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 This paper presents a Modified Sine Cosine Algorithm (M-SCA) to improve 
the controller parameter of an array of turbines such that the total energy 

production of wind plant is increased. The two modifications employed to 
the original SCA are in terms of the updated step size gain and the updated 
design variable. Those modifications are expected to enhance the variation of 
exploration and exploitation rates while avoiding the premature convergence 
condition. The effectiveness of the M-SCA is applied to maximize energy 
production of a row of ten turbines. The statistical performance analysis 
shows that the M-SCA provides the highest total energy production as 
compared to other existing methods. 
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1. INTRODUCTION 

One of the primary issues of the wind plant research nowadays is that the optimal controller 

parameter of individual turbine does not guarantee an optimal energy production of the whole wind plant. 

This is due to the wake interaction between turbines in the wind plant that degrades the total energy 

production of the wind plant. So far, there are several of strategies that have been proposed to find the 

optimal controller parameters of an array of turbines in the wind plant. One of the recent popular strategies is 

based on the data-driven method that totally relies on the total energy production data of wind plant. These 

include Safe Experimentation Dynamics (SED) [1] and cooperative static control [2]. Those methods are 

under the class of game theoretic method that defines the controller parameter of each turbine as a player to 

achieve the given goal which is the total energy production. In [3], the researchers propose a Maximum 
energy Point Tracking (MPPT) method by incorporating a time varying energy production measurement of 

wind plant. Here, they show that the MPPT method provides faster convergence of total energy production 

than the method in [1]. Similarly, the works in [4] also considered the same model of wind plant as in [3]. 

Here, by manipulating the structure of the given wind plant, the proposed Multi-Resolution Simultaneous 

Perturbation Stochastic Approximation (MR-SPSA) is able to produce faster convergence and higher total 

energy production than the strategy in [3]. Other recent strategies include Bayesian Ascent [5], Random 

Search [6], Spiral Dynamics Algorithm [7], Particle Swarm Optimization [7] and Moth Flame  

Optimization [8].  

On the other hand, a Sine Cosine Algorithm (SCA) [9] can also be considered as a potential tool for 

improving energy production of wind plant. This is because the SCA has been successfully solved various 

types of real world problems [10-20]. The essential features of the SCA algorithm is that the pseudo-code is 
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slightly simple where the design variable is updated using only a random perturbation from the sine and 

cosine signals. However, based on our preliminary works using a row of ten turbines, the standard SCA is 

still not able to provide high accuracy of total energy production. Therefore, it motivates us to modify the 

standard SCA algorithm such that a better total energy production of wind plant can be achieved. 

This paper presents a Modified Sine Cosine Algorithm (M-SCA) to improve energy production of 

wind plant. In order to solve the premature convergence issue in maximizing the energy production of wind 

farm, two modifications are adopted to the standard SCA as follows. Firstly, an existing linear updated 

mechanism in the standard SCA is modified to a new nonlinear updated mechanism, which is based on our 
preliminary study in [21]. Secondly, the updated design variable of each agent is modified to include an 

average design variable between current design variable of each agent and the best current design variable. 

Furthermore, a single row wind plant based on Park model [22] with ten turbines is used to assess the 

effectiveness of the M-SCA. The statistical performance analysis of the wind plant total energy production 

using the proposed method is shown. In addition, a comparative assessment between the M-SCA, the 

standard SCA, the PSO and the SED [1] approaches is presented. 

 

 

2. PROBLEM FRAMEWORK 

Consider the energy production of turbine k is defined by Ek (h1, h2, ..., hm) (k = 1, 2, ..., m), where 

m is the total number of turbines in the wind plant and hk (k = 1, 2, ..., m) is the controller parameter of each 

turbine k. Naturally, the incoming wind speed to a wind plant can be considered in various angle of directions 
with random position of turbines. Hence, the controller parameters of other turbines h1, h2, ..., hk-1, hk+1, ..., 

hm, which is not include controller parameter of turbine k, would also influence the energy production Ek of 

turbine k due to the wake interactions between turbines. Equivalently, the changes of hk might also influence 

the energy productions of other turbines E1, E2, ...., Ek-1, Ek+1, ..., Em. The exact formulation of function 

