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Abstract: Non-Newtonian is a type of fluid that does not comply with the visc-
osity under the Law of Newton and is being widely used in industrial applications.
These include those related to chemical industries, cosmetics manufacturing,
pharmaceutical field, food processing, as well as oil and gas activities. The inabil-
ity of the conventional equations of Navier–Stokes to accurately depict rheologi-
cal behavior for certain fluids led to an emergence study for non-Newtonian
fluids’ models. In line with this, a mathematical model of forced convective flow
on non-Newtonian Eyring Powell fluid under temperature-dependent viscosity
(TDV) circumstance is formulated. The fluid model is embedded with the New-
tonian heating (NH) boundary condition as a heating circumstance and is
assumed to move over a stretching sheet acting vertically. Using appropriate
similarity variables, the respective model was converted into ordinary differen-
tial equations (ODE), which was later solved utilizing the Keller box approach.
The present model is validated by comparing the existing output in literature at
certain special limiting cases, where the validation results display a firm agree-
ment. The current outputs for the proposed model are shown in tabular and gra-
phical form for variation of skin friction plus Nusselt number, velocity and
temperature distribution, respectively.

Keywords: Temperature-dependent viscosity; erying powell fluid; vertical
stretching sheet; numerical solution; boundary layer

1 Introduction

Over recent decades, several wide-ranging investigations have been conducted on heat transference in a
non-Newtonian fluid. Fluids with a non-Newtonian nature are partly or wholly made up of macromolecules
or dual-phase materials. These fluids are typically described as those equipped with the capacity chronology
of flow. As a rule, the categorization of the numerous forms of non-Newtonian type of fluid is realized on the
shear stress equation. Unlike Newtonian fluid behaviors, industrial materials, such as polymeric liquids,
paste, melts, emulsions, muds, foodstuffs, condensed milk, soaps, shampoos, molten plastics, etc., are
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able to follow the characteristics of non-Newtonian fluid. Therefore, the fluid flow modeling and estimation
have fundamental and practical importance in the applications of engineering and its businesses. The
behaviors rheological of such fluid flow are substantial inside the flows of nuclear gasoline slurries, paper
coating, greases and lubrication with heavy oils, plasma and mercury, polymers, etc. Besides, one of the
essential characteristics of fluids under investigation herein is the pressure tensor, which is associated
with the fee of deformation tensor utilizing non-linear courting. Valuable contributions to the
investigation of the properties of such fluids are highlighted by following experts [1–5].

The new development underwritten in fluid mechanics has paved the way for innovative methods in
investigating the two-dimensional flow, where the non-Newtonian fluids’ flow mathematical system is far
complex. Most known modules are the second grade of the non-Newtonian, which contains Maxwell,
Oldroyd-B, as well as the power law of mathematical model. Eyring and Powell proposed a whole new
mathematical model for non-Newtonian fluids in 1944 called the Eyring Powell model. Thus, very scant
research has been involved in the fluid model of Eyring Powell on a two-dimensional type even though
the model is better in several ways than other forms of non-Newtonian fluid models. Eyring Powell’s
model has possessed numerous benefits for two main reasons. First, it is based on the theory of kinetic
towards objects instead of that experimental formulas. Apart from that, the modeling of Eyring Powell
reacts accordingly to low and high behavior of Newtonian’ shear rates.

Despite facing the challenges of solving the Eyring Powell model due to its complexity, Jalil et al. [6] took
the challenge of solving the non-Newtonian Eyring Powell problem passing a permeable surface that is
continuously moving parallel with the free stream. Besides, an analytical solution for the effects of convective
boundary conditions over a surface moving with convective boundary conditions under a constant free stream
movement has been analyzed by Hayat et al. [7]. Moreover, the ordinary equation arising from the partial
governing differential upon applying proper transformation has been solved in a numerical manner using the
Keller box method (KBM). Furthermore, Khader et al. [8] employed a numerical approach to investigate an
unsteady flow and thermal conduction of Eyring Powell fluids in a laminar fluid-filled on a horizontal stretch
surface under the condition of internal thermal generation. Likewise, Jalil et al. [9] and Javed et al. [10]
devoted their study on fluids’ flow of the non-Newtonian Eyring Powell on the thin layer moving over a
horizontal stretching sheet solved utilizing a finite difference approach. Moreover, Malik et al. [11] discussed
a boundary layer of Eyring Powell for variable viscosity of a stretched cylinder.

