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ABSTRAK 

Sembilan belas kilometer di bawah paras laut pada awal 26 Disember 2004, gempa bumi 

9.1 magnitud telah mengguncang laut di pantai Sumatra, di barat laut mencapai 

kepulauan Indonesia. Lebih daripada 227,000 orang diisytiharkan mati atau hilang dalam 

seminggu selepas tragedi yang menjejaskan 14 buah negara di dua benua. Pada 5 Jun 

2015, gempa bumi berkekuatan 5.9 mencecah Sabah, membunuh 18 orang di Gunung 

Kinabalu. Ia dikatakan sebagai gempa kedua yang terkuat yang melanda Sabah selepas 

gempa bumi tahun 1976 berukuran 6.2 pada skala Richter yang berlaku berhampiran 

Lahad Datu. Gempa bumi tahun 2015 dirasai di seluruh negeri dan lebih daripada 100 

gempa susulan dilaporkan sepanjang tahun Berikutan tragedi gempa di Sabah, terdapat 

kebimbangan bahawa gempa bumi juga boleh melanda Semenanjung Malaysia dan 

mengikut pakar geologi, kebimbangan seperti itu tidak salah. Persepsi umum yang 

mengatakan bahawa Semenanjung Malaysia selamat kerana kita jauh dari Lingkaran Api 

Pasifik yang mengelilingi kita, tetapi dalam beberapa tahun kebelakangan ini, terdapat 

bukti gempa bumi dengan titik fokus atau epicentres tepat di bawah kaki kita, disebabkan 

oleh pengaktifan semula garisan kesalahan lama. Garis kegagalan ini seolah-olah telah 

diaktifkan semula oleh sempadan plat tektonik aktif dan ini telah menyebabkan 

kebimbangan kerana banyak struktur di bandar tidak dibina dan direka untuk menahan 

gempa bumi. Punca-punca pengaktifan semula garis-garis kerosakan di Malaysia adalah 

kerana ia dikelilingi oleh begitu banyak sempadan plat tektonik yang aktif dan Rak 

Sunda, yang negara itu duduk, dimampatkan. Semenanjung Malaysia terletak di tengah-

tengah rak, yang juga dikenali sebagai Sundaland, yang menyerap semua tekanan dari 

sekelilingnya. Cepat atau lambat, bumi perlu mencari beberapa pelepasan dengan 

memecah sistem talian kesalahan lama. Oleh kerana kesan bahaya ini, struktur perlu 

direka untuk menahan daya dinamik dari gempa bumi. Apabila struktur direka untuk 

menahan gempa bumi, kerosakan struktur tidak akan terlalu teruk berbanding dengan 

struktur konvensional. Kesan pelaksanaan reka bentuk seismik terhadap kos bahan 

menjadi topik penting untuk disiasat. Berhubung dengan itu, kajian ini membincangkan 

reka bentuk seismik 3 tingkat dan 5 tingkat bangunan hospital konkrit bertentangan 

dengan pertimbangan magnitud yang berbeza dari Peak Ground Acceleration (PGA) dan 

gred konkrit yang berlainan. Objektif kajian ini adalah untuk menentukan perbandingan 

jumlah pengukuhan besi yang diperlukan berdasarkan kepada dua parameter yang 

dinyatakan di atas berbanding reka bentuk bukan seismik. Dua belas model bangunan 

hospital dengan pertimbangan berbeza PGA dan gred konkrit dipertimbangkan. 6 model 

digunakan untuk magnitud PGA = 0.08g bersama dengan gred konkrit 25, dan 6 model 

lain digunakan untuk magnitud PGA = 0.16g bersama dengan gred konkrit 35. Untuk 

magnitud yang berbeza PGA bagi 3 tingkat bangunan, hasil menunjukkan bahawa 

perbezaan peratusan pengukuhan besi yang diperlukan berbanding reka bentuk bukan 

seismik untuk rasuk dan lajur keseluruhan bangunan telah meningkat dari 44% kepada 

156% bagi PGA bersamaan dengan 0.08g dan 0.16g masing-masing. Sementara untuk 

gred konkrit yang berbeza di bangunan 3 tingkat, hasil menunjukkan bahawa perbezaan 

peratusan pengukuhan keluli yang diperlukan berbanding dengan reka bentuk bukan 

seismik telah menurun sebanyak 21% daripada gred konkrit 25 kepada gred konkrit 35. 
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ABSTRACT 

Nineteen miles below sea level in the early hours of December 26, 2004, a 9.1-magnitude 

earthquake shook the seas near the coast of Sumatra, in the northwestern reaches of the 

Indonesian archipelago. More than 227,000 people were declared dead or missing in 

the weeks after the tragedy that affected 14 countries across two continents. On 

June 5, 2015, a 5.9-magnitude earthquake rattled Sabah, killing 18 people on Mount 

Kinabalu. It was said to be the second powerful quake to hit Sabah after the 1976 

earthquake measuring 6.2 on the Richter scale that occurred near Lahad Datu. The 2015 

earthquake was felt across the state and more than 100 aftershocks were reportedly 

recorded throughout the year. Following the quake tragedy in Sabah, there have been 

concerns that an earthquake may also hit Peninsular Malaysia and according to a 

geological expert, such misgivings are not misplaced. The general perception has 

always been that Peninsular Malaysia was safe because we are far from the Pacific 

Ring of Fire which surrounds us, but in recent years, there is evidence of earthquakes 

with focal points or epicentres right under our feet, due to the reactivation of old fault 

lines. These fault lines seem to have been reactivated by active tectonic plate 

boundaries and this has caused a concern since many structures in the city were not 

built and designed to withstand earthquakes. The causes of the reactivation of fault 

lines in Malaysia is because it is surrounded by so many active tectonic plate 

boundaries and the Sunda Shelf, which the country sits on, is being compressed.  

