...,i i i iDV v v v . Then, each solution is evaluated according to the objective function. 

Since the PSO is coded using a real number, a topological sort procedure is applied to match with the 

combinatorial problem in 2S-ALB. For the example in Figure 2, let the X1 = (4.81, 7.90, 2.12, 6.91, 

6.63, 4.09, 0.27, 3.54, 3.95). The topological sort begins with identifying the candidate task without 

precedence. In Figure 2, Task 1, 2 and 3 are the candidate tasks. In this situation, the x11, x12 and x13 are 

compared to determine the selected task. Since x12 is the highest, Task 2 is selected and stored in feasible 

solution, F1 = [2]. The selected task is then removed from the precedence graph. This approach is 

max max3 2 max

1

n
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
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repeated until all the tasks from the graph are selected. For this example, the decoded feasible solution 

is F1 = [2 5 1 4 8 3 6 9 7]. 

Next, the particle best solution (Pbest) and global best (Gbest) are updated. Pbest refers to the 

current best solution for a particular particle, while the Gbest is the overall best solution. The Pbest and 

Gbest solutions are used to update the velocity and position of the solution. The following formula is 

used to update velocity (22) and position (23): 

In Equation (22), t denotes the iteration number, while 𝑤 is the inertia weight for regulating the 

previous effect of historical velocities. On the other hand, 𝑐1 and 𝑐2 are the acceleration coefficients, 

while 𝑟1 and 𝑟2 are random numbers between [0, 1]. The Pbest, Gbest and particle position are updated 

until the specific iteration number is reached.  

Previously, a lot of studies proposed different approaches to reducing premature convergence 

in PSO. Premature convergence in soft computing occurs because of the lack of diversity in the solution 

during the iteration process. In PSO, this phenomenon is directly related to velocity and position-

updating procedures. The solution position is influenced by the Pbest and Gbest with some randomness 

by r1 and r2. The Pbest, however, only influences a specific particle, compared with Gbest that affects 

all the particles to move towards it. In the case where Gbest is not updated (no better solution found) in 

a few consecutive iterations, there is a possibility for the majority of the particles to reach the Gbest. 

This situation will reduce the solution diversity.  

To overcome this problem, this work proposed to consider the top three best solutions instead 

of the only single solution in Gbest. For this purpose, the single solution in Gbest is replaced with the 

average of the three best solutions. 

 1 2 3 / 3t t t tGbest g g g         (24) 

   1

1 1 2 2

t t t t t t

i i i i iV wV c r Pbest X c r Gbest X       (22) 

1 1t t t

i i iX X V    (23) 
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In Equation (24), 1 2 3, ,t t tg g g refer to the solution particle in the first, second and third ranks 

respectively for the tth iteration. In the modified PSO, the Gbest is replaced with the new Gbest in 

Equation (24). The reason to consider the top three solutions for Gbest is to improve the solution 

diversity. In the proposed mechanism, the particle position will follow the average position from the 

three best solutions. Furthermore, the possibility for all three solutions not being updated is small 

compared with the single Gbest solution in the original PSO. This mechanism makes the search direction 

more diverse and reduces the chance of getting trapped in local optima.  

To prove this concept, a simple test using Rastrigin function is conducted. For this function, the 

optimum point is (0, 0). In this test, only six particles are used. The first particle is set as (0, 0) while the 

remaining five particles are randomly generated using the same pseudorandom for both PSO and MPSO. 

The purpose of setting the first particle as the optimum point is to observe the particle movement over 

the iteration. For this purpose, the iteration is set only to 10. The particle position for the first, fifth and 

tenth iterations are captured. All other parameters for PSO and MPSO are the same. 

Figure 3(a) and 3(b) present the particle movement for PSO and MPSO. In Figure 3(a), all 

particles move directly towards the Gbest (i.e. point (0, 0)) during the fifth iteration. During iteration 

10, the particles only search the solution around the Gbest within a limited range. Meanwhile in MPSO, 

the particles are capable of maintaining the diversity in the fifth and tenth iterations (Figure 3(b)). 