Apart from that, Akbar et al. [12] deliberated the impact on free convection flow, mass and heat of viscous
dissipation employing the numerical technique for computation. Also, Roşca et al. [13] discussed the flow and
heat transfer of Powell Eyring fluids on a shrinking surface aligned with the free stream movement. Also, the
effects of magnetohydrodynamics of Powell Eyring fluids with heat transfer were examined by Hayat et al.
[14], Akbar et al. [15], Ellahi et al. [16], Hayat et al. [17], Gireesha et al. [18]. Moreover, Abbasi et al. [19]
and Hina [20] concentrated on investigating the peristaltic fluid of Eyring Powell. In contrast, Hayat et al.
[21] and Rauf et al. [22] solved such fluid using optimal control embedded with double-diffusive Cattaneo–
Christov heat and mass flux theories, respectively. The series comparing numerical solutions of Eyring-
Powell fluid flow with NH and heat generation is presented by Hayat et al. [23] and Rehman et al. [24],
separately. Furthermore, the study on Prandtl-Eyring fluids forced convection flow Eyring Powell and its
theoretical similarity was carried out by Shukla et al. [25]. Moreover, Sajid et al. [26] and Khan et al. [27]
solved the fluid flow problem of Maxwell and Erying Powel models, respectively in the existence of
nanoparticles with the effect of non-linear thermal radiation on a stretched surface.

Motivated by researchers examined above, the incompressible boundary layer of forced convection in
two dimensions over a stretching sheet can be considered with the NH boundary condition as a heating
circumstance. This recent study is dedicated to examining the forced convective of Eyring Powell fluid’s
flow incorporated with TDV along a vertical stretching sheet through embedded NH boundary conditions.
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Numerical solutions are worked out by employing the KBM, and the solution is expressed through the
graphical and tabular arrangement.

2 Problem Formulation

This study aims to investigate the characteristic of Eyring fluid under the influence of TDV embedded
with the Newtonian heating (NH) boundary condition. The flow is assumed to flow over a vertical stretching
sheet. It is presumed that the sheet stretches in the direction and moves with uniform velocity, where the x-
axis is defined as an upward direction alongside the sheet. At the same time, the y-axis assumes its upward
direction concerning the surface. The geometric configuration of the study case is shown in Fig. 1.

The derivation of the Eyring Powell model is based on rate processes theory to demonstrate the sheer of
non-Newtonian flow. Summing up from the assumptions mentioned above and adopting the boundary layer
approximation in the Cartesian coordinate system, the equations representing the model of fluid with TDV
can be conveyed as
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¼ 0; (1)
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� �
; (3)

where u; vð Þ, T , q, cp; and l respectively refer to velocity components in x; yð Þ directions, temperature,
density, constant pressure of specific heat, and fluid’s viscosity coefficient while c� and ~b are the Powell
Eyring parameters’ fluid model which has (time-1) dimension.

The model is referred to conditions at the boundary as

u ¼ uwðxÞ ¼ ax; v ¼ 0;
@T

@y
¼ �hsT ðNHÞ at y ¼ 0;

u ! 0; Tp ! T1 as y ! 1:

(4)

Figure 1: Physical configuration of problem
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In Eq. (4), the parameters k, hf , Tf and T1 correspond to thermal conductivity, heat transference
coefficient, hot fluid and ambient temperature, respectively. To obtain the set of similarity equations in the
form of ODE, the similarity transformation variables as in Eq. (5) are adopted and applied to the
governing Eqs. (1) to (4).

u ¼ axf 0ðgÞ; v ¼ � avf
� �1=2

f ðgÞ; g ¼ a

vf

� �1=2

y; hðgÞ ¼ T � T1
T1

ðNHÞ (5)

To simulate temperature-dependent viscosity variation, we adopt the Reynolds exponential viscosity
model which provides an accurate approach, given by:

l hð Þ ¼ l0e
� b1hð Þ ¼ l0 1� b1hð Þ þ O b21

� �� �
; (6)

where the inverse linear function of temperature is assumed for variation of fluid viscosity. The resulting
equations are obtained as follows:

1þMð Þf 000ðgÞ � f 0 gð Þð Þ2 þ f ðgÞf 00 gð Þ � BM f 00 gð Þð Þ2f 000 gð Þ � ah gð Þf 000ðgÞ � af 00 gð Þh0 gð Þ ¼ 0 (7)