Ek (h1, h2, ..., hm) can be negligible in this study due to highly complex turbulence interactions among 

turbines, which are too problematic to obtain its mathematical model. Nevertheless, it can be assumed that 

the energy production data of each turbine is measureable. Thence, the total measured energy production can 

be written as follows: 

 

1 2 1 2
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( , ,..., ) ( , ,..., )
m

m k m
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E h h h E h h h



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Finally, this wind plant data-driven control problem can be stated as: 

Problem 2.1: Find the controller parameter of each turbine hk (k = 1, 2, ..., m) such that the total energy 

production E
1 2 m(h ,h ,...,h )  in (1) is maximized without any knowledge on the relation between hk (k = 1, 

2, ..., m) and E . 

 

 

3. MODIFIED SINE COSINE ALGORITHM 

In this section, the proposed M-SCA for optimizing controller parameters of wind turbines in wind 

plant is explained. Firstly, a standard Sine Cosine Algorithm (SCA) is briefly described. This is followed by 

the description of the modification in SCA, which is able to provide better total energy production of  

wind plant. 

 

3.1.   Summary of the Standard SCA 
A brief description of the standard SCA, which is introduced in [9], is shown here. Consider 

: ng R R is the cost function, vi (i =1, 2, ..., N) is the design variable and N is the number of agents. Let vij (j 

= 1, 2, ..., n) is j-th element of the vector vi. Thence, a maximization problem is expressed as: 
 

(1), (2),..
max ( ( ))

i i
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 (2) 

 

For iteration t = 1, 2, ... and for each agent i. The SCA algorithm updates each element of design 

variable for each agent iteratively as: 
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Where, 

 

1

at
r a

T
 

 (4) 
 

for maximum iteration T and constant positive value a. Note that r2, r3 and r4 are random values that are 

generated independently and uniformly in the ranges [0, 2π], [0, 2] and [0, 1], respectively. The detailed 

justification on the selection of the coefficients r1, r2, r3 and r4 are clearly explained in [9]. In (3), the 

symbol Pj (j = 1, 2, ...,n) is denoted as the best current design variable in j-th element that is kept during 

tuning process. Please see [9] for the detail of the SCA pseudo-code. 

 

3.2.   Modified SCA (M-SCA) 

There are two modifications are proposed to the original SCA, which are the updated step size r1 in 

(4) and the updated in (3). In the original version of SCA, the r1 value is linearly decayed from a to 0 during 
the tuning process, which is claimed to provide an exact balance between exploration and exploitation. 

Nevertheless, the setting in (4) maybe limited to several applications only, while it is good to propose more 

generic of r1 that can cover more general class of applications. Motivated from the above limitation, (4) is 

modified to produce a new generic of updated step size as follows: 

 
g
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T
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which is directly adopted from our previous work in [21]. In (5), the symbols α and γ are the positive 
constant values that are introduced to regulate the portion of exploration and exploitation during the tuning 

process. Although there are several researchers that proposed exponential [23] and quadratic [24] curves in 

the original r1, their are limited to only one curve, while (5) can generate two curves during the whole 

iterations. As a result, it is expected that our new 1̂r  can provide more choices of exploration and exploitation 

portions as compared to the exponential and quadratic versions. 

On the other hand, the original version of SCA updates each element of the design variable by 

randomly perturb the current vij using the sine or cosine function that is multiplied with absolute error of the 

best current design variable and current design variable of each agent as shown in (3). However, there is high 

possibility of the current updated design variable vij(t+1) in (3) traps in local minima since the existing 

random perturbation alone is still not enough to avoid this premature convergence. In order to solve this 

issue, it is better to perturb an average element of both vij(t) and Pj, instead of perturbing only the current 

vij(t) in (3). As a result, the current best design parameter can assist any outliers design variable to jump out 
from the local minima and continues a new searching track. Therefore, the new updated is proposed as 

follows: 
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Finally, the M-SCA will follow the same SCA by replacing (3) and (4) with (6) and  

(5), respectively. 

 

3.3.   Applications of M-SCA for Improving Energy Production of Wind Farm 

The procedure for data-driven control of wind plant based on M-SCA is given as follows: 

Step 1: Select the values of α and γ in (5). 

Step 2: Execute the M-SCA by setting 
iE = g  and hk (k = 1, 2, ...,m) = vij (j = 1, 2, ..., n) for each i. 

