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ABSTRACT 

Assembly Line Balancing (ALB) is about distributing the assembly tasks into 

workstations with the almost equal workload. Previous research mostly assumed that all 

workstations are having similar capabilities including the machines, tools and worker 

skills. Recently, researchers started to consider the resource constraints in ALB such as 

machine and worker. Optimisation of ALB with resource constraints gives a huge benefit 

to the industry such as increase line efficiency, optimise the resources utilisation and can 

reduce production cost.  This research presents Assembly Line Balancing with resource 

constraints (ALB-RC) for a simple model with the objectives to minimise the 

workstation, machine and worker. For the optimisation purpose, this research introduces 

Genetic Algorithm (GA) with two new crossovers. The crossovers are developed using a 

ranking approach and known as rank-based crossover type I and type II (RBC-I and RBC-

II). The GA with new crossover is tested against popular combinatorial crossovers with a 

wide range of problem difficulties consisting of 17 benchmark problems. The 

performance of the proposed GA with new crossover in optimisation ALB-RC is finally 

validated using an industrial case study. The computational experiment results indicated 

that the proposed GA with new crossovers are able to find the optimal solution for ALB-

RC better than popular combinatorial crossovers. Meanwhile, the results of industrial case 

study validated that the proposed ALB-RC model is capable to be used for the real 

industrial problem. At the same time, the result indicated that the GA with rank-based 

crossover is capable to optimise real-life problem. As a comparison, the number of 

workstation, machine/tools and workers had reduced between 10 – 15% for the optimised 

layout using GA with RBC, compared with the original layout in the case study problem. 
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ABSTRAK 

Pengimbangan rangkaian pemasangan (ALB) adalah berkaitan dengan pembahagian 

tugas pemasangan ke stesen kerja untuk mendapatkan beban kerja yang hampir sama di 

setiap stesen. Kajian-kajian terdahulu mengandaikan setiap stesen kerja mempunyai 

keupayaan yang sama dari segi mesin, peralatan dan kemahiran pekerja. Sejak akhir-akhir 

ini, penyelidik mula mempertimbangkan kekangan sumber dalam mengimbangi 

rangkaian pemasangan seperti mesin dan pekerja. Pengoptimuman ALB dengan 

kekangan sumber memberi manfaat besar kepada industri seperti meningkatkan 

kecekapan pemasangan, memanfaatkan sumber sepenuhnya dan dapat mengurangkan kos 

pengeluaran. Penyelidikan ini membentangkan masalah pengimbangan rangkaian 

pemasangan dengan kekangan sumber (ALB-RC) dengan objektif untuk meminimumkan 

stesen kerja, mesin dan bilangan pekerja. Untuk tujuan pengoptimuman, penyelidikan ini 

memperkenalkan algoritma genetik (GA) dengan dua silangan baru. Silangan ini 

dibangunkan dengan menggunakan pendekatan kedudukan dan dikenali sebagai jenis 

silangan berasaskan kedudukan jenis I dan jenis II (RBC-I dan RBC-II). GA dengan 

silangan baru diuji terhadap silangan-silangan gabungan sedia ada yang popular. Ia diuji 

ke atas 17 masalah piawai ALB. Prestasi GA yang dicadangkan dengan silangan baru 

pada pengoptimuman ALB-RC akhirnya disahkan menggunakan kajian kes industri. 

Hasil eksperimen pengkomputeran menunjukkan bahawa GA yang dicadangkan dengan 

silangan baru dapat mencari penyelesaian optimum yang lebih baik untuk ALB-RC 

berbanding silangan yang sedia ada. Sementara itu, keputusan daripada kajian kes di 

industri mengesahkan model ALB-RC yang dicadangkan boleh digunakan di lapangan 

industri yang sebenar. Pada masa yang sama, keputusan kajian kes juga menunjukkan GA 

dengan silangan yang baharu mampu mengoptimumkan masalah sebenar di industri 

dengan lebih baik. Sebagai perbandingan, bilangan stesen kerja, mesin dan pekerja telah 

dapat dikurangkan di antara 10 – 15 % melalui susunatur yang dioptimakan menggunakan 

GA dengan silangan baharu berbanding dengan susun atur asal di industri. 
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INTRODUCTION 

1.1 Background  

The manufacturing sector currently is evolving to a new phase and becoming more 

productive in producing a product. The manufacturer tends to compete on the cost and 

move up the manufacturing value chain. In order to increase line efficiency and optimise 

the assembly line output, a workforce and resources that are efficiently skilled and fully 

utilised play a major role (Amin & Karim, 2013).  

There are many important aspects of manufacturing that need to be considered in 

order for it to be profitable for the company. One of the important aspect is the assembly 

process (Al-Ahmari et al., 2018). It is a process which involves joining parts together and 

produce the desired product on an assembly line. Assembly line usually consists of a 

number of task as well as workers, machines and tools carried by a number of workstation 

along the line (Sikora, et al., 2017). The main issue in the development of an assembly 

line is the arrangement of tasks, workers and resources to be performed (Grzechca & 

Foulds, 2015). A balanced assembly line will determine the production rate by making 

sure that each station has the same amount of work so that the idle time will be minimised.  

Optimisation of assembly line balancing is vital to ensure the waste from the 

assembly process is minimal and in turn will minimise the cost of the production (Yin et 

al., 2018). Assembly optimisation in the production deals with the determination of 

optimum assembly sequence and determination of the optimum location of each resource 

(Rashid et al., 2012).  

Due to the complexity of assembly line balancing problem, it is crucial to have an 

optimum seeking the best solution method which practical for instances of more than a 
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few tasks and/or workstations (Jusop & Ab. Rashid, 2016). Various methods, approaches 

and procedures were introduced for solving the assembly line balancing problem that can 

satisfy production rates and at the same time can achieve the desired objective function 

such as linear programming, integer programming, dynamic programming and branch-

and-bound approaches (Tasan & Tunali, 2008). Currently, the development of heuristic 

and meta-heuristic approach is inevitable since it is more practical for large problems and 

can locate an optimum solution.   

Therefore, finding the best solution for assembly line balancing with resource 

constraint is significant for the manufacturing industry. Development of an algorithm 

which can allow and consider multi-skilled workers which can perform tasks that have 

been assigned is crucial in order to reduce the number of workers to be placed on the 

assembly line. Concerning on machine/tools assignment, the duplication of those 

resources along the assembly line can be reduced by selecting task using the same type 

of resources together in the same workstation. This research details the methodology and 

Genetic Algorithm used to model and optimise assembly line balancing problem with 

resource constraints (ALB-RC).  

1.2 Problem Statement  

Assembly Line Balancing Problem (ALBP) is the process of assigning tasks to 

workstations so that the predetermined objective function is satisfied, the production 

target is achieved and the constraints are not violated. The objective functions for ALBP 

can be to minimize number of workstations, to minimize the cycle time, or the production 

cost.  Every task in assemble line are allocated to the workstation with respect to the 

assembly line constraints such as precedence relation between task and as well as limited 

processing resources (Taylor, 2010).  

When assigning task to workstation, the main target for the line design is to 

minimize the number of workstations. This is because, the activation of workstation on 

assembly line will incur extra cost due to consumption of energy, maintenance of 

equipment, setup activities or labor requirement (Kovalev et al., 2017).  

In majority of previous works, researchers make assumptions where any of 

assembly tasks can be processed or assembled in any workstations and resources are 

available without limit (Dong et al., 2018). This is certainly true for the product which 
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only requires a common or simple tool to be assembled. However, when the complexity 

of a product increased, it requires a special tool, machine or highly skilled labour to 

assemble that particular component. The optimization method that is used to achieve that 

objective function may produce a solution that use a high number of workers or 

duplication of machines/tools along the line. To satisfy the assembly plan, these resources 

may not be available or require extra cost (Mura & Dini, 2016). Therefore, the limitation 

of resources will be another constraint for the industry. This problem is known as 

assembly line balancing with resource constraints (ALB-RC).  