1

Pr
h00 gð Þ þ f ðgÞh0 gð Þ ¼ 0; (8)

together with the reformed boundary conditions given by:

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; h0ð0Þ ¼ �c 1þ hð0Þð Þ at g ¼ 0;

f 0ðgÞ ! 0; hðgÞ ! 0; as g ! 1:
(9)

3 Computation Procedures

The obtained equations under the arrangement of a set of ODE is solved by employing the Keller box
technique. Eqs. (8) and (9) subjected to the boundary conditions (10) are reduced to the system of first order.
For that matter, the independent variables are demonstrated as follows

f 0 ¼ u; u0 ¼ v; s ¼ h; h0 ¼ s0 ¼ t: (10)

Then, the respective equations can be written as

1þMð Þv0 � u2 þ fv� BMv2v0 � asv0 � avt ¼ 0 (11)

1

Pr
t0 þ ft ¼ 0: (12)

In Eqs. (7) to (12), the prime notation ð0Þ corresponds to the differentiation with respect to g.
Additionally, fluid parameters, M and B, Prandtl number, Pr, specific heat ratio of mixture, c, thermal
diffusivity, a and fluid kinematic viscosity, mf can be defined as follows

M ¼ 1

l0 ~bc
; B ¼ a3x2

2c2mf
; Pr ¼ mf

a
; c ¼ �hs v=að Þ1=2; a ¼ k

qcp
: (13)
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The net rectangle in the g level is considered as in Fig. 2. The points of net are denoted as

g0 ¼ 0; gj ¼ gj�1 þ hj; j ¼ 1; 2; …; J ; gJ � g1: (14)

where hj is the Dgj-spacing and j is the order of numbers specifying the coordinate location.

Eqs. (10)–(12) are predicted by expending the central difference at mid-point gnj�1=2 of the segment P1P2.
Thus, the following set of equations are obtained

f nj � f nj�1 �
hj
2
ðunj þ unj�1Þ ¼ 0; (15)

unj � unj�1 �
hj
2
ðvnj þ vnj�1Þ ¼ 0; (16)

snj � snj�1 �
hj
2
ðtnj þ tnj�1Þ ¼ 0; (17)

1þMð Þ vnj � vnj�1

hj

� �
� u2
� �n

j�1=2 þ fvð Þnj�1=2 � BM
vnj � vnj�1

hj

� �
v2
� �n

j�1=2

� a sð Þnj�1=2

vnj � vnj�1

hj

� �
� a vtð Þnj�1=2¼ 0;

(18)

tj � tj�1 þ
hj
4
Prðfj þ fj�1Þðtj þ tj�1Þ ¼ 0; (19)

Eqs. (15)–(19) are computed for j ¼ 1; 2;…; J at the given n where the boundary conditions
(9) become

f n0 ¼ 0; un0 ¼ 1; tn0 ¼ �c 1þ sn0
� �

; unJ ¼ 0; snJ ¼ 0: (20)

Suppose f n�1
j ; un�1

j ; vn�1
j ; sn�1

j ; tn�1
j are known for 0 � j � J , then Eqs. (16)–(20) form a system of the

unknown variables f nj ; u
n
j ; v

n
j ; s

n
j ; t

n
j

� 	
; j ¼ 1; 2; …; J : For simplification, the unknown variables

f nj ; u
n
j ; v

n
j ; s

n
j ; t

n
j

� 	
are written as fj; uj; vj; sj; tj

� 	
. Generally, Newton’s method is employed to linearize

Eqs. (16) to (20) by introducing the subsequent iterates

f ðiþ1Þ
j ¼ f ðiÞj þ df ðiÞj ;

uðiþ1Þ
j ¼ uðiÞj þ duðiÞj ;

vðiþ1Þ
j ¼ vðiÞj þ dvðiÞj ;

sðiþ1Þ
j ¼ sðiÞj þ dsðiÞj ;

tðiþ1Þ
j ¼ tðiÞj þ dtðiÞj :

9>>>>>>>=
>>>>>>>;

(21)