Step 3: The algorithm stops with the solution hk
* (k = 1, 2, ...,m) = Pj (j = 1, 2, ..., n) after T iterations and the 

corresponding total energy production 
1 2( )mE h *,h *,...,h *  is observed. 

The detail of the pseudo-code can be downloaded from the following link: http://bit.do/m-sca. 

 

 

 

 

http://bit.do/m-sca
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4. NUMERICAL RESULTS 

The effectiveness of the M-SCA is observed in this section. The performance of M-SCA is verified 

on a 10 turbines row wind plant as presented. The wind plant model based on the Park model [22] is adopted 

for ten turbines (m = 10) with 80 m of turbine rotor diameter on each. Please see [22] for the detail of the 

wind plant model. The location of wind turbine is positioned in a row with a same 560 m distance between 

each turbine. The values of incoming wind speed, air density and the turbulence gradient parameters are U = 

8 m/s, ρ = 1.225 kg/m3 and φ = 0.04, respectively. 

In this work, a comparative assessment between the proposed M-SCA and the original SCA, PSO 
and SED in terms of maximum total energy production is considered. The coefficients of M-SCA is set as α 

= 0.01, γ = 1 and a = 0.43, with N = 10 and T = 1000, after performed several initial investigations. Similarly, 

the coefficient of SCA is set as a = 2, with the same combinations of N and T as M-SCA. The coefficients of 

PSO is fixed as c0 = 0.9, c1 = 0.1, and c2 = 0.5, with N = 20 and T = 500, to produce the same number of 

function evaluations. Please see [25] for the details of the PSO algorithm. Meanwhile, the SED with interval 

step size KG = 0.03, the probability of changing the design variable e = 0.3 and T = 10,000 are adopted. 

Please see [1] for the detail of SED algorithm. The initial control parameter of each turbine for M-SCA, SCA 

and PSO are set randomly between ranges of [0, 1\3], while the initial control parameter of SED is set at 1/3 

for all turbines. 

Table 1 tabulates the statistical performance of the total energy production after 100 independent 

trials in terms of its mean, best, worst and standard deviations. It can be seen that the M-SCA yields the 

highest average total energy production, followed by the PSO, SED and the SCA. A similar trend can be 
observed for the corresponding best and worst values. Furthermore, the proposed M-SCA also produces 

slightly lower value of standard deviation than the SCA, PSO and SED. The finding justifies that the 

proposed M-SCA is robust to the stochastic effect while consistently improving total energy production. On 

the other hand, the best optimal controller parameters of the M-SCA are recorded as hk (k = 1, 2, ..., 10) = 

(0.2061, 0.1611, 0.1648, 0.1651, 0.1698, 0.1173, 0.2258, 0.1877, 0.1837, 0.3333). It shows that the optimum 

values of the controller parameters of the upstream wind turbines are lower than the 1/3 to reduce the 

turbulence effect and increase the accumulation wind speed to the downstream turbines. In contrast, since 

there is no more downstream turbine for the final turbine, its controller parameter is fixed at the full capacity 

of 1/3. This trend is similar to existing investigation on data-driven control of wind plant, e.g., [1], while 

improving the total energy production. 

 
 

Table 1. Comparative Assessment of Total Energy Production Between M-SCA, SCA, PSO and SED 
Statistical results M-SCA SCA [9] PSO [25] SED [1] 

Mean (MW) 4.7648415722 4.6337747727 4.7648415625 4.7644075485 

Best (MW) 4.7648415723 4.7380950026 4.7648415723 4.7648415242 

Worst (MW) 4.7648415719 4.4327003068 4.7648414855 4.7627457259 

Standard Deviation 0.00010657 83861.0326 0.0141665007 4.513106×102 

 

 

5. CONCLUSION 

In this study, a new Modified Sine Cosine Algorithm (M-SCA) for improving wind farm control 

parameters has been presented. The proposed M-SCA is verified on a single row wind plant of 10 turbines. 

The results prove that the two proposed modifications on the original SCA have significantly improved the 

total energy production of wind plant. In particular, the M-SCA has produced a slightly higher total energy 

production than the original SCA, PSO and SED with more consistent results. Thence, it justifies the 
potential of M-SCA for data-driven control of wind plant.  
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