

# Enhancing the Solar Energy Potential in Malaysia using the Concentrated Photovoltaic (CPV) Technology

Mudathir Funsho Akorede, Ph.D.

Member, IEEE

Faculty of Electrical & Electronics Engineering, Universiti Malaysia Pahang, Malaysia

Hashim Hizam (Ph.D) & M. Effendy Ya'acob (M.Eng) Electrical & Electronic Engineering Dept; Faculty of Engineering, Universiti Putra Malaysia, Serdang.





#### **Presentation Outline**

- **\*** Introduction
- **❖** Some Facts and Figures of Malaysia
- \* Renewable Energy Initiatives in Malaysia
- **RE** and Environmental Targets by the Government
- **❖** Overview of Concentrated Photovoltaic (CPV) Technology
- Our Research Project
- Concluding Remarks



### Introduction



|   | The significance of electric energy cannot be overemphasised in the contemporary world.                            |
|---|--------------------------------------------------------------------------------------------------------------------|
|   | Research has shown that energy production sector emits the largest amount of GHG emissions – fossil fuels burning. |
|   | To cope with the future energy demand, amid the                                                                    |
|   | environmental constraints, there is a need to go for RE.                                                           |
|   | Solar energy is one of the most abundant RE resources that could be aggressively harnessed for energy production.  |
|   | Malaysia is one of the countries in the world working to facilitate the growth of RE industry.                     |
|   | One of the newest and most efficient solar technologies in                                                         |
|   | the market today is concentrated photovoltaic (CPV) panels.                                                        |
| Д | Universiti Malaysia by Dr. M. F. Akorede  Universiti Malaysia PAHANG                                               |

# Some Facts & Figures of Malaysia





Greenhouse Gas Emissions in Malaysia by Source in 1994 [1]





Malaysia power generation by source



# Some Facts & Figures of Malaysia contd.





Average Yearly Solar Irradiance, kWh/m² per day [2]

| Town/Month       | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual<br>Average |
|------------------|------|------|------|------|------|------|------|------|------|------|------|------|-------------------|
| Alor Setar       | 5.26 | 5.86 | 5.81 | 5.65 | 5.05 | 4.82 | 4.84 | 4.69 | 4.65 | 4.37 | 4.23 | 4.42 | 4.96              |
| Georgetown       | 5.62 | 6.09 | 5.93 | 5.69 | 5.07 | 4.97 | 4.92 | 4.71 | 4.67 | 4.53 | 4.76 | 5.00 | 5.15              |
| Kota<br>Baru     | 5.14 | 5.95 | 6.23 | 6.28 | 5.54 | 5.33 | 5.35 | 5.30 | 5.42 | 4.76 | 3.98 | 4.24 | 5.28              |
| Kuala<br>Lumpur  | 4.79 | 5.37 | 5.42 | 5.27 | 5.11 | 4.98 | 4.92 | 4.87 | 4.88 | 4.76 | 4.36 | 4.17 | 4.90              |
| Johor<br>Baru    | 4.48 | 5.22 | 5.05 | 4.87 | 4.57 | 4.41 | 4.30 | 4.33 | 4.53 | 4.57 | 4.34 | 4.07 | 4.55              |
| Kota<br>Kinabalu | 5.11 | 5.78 | 6.43 | 6.45 | 5.77 | 5.33 | 5.19 | 5.17 | 5.31 | 5.03 | 4.75 | 4.65 | 5.41              |
| Kuching          | 3.96 | 4.36 | 4.69 | 4.99 | 4.87 | 4.93 | 4.84 | 4.87 | 4.68 | 4.59 | 4.48 | 4.16 | 4.62              |



# Renewable Energy Initiatives in Malaysia



☐ Small Renewable Energy Power (SREP) Program was announced in 2001 by the govt. ☐ In 2005, MBIPV (a 5 year Programme) was launched to promote use of PV technology in buildings. ☐ In 2009, Malaysia made a voluntary commitment at the UN Climate Change Conference to reduce 40% of her emission intensity of GDP by the year 2020 compared to 2005 levels. ☐ Green Technology Policy was launched by the PM in July 2009. • To minimise the degradation of the environment. • To facilitate the growth of the renewable energy industry. ■ To ensure reasonable RE generation costs. ☐ As at December 2009, the grid-connected RE power generations in Malaysia totaled 53 MW. ☐ On Dec 1, 2011, FiT was launched, and 201 proposals for 144 MW worth of PV projects were received by the second day [3].



# A few Completed BIPV Project Samples in Malaysia





9.9 kWp Damansara Utama (Selangor) BIPV in 2007



362 kWp PV system Technology Park Malaysia – The largest installation in south-east Asia.







| Year | Cumulative RE Capacity (MW) |     |             |             |          |           |       |  |  |  |  |
|------|-----------------------------|-----|-------------|-------------|----------|-----------|-------|--|--|--|--|
|      | Biogas Biomass              |     | Solid Waste | Small Hydro | Solar PV | Solar PP* | Total |  |  |  |  |
| 2011 | 20                          | 90  | 20          | 60          | 9        | 20        | 219   |  |  |  |  |
| 2012 | 35                          | 140 | 50          | 110         | 20       | 55        | 410   |  |  |  |  |
| 2013 | 50                          | 200 | 90          | 170         | 33       | 105       | 648   |  |  |  |  |
| 2014 | 75                          | 260 | 140         | 230         | 48       | 185       | 938   |  |  |  |  |
| 2015 | 100                         | 330 | 200         | 290         | 65       | 295       | 1,280 |  |  |  |  |
| 2016 | 125                         | 410 | 240         | 350         | 84       | 425       | 1,634 |  |  |  |  |
| 2017 | 155                         | 500 | 280         | 400         | 105      | 570       | 2,010 |  |  |  |  |
| 2018 | 185                         | 600 | 310         | 440         | 129      | 725       | 2,389 |  |  |  |  |
| 2019 | 215                         | 700 | 340         | 470         | 157      | 890       | 2,772 |  |  |  |  |
| 2020 | 240                         | 800 | 360         | 490         | 190      | 1,060     | 3,140 |  |  |  |  |

