Catalytic upgrading of biomass-derived pyrolysis vapour over metal-modified HZSM-5 into BTX: a comprehensive review

 Vekes Balasundram^a, Norazana Ibrahim^b, Rafiziana Md. Kasmani^b, Ruzinah Isha^c, Mohd. Kamaruddin Abd. Hamid^d & Hasrinah Hasbullah^d
^a Chemical Energy Conversions and Applications (ChECA) Research Group, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
^b Energy Management Research Group, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), J ohor Bahru, Johor 81310, Malaysia ^c Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang 26300, Malaysia
^d School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor 81310, Malaysia

ABSTRACT

This paper provides an updated and comprehensive review on the catalytic upgrading of biomass-derived pyrolysis vapours over metal-modified HZSM-5 catalyst into bio-aromatic hydrocarbons. The catalytic upgrading of biomass pyrolysis vapours seems to be a promising technology in generating gasoline-type bio-aromatic hydrocarbons, i.e. benzene, toluene and xylene (BTX). Biomass-derived raw pyrolysis oil has high oxygenated compounds that deteriorate pyrolysis oil properties and limits its applications. Metal modification of hydrogen exchanged Zeolite Socony Mobil Five (HZSM-5) catalyst has gained attention in a biomass pyrolysis research area due to the beneficial effects on upgrading the oxygenated pyrolysis vapours into BTX-enriched pyrolysis oils. The influence of metals (alkali and alkaline earth metals, transition metals and rare earth metals) as bi-functional or multifunctional activity on HZSM-5 catalyst during pyrolysis has been addressed. The effect of reaction temperature, the type of metals, metal contents, the silica-to-alumina ratio of catalyst and the catalyst-tobiomass ratio are critically discussed for maximum production of monocyclic aromatic hydrocarbons during the upgrading of pyrolysis vapours. Finally, concluding remarks on metal-modified zeolite catalyst and future recommendation in upgrading biomass pyrolysis vapours are presented.

KEYWORDS

Biomass pyrolysis; BTX; Catalytic upgrading; HZSM-5; Metal modification

ACKNOWLEDGEMENT

The authors would like to acknowledge the financial supports by the Universiti Teknologi Malaysia and the Ministry of Higher Education (MOHE) of Malaysia (Q.J130000.2546.20H18, R.J130000.7842.4F654 and Q.J130000.2546.14H48).