Figure 2: Net rectangle for difference approximations
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Upon performing algebraic manipulation and releasing the quadratic plus higher-order terms in

df ðiÞj ; duðiÞj ; dvðiÞj ; dsðiÞj ; dtðiÞj as well as the superscript i for simplicity, the following linear tridiagonal
system is obtained as follows

dfj � dfj�1 � 1

2
hj duj þ duj�1

� � ¼ ðr1Þj�1=2; (22)

duj � duj�1 � 1

2
hj dvj þ dvj�1

� � ¼ ðr2Þj�1=2; (23)

dsj � dsj�1 � 1

2
hj dtj þ dtj�1

� � ¼ ðr3Þj�1=2; (24)

a1ð Þjdvj þ a2ð Þjdvj�1 þ a3ð Þjduj þ a4ð Þjduj�1 þ a5ð Þjdfj þ a6ð Þjdfj�1

þ a7ð Þjdtj þ a8ð Þjdtj�1 þ a9ð Þjdsj þ a10ð Þjdsj�1 ¼ r4ð Þj�1=2;
(25)

b1ð Þjdtj þ b2ð Þjdtj�1 þ b3ð Þjdfj þ b4ð Þjdfj�1 ¼ r5ð Þj�1=2; (26)

where

a1ð Þj ¼
1

2
hj fj�1=2 � atj�1=2

� 	
� BMvj�1=2 ðvj � vj�1Þ þ vj�1=2

� 	
� asj�1=2 þM þ 1; (27)

a2ð Þj ¼ a1ð Þj þ 2BM vj�1=2

� 	2
þ 2asj�1=2 � 2M � 2; (28)

a3ð Þj ¼ �hjuj�1=2; a4ð Þj ¼ a3ð Þj (29)

a5:ð Þj ¼
1

2
hjvj�1=2; a6ð Þj ¼ a5ð Þj (30)

a7ð Þj ¼ � 1

2
ahjvj�1=2; a8ð Þj ¼ a7ð Þj; (31)

a9ð Þj ¼ � 1

2
aðvj � vj�1Þ; a9ð Þj ¼ a10ð Þj; (32)

b1ð Þj ¼ 1þ hj
2
Pr fj�1=2; (33)

b2ð Þj ¼ �1þ hj
2
Pr fj�1=2 ¼ b1ð Þj � 2; (34)

b3ð Þj ¼
hj
2
Pr tj�1=2; b4ð Þj ¼ b3ð Þj; (35)

680 CMC, 2021, vol.66, no.1



r1ð Þj�1=2 ¼ fj�1 � fj þ hjuj�1=2;

r2ð Þj�1=2 ¼ uj�1 � uj þ hjvj�1=2;

r3ð Þj�1=2 ¼ sj�1 � sj þ hjtj�1=2;

r4ð Þj�1=2 ¼ 1þMð Þðvj�1 � vjÞ þ hj uj�1=2

� 	2
� fj�1=2vj�1=2 þ a vj�1=2

� 	
tj�1=2

� 	
 �

þBM vj�1=2

� 	2
ðvj�1 � vjÞ � asj�1=2ðvj�1 � vjÞ;

r5ð Þj�1=2 ¼ �tj þ tj�1 � hj Pr fj�1=2tj�1=2

� �
:

9>>>>>>>>>>=
>>>>>>>>>>;

(36)

To uphold the correct values for the entire iterates, the assumption of
df0 ¼ 0; du0 ¼ 0; dt0 ¼ 0; duJ ¼ 0 and dsJ ¼ 0 is required. To perform the linearized difference
equations using the block elimination procedure, the elements of block matrices must be defined using
three different cases where the corresponding matrix can be inscribed as

Ad¼ r; (37)

where

A ¼

½A1� ½C1�
½B2� ½A2� ½C2�

. .
.

. .
.

. .
.

½BJ�1� ½AJ�1� ½CJ�1�
½BJ � ½AJ �

2
66666666664

3
77777777775
; d ¼

½d1�
½d2�
..
.

..

.

..

.

½dJ�1�
½dJ �

2
66666666664

3
77777777775
; r ¼

½r1�
½r2�
..
.

..

.

..

.