Source: http://www.kettha.gov.my/en







|      | Cumulative RE Capacity (MW) |         |                |     |        |              |        |  |  |  |  |
|------|-----------------------------|---------|----------------|-----|--------|--------------|--------|--|--|--|--|
| Year | Biogas                      | Biomass | Solid<br>Waste |     |        | Solar<br>PP* | Total  |  |  |  |  |
| 2020 | 240                         | 800     | 360            | 490 | 190    | 1,060        | 3,140  |  |  |  |  |
| 2030 | 410                         | 1,340   | 378            | 490 | 1,370  | 3,100        | 7,088  |  |  |  |  |
| 2040 | 410                         | 1,340   | 378            | 490 | 7,450  | 5,000        | 15,068 |  |  |  |  |
| 2050 | 410                         | 1,340   | 378            | 490 | 18,700 | 5,000        | 26,318 |  |  |  |  |

Source: http://www.kettha.gov.my/en

Targeted to avoid **46 million** and **166 million** tonnes of CO<sub>2</sub> from the power generation sector by 2020 and 2030, respectively.

71 % of the total capacity!!!

❖ This objective may, however, be hampered given the current low efficiency of the conventional PV system, hence the need to source for other solar PV technologies such as CPV with a higher efficiency.



#### **Concentrated Photovoltaic Technology**



- ☐ CPV systems use lenses or mirrors to concentrate sunlight onto high-efficiency solar cells.
- ☐ These solar cells are typically more expensive than conventional cells used for flat-plate pv systems.
- ☐ However, the concentration decreases the required cell area while also increasing the cell efficiency.





**CPV** Cell

Based on the available DNI in an area, different CPV could be chosen:

- (i) Low concentration CPV
- (ii) Medium concentration CPV
- (iii) High concentration CPV









# CPV Technology contd.

#### **Advantages:**

- Efficiencies are higher than the conventional silicon cells' by a wide margin.
- Can produce same amount of power with 1,775 times less cell surface than standard PV systems [4].
- Consequently, it promotes optimum use of land.
- Short Energy payback.
- Fast response, since no thermal mass.
- Scalable to a range of sizes.









➤ Triple junction CPV cells are expected to reach record efficiencies of 50% by 2015 [2]

Output Efficiency Comparison of Different Solar Technologies [5]

#### **Disadvantages:**

- It is still relatively costly; perhaps due to small scale of most installation. However, dramatic reduction in costs are expected in the coming years.
- Cell efficiency goes down as operating temperature goes up.



### Our Research Project

#### PLANET UNDER PRESSURE 2012 MARCH 26-29

# The Project Site is equipped with the following:

- CPV systems.
- Fixed normal PV panels.
- Normal PV panels with tracking mechanism.
- Grid-tie Inverters.
- Weather station, which monitors the solar irradiance, wind speed, and ambient temperature.
- GPRS system for web-based online data monitoring and management.



**KEE Pilot Project Site, UPM, Serdang** 



# Our Research Project contd.



#### **Project Objectives/Expected Results:**

- To evaluate and compare the efficiency of CPV technology with that of the conventional PV system.
- To investigate the effect of environmental factors on the performance of CPV systems in Tropical Climates.
- To asses and recommend the most suitable type of CPV system for different parts of Malaysia, based on the Direct Normal Irradiance available in the area.
- To project the capacity of Energy Malaysia could produce from CPV technology.
- To estimate the CO<sub>2</sub> emissions avoidance due to adoption of CPV system, using the Malaysia Feed-in Tariff Mechanism.







# Thank You

# **Questions?**



#### References

- [1] "Malaysia Green Technology 2010 Annual Report" retrieved February 2012 from http://www.greentechmalaysia.my/index.php/green-technology/annualreport.html
- [2] Atmospheric Science Data Center: NASA Surface Meteorology and Solar Energy, retrieved February 2012 from http://eosweb.larc.nasa.gov/cgi-bin/sse/grid
- [3] "Malaysia receives flood of applications for solar feed-in tariffs"

  <a href="http://www.renewable-energy-sources.com/2011/12/10/selected-headlines-10-12-2011/">http://www.renewable-energy-sources.com/2011/12/10/selected-headlines-10-12-2011/</a>
- [4] Belén Gallego, "CPV could reach grid parity by 2011" retrieved February 2012 from <a href="http://news.pv-insider.com/concentrated-pv/cpv-could-reach-grid-parity-2011">http://news.pv-insider.com/concentrated-pv/cpv-could-reach-grid-parity-2011</a>
- [5] D. Goswami, "Solar Farming Potential in India" retrieved January 4, 2012 from http://www.triplepundit.com/2011/08/solar-farming-potential-india/