In assigning assembly task to workstation with cosideration of constraints, there 

are many possibilities of assembly sequence to be evaluated in achieving the most 

optimum and best solution for ALBP (Azizoğlu & İmat, 2018).  The possible task of 

sequence for n task and r constraints will be n!/2r  (Baybars, 1986). This field of 

complexness in solving the problem deals with how fast can the propose method solve 

the problem by using resources like time, memory-space, number of processors, etc. The 

collection of all problems that can be solved in polynomial time using nondeterministic 

is called NP. Due to ALB has a computational complexity of the problem and the solution 

space is excessively increased when the number of tasks is increased, ALB is classified 

as NP-hard.  As NP-hard, heuristics approach by using a good algorithm is the best 

approach used to solve and optimise ALBP with the larger size, various constraints and 

objectives (Rashid et al., 2012). The heuristic approach will find the nearest optimal and 

best solution for the problem in less time compared to other approaches. 

1.3 Research Objectives  

The research objectives are: 

 

i. To establish a model of Assembly Line Balancing with resource constraints 

(ALB-RC) for  Simple Assembly Line Balancing Problem Type 1 (SALBP-1). 

ii. To propose an improved algorithm to optimise ALB-RC problem. 

iii. To validate the proposed ALB-RC model and algorithm through industrial case 

study. 
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1.4 Scopes  

This research explores the optimisation of assembly line balancing problem with 

resource constraints (ALB-RC). This research is limited to a simple model assembly 

problem type 1 (SALBP-1) with the objective of minimising number of workstation for 

a given cycle time.  

In different with a large number of existing research in assembly line balancing 

which assume each of assembly workstation have similar capabilities and equipment, this 

research considers the resources constraint of assembly plant (including machine/tool and 

skill workers) as it is nearer to the real situation in industry.  

This research focuses on optimisation of ALB with resource constraints using 

metaheuristic method that targeting a high-quality solution for large and complex 

problems. Therefore in this research, Genetic Algorithm with two new crossovers are 

introduced to search for the best feasible solution.  

The review of the literature for this research focuses on the classification of ALB 

problem, resource constraints in assembly line and the methods used by previous 

researchers to optimise assembly line with resource constraints. In addition, the problem 

is also limited to a simple assembly line problem which has accumulated a large number 

of works in the literature.  

In this research, the proposed crossovers will be tested against popular 

combinatorial crossovers using benchmark problems. The generic test problem which 

varies in term of the size is obtained from http://assembly-line-balancing.mansci.de/ 

(Scholl, 1993). The benchmark test problem is set from small size problem started with 7 

number of task to large size problem; 148 tasks. The proposed crossover is then will be 

compared with other types of crossover and solved in similar problems.  It is then tested 

and applied to a real case study which involved a similar problem for validation purpose.  

1.5 Thesis Organization  

This thesis is structured into five chapters, and organised as follows: 

http://assembly-line-balancing.mansci.de/
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Chapter 1: gives an overall view of the research including background and basic 

principles of assembly line balancing problem. It also presents the research problem and 

motivation. 

Chapter 2: reviews related literature in ALBP and optimisation method used by previous 

researchers including Genetic Algorithms and implementation of Genetic Algorithms to 

solve SALBP. In this chapter, the literature survey is also performed to identify the 

research trends and research gaps in the area. 

Chapter 3: presents the research methodology to present the overview of how this 

research is conducted. In this chapter, the problem modelling and Genetic Algorithm with 

Rank-based Crossovers used to solve the benchmark problem and case study from real 

manufacturing problem is presented and explained in details.   

Chapter 4: present the result tested to the benchmark problem and the real manufacturing 

problem and followed by result discussion. 

The final chapter, Chapter 5: concludes the research findings in general specifically on 

the achievements of research objectives and the limitations of this research. This chapter 

also suggests recommendations for future works.  
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LITERATURE REVIEW 

2.1 Classification of Assembly Line Balancing  

Assembly lines are flow-oriented production system, which contains a several 

number of workstation. These workstations are arranged in series, parallel, two-sided or 

U-shaped assembly line base on the production requirement and suitability. Assembly 

line balancing (ALB) plays a vital function in a production system. The installation of an 

assembly line is a long-term decision and requires large capital investments. It is 

important that such a system is designed and balanced so that it works as efficiently as 

possible (Becker & Scholl, 2006). 

Every workstation has a deterministic time or a production rate for the station to 

perform the carried task assigned. This production rate is set so that the desired amount 

of end product is produced within a certain time period (Baybars, 1986). This time is 

called cycle time and each task will have its own process time. If the sum of the processing 

times within a station is less than the cycle time, idle time is said to be present at that 

station (Erdal Erel et al., 1998). 

Every task should be assigned to workstations by considering the precedence 

relation between tasks. These precedence relationships can be shown on a precedence 

diagram as in Figure 2.1. Precedence diagram is the illustrative representation of sequence 

of task in order of occurrence. The arrows linked between task shows that a task can be 

performed only after its predecessor tasks are performed. As an example, task number 7 

can only be performed after task number 3, 4 and 5 completed.  
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Figure 2.1 Precedence relation of 7 tasks example problem 

 

Balancing an assembly line is usually comprise of assigning task to be processed 

to workstation which will optimise certain objectives such as number of workstations, 

cycle time, or the production cost. A grouping of the task to the workstation which 

satisfies a determined goal is known as the assembly line balancing problem (ALB) 

(Boysen et al., 2007). ALB can be classified into two groups; Simple Assembly Line 

Balancing Problem (SALBP) and Generalised Assembly Line Balancing Problem 

(GALBP) (Baybars, 1986).  

 

2.1.1 Simple Assembly Line Balancing Problem (SALBP) 

SALBP is the simplest version of ALBP. SALBP involves the production of 

single homogenous product as in Figure 2.2. This line comprises of number of 

workstations along a straight line in one-sided workstation. Each workstation will have 

certain assigned task and all tasks in the workstation must be complete before the process 

can be move to another workstation. The final product is produced after all tasks on every 

workstation are executed. 

 1 

2 

3 

4 

5 

6 

7 
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Figure 2.2 Single model assembly line 

 

SALBP can be categorised to four (4) different types based on the objective 

function as in Table 2.1.  

Table 2.1 Classification of SALBP 

SALBP-1 Cycle Time Minimise no. of workstation 

SALBP-2 Number of workstation Minimise cycle time 

SALBP-E - Maximise line efficiency 

SALBP-F Cycle Time & Number of 

workstation 

Obtain feasible balance 

 

Simple Assembly Line Balancing Problem Type 1 (SALBP-1): The objective in 

SALBP-1 is to minimise the number of workstations, nws on the assembly line for a given 

cycle time, ct. In the process of assigning task to workstation, the task without predecessor 

or the task that the predecessors have already been assigned will be considered to be 

assinged to the station with consideration that the processing time for the task is less than 

or equal to the time that still available for the station. If no task is found, a new station 

will be opened (Dolgui & Proth, 2013).  

Simple Assembly Line Balancing Problem Type 2 (SALBP-2): The objective 

function for SALBP-2 is to minimise the cycle time, ct for a given number of stations, nws 

on the line. The optimization of SALBP-2 can maximise the production rate of an existing 

assembly line  (Dolgui & Proth, 2013). 

Simple Assembly Line Balancing Problem Type E (SALBP-E): SALBP-E is the 

most general problem version. The objective function is to maximise the line efficiency 

by minimising the cycle time and number of workstations. The line efficiency is 

calculated by using following equation: 

Type Given Objective 
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LE =  
∑ pti

nws
i=1

nws × ct
 × 100 

2.1 

where nws is number of workstations, pti is processing time in workstation ith and ct is the 

cycle time. 

