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 This research paper explains the effect of the dimensions of Gate-all-around 

Si nanowire tunneling field effect transistor (GAA Si-NW TFET) on 

ON/OFF current ratio, drain induces barrier lowering (DIBL), sub-threshold 

swing (SS), and threshold voltage (VT). These parameters are critical factors 

of the characteristics of tunnel field effect transistors. The Silvaco TCAD has 

been used to study the electrical characteristics of Si-NW TFET. Output 

(gate voltage-drain current) characteristics with channel dimensions were 

simulated. Results show that 50nm long nanowires with 9nm-18nm diameter 

and 3nm oxide thickness tend to have the best nanowire tunnel field effect 

transistor (Si-NW TFET) characteristics. 
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1. INTRODUCTION 

The tunnel field-effect transistor (TFET) is a semiconductors device used to a promising candidate 

at low power applications in nanometer scales mostly because the conventional metal-oxide-semiconductor 

field effect transistor (MOSFET) approached the physical and thermal limits. However, the essential physical 

limitation of MOSFET that is to scale them at the submicron region is the pursuing short channel effects 

(SCEs) [1]. The silicon nanowire transistor is also used as a candidate device which has the excellent gate 

controlled and highly influenced electrical behavior to overcome the problems caused by short channel 

effects [2-5]. In the last decade, the rapid development in shrinking of semiconductors device led to the short 

channel effects as very harsh problem such as increasing drain induced barrier lowering (DIBL), and many 

research have been done in the last decade to find the substitutive device structure for striving improvements. 

Subsequently device structures such as double-gate (DG), surrounding-gate (SG), gate all around (GAA)  

and carbon nano tube (CNT) FinFETs and graphene-nano-ribbon (GNR) transistors have been incited  

for resolving the scaling matter of bulk transistors [6-11]. Gate all around-silicon nano wire tunneling FET 

(GAA-SiNWTFET) has most optimized gate structure than the FinFETs. The key performance for  

a transistor is the drain current (Id), drain induced barrier lowering (DIBL), threshold voltage (VT),  

sub-threshold slop (SS) and faster switching performance (ION/IOFF) which is related to the sub-threshold slop 

when the transistor operate at low voltage [12].  
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 𝑙𝑛
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𝑞
) (1) 

 

Where Cd and Cox are the drain and oxide capacitance, respectively with: 

 

𝑙𝑛
𝐾𝑇

𝑞
= 60 𝑚𝑉/ 𝑑𝑒𝑐  (2) 

 

The sub-threshold slop (SS) is the voltage applied on the gate to change the drain current by  

decade [13]. To obtaining a low sub-threshold slop (SS < 60mV /dec) and high switching performance 

(ION/IOFF > 105) [14], the quantum mechanism in tunneling TFETs has been introduced as a substitution 

carrier injection mechanism in MOSFETs which suffers from thermal limitation [15-17]. Other advantages of 

the TFETs are to reduce leakage current, and to provide higher current than the MOSFET, better electrostatic 

control, prevention of the short channel effects and suitable to fabricate with CMOS processing techniques 

[18-22]. Therefore the TFETs have been gaining popularity over MOSFETs in the technology nodes [23]. 

Several excellent article and overview have been done in the last few years ago, which summarize the TFET 

modern on specific TFET topic [24]. According to aforementioned results that are about characterization and 

features for TFET, this paper is proposed .Therefore the importance of the work lies in what it shows from 

investigated characterization for electrical parameters which can be critical factor of TFET.  

 

 

2. RESEARCH METHOD 

The GAA NW Si-TFET is a P-I-N structure with an intrinsic semiconductor part (I) between heavily 

doped source (p+) and the drain (n+). By using band-to-band tunneling FET mechanism, gate all around 

controls the tunneling between the channel and (source and drain) regions as showed in Figure 1 [25]  

Figure 2 shows a cross-sectional area of the device. The silicon channel radius is (R) for the gate length (L) 

which has doping concentration with 1016 per cm-3, SiO2 has been used as a gate oxide dielectric and  

the constant doping profile has been selected of 1020 per cm-3 for the both source and drain region.  

The tunneling process is transfer electron or hole through the junction, this process causes pairs of electrons 

and holes, hence the transfer rates of electrons and holes are opposite and equal [26]. We used in this work 

non local band to band tunneling model to vestige the tunneling generation rate across a tunneling length and 

incorporates the change in the electric field along the tunneling length. This model is more accurate for 

reverse biased tunneling junction with high doping and conservation sub- threshold slop up to 60 mV/ dec. 