Although the searching range over the iteration becomes smaller, the particles in MPSO do not directly 

move towards the best solution. Therefore, it is expected that the MPSO will have better exploration 

ability. The procedure of MPSO is presented as follows: 

Procedure of Modified PSO 

Initialise MPSO parameters: Population size (npop), coefficients (w, c1, c2), iteration counter 

(iter = 0) and maximum iteration (itermax) 

Initialise random velocity, Vi and position, Xi for i = 1,2,…, npop 

While iter ≤ itermax  

iter = iter +1 

Decode the Xi into feasible assembly sequence, Fi 

Evaluate the fitness function for ith solution, fi 
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  Update personal solution, Pbesti 

  Update top three global solutions, g1, g2 and g3 

  Update  1 2 3 / 3t t t tGbest g g g     

Update velocity 

     1

1 1 2 2

t t t t t t

i i i i iV wV c r Pbest X c r Gbest X       

 Update position 

  
1 1t t t

i i iX X V    

End 

 

3.1 Coefficient Tuning 

MPSO algorithm consists of three coefficients that determine the algorithm performance. They 

are inertia (w), cognitive (c1) and social (c2) coefficients that found in Equation (22). The inertia 

coefficient determines how much the current velocity influence the position. Meanwhile, the cognitive 

and social coefficients control the exploration and exploitation of the candidate solution in search space, 

respectively. In order to identify the best coefficient value for MPSO to optimise 2S-ALB with resource 

constraint, an experiment using Taguchi design was conducted. For this experiment, the coefficients 

were set to three levels as in Table 3. For this purpose, a Taguchi design with L9 orthogonal array was 

used.  

 

To assess the coefficient performance, three sample problems were chosen from different 

problem size category [18], [34]. The selected problems were optimised using MPSO with different 

coefficient values. For each experiment setting, 20 repetitions were made and the mean of fitness were 

calculated as output parameter. Based on experiment conducted, the mean fitness for each experiment 

is presented in Table 4. 

Taguchi analysis using “smaller is better” Signal-to-Noise ratio was used to analyse the output. 

Figure 4 shows the main effect plot signal-to-noise ratio. Based on the main effect plot, c1 coefficient 

gives the highest effect, then followed by c2 and w. According to the figure, the MPSO performance was 
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better when using lower inertia weight, w. A lower w allows the solution to be more diverse and open 

to changes. Meanwhile, for c1 and c2, the medium level was preferable in both coefficients. This 

indicated that the exploration and exploitation level must be balanced to achieve a good quality solution. 

Based on main effect plots, the optimum coefficients level for MPSO are w = 0.8, c1 = 1.4 and c2 = 1.4.  

 

4. Results and Discussion 

4.1 Computational Experiment 

A computational experiment is conducted to measure the performance of the modified PSO 

(MPSO) to optimise 2S-ALB with resource constraints. For this purpose, 12 benchmark test problems 

are selected according to small, medium and large sizes. The test problems are adopted from different 

sources [3], [5], [7], [18], [19], [34], [35]. Based on the range of problem size used in the literature, the 

small-sized problem is an assembly problem with less than 20 tasks. Meanwhile, the large-sized problem 

is the problem with more than 80 tasks. The assembly problem in between 20 to 80 tasks is considered 

as medium size. The detail of the test problems is presented in Table 5. Due to the lack of large-sized 

test problems, problem T83 and T111 are adopted from a simple ALB problem and the assembly 

directions (i.e. left, right or either) are randomly generated. These benchmark problems, however, did 

not consider the resources required to conduct an assembly task. Therefore, the assembly resources are 

also randomly generated for each of the assembly tasks.  

The performance of MPSO is then compared against GA, ACO and PSO. These algorithms are 

chosen because of their popularity in optimising 2S-ALB problem. According to the earlier survey on 

the ALB problem, 70% of the problem was optimised using GA, ACO and PSO algorithms [36]. The 

recent survey on 2S-ALB also reveals that the GA and ACO were the popular algorithms to optimise 

2S-ALB according to the frequencies [13]. For computational purpose, the population size for all 

algorithms is 30 and the maximum iteration is 500. The optimisation run is repeated for 20 times with 

different pseudorandom for each of the cases. 



15 

 

The optimisation results for the 2S-ALB with precedence constraints are presented in Table 6 

until Table 8 based on the problem size. For the result of small-sized problem in Table 6, all algorithms 

are able to generate the same fitness and objective function value for T4 and T9 problems. On the other 

hand, for the T12 problem, MPSO shows the best fitness compared with other algorithms. For this 

problem, MPSO is able to search for a solution with a smaller number of resources while maintaining 

other optimisation objectives. In the T16 problem, all algorithms are able to converge to the best 

solution, but ACO has better performance in terms of consistency. For this problem, ACO is able to 

reach the optimum solution for every optimisation run.  