Simple Assembly Line Balancing Problem Type F (SALBP-F): SALBP-F having 

the objective function to get a feasible balance for a given number of workstation, nws and 

given cycle time, ct. 

SALBP is based on a set of limiting assumptions which used to reduce the 

complex problem of assembly line configuration to focus on the actual problem when 

assigning tasks to workstations (Boysen et al., 2008). However, in balancing of real world 

SALBP will also involves the observation of additional aspects which affect the structure 

of the optimization solution. The extension of problems in SALBP can be solved 

simultaneously with the main objectives function of SALBP. 

SALBP has accumulated a large number of works and has deal with single 

objective as well as multi-objectives situations. Kao et al. (2010),  Taylor et al. (2010), M 

Fathi (2011), Scholl et al. (2011), Pape (2015) considered SALBP-1 in their research. 

While, Mutlu et al. (2013), Borba & Ritt (2014), Triki et al. (2014), Zacharia & Nearchou 

(2016), Moreira at al. (2017) considered ALBP Type 2. Only a small number of previous 

research study on SALBP-E and SALBP-F as it is more complicated compare with 

SALBP-1 and SALBP-2.  

 

2.1.2 General Assembly Line Balancing Problem (GALBP) 

Meanwhile, General Assembly Line Balancing Problem (GALBP) includes the 

entire problems that are not considered in SALBP. GALBP have a mixed model assembly 

line balancing, parallel, U-shaped and two-sided lines with stochastic dependent 

processing times (Tasan & Tunali, 2008). 

Mixed Model Assembly Line (MMAL): Mixed-model assembly lines (MMAL) 

allow the simultaneous assembly of different products on a single assembly line in an 

intermixed sequence as in Figure 2.3. Different models of products could be parts of a 
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base product or constitute a special package of products, so inherently their assembly 

process is somehow similar and assembly models mostly differ in performance times. 

(Ramezanian & Ezzatpanah, 2015)  

Figure 2.3 Mixed-model assembly line 

Multi-Model Assembly Line (MuMAL): In Multi-Model Assembly Line 

(MuMAL), the product produce is varied and are manufactured in batches. Whenever 

another batch of product is to be processed, a setup which requires time and resources 

will occur (Boysen et al., 2007). The ALBP for MuMAL also involves a lot sizing 

problem instead of batch sequencing. The assembly line for MuMAL is presented in 

Figure 2.4.  

Figure 2.4 Multi-model assembly line 

U-Shaped Assembly Line (USAL): The main characteristic of a U-Shaped 

assembly line layout which make it different from a straight assembly line is that the 

starting point and exit point of a product is at the same position and workstations are 

arranged around a U-shaped line as in Figure 2.5. The U-shaped assembly line has shown 

a better advantage over the straight assembly line since worker may perform more than 

one task located in different places of the assembly line. Moreover, USAL also allows 

more option in assigning tasks to workstations and therefore the number of workstations 

needed for USAL layout is less than the number of workstations needed for the traditional 

straight assembly line (Masood Fathi et al., 2018; Grzechca & Foulds, 2015). 

 

Setup Setup Setup 
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Figure 2.5 U-shaped assembly line 

Two-sided Assembly Line (TSAL): Two-sided assembly lines as in Figure 2.6 are 

usually engaged in an industry that produces a large-sized high volume products 

(Janardhanan, et al., 2018). Different assembly tasks are carried out on the same product 

at a specific side either on the left side or right side of the product (Tuncel & Aydin, 

2014). The advantages of using TSAL in production line compared to the single assembly 

line is that the line length can be shorten, save the cost of tools and fixtures, and reduce 

the material handling and operator movement (Wang et al., 2014).  

Figure 2.6 Two-sided assembly line 

 

2.2 ALB Constraints 

In obtaining an efficient and productive assembly line, the assembly line should 

be balanced and by assigning tasks to each station in a way that the objectives are 

satisfied, the demand is met and all the constraints are not violated. The constraints in an 

Assembly line direction Assembly line direction 

Right side 

Left side 

Assembly line direction 

Assembly line direction 

Start of 

the line  

End of 

the line 
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assembly line can be categorised into two types which are absolute constraints and 

optimisation constraint.  

 

2.2.1 Absolute Constraint 

The absolute constraints are the constraints which will lead to infeasible assembly 

sequence if violated and when optimisation constraint is violated, it will effect on the 

quality of assembly sequence.  Lower quality of assembly sequence will be produced 

(Rashid et al., 2012). The absolute constraints that may have in a SALBP-1 are the 

occurrence constraint, precedence constraint and cycle time constraint.  

 

2.2.1.1 Assignment Constraint 

Assignment / occurrence constraint will assure that each task cannot be split into 

two or more workstations. For this purpose, the assignment / occurrence constraint was 

formulated as in Equation 2.2 to ensure that each task is assigned to only one workstation.  

In this equation, the sum of workstations in which a task is assigned must equal to ‘1’ and 

this is applied to all tasks on all lines (Kucukkoc & Zhang, 2015). 

∑ xis

n

i=1

 ≤ 1 
 

2.2 

 

2.2.1.2 Precedence Constraint 

Precedence constraint is the connection between each task in the assembly process 

and can be represented in a precedence diagram as in Figure 2.1 or in matrix form as in 

Table 2.2. In this matrix, if task i is a predecessor of task j, PM (i, j) = 1. Otherwise, the 

matrix will be left empty.  
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Table 2.2 Example of precedence matrix (PM) 

1  1 1 1 1   

2      1  

3       1 

4       1 

5       1 

6        

7        

 

The possibilities of having a feasible solution arrangement of task to workstation 

without violating the precedence relation is by assigning task i earlier in other workstation 

than task j or assigning task i on the same queue with task j on the same workstation but 

task i is started and completed before task j is started (Kucukkoc & Zhang, 2015). 

 

2.2.1.3 Cycle Time Constraint 

Meanwhile, for cycle time constraint, the total operation times of the tasks in a 

workstation should not be greater than the cycle time. The formulation for cycle time 

constraint are depend on the type of ALB. For SALBP-1, the equation for cycle time 

constraint are formulated as follows (Rashid et al., 2012). 

∑ pti

n

i=1

. xij  ≤ C 
2.3 

In this equation, pti refers to the processing time for task i and C is predetermined 

cycle time for the assembly line.  

 

2.2.2 Optimisation Constraint 

Optimisation constraint is the constraint that presence in the process of optimizing 

the desired objective function with respect to some variables.  

i j 
1 2 3 4 5 6 7 
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2.2.2.1 Space Constraint 

In an automotive industry which usually involves two-sided assembly line 

balancing problem, besides assuring that tasks are assigned to workstations as the 

respective order of precedence between the tasks, space requirements are the other 

constraints to be considered (Bautista & Pereira, 2007).  Space requirement for 

workstations is determined by the size of workstations where a few workstations will 

utilise a small space compared to opening more workstations which will increase the 

space requirement (Rada-vilela et al., 2013).  

 

2.2.2.2 Zoning Constraint 

The zoning constraints can be categorised into two types, positive zoning 

constraint and negative zoning constraint. Positive zoning constraints are related with 

assigning tasks that need the same equipment to the same workstation. On the other hand, 

negative zoning constraint happened due to technological issues and some tasks cannot 

be grouped in the same workstation for safety reasons (Akpinar et al., 2017). 