 

 

  
(a) (b) 

 

Figure 1. Energy band for a TFET a normally off 

device. (a) the gate fully depletes the channel,  

(b) a positive gate voltage turns the channel on [23] 

 

Figure 2. The schematic 3D structure, and  

(b) the overall dimension of GAA FET 
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The device has been structured and simulated by using Silvaco TCAD [27] in specified scaling 

down dimensions within underlying physics with tunneling phenomena proposed by Kane [28]. The designed 

TFET in this paper, simulate with various dimensions for channel radius (R), channel length (L) and gate 

oxide thickness (TOX) to study the electrical characterization and analysis importance parameters effects on 

the device such as DIBL, SS, Gm, VT and ON/OFF current ratio. The dimensions profile has been selected to 

be (25, 18, 9, 5) nm for channel radius, (200, 100, 50, 25) nm for channel length and (4, 3, 2, 1) nm for gate 

oxide thickness. The software can generate useful characteristic GAA TFET curves for researchers, 

especially to fully explain the underlying physics of TFET.  

This simulation tool is utilized to investigate the characteristics of the Si-GAA TFET based on 

various channel’s parameters. The output characteristic curves of the transistor under different conditions and 

with different parameters are considered. The effects of variable channel dimensions, namely; channel length, 

width and oxide thickness in addition to scaling factor of the TFET, are determined based on the I–V 

characteristics that derived from the simulation. In this paper, the Id–Vg characteristics of transistor at  

the temperature of 300 K are simulated and evaluated with the simulation parameters for channel lengths, 

channel diameters, and channel oxide thicknesses have been listed in Table 1. 

 

 

Table 1. Simulation parameters 
Simulation type Variable Parameters Constant Parameters 

Channel length effect Channel length (L) (25, 50, 100, and 200) nm Channel radius (R) (5) nm 

Oxide thickness (TOX) (1) nm 

Channel Doping (P) 1016 cm−3 

Drain Doping (P+) 1020 cm−3 

Source Doping (N+) 1020 cm−3 

Drain length 80 nm 

Source length 80nm 

Channel radius effect Channel radius (R) (5, 9, 18, and 25) nm Channel length (L) (200) nm 

Oxide thickness (TOX) (1) nm 

Channel Doping (P) 1016 cm−3 

Drain Doping (P+) 1020 cm−3 

Source Doping (N+) 1020 cm−3 

Drain length 80 nm 

Source length 80nm 

Channel Oxide thickness 

effect 

Oxide thickness (TOX) (1, 2, 3, and 4) nm Channel length (L) (200) nm 

Channel radius (R) (5) nm 

Channel Doping (P) 1016 cm−3 

Drain Doping (P+) 1020 cm−3 

Source Doping (N+) 1020 cm−3 

Drain length 80 nm 

Source length 80nm 

 

 

Three simulation steps were conducted to evaluate the dimensions dependent performance of TFET 

in terms of the considered metrics. In the first step, channel length has been varied, whereas other channel 

dimensions (R and Tox) were kept with constant values. In the second step, the effect of changing channel 

diameter has been investigated with both channel length and oxide thickness of channel was kept constant.  

In the final step, oxide thickness was varied and length and radius of channel were fixed.  

 

 

3. RESULTS AND DISCUSSIONS 

In this section, the results of dimensional effect on the electrical characteristics presented and 

discussed. Downscaling of length of channel (L), radios of nanowire of channel (R), and oxide thickness 

(TOX) and its effect on the ION/IOFF ratio, sub-threshuld swing (SS), drain indused barrier lowering (DIBL), 

treshuld voltage (VT), and transconductance (Gm) of channel have been studied.  

 

3.1.  Downscaling channel length  

The result of the effect of scaling down of channel length (L) on the electrical characteristics of 

GAA NW-TFET has been investigated, the channel length L has been scaled down from 200nm to 25nm, 

whereas oxide thickness and radius were kept constant at 1 nm and 5 nm, respectively. Also, the drain 

voltage for transfer characteristics has been chosen to be VDD  1 V. The simulation of transfer characteristics 

(drain current Id–gate voltage Vg) has been conducted with different values of channel lengths L, where 

L=25, 50, 100, 200nm. 
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Based on the obtained results that illustrated in Figure 3, the ION/IOFF ratio exponentially increases 

with the channel length less than 100 nm, while, for channel length above 100nm the ION/IOFF were almost 

constant. As shown in Figure 3, the maximum value of the ION/IOFF ratio is more than 3.2*103 at L ≥ 100 nm. 

Figure 4 shows the relation of SS and DIBL characteristic with channel length, this figure explain that the SS 

improved and decreased as the channel length increased up to 50nm and reached 72.6 mV/dec, while,  

for L ≥ 50nm, the values of SS were almost constant. For DIBL, the results in Figure 4 shows that the DIBL 

decreases with increasing channel length up to 100nm, then the values of DIBL were almost constant  

at 106 mV/V. 

Figure 5 shows the relation of length of gate with transconductance (Gm) and threshold voltage (VT), 

both VT and Gm increased linearly with L up to L=50nm, then both (Gm and VT) almost constant for  

L ≥ 50nm. According these results the best and minimal Lg must be about 50 nm that has best DIBL, Gm and 

VT with acceptable ION/IOFF. 