½rJ�1�
½rJ �

2
66666666664

3
77777777775
:

The elements of the matrices are given by

A1½ � ¼

0 0 1 0 0

�1
2hj 0 0 �1

2hj 0

0 �1 0 0 �1
2hj

ða2Þ1 ða10Þ1 ða5Þ1 ða1Þ1 ða7Þ1
0 0 ðb3Þ1 0 ðb1Þ1

2
66666664

3
77777775
; (38)

Aj

� � ¼

�1
2hj 0 1 0 0

�1 0 0 �1
2hj 0

0 �1 0 0 �1
2hj

ða4ÞJ ða10ÞJ ða5ÞJ ða1ÞJ ða7ÞJ
0 0 ðb3ÞJ 0 ðb1ÞJ

2
66666664

3
77777775
2 � j � J : (39)

Bj

� � ¼

0 0 �1 0 0

0 0 0 �1
2hj 0

0 0 0 0 �1
2hj

0 0 ða6Þj ða2Þj ða8Þj
0 0 ðb4Þj 0 ðb2Þj

2
66666664

3
77777775
; (40)
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Cj

� � ¼
�1

2hj 0 0 0 0

1 0 0 0 0
0 1 0 0 0

ða3Þ2 ða9Þ2 0 0 0

0 0 0 0 0

2
666664

3
777775
; (41)

½d1� ¼

dv0
ds0
df1
dv1
ds1

2
6664

3
7775; ½dj� ¼

duj�1

dtj�1

dfj
dvj
dsj

2
6664

3
77752 � j � J (42)

and

½rj� ¼

ðr1Þj�1=2

ðr2Þj�1=2

ðr3Þj�1=2

ðr4Þj�1=2

ðr5Þj�1=2

2
666664

3
777775
; 1 � j � J : (43)

The matrix A is acknowledged as a tridiagonal matrix having zero elements except for its main diagonal.
The respective system can be elucidated by using a block elimination technique with the assumption that the
matrix A is non-singular and able to be factorized in the form of

A ¼ LU (44)

4 Validation Procedure

The numerical results for this current investigation was computed using KBM. The outcome of fluid
parameters (M and B), Prandtl number (Pr), and thermal diffusivity (a) on fluids’ velocity and
temperature against g are computed using MATLAB software. It is well known that this method is
undeniably one of the suitable approaches for solving the flow problem based on its wide application in
many previous and recent studies within this research area. By having the finite boundary layer thickness,
g1 ¼ 8, the boundary conditions of this study are fully satisfied based on both velocity and temperature
profiles attaining the asymptotic behavior. It is important to mention that the exact solution for skin
friction coefficient for Eq. (12) without the parameter representing Eyring Powell fluid and viscosity is
given by

f 00 ¼ �e�g: (45)

The exact expression of Eq. (41) has also been documented by Salleh et al. [28]. It is worth mentioning
here that the comparative outcomes with the exact solution are necessary to claim the current model and its
output are acceptable. The physical measures of skin friction as well as Nusselt number for this present
mathematical model are given as

CfRe
1=2
x ¼ 1� ahð0Þð Þ þMð Þf 00ð0Þ � B

3
Mf 003ð0Þ

� �
; NuxRex

�1=2 ¼ c 1þ 1

hð0Þ
� �

: (46)
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Besides that, the present model can be reduced to the existing equation, as in the literature. The
following summaries are presented to show its connection to the model.

5 Results and Discussion

This present paper concentrates on the discussion of the solutions obtained (tabular and graphical form).
The results were computed under the NH boundary condition for various parameter a, M , B, and Pr. The
computation is performed by assigning a set of fixed values of the parameter, where the value of
CfRex1=2 and NuxRex�1=2 are later computed one by one. The direct comparison study with the exact
expression (46) as well as the existing study reported by Salleh et al. [28], Gorla et al. [29], and
Vajravelu et al. [30] carried out to corroborate the numerical solutions acquired in this study. From
Tabs. 1 and 2, an excellent agreement is achieved, which indicates that the current model and its findings
are acceptable.

Tab. 3 depicts the variations of CfRex1=2 and NuxRex�1=2 with the variation of the values of the
parameter involved. For the entire computation, the value c was taken as 1. It is noticed that for larger
values of a and B , the skin friction coefficient increases while decreasing trend is observed for larger
values of M and Pr. On the other hand, the variant of Nusselt number increases only for larger values of
a, while a decreasing trend for Pr, M and B is observed. The increment in skin friction is due to the
enhancement of drag forces occurring on the surface, and the increase in Nusselt number attributes to
the store of heat from the process of fluid movement. It can be noticed that all the parameters existing in
the present model affects the fluid flow characteristics.