 

2.2.2.3 Resource Constraint 

ALB research works have also addressed problems that consider some other 

additional constraints apart from those three constraints. Assembly lines comprise of a 

combination of tasks in different workstations, one or more dedicated machines/tools 

together with workers. The issue of line balancing with the minimum or a limited number 

of resources (machines and workers) has always been a serious problem in the industry 

(Ağpak et al., 2005). Equipment and workers should assign to task and workstations so 

that maximum efficiency, maximum usage of resources and minimum number of 

workstations of the production line can be achieved. Therefore, this will reduce the total 

costs and the complexity of an assembly line (Mura & Dini, 2016). 

Previously, researchers had studied the line balancing with resource constraints.     

Aǧpak & Gökçen (2005) started the ALB-RC by considering two resources and solve the 

problem using integer programming. Next, Corominas et al. (2011) proposed a model to 
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support generalised constraints problem. Özdemir & Ayağ (2011) consider equipment 

constraint when assigning task to workstation for SALBP. In this paper, the researcher 

use branch and bound algorithm together with the analytic hierarchy process (AHP) 

method to determine the optimum solution in minimising the equipment cost for 

production line. Koltai & Tatay (2013) later proposed a model and optimise the ALB with 

worker skill constraint. The purpose is to match the assembly task with the level of the 

worker skill.  Jayaswal & Agarwal (2014) conducted research on assign tasks to 

workstations, and resources (equipment and assistants) to tasks with the objectives 

function is to minimised total cost of workstation and resource utilisation. This research 

is modelled to a U-shaped assembly line balancing using Simulated Annealing. Besides 

that, Jusop & Rashid (2017) optimise the multi-objective ALB with general resources 

using domination concept.     

 

2.3 Optimisation Approaches for ALB  

A lot of assembly line balancing problems have been solved using various 

optimisation methods. Previously, traditional optimisation techniques such as linear 

programming (LP), non-linear programming (NLP), and dynamic programming (DP) 

have had major roles in solving these problems. However, the weaknesses in the 

traditional techniques produce demand for other types of algorithms, such as exact and 

heuristic approach. The objective of optimisation methods is to find an optimal or the 

closes optimal solution with low computational effort measured by the time (computation 

time) and space (computer memory) consumed by the method. 

Exact approach is the method of choice if it can solve an optimisation problem 

with the effort that grows polynomials with the problem size. This method has guarantee 

in finding an optimal solution. Classical exact resolution methods (i.e. enumerative, 

branch and bound, dynamic programming, linear and integer programming, etc.) allow 

the finding of optimal solutions for assembly line balancing problem, but they are often 

extremely time-consuming and inefficient in solving large-scale problems due to the 

inherent NP-hard nature of the ALB (Yeh & Kao, 2009). 

Researchers previously have developed many exact solution approaches to find 

the optimal task assignment for the ALB. Liu et al. (2008) use branch and bound 
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algorithms for solving benchmark problem on SALBP-1. Özdemir & Ayağ (2011) 

propose an integrated approach by using branch and bound algorithm together with the 

analytic hierarchy process to allocate the task to workstation and select equipment for 

SALBP. Borba & Ritt (2014) introduce a new heuristic and exact method to solve 

assembly line worker assignment and balancing problem. Esmaeilbeigi et al. (2015) use 

mixed integer programming for type E simple assembly line balancing problem. Vilà & 

Pereira (2013) solve assembly line worker assignment and balancing problem by using 

exact enumeration algorithm. However, all optimal approaches used in exact solution 

approaches are computationally inefficient in solving large-scale problems due to the 

inherent NP-hard nature of the ALB.  

Heuristic and metaheuristic techniques are powerful and flexible search 

methodologies that have successfully solve the medium and the large-sized assembly line 

(Roshani & Giglio, 2015). Heuristic and metaheuristic algorithms seek to produce good 

quality solutions in a short time and good enough for practical purposes. As opposed to 

exact methods which guarantee to give an optimum solution to the problem, heuristic 

methods suggest an approximate not guaranteed optimal solution but sufficient enough 

to solve complex problems. This method is used to expedite the process of finding an 

optimal solution where the classic method is too slow (Desale et al., 2015). Thus, heuristic 

methods will be the option to solve real optimisation problems of ALB. On the other 

hand, metaheuristic is a higher level procedure of heuristic which provides a good 

solution to an optimisation problem even without inadequate or limited information. A 

few assumptions about the optimisation problem is created in metaheuristic approach so 

that it can solve very large spaces of candidate solutions (Desale et al., 2015).  

Various metaheuristics methods were used by researchers in optimising ALB. 

Table 2.3 and Figure 2.7 shows the summary of papers which used different metaheuristic 

methods to optimise ALBP from the year 2005 until 2017. According to the diagram, the 

three most dominant optimisation methods, used in 55% of the cited research are Genetic 

Algorithm (GA), Ant Colony Optimisation (ACO) and Particle Swarm Optimisation 

(PSO).  
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Table 2.3 Summary of literature in optimising ALB 

Method Author, Year 01 02 03 04 05 06 07 08 

Genetic 

Algorithm 

(GA) 

(Rajakumar et al., 

2006) 

x        

(Moon et al., 2009)   x       

(Yu & Yin, 2009)  x  x      

(Hamta et al., 2011)  x  x     

(Purnomo et al., 2013)    x     

(Sivasankaran & 

Shahabudeen, 2014) 

  x      

(Triki et al., 2014)  x  x     

(Alavidoost et al., 

2015) 

  x  x   x 

(Barathwaj et al., 2015)   x   x   

(Zacharia & Nearchou, 

2016) 

   x  x   

(Mura & Dini, 2016)   x    x  

(Raj et al., 2016)    x     

(Zhao, Hsu, Chang, & 

Li, 2016) 

    x    

(Jusop & Ab. Rashid, 

2016) 

  x x   x  

(Jusop & Ab. Rashid, 

2017) 

   x     

Ant Colony 

Optimization 

(ACO) 

(Bautista & Pereira, 

2007) 

  x      

(Rada-vilela et al., 

2013) 

  x     x 

(Kucukkoc & Zhang, 

2016) 

      x  

Particle 

Swarm 

Optimization 

(PSO) 

(Chutima & Kid-Arn, 

2013) 

 x x     x 

(Yuguang et al., 2016) x   x    x 

(Che, 2017)    x x    

Teaching 

Learning 

Based 

Optimization 

(TLBO) 

(D. Li et al., 2016)  x   x x   

(Tang et al., 2017)        x 

Bees 

Algorithm 

(Özbakir & Tapkan, 

2011) 

  x      

(Tapkan et al., 2012)   x   x   

Simulated 

Annealing 

(Jayaswal & Agarwal, 

2014) 

  x      

(Roshani & Giglio, 

2015) 

   x     

Late 

Acceptance 

Hill Climbing 

(Yuan et al., 2013)   x      

(Wang et al., 2014)   x x     

Combination 

GA and ACO 

(Akpınar et al., 2013)        x 
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Table 2.3 Continued 

 

Method Author, Year 01 02 03 04 05 06 07 08 

Other 

Heuristic 

(Xu & Xiao, 2009)   x      

(Kao et al., 2010)   x    x  

(Scholl et al., 2011)    x     

(Sternatz, 2014)    x     

(Ramezanian & 

Ezzatpanah, 2015) 

   x     

(Z. Li, Tang, & Zhang, 

2017) 

     x   

(Akpinar et al., 2017) x        

 

01 – Workflow balancing 

02 – Minimise assembly cost 

03 - Minimise number of workstation 

04 - Minimise cycle time 

05 - Maximise line efficiency  

06 - Maximise workload smoothness  

07 - Maximise utilisation  

08 - Other 

 

 

Figure 2.7 Previous research on ALB using heuristic/metaheuristic algorithm 
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2.3.1 Genetic Algorithm (GA) 

Genetic Algorithm (GA) is one of the popular metaheuristic algorithms and 

received a huge number of attention from researchers compared to other type of 

metaheuristic optimisation approach. GA manipulating a population of solutions by 

randomly searching the best feasible solution in the solution space, based on the 

mechanism of natural selection and natural genetics (Zhang, 2018).  