 

 

 
 

 

Figure 3. Characteristics of ION/IOFF ratio with L Figure 4. The characterestics of SS and DIBL with 

channel length 

 

 

 
 

Figure 5. The length of gate effect on transconductance (Gm) and threshold voltage (VT) 

 

 

3.2.  Downscaling channel radius 

The minimizing of channel radius R and its effect on the electrical characteristics of GAA TFET 

have been investigated in this section. The value of R was changed (5, 9, 18 and 25 nm) while L=200nm and 

TOX = 15 nm. Figure 6 shows the electrical characteristics of ION/IOFF ratio depending on the effect of 

changing channel radius R. The ION/IOFF ratio for both voltages (VD = 1 V and VG = 1.5 V). The ION/IOFF ratio 

is increasing proportional with increasing channel radius. It is possible to recognize that at R lower than 

10nm there are highly increasing in ION/IOFF ratios, while at R higher than 10nm there are lower increasing in 

ION/IOFF ratios. So, if the channel dimeter minimize from 25nm to 10nm, the ION/IOFF ratios with decreased 
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from 3.9 *105 to 7*104 respectively. While, the minimizing the channel radius from 10nm to 5nm will drop 

down the ION/IOFF ratios from 7*104 to 3.2*103 respectively.  

Figure 7 depicts the variation of SS and DIBL values with variable channel radius. The SS highly 

improved and increased from 72.8 to 57.5 mV/dec when the radius changed from 5 to 10nm respectively,  

the SS increased slightly to 50 mV/dec when the radius increased to 25nm. Figure 7 illustrate that the BIDL 

behavior look like same as SS, the DIBL improved and dropped highly also from 116 to 60 mV/V with 

radius from 5 to 10 nm respectively, and dropped slightly from 60 to 38 mV/V with the range of channel 

radius 10 to 25nm.  

Furthermore, the impacts of varying channel radius on VT and Gm are illustrated in Figure 8.  

The threshold voltage is almost constant regardless channel width except at the R = 10 nm, where VT scores 

the highest value of 0.13 V. Finally, the Gm increased as channel radius increased. GGA TFET achieved 

higher Gm at D = 25 nm, the Gm characteristics increased with decreasing R and achieved the lower value at 

D = 5 nm. According these results the minimal R with good electrical characteristics must be about 10 nm 

that has best DIBL, Gm and VT with acceptable ION/IOFF. 

 

 

 
 

 

Figure 6. Characteristics of ION/IOFF ratio with R Figure 7. The variation of SS and DIBL with R 

 

 

 
 

Figure 8. Characteristics of VT and Gm with R 

 

 

3.3.  Downscaling channel oxide thickness  

Figures 9 to 11 show the channel oxide thickness variation in relation to the electrical characteristics 

of GAA TFET. For this simulation step, TOX has been varied (1, 2, 3 and 4 nm), the channel length and 

channel radius has been kept constant at 200 nm and 5nm respectively. Figure 9 illustrates the relation 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Electrical characterization of si nanowire GAA-TFET based on… (Firas Natheer Abdul-Kadir) 

785 

between the ION/IOFF ratio with the channel oxide thickness. The minimum ION/IOFF ratio (3.1*103) with  

VDD = 1 V was obtained at minimum TOX = 1 nm and then increased to 2.5*1013 at TOX = 4 nm. From  

the results shown in Figure 10, it is clear that for a lower channel oxide thickness, TOX = 1 nm the TFET has 

shown worse SS characteristics with the best SS value of 72.8 mV/dec compared to other TOX values. The SS 

improved with increasing TOX and the best value (21.4 mV/V) was at TOX = 3nm. Figure 10 also displays 

channel oxide thickness versus DIBL characteristics of TFET. DIBL increased linearly with increasing TOX, 

the best value at TOX =1nm. Figure 11 represents the relation of both VT and Gm, Gm has a peak value at 2nm 

while VT increased with increasing Tox and its value almost constant after TOX =1nm. According these results 

the minimal TOX with good electrical characteristics must be 2 nm that has best DIBL, Gm and VT with 

acceptable ION/IOFF. 

 

 

 
 

 

Figure 9. Characteristics of ION/IOFF ratio with TOX 
 

Figure 10. The characterestics of SS and DIBL with 

TOX 

 

 

 
 

Figure 11. Characteristics of VT and Gm with TOX 

 

 

4. CONCLUSION 

The downscaling effect on the electrical characteristics of GAA Si-NW TFET has been investigated, 

TCAD simulation tool has been used to create the output characteristics of TFET and the critical parameters 

related to the electrical characteristics transistor. Downscaling of length of channel (L), radios of nanowire of 

channel (R), and oxide thickness (TOX) and its effect on the ION/IOFF ratio, sub-threshuld swing (SS), drain 

indused barrier lowering (DIBL), treshuld voltage (VT), and transconductance (Gm) of channel have been 

studied. The results shows that the minimal channel length with good electrical characteristics was at 50nm, 

the minimal channel redius with good electrical characteristics was at 10nm, and finally, the minimal channel 

oxide thickness with good electrical characteristics was at range 2 to 3nm.  
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