The results of medium-sized problem in Table 7 indicate that the MPSO and ACO lead in terms 

of algorithm performance. The MPSO reaches minimum fitness and minimum average fitness in three 

cases. In the meantime, the ACO found the minimum fitness in two cases, while the minimum average 

in only one case. In T24, all algorithms are able to search for minimum fitness, but again the ACO has 

better consistency. In T47 and T65 problems, the MPSO dominates the best minimum and average 

fitness compared with other algorithms. Meanwhile in T70, the ACO is able to search for better 

minimum fitness, but the proposed MPSO has better average fitness and standard deviation.  

Table 8 presents the optimisation result for the large-sized problem. For this class of problem, 

MPSO is consistently able to search for better minimum fitness compared with comparison algorithms. 

In terms of average fitness, the MPSO has a better average in three cases, while the ACO has a better 

average in the remaining one case. The MPSO consistently found the minimum mated workstation, 

number of workstation and idle time in all cases of the large-sized problem.  

Next, a standard competition ranking method was used to analyse the results. In this approach, 

the algorithm with the best result was assigned as Rank 1, while the worst being Rank 4. In the case 

where the performance is tied, a similar rank will be given, and the next position will be left empty. 

Table 9 presents the frequency of the rank for every algorithm in terms of minimum and average fitness.  
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Based on Table 9, the proposed MPSO is only ranked in Rank 1 and Rank 2 for both minimum 

and average fitness. For minimum fitness, the MPSO is able to search for the best solution in 91.6% of 

the problems. At the same time, the MPSO obtains better average fitness in 75 % of the problems, while 

the remaining 25 % is in the second place. The MPSO also has a better average rank for minimum and 

average fitness. In both categories, the MPSO obtained 1.08 and 1.25 in average rank, respectively. 

The nearest challenger to MPSO is the ACO algorithm. The ACO obtains the average Rank 2.00 

for minimum fitness, while 1.75 for average fitness. Meanwhile, the PSO algorithm also has the same 

average rank as ACO for minimum fitness, but in the last position for average fitness. It shows that the 

PSO converges to the different angles in the search space for the different optimisation runs. For this 

reason, the PSO comes out with a different solution for different runs that makes the fitness too diverse. 

For different angles, this behaviour has its own advantage because the algorithm will explore different 

sides of the search space. However, it requires a high number of repetitions for the optimisation run.  

Figure 5 and Figure 6 present the average rank by problem size for minimum and average 

fitness. In general, these figures show that for ACO, GA and PSO, the performance of the algorithm 

becomes worse when the problem size increases. This trend is related to the size of the search space. 

When the problem size increases, the number of possible solutions excessively increases because of 

permutation combination. This makes the searching process harder thus requiring an efficient algorithm. 

In contrast, the MPSO is able to maintain the performance throughout the different problem sizes. 

Figures 7, 8 and 9 present the mean convergence for small, medium and large-sized problems, 

respectively. For the small-sized problem, the MMFO convergence is almost stagnant at iteration 180. 

Meanwhile in the medium-sized problem, the MMFO convergence is roughly stable at iteration 300. 

Even then, a few small improvements still occur until the end. For the large-sized problem, the 

convergence can still be observed to occur until the end of the run.  

In the small-sized problem where the search space is also relatively small, the MMFO algorithm 

manages to converge faster. This can be observed from the steep slope for the first 75 iterations in Figure 

7. On the other hand, the early MMFO convergence in medium-sized problem is intermixed between 
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steep and short flat slopes. Meanwhile, the longer flat slope can be observed in large-sized problem with 

periodical steep slopes. The patterns of convergence in small, medium and large-sized problems are 

affected by the size of search space. When the problem size increases, the number of possible solutions 

also increases. Furthermore, in the small-sized problems, tiny changes in the assembly sequence give 

more effect on the fitness value compared with the larger-sized problems because of the ratio between 

the changes and problem size.  

 

4.2 Case Study Validation 

A case study has been conducted to validate the proposed model and algorithm to optimise 2S-

ALB with resource constraints. The case study was conducted at an automotive assembler and focused 

on underbody assembly, which consisted of 34 assembly tasks. The assembly process in the studied line 

was conducted manually and mainly involved spot welding process. The existing assembly data is 

presented in Table 10. Currently, the production line is targeted to assemble 25 units of rear axle per 

day. Considering nine working hours per day, the desired cycle time should not exceed 22 minutes. 