 

2.3.1.1 Process in Genetic Algorithm 

In GA, every individuals or “chromosome” will be encoded to represent the 

solution vector. Through a number of generation, it is then being evaluated by using 

fitness function. From the fitness value, a number of individuals are selected to enter the 

mating pool in order to generate parent and off-spring individuals with the help of genetic 

operators. GA will continues to generate new chromosome to obtain the chromosome 

which provides the best solution for the problem (Mutlu et al., 2013). In general, the steps 

in GA are consist of : 

- Initialisation 

- Evaluation 

- Selection 

- Crossover 

- Mutation 

- Termination 
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Figure 2.8 Flowchart of Genetic Algorithm 
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i. Initialisation  

 

The first step in applying GA to a particular problem is to create the initial 

population randomly by converting the solutions (individuals) of ALB into a string type 

structure called chromosome.  The encoding process is often the most difficult aspect of 

solving a problem using genetic algorithms due to the requirement in producing as much 

as feasible solutions to a particular problem so that it can be used in the crossover process. 

The representation of solution can be binary numbers; zeros and ones {0, 1} or 

real numbers {1, 2, 3, ….., n}. The bit string chromosomes which consist of binary 

numbers; zeros and ones {0, 1} as in Figure 2.9 is the classical way to represent a solution. 

However, this simple binary strings in chromosomes are less suitable for the complex 

combinatorial problem since it usually produces infeasible solutions (Tasan & Tunali, 

2008). 

1 0 0 1 1 0 1 

Figure 2.9 Binary representation 

 

Real values representation is much more effective in representing the assembly 

line balancing problem. The most common real values representation in ALB is task-

based representation where the chromosomes are represented by a feasible precedence 

sequences of tasks and is expressed in real number 1, 2, 3, 4, …, n. The length of the 

chromosome is defined by the total number of tasks to be arranged. For example, task-

based representation for Figure 2.1 is illustrated in Figure 2.10. 

 

1 2 3 4 5 6 7 

Figure 2.10 Task-based representation 

 

ii. Evaluation 

 

The fitness of all individuals will be computed to measure how well the 

individuals of initial population optimise the given objective function. Fitness value will 

be function as a discriminator of the quality of solutions represented by the chromosomes 
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in a GA population. A chromosome that has a minimum fitness function value is the best 

chromosome and the fitness value will be used in the evolution of chromosome in the 

next steps of GA (Moon et al., 2009).  

For multi objective optimisation problems, one of the simplest methods for 

combining multiple objective functions into a scalar fitness solution is by using weighted 

sum approach. In this approach, if there are some objective functions to be maximised, 

the combined fitness function F(x) is represented by (Triki et al., 2014): 

F(x) =  w1f1(x) +  wifi(x) + ⋯ +  wqfq(x) 2.4 

where,  

x is a string  

F(x) is a combined fitness function  

fi(x) is the ith objective function  

wi is a constant weight for fi(x)  

q is the number of objective functions 

 

iii. Selection 

 

The selection of parent chromosomes for generating new off-springs with genetic 

operators are from the mating pool. Chromosomes are selected for recombination on the 

basis of fitness.  Chromosome with higher fitness have a bigger chance of being selected 

more than once or even recombined with themselves compared to chromosome with 

lower fitness (McCall, 2005). The techniques that usually used for this purpose is roulette 

wheel, rank based selection and tournament methods. 

In roulette wheel selection, the fitness values of the each individual will be scaled 

so that the total rescaled fitness values will be equal to one. The size of segment in the 

roulette wheel is related to the fitness value. Individuals with larger size segment in 

roulette wheel will have more probability of being selected  (Razali & Geraghty, 2011).  
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Figure 2.11 Roulette wheel 
 

The probability of individuals selection is define as, 

Pi =  
fi

∑ fj
n
j

 2.5 

where,  

Pi is a probability of individuals 1, 2, 3, …, n 

fi is a fitness value of individuals 1, 2, 3, …, n  

fj  is a total of fitness value for all individuals 1, 2, 3, …, n 

 

For rank selection, the individuals are sorted according to the fitness value before 

ranks them. Best individual gets rank ‘N’ and the worst one gets rank ‘1’. With respect to 

its rank, every chromosome is then allotted with the selection probability (Kumar & 

Member, 2012). Rank selection prevents premature convergence by uniform method of 

scaling across the population.  

 

Pointer 

A 

B 

C 

D 
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iv. Crossover 

 

Crossover operator is used to produce two new offspring individuals (children) 

from two existing individuals (parents). The objective of crossover is to move the good 

gene from parent’s chromosome to children. In SALBP, one point crossover is usually 

being implemented. In this type of crossover, two contiguous strings are combined by 

swapping the task after the crossover point with other string. The crossover must be done 

so that no repetition of the same task in a single string besides satisfying the precedence 

constraint (Barathwaj et al., 2015). For example, given Parent 1, P1 {1, 3, 6, 2, 4, 5} and 

Parent 2, P2  {2, 6, 4, 5, 1, 3}. On this two parent chromosomes, a crossover point is 

randomly selected after the second gene. Then, the crossover will start to swap the string 

at the first gene position. 

 

Parent 1, 

P1 
1 3 6 2 4 5 

 

Parent 2, 

P2 
2 6 4 5 1 3 

 

 

Offspring 1, 

O1 
2 3 6 2 4 5 

 

Offspring 2, 

O2 
1 6 4 5 1 3 

 

The repeated task in the string is then will be repaired. 

Offspring 1, 

O1 
2 3 6 1 4 5 

 

Offspring 2, 

O2 
1 6 4 5 2 3 
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The string values in second gene positions are swapped and repaired in similar way. 

 

Parent 1, 

P1 
2 3 6 1 4 5 

 

Parent 2, 

P2 
1 6 4 5 2 3 

 

Offspring 1, 

O1 
2 6 6 1 4 5 

 

Offspring 2, 

O2 
1 3 4 5 2 3 

 

After repaired, the final offspring is 

Offspring 1, 

O1 
2 6 3 1 4 5 

 

Offspring 2, 

O2 
1 3 4 5 2 6 

 

 

Three crossover operators Partially Matched Crossover (PMX), Ordered 

Crossover (OX) and Cycle Crossover (CX) are very suitable for the combinatorial 

optimisation problems (Yu & Yin, 2009). PMX produce new offspring from two parents 

by means of following procedure: (a) two random cut points is chosen for both parents. 

The strings of the cut point have the functions as mapped segments to be exchanged to 

produce new offspring, (b) two segments of the parents is exchanged, (c) second offspring 

is produce with the same procedure from the second parents (Chica, Cordón, & Damas, 

2011). 

In OX crossover, (a) two random cut point are selected. (b) gene inside the cut 

point remain unchanged while the gene outside the cut point is permuted. (c) The end 
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section of each of the two children is generated by filling in the missing elements in the 

order that they appear in the other parent without duplicating any of the elements within 

the children’s chromosomes (Tasan & Tunali, 2008). 

For Moon crossover, it is very similar to the change of the moon such as waxing 

moon , halfmoon, gibbous and full moon. The procedure of the moon crossover operator 

is described in figure below. 

