Synthetic CaO-based sorbent for high-temperature CO₂ capture in sorption-enhanced hydrogen production

 Piya Pecharaumporn^a, Suwimol Wongsakulphasatch^b, Thongchai Glinrun^c, Atthaphon Maneedaeng^d, Zulkafli Hassan^e, Suttichai Assabumrungrat^a
^a Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
^b Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
^c Department of Petrochemical and Environmental Engineering, Faculty of Engineering, Pathumwan Institute of Technology, Bangkok, 10330, Thailand
^d School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
^e Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya, Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia

ABSTRACT

Calcium precursor and surfactant addition on properties of synthetic alumina-containing CaO-based for CO₂ capture and for sorption-enhanced steam methane reforming process (SE-SMR) were investigated. Results showed that the sorbent derived from calcium D-gluconic acid (CG-AN) offered CO₂ sorption capacity of 0.38 g CO₂/g sorbent, which is greater than 0.17 g CO₂/g sorbent of the sorbent derived from calcium nitrate (CN-AN). Addition of CTAB surfactant during synthesis was found to enhance CO₂ sorption capacity for CG-AN but not for CN-AN sorbents. Stability tests of the modified sorbents for 10 cycles showed that CG-AN-CTAB provided higher CO₂ sorption capacity than CN-AN-CTAB for each corresponding cycle. Incorporation of CG-AN with Ni catalyst (Ni-CG-AN) using wet-mixing technique offered the longest pre-breakthrough period of 60 min for average maximum H₂ purity of 88% at 600 °C and a steam/methane molar ratio of 3.

KEYWORDS

Alumina-containing CaO-based sorbent; High-temperature CO_2 capture; Sorption-enhanced steam methane reforming; H_2 production

ACKNOWLEDGEMENT

The authors would like to thank the Ratchadapisek Sompoch Endowment Fund (2016), Chulalongkorn University (CU-59-003-IC) and the Thailand Research Fund (DPG5880003) for funding supports.