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ABSTRACT 

The presence of chloride ions in concrete is the most important cause of steel reinforcing corrosion. 

Corrosion can lead to structural damage and needs to be managed effectively for better allocation 

of resources and effective bridge management. The application of de-icing salt or atmospheric 

exposure in marine environment could be the cause of corrosion initiation. This paper reviews 

chloride ingress prediction model and presents methodology to improve confidence in predicting 

corrosion concentration taking into account time dependent reliability analysis. Modeling 

uncertainty is often associated with limited knowledge which it can be reduced by increasing the 

availability of data. Additional information through bridge inspection and monitoring will increase 

confidence in prediction models. Monte Carlo simulation with Latin Hypercube Sampling is used 

to estimate prior and posterior performance prediction for chloride concentration. Bayesian 

Updating is used to incorporate prior beliefs about the condition and performance of the bridge 

together with data obtained through inspections and health monitoring to produce more quantitative 

data. The application of Bayesian Updating is shown to considerably reduce uncertainties 

associated with performance prediction. By using this approach, it will lead to the prediction of 

structural performance with increased confidence. 

Keywords: Concrete Bridge, Corrosion, Chloride, Time- dependent Reliability, Monte- Carlo, 

Bayesian Updating 

 

1.0 Introduction 

Structural Health Monitoring System has been actively developed recently to monitor the corrosion 

of reinforcement. If the corrosion can be detected early, damage can be excluded or reduced 

significantly, hence the maintenance cost can be reduced.A few steps have been taken by the 

engineers such as design, construction and maintenance to ensure safe and durable services. Design 

consideration includes adoption of protective strategies (i.e increase concrete cover) and quality 

assurance during construction stage can increase the life span of the structure. The problem arise is 

the cost effectiveness of these and other measures is often unclear. Uncertainty associated with 

material, environmental load and structural effects are considered before decision making by bridge 

owner. Hence the need for probabilistic analysis expressing life cycle performance in reliability 

format [1][2]. In real life, engineers commonly need to make decision and solve a problem based 

on limited information.Probabilistic method can be used to deal with uncertainty exists. In this 

study, Fick’s second law is used to mimic the chloride diffusion in concrete due to de-icing salt. 

This law takes initial values parameter as references to estimate future chloride content and these 

parameters tend to be statistical distributions of known moments through rigorous 



methods[3].Actual field data (with the availability of inspection and monitoring methods) collected 

as comparison with Fickian Model in predicting the real chloride concentration and moments to 

produce prior distribution. Data collected from health monitoring system need to be incorporated 

with prior distribution to produce posterior distribution hence improving confidence in predicting 

the future chloride content. Bayesian updating method is used to update belief by taking into 

account the prior belief given the likelihood that such event is known. Monte Carlo simulation is 

used to calculate the probability of failure for annual increment over the life time of the structure. 

2. Background 

Models based on the theory of diffusion have been developed to best represent the chloride ingress 

in concrete and are widely used in practice to predict the initiation of reinforcement corrosion in 

concrete [4]. Diffusion is mathematically represented by the partial differential equation using 

Fick's 2
nd

 law of diffusion[5]: 
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Where C represents the concentration of diffusing substance at time t at a location defined by the 

coordinates x, y and z, and D is the diffusion coefficient. According to Takewaka and Matsumoto 

[6] chloride penetration can be treated as diffusion process and seems to follow Fick’s law of 

diffusion and they found that water cement ratio can give an effect to effective chloride diffusion 

coefficient. For a one dimensional diffusion process with constant diffusion coefficient, the Eq. 1 

would be reduced to: 
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The solution for the above equation has been derived in Crank[7]for a variety of scenarios (i. e. 

time dependent surface chloride concentration, and time dependent diffusion coefficient etc). 

Collepar.M[8]appears to be the first to apply Fick's second law to mimic chloride diffusion in 

concrete due to the de-icing salt. The model used for chloride ingress due to de-icing salt (based on 

solution Eq. 2) is as follows: 

𝐶 𝑥, 𝑡 = 𝐶𝑂  1 − 𝑒𝑟𝑓  
𝑥

2 𝐷. 𝑡
                                                                                                                 (3) 

Where 𝐶𝑂 is the surface chloride concentration; 𝐷  is the effective diffusion coefficient; x is the 

depth at which chloride concentration is required; t is the time of exposure; 𝐶 𝑥, 𝑡 is the chloride 

concentration at depth x and time t. Vu & Stewart [3] have made some improvement from existing 

deterioration model including the use of more accurate corrosion initiation and propagation model. 