 

Figure 2.12 Procedure of Moon crossover (Adopted from Moon et al., (2009)) 

 

Procedure: Moon crossover 

Begin 

Initialization: osp ← null, k ← 0 
Select two random chromosomes pa and pb, pa = g1 g2…gJ and pb = q1 q2 … qJ; 

Select two genes from pa at random. 

osp ← the substring between gi and gj selected from pa. 

if the length of osp = J then end 

else sub_ pb ← the remaining substring from the deleting genes 

which are 
already selected from pa 

end if 

while (length of osp ≠ J) do 

if i = 1 then i = J+1; 

i ← i – 1; 

k ← k + 1, k = 1, 2, …, length of sub_ pb; 

if gi ≠ qk , then osp = <osp, gi, qk>; 

else gi = qk , then osp = <osp, gi,>; 

else if j = J then 

i ← i – 1; 

k ← k + 1, k = 1, 2, …, length of sub_ pb; 

if gi ≠ qk , then osp = < qk, gi, osp>; 

else gi = qk , then osp = < gi, osp>; 

else 

i ← i – 1; 

k ← k + 1, k = 1, 2, …, length of sub_ pb; 

if gi ≠ qk , then osp = < gi, osp, qk>; 

else gi = qk , then osp = < gi, osp>; 

end if 

end while 
end procedure 
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v. Mutation 

 

Mutations make random changes to the offspring generated by the crossover and 

disturb the original genetic information (Simaria & Vilarinho, 2004). The purpose of 

mutation is to ensure diversity among individuals and therefore introduce randomness to 

the search. This will prevent the solution keep falling into a local optimum and the search 

space of the algorithm is diversify into uncovered search space (Mutlu et al., 2013a ; Y. 

Zhang et al., 2018). 

 

 

Before 

mutation 
2 6 3 1 4 5 

 

After 

mutation 
2 6 4 1 3 5 

 

vi. Termination 

 

The process of crossover and mutation to forms a new population will be continue 

until termination criteria is met. A fixed number of generations, time, fitness and some 

form of convergence are typical termination criteria (Tasan & Tunali, 2008). During 

solution convergence, if there is no substantial change in fitness function after several 

iterations, then the algorithm can be terminated. 

2.3.1.2 Genetic Algorithm for ALB 

ALBP fall into NP-hard categories due to complexity of the combinatorial 

optimisation problems. Researchers previously have studied the ALBP and solved the 

problem by using optimum seeking methods such as Genetic Algorithms (GA) since it 

provides an alternative to traditional optimisation methods. GA has two advantages in 

solving ALB problem: (i) GA searches a solution in a large population rather than a single 

point and the algorithm will not be trapped in local optimum since many solutions are 

Two positions 

selected 

Positions value exchanged 
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considered concurrently, and (ii) GA fitness function may take any form and several 

fitness functions can be utilised simultaneously (Tasan & Tunali, 2008). 

There are many research that implement genetic algorithm technique to the 

assembly line balancing problem since it able to locate optimum solutions in complex 

landscapes. Rajakumar et al. (2006) proposed a methodology based on GA to solve the 

parallel machine scheduling problems in an assembly line with precedence constraints 

with the objective of minimizing the workflow among the operators. The result shows 

that GA are able to search for better solution. However, the result obtained by this 

research is not validated by comparing the results with other meta-heuristic algorithms to 

find out the robustness of the results obtained by the GA. 

Moon et al. (2009) address the problem of assigning multi-functional workers to 

tasks in assembly line while minimising the overall costs by using a mathematical model 

and genetic algorithm as an integrated optimisation. The results shows that GA are able 

to found optimal solutions for the small and medium-sized test problems more rapidly 

than the mathematical programming. However, the performance of GA in this research is 

not being validated with other types of meta-heuristic algorithms.  

Purnomo et al. (2013) used a GA to solve two-sided assembly line balancing 

problem type 2 with assignment restriction. The assignment restriction that is considered 

in this paper is synchronous, distance constraint and zoning constraint.  The result of GA 

is compared with iterative first-fit rules where the results shows that GA performs better 

for small and big benchmark problems, while the iterative first-fit rules perform better for 

medium problems.  

Triki et al. (2014) studied on assembly line resource assignment and balancing 

problem of type 2. A new version of multi-objective genetic algorithm (MOGA) called 

hybrid MOGA (HMOGA) is introduced to solve a set of literature problems by 

minimizing the cycle time and cost of resources. The numerical results show that the 

HMOGA had a superior performance in comparison with Modified Weighted Pareto-

Based Multi-Objective Genetic Algorithm (MWPMOGA) and Strength Pareto 

Evolutionary Algorithm 2 (SPEA2). 

Alavidoost et al. (2015) proposed hybrid multi-objective genetic algorithm for 

single model straight and U-shaped assembly line balancing problems with fuzzy task 
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processing times. The algorithm is then tested on different benchmarks problems. The 

results of this research shows better performance for the proposed algorithm and the 

algorithm are able to find the optimal solution for the set objective functions.  

GA have a nature of dynamic adaptive calculation. However, in standard GA there 

are high probabilities of having the non-optimal solution and trapped in local optima due 

to static circumstances in the evolution process (crossover and mutation). A twist in 

crossover can produce a larger solution space and reduce the possibility of stopping the 

searching at the non-optimal solution (Yu & Yin, 2009) . Sivasankaran & Shahabudeen, 

(2014) design four different genetic algorithm (GA)-based heuristics with different 

crossover methods to group the tasks in the single model assembly line balancing 

problem. The objective function of this research is to minimise the number of 

workstations for a given cycle time so that the efficiency of the line is maximised. The 

experimental results show that the proposed crossover method in GA surpassed the 

performance of the existing heuristics and the standard GA. However, these research were 

not considering the resource constraint which may occur in assembly line. 

 

2.3.2 Ant Colony Optimisation (ACO) 

Ant Colony Optimisation (ACO) is one of metaheuristic approach that is inspired 

from a natural process of the capability of ant in finding the good and shortest path in the 

sub-colony by using pheromone trail in communicating with each other. ACO use this 

concept in finding the best feasible solution on weighted graph to the optimization 

problem according to the problem’s objective function (Akpınar et al., 2013).  According 

to Shuang et al. (2008) ACO can produce premature convergence where the unfit solution 

might be just a few iteration away from the best optimum solution. 

 

2.3.3 Particle Swarm Optimisation (PSO)  

Particle Swarm Optimisation (PSO) is inspired by a behaviour of animal swarm 

in searching for food such as birds flocking or fish schooling. The PSO algorithm is 

initialized with a population of random solutions where the bird/fish is representing the 

individual potential solution, the flock/school is the population, the area is the search 
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space and the food is representing the optimum solution for the problem (Chutima & Kid-

Arn, 2013). The issue with PSO in applying to ALB problem is, this algorithm originally 

is designed for continuous problem, the solution obtained is in real value space while 

solution for ALB is in discrete integer space (Lv & Lu, 2010).  

 

2.4 Discrete Event Simulation 

There are several numbers of simulation tools for manufacturing process that can 

help in decision making in the industry. Simulation tools can be used to evaluate the 

changes and performance of current system or to determine the improved new system 

behaviour under different kind of settings. Of all simulation techniques that can be used 

as simulation tools, a discrete event simulation is a method to models the operation of a 

real life system as a discrete sequence of events in time (Sharma, 2015). 

Witness is a discrete-event simulation software from Lanner Group that has an 

object-oriented modelling environment that is mostly used in simulation of actual status 

of assembly lines in manufacturing industry. Witness simulation can also be used to 

simulate the improvement opportunities through the simulation statistical analysis. The 

concept of Witness involves five common elements in manufacturing industry which is 

parts, machines, conveyors, buffers and labours. (P. Semanco and D. Marton, 2013) . 

In Witness simulation, forklifts and machines in the simulation functions can read 

the status of the test manufacturing system during simulation. The status is: 

 Idle: the object is inactive; 

 Busy: the object is working; 

 Blocked: the object is not able to manage the missions due to the high workload 

(Briano et al., 2010). 