 

This problem has been modelled using the proposed 2S-ALB model and then optimised using 

the MPSO algorithm. Since the company is expected to produce 25 units per day, the desired cycle time 

of 22 minutes is used for the optimisation. Table 11 shows assembly tasks assignment for existing and 

optimised layout. Based on the existing layout, the actual cycle time is 25 minutes, obtained at stations 

2R and 5R. Meanwhile for the optimised layout, the actual cycle time achieved is 21 minutes, which is 

found at stations 2L, 2R and 3L. The optimised layout still utilised 5-mated workstations and 10 

workstations as in the existing layout, but came out with better cycle time, idle time and total number of 

resources used. According to the optimised layout, there were 14.7 % and 75 % reduction of resource 

numbers and total idle time, respectively.  
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Figure 10 shows the sensitivity of the obtained solution from MPSO optimisation. In this test, 

cycle time for 2S-ALB was simulated 5000 times by randomly varying assembly tasks time between 5 

to 10 % using Gaussian distribution. The nonconformance percentage represents the cases that simulated 

cycle times exceeding the desired cycle time (i.e. 22 minutes). Based on the figure, to achieve 

nonconformance of less than 10 %, the maximum assembly time variation is 8.34 %.  

The case study results indicated that the proposed 2S-ALB with resource constraints model can be 

implemented for real-life problems. The result also proved that the proposed MPSO is capable of 

suggesting better production layout with less cycle time, idle time and also total number of resources. 

In addition, the solution provided by MPSO has good flexibility in terms of assembly time variation. 

 

5. Conclusion & Future Work 

This paper presented a 2S-ALB with resource constraints. In contrast to the majority of existing 

works that assume all workstations have similar capabilities, this research considers the assembly 

resources including tools, machines, and workers to be minimised during the line balancing. For 

optimisation purposes, MPSO was introduced by considering the top three solutions as the global best 

(Gbest) instead of one best solution in PSO algorithm. This change was made to maintain the solution 

diversity over the iterations.  

A computational experiment was conducted by using 12 benchmark test problems from small, 

medium and large sizes. The optimisation results of MPSO were compared with results from popular 

algorithms for 2S-ALB, including GA, ACO and PSO algorithms. The computational experiment results 

indicated that the proposed MPSO has the capacity to search for the best solution in 11 out of 12 test 

problems. Unlike the comparison algorithms, the MPSO is capable of maintaining performance even 

when the problem size increases. Besides that, the results also indicated that the proposed model for 2S-

ALB with resource constraints can reduce the number of resources in an assembly line. This is important 

to set up the assembly line in an efficient way. This result has been proven via case study, where the 

optimised solution by MPSO is the able to reduce number of resources up to 14.7 % compared with the 
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existing layout. At the same time, the optimised case study problem also managed to reduce cycle time 

and idle time. 

The modification on the Gbest has made the MPSO become more dynamic in terms of search 

direction. This change has two-fold advantages. The first advantage is that the proposed MPSO has 

better exploration, which increases the chances to obtain an optimum solution. Meanwhile, the second 

advantage is that the possibility for the algorithm to get trapped in local optima could be reduced. This 

work however, has a drawback in terms of multi-objective handling. Since this work implemented the 

weighted sum approach for the multi-objective problem, the result highly depends on the weight used 

for each optimisation objective. Currently, a similar weight is assigned to all optimisation objectives. In 

the future, a study to determine a suitable weight for different optimisation objectives should be 

proposed. Finally, the Pareto optimality concept for multi-objective handling is suggested to have a 

better view on the optimum solution. 
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Figure 7. Convergence plot of small size problem 
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Figure 8. Convergence plot of medium size problem 
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Figure 9. Convergence plot of large size problem 
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Figure 10. Sensitivity of optimised layout 
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LIST OF TABLES 

Table 1. Precedence matrix 

i/j 1 2 3 4 5 6 7 8 9 

1 0 0 0 1 0 0 0 0 0 

2 0 0 0 0 1 1 0 0 0 

3 0 0 0 0 0 1 0 0 0 

4 0 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 0 1 1 0 

6 0 0 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

 

 

Table 2. Data matrix 

Task Time Side Resources 

1 2 1 1 2 0 

2 3 3 3 0 0 

3 2 2 2 3 0 

4 3 1 1 0 0 

5 1 3 3 0 0 

6 1 2 2 3 0 

7 2 2 1 2 3 

8 2 1 2 0 0 

9 1 2 1 3 0 
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Table 3. Coefficient level for Taguchi design 

Coefficient Low Medium High 

w 0.8 1 1.2 

c1 1 1.4 1.8 

c2 1 1.4 1.8 

 

 