Time-variant corrosion rates, time-variant loading model and shear failure limit state are considered 

in the analysis to study the effect of durability specifications.In general, it is assumed that chloride 

concentration 𝐶𝑥𝑐𝑡𝑎 (𝑡𝑗 ) occur within the time interval  0, 𝑡𝐿  at time 𝑡𝑗  (𝑗 = 1,2, … , 𝑛) then the 

cumulative probability of failure of chloride concentration anytime during this time interval is 

given by: 

 



                          𝑃𝑓 𝑡𝐿 = 1 − 𝑃𝑟 𝐶𝑥𝑐𝑡𝑎  𝑡1 < 𝐶𝑡ℎ ∩ 𝐶𝑥𝑐𝑡𝑎  𝑡2 < 𝐶𝑡ℎ ∩ ……∩ 𝐶𝑥𝑐𝑡𝑎 𝑡𝑛 < 𝐶𝑡ℎ  

𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 ≤ 𝑡𝐿                                                                                                                                   (4) 

Where 𝐶𝑥𝑐𝑡𝑎  𝑡1  represents the initial distribution of chloride concentration and 

𝐶𝑥𝑐𝑡𝑎  𝑡2 , 𝐶𝑥𝑐𝑡𝑎  𝑡𝑛  represent the chloride concentration at time 𝑡𝑗  updated on survival of the 

previous load events. Technically, the updated chloride concentrations are influenced by time 

dependent changes in materials properties. Thus the cumulative probability of failure is dependent 

upon the prior and updated chloride concentration.  

3.0 Probabilistic Modeling and Simulation 

3.1 Probabilistic Modeling of Deterioration due to Chloride Ingress 

Field and laboratory testing along with health monitoring system can be used to identify 

deterioration on the bridge. In particular, chloride profile generally tested in the laboratory to 

establish the concentration of chloride in the concrete samples. The effective diffusion coefficient 

and surface chloride concentration are derived by using non-linear regression analysis to fit the 

profiles to the diffusion based deterioration model. The objective of Bayesian updating procedure is 

to reduce the uncertainty (i.e. COV) in the predictive performance[9]. In this case, uncertainty is 

the probability of chloride concentration at given depth and cumulative time exceeds the threshold 

chloride concentration.  

3.2 Simulation of Probabilistic Performance Prediction 

In this study, Monte Carlo Simulation with Latin Hypercube Sampling is used to estimate prior and 

posterior performance prediction of chloride concentration. The cover depth (Xc) is set to be 40 mm 

and the time is set to be arbitrarily 20 years. The output of this simulation is in the form of 

probability density function of prior, likelihood and posterior distributions. The probability of 

corrosion initiation for a given time also presented. The parameters involved in chloride ingress 

model for typical concrete bridge elements (e.g. slab, beam, or cross beam etc) which are prone to 

de-icing salts are summarizedin table 1[9]: 

Table 1: Summary of parameters involved in chloride ingress model 

Parameter Mean C.O.V Distribution References 

 

Co 3.5 kg/m
3
 0.5 Lognormal Vu & Stewart (2000) 

 

D (Nominal) 5x10
-5

m
2
/yr   Vu & Stewart (2000) 

 

Model Error (D) 1.0 0.2 Normal Vu & Stewart (2000) 

 

Cth 0.9 kg/m
3
 0.19 Uniform 

(0.6-1.2 kg/m
3
) 

 

Xc 40 mm 0.1 Normal Chryssanthopoulos& 

Sterrit (2002) 

 



4.0 Result and Discussion 

4.1 Prior Probability of Failure 

In this study, the failure probability is defined as the frequency of events that chloride 

concentration, Cxt at cover depth Xc at given cumulative time (e.g. 20 years in this study) exceed 

the threshold of chloride concentration, Cth.The prior probability of failure is determined based on 

previous inspection data. When the new inspection data become available, the updating procedure 

can be applied by incorporating the new inspection data together with the previous data to produce 

posterior probability of failure. Updating procedure can be performed using Bayesian framework. 

For the prior probability of failure of chloride concentration, the interval of simulation is one year 

(e.g. 20 years for this study) at given depth (e.g. 40mm for this study). The prior probability of 

failure for this particular study is based on time dependent analysis. The cumulative probability of 

failure is depending upon prior and updated failure margin of chloride concentration. For example, 

the probability of failure for year three should also consider for probability of failure for the 

previous year which is year two and one. Figure 1 shows point in time and cumulative time 

probability of failure for chloride concentration.  

 

 

Figure 1: Point in time and cumulative time probability of failure for chloride concentration 

From Figure 1, cumulative time probability of failure gives higher value of probability of failure as 

compared to the point in time probability of failure. For example, at year 12 the probability of 

failure for cumulative time is 0.8 and point in time is 0.4 respectively. This shows that, the 

probability of failure for cumulative time has increased by about 50% as compared to point in time. 