Jaffrey & Mohamed (2018) use Witness Simulation to design the production of a 

manufacturing company with the objective functions is to optimize workers constraint in 

order to increase the production rate and line efficiency of the assembly line. The 

problems of the current assembly line and the performance of the improved assembly line 

is identified by analysing through Witness Simulation. The analysed simulation output in 
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term of average busy, idle and blocked percentage data are able to provide enough 

information regarding the assembly line performance.  

Jusop & Rashid (2017) conducted a case study on electronic manufacturing 

company on assembly line balancing problem type-E with the objective function is to 

minimise number of workstation by considering resource constraint. Witness simulation 

is used to simulate the assembly line regarding on the average busy, idle, block and 

number of output on the existing layout, after optimization and after validation. The 

findings from the simulation shows that Witness simulation are able to provide 

information that the result of optimization have improvement in achieving the objectives 

function compared to the actual layout. 

Hamzas et al., (2017) did a case study on a two sided assembly motorcycle 

assembly plant. The overall performance of the existing assembly line including machine 

and worker is evaluated by using Witness Simulation. The performance of the current 

layout is important for planning on the future improvement on the assembly line and 

resources used in the assembly line. The results from the simulations shows that the 

simulation data is valid and can be used as reference for future planning on the 

improvement of the assembly line. 

 

2.5 Summary  

The issue of line balancing with the minimum or limited number of resources 

(machines and workers) has always been a serious problem in the industry (Ağpak et al., 

2005). However, in the majority of the previous works, researchers make assumptions 

where any of assembly tasks can be processed or assembled in any workstations. This is 

certainly true for the product which only requires a common or simple tool to be 

assembled. However, when the complexity of a product increased, it requires a special 

tool, machine or highly skilled labour to assemble that particular component. Therefore, 

the limitation of resources will be another constraint for the industry. Besides that, the 

current research on ALB-RC optimisation is limited to one type of resource in simple 

assembly line balancing problem.  
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Since ALB-RC is categorised as NP-hard problem, a suitable and reliable 

algorithm to optimise this problem is crucial to ensure the selected algorithm can produce 

a high quality feasible solutions in reasonable computational time. In previous ALB 

research works, GA was proved to produce better solutions compared to other algorithms 

in reasonable computational time. However, GA has a limitation in term of exploitation 

the best chromosome during the reproduction process in crossover and the generated 

number may violate the precedence relation in assembly line. Therefore, a newly 

proposed crossover can be introduced to tackle this issue.  
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METHODOLOGY 

3.1 Introduction 

This research is conducted in three main phases as in Figure 3.1. In the first phase, 

ALBP-RC representation is developed to fulfil the optimisation requirement and enable 

the integration of objective functions for SALBP-1. The procedure to establish a model 

of ALBP-RC is demonstrated by using an assembly example and followed by establishing 

the evaluation procedure by using mathematical equation. This evaluation procedure is 

used to combine the objective functions for optimisation purpose. 

The second phase of this research is the development of an algorithm in order to 

optimise ALBP-RC. The activities in this phase started with establishing the solution 

procedure in finding the best solution for ALBP-RC. Once the general solution procedure 

is established, the algorithm flow is construct by referring to the solution procedure. Next, 

the algorithm is coded into a computer program. In this activity, MATLAB software is 

used for the coding purpose. The algorithm in MATLAB code later is tested and verified 

using the benchmark problems and the result will be compared with other types of 

crossovers. 

In the third phase of this research, an industrial case study is conducted with the 

purpose to validate the proposed methodology (including representation, modelling 

procedure and evaluation procedure) and also the optimisation algorithm. In this step, the 

related assembly data such as assembly task, precedence constraint, resources and 

assembly time is collected. The selected problem later is modelled using the approach 

that developed earlier. Next, the problem will be optimise using the proposed algorithm.  
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Figure 3.1 Research methodology 
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3.2 ALB with Resource Constraints Problem Modelling  

The purpose of problem modelling is to integrate ALB-RC problems using a 

single representation scheme. This representation scheme will consider three optimisation 

objectives which is to minimise number of workstation, tool/machine and worker. The 

proposed approach will be developed based on assembly task and combine the precedence 

graph and matrices. An integrated representation scheme for ALB-RC enable all 

objectives function to be optimised together. 

 

3.2.1 Mathematical equation 

Firstly, the optimal solutions of the first, second and third objectives are obtained 

by solving each objective function separately using mathematical equation. The first 

objective function which is (1) to minimise the number of workstations for a given cycle 

time is subjected to (i) Assignment constraint, which ensures that each task is assigned 

only once; (ii) cycle time constraint, which ensure that the total times in each workstation 

does not exceed the given cycle time; (iii) precedence relation constraint, which 

guarantees that precedence relation among tasks is not violated; and (iv) workstation 

constraint, which guarantees that a workstation is utilised if the task(s) is/are assigned to 

it.  

𝑓1   = min ∑ 𝐴𝑠

𝑆

𝑠=1

 

 

3.1 

 

The second objective function is (2) to minimise the number of machines used 

which subject to resource availability constraints, which ensure that the total number of 

resources in the workstation is not more than the number of available machines. 

 

𝑓2 = ∑ 𝑦𝑚𝑠

𝑟

𝑚=1

 
3.2 

 

The third objective function is (3) to minimise the total number of workers used 

in an assembly line with the restriction that only one worker to be assigned to exactly one 

workstation depending upon his/her skills. 
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𝑓3 = ∑ 𝑧𝑤𝑠

ℎ

𝑤=1

 
 3.3 

 

As a final point, a weighted sum approach is used to combine the objective 

functions for optimisation purpose. However, due to different unit and ranges for 

objective functions, its need to be normalised into a similar range. For this purpose, the 

following formula is used: 

 

𝑓�̅� =  
(𝑓𝑖 − 𝑓𝑖 𝑚𝑖𝑛)(𝑓�̅� 𝑚𝑎𝑥 − 𝑓�̅� 𝑚𝑖𝑛)

(𝑓𝑖 𝑚𝑎𝑥 −  𝑓𝑖 𝑚𝑖𝑛)
+ 𝑓�̅� 𝑚𝑖𝑛 3.4 

where, 

𝑓�̅�   - normalised value for ith objective function  

𝑓𝑖  - value for ith objective function 

𝑓𝑖 𝑚𝑖𝑛  - minimum value for ith objective function 

𝑓𝑖 𝑚𝑎𝑥 - maximum value for ith objective function 

𝑓�̅� 𝑚𝑎𝑥  - normalised maximum value 

𝑓�̅� 𝑚𝑖𝑛  - normalised minimum value.  

All the objective functions are normalised into 0 to 10 range 𝑓�̅� ∈ (1,10).  

The minimum and maximum value of each objective functions are calculated as 

follow: 

 

 

𝑓1 max = 𝑟𝑜𝑢𝑛𝑑 𝑢𝑝 (
∑ 𝑡𝑖

𝑛
𝑖=1

𝑡𝑖𝑚𝑎𝑥
) 

3.5 

 

 

𝑓1 min = 𝑟𝑜𝑢𝑛𝑑 𝑢𝑝 (
∑ 𝑡𝑖

𝑛
𝑖=1

𝑐𝑡𝑚𝑎𝑥
) 

3.6 

 

 𝑓2 max =  𝑓1 max × 𝑛𝑜. 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑡𝑦𝑝𝑒 3.7 
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 𝑓2 min = 𝑛𝑜. 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑡𝑦𝑝𝑒 3.8 

 

 𝑓3 max = 𝑛 3.9 

 

 𝑓3 min =  𝑓1 𝑚𝑖𝑛 3.10 

Then, a fitness function is employed to minimise the summation of normalised 

objective functions. 

 𝐹 =  𝑤1𝑓1̅ +  𝑤2𝑓2̅ +  𝑤3𝑓3̅ 3.11 

Where;  

𝑤1 =  𝑤2 =  𝑤3 = 0.33 

 

wi represent the weights of objectives and 𝑓1̅ , 𝑓2̅ and 𝑓3̅  represent respectively the 

normalised values derived from the equation 3.4. 