Peninsular Malaysia is at the centre of the shelf, also known as Sundaland, which is 

absorbing all the stress from around it. Sooner or later, the earth has to find some 

release by breaking through old fault line systems. Due to this hazard effect, the 

structures need to be designed to resist the dynamic forces from the earthquakes. When 

the structure is designed to resist earthquake, the damage of the structure will not be too 

severe compared to the conventional structures. The effect of seismic design 

implementation on cost of materials is became an important topic to be investigated. In 

relation to that, this study discusses on the seismic design of 3 storey and 5 storey of 

reinforce concrete hospital building with consideration of different magnitude of Peak 

Ground Acceleration (PGA) and different grade of concrete. The objectives of this study 

are to determine the comparison on the amount of steel reinforcement required based on 

the two different parameters mentioned above compared to non-seismic design. Twelve 

models of hospital buildings with consideration of different PGA and concrete grade are 

considered. 6 models are used for magnitude of PGA equal to 0.08g along with concrete 

grade 25, and 6 other models are used for magnitude of PGA equal to 0.16g along with 

concrete grade 35. For different magnitude of PGA in 3 storey building, the results show 

that the percentage difference of steel reinforcement required compared to non-seismic 

design for beam and column of the whole building had increased from 44% to 156% for 

PGA equals to 0.08g and 0.16g respectively. While for different grade of concrete in 3 

storey building, the results show that the percentage difference of steel reinforcement 

required compared to non-seismic design had decreased by 21% from concrete grade 25 

to concrete grade 35 respectively. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background 

The surface of the earth is like a giant puzzle, and all the pieces that make up this 

puzzle are called tectonic plates. Although these giant rock puzzle pieces fit together very 

nicely, they don't stay in place because they are floating on the layer below us, the mantle. 

The plates float around on the mantle and the movement of the plates is incredibly slow, 

but since the plates are so big, when they bump into and rub against each other, we get 

massive events like volcanoes and earthquakes. And along these plate boundaries, we 

find faults. 

 An earthquake is what happens when there is a movement along a fault plane or 

breaking of the tectonic plates which will cause a sudden violent shaking and vibration 

of the earth surface. Tectonic plates refer to a huge rock pieces within the earth’s crust. 

The plates are usually marked by fractures or fault lines formed when the plates tear apart 

or slide or collide past each other. According to Bruce A. Bolt (2018), tectonic 

earthquakes are explained by the so-called elastic rebound theory, formulated by the 

American geologist, Harry Fielding Reid after the San Andreas Fault ruptured in 1906, 

generating the great San Francisco earthquake. According to the theory, a tectonic 

earthquake occurs when strains in  masses have accumulated to a point where the 

resulting stresses exceed the strength of the rocks, and sudden fracturing results. 

https://www.britannica.com/science/elastic-rebound-theory
https://www.britannica.com/biography/Harry-Fielding-Reid
https://www.britannica.com/place/San-Andreas-Fault
https://www.britannica.com/event/San-Francisco-earthquake-of-1906


2 

 

Figure 1.1 The point within Earth where the rupture starts is known as the focus. 

In truth, however, our planet's seemingly stable surface is made up of enormous 

pieces of rock that are slowly but constantly moving. Those pieces continually collide 

with and rub against one another, and sometimes their edges abruptly crack or slip and 

suddenly release huge amounts of pent-up energy. These unsettling events are 

called earthquakes, and small ones happen across the planet every day, without people 

even noticing. But every so often, a big earthquake occurs, and when that happens, the 

pulses of energy it releases, called seismic waves. This results in a change of the earth’s 

interior masses which send out powerful shock waves with enough force to alter the 

surface of the earth. The shock waves can thrust up cliffs and open huge cracks on the 

ground leading to an earthquake event which can wreck almost unfathomable destruction 

and kill and injure many thousands of people. 

  Almost every year, earthquakes are recorded in various part of the world. Since 

the shear and tear forces are always constant within the earth’s plate tectonics, 

earthquakes can occur at any time. Thousands of minor tremors often take place just 

because of these constant movements. Earthquakes can cause serious destruction to 

property, injury to people and even kills. Earthquakes can range in size from those that 

are so weak that they cannot be felt to those violent enough to toss people around and 

destroy whole cities.  



3 

Generally, earthquakes can cause significant damages within 100-200km radius 

from the epicentre. At further distance, amplitudes of incoming seismic shear waves are 

generally small. According to Natoli (2005), earthquake intensity generally decreases 

with increasing distance away from epicentre because seismic wave amplitude gradually 

died down as the waves travel through the earth. However, the “Bowl of Jelly” 

phenomenon, as what had happened to Mexico City in 1984 has opened people eyes to 

be more aware and considered this issue more seriously. The phenomenon has shown that 

even though an earthquake occurred at a far distance, it can have a significant effect due 

to long period component of the shear waves (Adnan et al., 2005). 

 The general perception has always been that Peninsular Malaysia was safe 

because we are far from the Pacific Ring of Fire which surrounds us, but in recent years, 

there is evidence of earthquakes with focal points or epicentres right under our feet, due 

to the reactivation of old fault lines. Malaysia is surrounded by so many active tectonic 

plate boundaries and the Sunda Shelf, which the country sits on, is being compressed. 

 

Figure 1.2 Major tectonic plates around Malaysia. 
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