Table 1: Comparative study on f 00 0ð Þ
Existing
literature

Model of problem Boundary
condition

Limiting cases Value of
f 00 0ð Þ

Exact solution
(46)

f 00 ¼ �e�g – – −1.00000

Present study 1þMð Þf 000 þ ff 00 � BM f 00ð Þ2f 000 � f 0ð Þ2
� ahf 000 � af 00h0 ¼ 0

f 0ð Þ ¼ 0

f 0 0ð Þ ¼ 1

f 0 1ð Þ ¼ 0

B ¼ M ¼ a ¼ 0 −1.00117

Gorla et al. [29] f 000 � f 02 þ ff 00 ¼ 0 f 0ð Þ ¼ 0

f 0 0ð Þ ¼ 1

f 0 1ð Þ ¼ 0

– −1.01435

Vajravelu et al.
[30]

f 000 � f 02 þ ff 00

� A f 0 þ 1

2
gf 00

� �
þ �h ¼ 0

f 0ð Þ ¼ fw ¼ 0

f 0 0ð Þ ¼ 1

f 0 1ð Þ ¼ 0

A ¼ � ¼ 0 −1.00049

Table 2: Comparative study on value hð0Þ and �h0ð0Þ
Salleh et al. [28] Present

Pr hð0Þ �h0ð0Þ hð0Þ �h0ð0Þ
10 0.76531 1.76531 0.763582 1.763582
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Furthermore, the analysis on parameters of M , B, Pr and a on velocity and temperature of fluid,
respectively, are described in Figs. 3 to 10. An increased behavior of velocity can be seen in larger values
of Pr and B, as captured in Figs. 5 and 7, respectively. This is because the properties of those parameters
characterize the ability to exchange thermal energy with its surroundings, which reduces the viscosity of
fluid particles. Meanwhile, a contradict behavior on velocities of fluid can be seen for larger values of M
and a, as illustrated in Figs. 3 and 9, correspondingly. The temperature distribution shows a decreasing
trend for larger values of M , B and Pr whereas an increasing trend for larger a is obtained, as captured in
Figs. 4, 6, 8 and 10, respectively. This is due to lessen heat loss and viscosity. Besides that, all the
figures indicate that the velocity and temperature of the fluid asymptotically approaches zero, which
fittingly fulfils the boundary condition.

Table 3: Numerical results of CfRex1=2 and NuxRex�1=2 for numerous values of Pr, a, M and B

Pr a M B CfRex1=2 NuxRex�1=2

9 0.1 1 0.1 -1.391381 1.779522

12 -1.394287 1.654289

15 -1.396602 1.531333

10 0.1 -1.392544 1.730601

0.2 -1.379711 1.731685

0.5 -1.337340 1.737515

10 0.1 0.3 0.3 -1.098977 1.775664

0.6 -1.216799 1.764799

0.9 -1.329906 1.747555

10 0.1 1 0.1 -1.392544 1.730601

0.3 -1.351390 1.718979

0.5 -1.312611 1.707844

Figure 3: f 0 gð Þ at B ¼ 0:3, a ¼ 0:1 and Pr ¼ 10 for various values of M
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Figure 4: hðgÞ at B ¼ 0:3, a ¼ 0:1 and Pr ¼ 10 for various values of M

Figure 5: f 0ðgÞ at M ¼ 1, a ¼ 0:1 and Pr ¼ 10 for various values of B

Figure 6: hðgÞ at M ¼ 1, a ¼ 0:1 and Pr ¼ 10 for various values of B
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Figure 7: f 0ðgÞ at B ¼ 0:1, a ¼ 0:1 and M ¼ 1 for various values of Pr

Figure 8: hðgÞ at B ¼ 0:1, a ¼ 0:1 and M ¼ 1 for various values of Pr

Figure 9: f 0ðgÞ at M ¼ 0, B ¼ 1 and Pr ¼ 10 for various values of a
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6 Concluding Remark

In this research, the convective force of an Eyring Powell fluid along vertical stretch plate has been
discussed by highlighting the effect of TDV involved the parameters of a, M , B, and Pr. A similar trend
can be noticed from the mathematical analysis in the motion and temperature distributions of fluid,
respectively, when parameters are increased. The utilization of KBM has developed a numerical solution,
where the given graphs and tables demonstrate the effects of parameters. Nevertheless, the deviations on
the distribution of velocity and the temperature of fluid exhibit the significance of the parameters studied.
The findings in this study are expected to contribute to a better understanding of single-phase fluid flow
characteristics as much as the solutions of its flow problems.
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