Table 4. L9 Taguchi orthogonal array 

Experiment No. w c1 c2 Mean fitness 

1 0.8 1 1 0.3729 

2 0.8 1.4 1.4 0.2853 

3 0.8 1.8 1.8 0.3351 

4 1 1 1.4 0.3123 

5 1 1.4 1.8 0.3249 

6 1 1.8 1 0.4124 

7 1.2 1 1.8 0.4692 

8 1.2 1.4 1 0.3243 

9 1.2 1.8 1.4 0.3255 

 

Table 5. Test problem category and sources 

Size Problem Number of task Data source 

Small T4 4 [7] 

T9 9 [18] 

T12 12 [18] 

T16 16 [19] 

Medium T24 24 [18] 

T47 47 [35] 

T65 65 [19] 

T70 70 [3] 

Large T83 83 [34] 

T111 111 [34] 

T148 148 [5] 

T205 205 [19] 
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Table 6. Small-sized problem comparison  

Test 

Problem 
Algorithm 

Minimum 

fitness 

Maximum 

fitness 

Average 

fitness 

Standard 

deviation 
f1 f2 f3 f4 

T4 

ACO 0.5505 0.5505 0.5505 0.0000 1 2 7 4 

GA 0.5505 0.5505 0.5505 0.0000 1 2 7 4 

PSO 0.5505 0.5505 0.5505 0.0000 1 2 7 4 

MPSO 0.5505 0.5505 0.5505 0.0000 1 2 7 4 

T9 

ACO 0.3094 0.3094 0.3094 0.0000 2 4 3 8 

GA 0.3094 0.3094 0.3094 0.0000 2 4 3 8 

PSO 0.3094 0.3094 0.3094 0.0000 2 4 3 8 

MPSO 0.3094 0.3094 0.3094 0.0000 2 4 3 8 

T12 

ACO 0.2531 0.2531 0.2531 0.0000 2 4 3 11 

GA 0.2531 0.2531 0.2531 0.0000 2 4 3 11 

PSO 0.2531 0.4380 0.3051 0.0733 2 4 3 11 

MPSO 0.2455 0.2531 0.2470 0.0031 2 4 3 10 

T16 

ACO 0.2151 0.2151 0.2151 0.0000 2 4 6 12 

GA 0.2151 0.4710 0.2506 0.0873 2 4 6 12 

PSO 0.2151 0.5076 0.4099 0.1065 2 4 6 12 

MPSO 0.2151 0.4068 0.2343 0.0590 2 4 6 12 
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Table 7. Medium-sized problem comparison  

Test 

Problem 
Algorithm 

Minimum 

fitness 

Maximum 

fitness 

Average 

fitness 

Standard 

deviation 
f1 f2 f3 f4 

T24 

ACO 0.1899 0.1930 0.1920 0.0011 2 4 4 26 

GA 0.1899 0.1970 0.1927 0.0025 2 4 4 26 

PSO 0.1899 0.2144 0.2023 0.0096 2 4 4 26 

MPSO 0.1899 0.2073 0.1925 0.0053 2 4 4 26 

T47 

ACO 0.2697 0.3186 0.2989 0.0216 5 9 11702 88 

GA 0.3031 0.3270 0.3164 0.0079 5 10 13415 90 

PSO 0.2973 0.3231 0.3059 0.0077 5 10 10945 95 

MPSO 0.1731 0.1776 0.1753 0.0020 4 8 2237 73 

T65 

ACO 0.2586 0.2718 0.2674 0.0041 6 12 565 118 

GA 0.2612 0.3857 0.3332 0.0566 6 12 649 113 

PSO 0.2524 0.3822 0.2725 0.0388 6 12 469 113 

MPSO 0.2491 0.2603 0.2569 0.0052 6 12 385 116 

T70 

ACO 0.4230 0.4432 0.4339 0.0052 6 10 273 97 

GA 0.5492 0.6939 0.6205 0.0577 6 11 646 106 

PSO 0.4277 0.4556 0.4379 0.0096 6 10 303 99 

MPSO 0.4260 0.4393 0.4316 0.0048 6 10 293 98 
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Table 8. Large-sized problem comparison 