Table 2 summarizes the results for point in time and cumulative time probability of failure for year 

6, 8 and 12 respectively. This shows that the result for cumulative time probability of failure is 

more reliable compared to point in time probability of failure.  
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Table 2: Point in time and cumulative time probability of failure 

Point in Time Probability of Failure  

(Cxt>= Cth) 

Cumulative Time Probability of Failure  

(Cxt>= Cth) 

Year Probability of 

failure(Pf) 

Year Probability of 

Failure (Pf) 

6 0.06 6 0.09 

8 0.15 8 0.30 

12 0.40 12 0.80 

 

4.2 Updating Procedure for Probability of Failure Based on Single Observation 

In this study, event updating is adopted as a methodology to predict the posterior distribution. For 

simplification, prior distribution of chloride concentration follows normal distribution for certain 

value of mean and standard deviation for each year in twenty years. Thus, prior distribution of 

chloride concentration is given by: 

𝑝𝑝𝑟𝑖𝑜𝑟  𝜃 =
1

 2𝜋𝜎𝑜

𝑒𝑥𝑝  −0.5  
𝜃 − 𝜃𝑜

𝜎𝑜
 

2

                                                                                                 (5) 

Figure 2ashows the prior distribution for chloride concentration for single observation at year 

10.Since this paper is to produce more quantitative data by using Bayesian Updating, the 

monitoring data is known to follow the normal distribution. Thus, likelihood value for mean istaken 

as 30% decrease from prior value and standard deviation is30% increase from prior value.Figure 2b 

shows the likelihood distribution of chloride concentration with value of mean is 0.5019 and 

standard deviation is 0.5715. 

 

Figure 2a     Figure 2b 

Figure 2a & b: Prior and likelihood distribution for chloride concentration at year 10 
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Prior Distribution
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Likelihood Distribution



Supposed that monitoring data is available and that an observation y is made by this method to a 

sufficient approximation which is follows the normal distribution. If a single observation is made, 

the standardize likelihood function is represented by normal curve. If a prior  𝜃~𝑁 𝜃𝑜 ,𝜎𝑜
2 , and 

standardized likelihood function is represented by a normal curve centered at y with standard 

deviation 𝜎. The posterior distribution of 𝜃 given y, 𝑃𝑝𝑜𝑠𝑡  𝜃|𝑦 , is the normal distribution 𝑁 𝜃 , 𝜎 2 . 

Figure 3 illustrate the result of posterior distribution for chloride concentration after the process of 

updating the prior and likelihood distribution. It is shows that the variance for posterior distribution 

is slightly reduced compared to prior and likelihood distribution. It is shows that the uncertainty in 

posterior distribution is reduced hence increasing the confidence in predicting future probability of 

failure. 

 

Figure 3: Prior, likelihood and posterior distribution for single observation at year 10 

Figure 4 shows prior and posterior probability of failure for chloride concentration for single 

observation at year 10. Quantifying this Figure 4 in Table 3 shows that the posterior probability of 

failure causes a slightly reduced if compared to prior probability of failure. The result shows that at 

year 12 the posterior probability of failure is reduced for amount of 10% from prior probability of 

failure. By incorporating a new data and updating using Bayes Theorem, the probability of failure 

can be reduce thus increasing the confidence in predicting the future probability of failure.  

 

Figure 4: Prior and posterior probability of failure for single observation 
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Table 3: Prior and posterior probability of failure 

Prior Probability of Failure (𝐶𝑥𝑡 ≥ 𝐶𝑡ℎ) Posterior Probability of Failure (𝐶𝑥𝑡 ≥ 𝐶𝑡ℎ) 

Year Probability of 

failure(Pf) 

Year Probability of 

Failure (Pf) 

6 0.10 6 0.02 

8 0.30 8 0.17 

12 0.80 12 0.70 

5.0 Conclusion 

Probabilistic modelling with various parameter defined as variables is presented in this paper. The 

probabilistic analysis by using Bayesian theory with considering time dependent reliability analysis 

is able to determine the probability of failure. In this case, the probability of failure is defined as the 

probability that chloride concentrations at future time have exceeds the threshold chloride 

concentrations. The analysis shown that by using Bayesian updating, the uncertainty can be 

reduced in the prediction of future performance which is has met theobjective. It is found that 

uncertainty of the posterior model is reduced hence increased confidence in predicting future 

performance. From the analysis, the probability of failure is reduced by incorporating a new data 

and updated using Bayesian Theory. The probabilistic modeling and simulation of chloride ingress 

in concrete bridge allows the bridge owner to manage the bridge effectively with better allocation 

of resources and effectively plan for bridge maintenance. 
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