In situ catalytic upgrading of oxygenated pyrolysis vapours from pyrolysis of sugarcane bagasse over metal oxides loaded HZSM-5

Vekes Balasundram^a, Khairunnisa Kamarul Zaman^b, Norazana Ibrahim^b, Rafiziana Md. Kasmani^b, Ruzinah Isha^c, Mohd. Kamaruddin Abd. Hamid^d & Hasrinah Hasbullah^d ^a Chemical Energy Conversions and Applications (ChECA) Research Group, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia

^b Energy Management Group, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Johor, Malaysia ^c Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang 26300, Malaysia

^d School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Johor, Malaysia

ABSTRACT

The main objective of the current work is to study the performance of the NiO and Ce₂O₃ loaded HZSM-5 catalyst on the catalytic upgrading of oxygenated pyrolysis vapours from sugarcane bagasse into high-quality pyrolysis oil consisting of C₆–C₈ hydrocarbons. The experiments were performed at five different pyrolysis reaction temperatures (400, 450, 500, 550 and 600 °C) via in situ fixed bed reactor. The HZSM-5 was used as a support, while nickel oxides and/or cerium oxides were impregnated via incipient wetness impregnation method. The catalyst-to-biomass mass ratio was kept constant at 1:1 for all investigated samples. The results revealed that the NiO-Ce₂O₃/HZSM-5 catalyst has synergistic effects on upgrading the oxygenated pyrolysis vapours into higher contents of C₆–C₈ hydrocarbons (8.82%) in pyrolysis oil at 500 °C compared with other investigated catalysts.

KEYWORDS

Biomass pyrolysis; BTX; Catalytic upgrading; HZSM-5; NiO; Ce₂O₃; C₆–C₈ hydrocarbons

ACKNOWLEDGEMENT

The authors would like to acknowledge the financial supports by Universiti Teknologi Malaysia, Ministry of Higher Education (MOHE) of Malaysia (Q.J130000.2546.20H18 and Q.J130000.2546.14H48) and Universiti Malaysia Pahang (RDU1703242).