Test 

Problem 
Algorithm 

Minimum 

fitness 

Maximum 

fitness 

Average 

fitness 

Standard 

deviation 
f1 f2 f3 f4 

T83 

ACO 0.4420 0.4497 0.4472 0.0032 6 11 39716 109 

GA 0.4886 0.4917 0.4906 0.0014 6 12 47593 118 

PSO 0.4329 0.4951 0.4598 0.0309 6 11 37109 107 

MPSO 0.4324 0.4524 0.4400 0.0079 6 11 36944 107 

T111 

ACO 0.3931 0.4206 0.4115 0.0109 7 13 67520 144 

GA 0.3212 0.4126 0.3737 0.0474 6 12 50709 136 

PSO 0.3177 0.4249 0.3952 0.0439 6 12 48681 135 

MPSO 0.2989 0.3276 0.3200 0.0120 6 12 37365 135 

T148 

ACO 0.2648 0.3682 0.3070 0.0553 5 10 565 119 

GA 0.2609 0.4228 0.3580 0.0865 5 10 515 118 

PSO 0.3623 0.4134 0.4003 0.0214 6 11 938 123 

MPSO 0.2533 0.3608 0.3092 0.0460 5 10 405 122 

T205 

ACO 0.2343 0.2399 0.2362 0.0023 5 10 4375 127 

GA 0.2363 0.3532 0.3236 0.0492 5 10 4575 126 

PSO 0.2343 0.3514 0.2990 0.0594 5 10 4375 127 

MPSO 0.2308 0.2366 0.2348 0.0023 5 10 4055 126 
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Table 9. Frequency of the rank for different algorithms 

  
Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Average Rank 

Minimum fitness 

ACO 5 3 3 1 2.00 

GA 4 2 1 5 2.58 

PSO 4 5 2 1 2.00 

MPSO 11 1 0 0 1.08 

Average fitness 

ACO 5 6 0 1 1.75 

GA 2 2 3 5 2.92 

PSO 2 0 6 4 3.00 

MPSO 9 3 0 0 1.25 
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Table 10. Assembly data for underbody assembly 

Task Precedence Time 

(minute) 

Side Resource 

1 - 9 Left M1 

2 1 3 Left M2 

3 - 5 Either M1 

4 2 7 Left M3 

5 - 8 Either M1 

6 - 6 Right M2 

7 5 3 Either M1, M3 

8 4 12 Left M1, M2 

9 3 4 Either M1, M4 

10 8 2 Left M3 

11 7 7 Either M1 

12 6 2 Right M2 

13 12 3 Right M4 

14 11 12 Either M3 

15 10 16 Left M3 

16 9 5 Either M4 

17 14 2 Either M3 

18 17 5 Right M3, M4 

19 13 2 Right M4, M5 

20 15, 16 2 Left M5 

21 20 2 Left M6 

22 20 3 Either M7 

23 21 7 Left M5, M7 

24 22 4 Either M7, M8 

25 18, 19 9 Either M5 

26 25 4 Right M6, M10 

27 23 6 Left M7 

28 24 4 Either M8 

29 27, 28 6 Left M7 

30 26 2 Either M7, M8 

31 30 11 Either M8, M9 

32 26 4 Right M6, M7 

33 32 5 Right M9, M10 

34 31 3 Either M9, M11 
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Table 11. Assembly task assignment for existing and optimised layouts 

Layout Station Task 
Time 

(minute) 
Resource 

Cycle 

time 

(minute) 

Total 

idle 

(minute) 

Existing 

Layout 

1L 1, 2, 3, 4 24 M1, M2, M3 

25  64 

1R 5, 6, 7 17 M1, M2, M3 

2L 8, 9, 10 18 M1, M2, M3, M4 

2R 
11, 12, 13, 

14 
25 M1, M2, M3, M4 

3L 15, 16 21 M3, M4 

3R 17, 18, 19 9 M3, M4, M5 

4L 
20, 21, 22, 

23, 24 
18 M5, M6, M7, M8 

4R 25, 26 13 M5, M6, M10 

5L 27, 28, 29 16 M7, M8 

5R 
30, 31, 32, 

33, 34 
25 

M6, M7, M8, M9, 

M10, M11 

Optimized 

Layout  

1L 1, 2, 5 20 M1, M2 

21  16 

1R 3, 6, 7, 12 20 M1, M2, M3 

2L 4, 8, 10 21 M1, M2, M3 

2R 11, 14, 17 21 M1, M3 

3L 15, 20 21 M3, M5 

3R 
9, 13, 16, 

18, 19 
19 M1, M3, M4, M5 

4L 
21, 22, 24, 

28, 30 
17 M6, M7, M8 

4R 25, 26, 32 17 M5, M6, M7, M10 

5L 23, 27, 29 19 M5, M7 

5R 31, 33, 34 19 M8, M9, M10, M11 
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