 

3.2.2 Data presentation 

The ALB problem is represented using a precedence graph. The number inside 

the node represents the assembly task. The directed edge means the precedence between 

task i and j. It shows that a task can be performed only after its predecessor tasks are 

performed. The precedence relation between each task needs to be examining the 

alternative routes from one node to another. In ALB, the assembly tasks need to be 

assigned into workstations, so that the workstation time is almost equal. Figure 3.2 shows 

a precedence diagram that represents an assembly process.  
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Figure 3.2 Example of precedence diagram 

 

Table 3.1 presents the precedence relation for the above precedence diagram in a 

matrix form. In this matrix, when task i have precedence relation with task j, ‘1’ will be 

put into the matrix, otherwise it will be ‘0’. This matrix presentation is important in 

transmitting the precedence relation between task into a computational language for 

optimisation or evaluation purpose. 

Table 3.1 Precedence matrix 

1 0 1 1 0 0 0 0 

2 0 0 0 0 1 0 0 

3 0 0 0 0 1 0 0 

4 0 0 0 0 0 1 0 

5 0 0 0 0 0 0 1 

6 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 0 

 

Table 3.2 presents the ability of worker to perform task in a matrix form.  Refer 

to researchers which conduct research in workers constraint in ALB (I. Moon et al., 2009; 

Kara, Özgüven, Yalçin, & Atasagun, 2011; Mutlu et al., 2013; Jayaswal & Agarwal, 

2014), this researchers makes assumption on the capability of workers in performing the 

tasks given. In this matrix, when worker h have the ability to perform task k, ‘1’ will be 

put into the matrix, otherwise it will be ‘0’.  

 

i j 
1 2 3 4 5 6 7 

 

2 

3 

4 6 

5 

7 

1 
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Table 3.2 Worker matrix 

1 1 0 1 1 0 1 1 

2 0 1 0 1 0 1 0 

3 1 1 1 0 1 0 1 

4 0 0 1 0 1 1 1 

5 1 0 0 1 0 1 0 

6 0 1 1 0 1 0 0 

7 1 1 0 1 0 0 1 

 

Table 3.3 meanwhile shows the assembly information which includes the task 

time, machine and also worker. The machine type information are also based on the 

assumption made. The worker columns with tick mark meaning that the worker is able to 

conduct a specific assembly task. To assemble an assembly task, only one worker is 

required.  

Table 3.3 Assembly information  

1 - 18 A /  / /  / / 

2 1 22 B  /  /  /  

3 1 9 B / / /  /  / 

4 - 7 A   /  / / / 

5 2, 3 12 A /   /  /  

6 4 6 B  / /  /   

7 5, 6 20 A / /  /   / 

 

3.2.3 Problem description 

SALBP-1 is a simple assembly line with a number of tasks are carried in the 

designated workstation with given cycle time and have the objective to minimize number 

of workstation. The task is assigned to the workstation without violating the maximum 

cycle time on a serial line layout as illustrated in Figure 3.3.  

 

 

 

k 
h 

1 2 3 4 5 6 7 

 

Task 
Precedence 

relation 
Time Machine 

Worker 

1 2 3 4 5 6 7 
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Figure 3.3 Simple assembly line 

 

The problem of SALBP-1 with resource constraint is formulated by using several 

assumptions as follow: 

a) The precedence relationships are known. 

b) Task can be assigned to workstation without violating the precedence relation. 

c) A worker can be assigned to task depending upon skills. 

d) A worker can only be assigned to one workstation. 

e) Machine required to process one task may be more than one type. 

f) Tasks using the same type of machine can share the machine. 

g) The line is balanced for a single product.  

h) The processing time is deterministic. 

 

3.2.4 Problem Evaluation 

For the assembly information in Table 3.3, there are a few random feasible 

sequence can be derived such as sequence s1 = [1 4 3 2 6 5 7] and s2 = [4 1 2 3 5 6 7]. In 

evaluating ALB-RC, the assembly information for each sequence which consist of the 

task time, types of machines needed and the worker that can conduct the task is gathered 

as in Table 3.4 and Table 3.5.  

Table 3.4 Assembly information for feasible assembly sequence s1 

 

Sequence 1 4 3 2 6 5 7 

Time 18 7 9 22 6 12 20 

Tool A A B B B A A 

Worker 1,3,4,6,7 3,5,6,7 1,2,3,5,7 2,4,6 2,3,5 1,4,6 1,2,4,7 

Workstation 1 Workstation 2 Workstation 3 

Assigned task 
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Table 3.5 Assembly information for feasible assembly sequence s2 

 

For SALBP-1, the maximum cycle time, ctmax are given. For each workstation, the 

total processing time cannot exceed the ctmax or otherwise, the demand for the product 

cannot be fulfilled. The example of the assignment of assembly task to workstation for s1 

with the given maximum cycle time, ctmax is 34 time unit is presented in Figure 3.4. 

 

Figure 3.4 Assembly task assignment for s1 

 

Based on Figure 3.4, for workstation 1 (ws1) in s1, the total assembly time for 1, 

4, and 3 is 34 time units. If the assembly task 2 is also included in ws1, the total assembly 

time will become 56 time units, which exceeds the ctmax. Therefore, the assembly task 2 

is assigned into ws2. This same procedure is also applied to the subsequent tasks and 

workstations. The results of assembly tasks assignment for s1 and s2 are presented in Table 

3.6 and Table 3.7. 

The station time row shows cumulative time to conduct assembly process for all 

tasks in a specific station. The types of machine required in conducting task in every 

workstation is represented in machine row. Meanwhile, the worker selection is made 

based on the number of workers frequency in a workstation. For example, assembly 

information in Table 3.4 shows that in workstation 1, workers 3 and 7 have the highest 

frequency in conducting any task given. In this case, the worker is select randomly.  

1
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Sequence 4 1 2 3 5 6 7 

Time 7 18 22 9 12 6 20 

Tool A A B B A B A 

Worker 3,5,6,7 1,3,4,6,7 2,4,6 1,2,3,5,7 1,4,6 2,3,5 1,2,4,7 

ctmax = 34 
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Table 3.6 Assembly task and workstation assignment s1 

 

Table 3.7 Assembly task and workstation assignment s2 

 

Based on the presented approach, the fitness value for the stated three objective 

functions in ALB-RC problem can be calculated as below: 

 Maximum and minimum value for 𝑓1, 𝑓2 and 𝑓3 is calculated from equation 3.5 - 

3.10. 

 

f1 max =  
∑ ti

tmax

=  
94

22
= 4.27 ≈ 5 stations 

 

f1 min =  
∑ ti

ctmax

=  
94

34
= 2.76 ≈ 3 stations 

 

𝑓2 max =  𝑓1 max × 𝑛𝑜. 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑡𝑦𝑝𝑒 = 5 × 2 = 10 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠   

 

𝑓2 min = 𝑛𝑜. 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑡𝑦𝑝𝑒 = 2 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 

 

𝑓3 max = 𝑛 = 7 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 

 

𝑓3 min =  𝑓1 min = 3 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 

 

 

 Normalised value 𝑓�̅�  for 𝑓1 , 𝑓2  and 𝑓3  can be calculated using equation 3.4 as 

follows. 

Workstation 1 2 3 

Task 1, 4, 3 2, 6 5, 7 

Station time 34 28 32 

Machine A,B B A 

Worker 3 2 1 

Workstation 1 2 3 4 

Task 4, 1 2, 3 5, 6 7 

Station time 34 31 18 20 

Machine A B A, B A 

Worker 6 2 1, 3 4 
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Feasible sequence s1 

𝑓�̅� =  
(𝑓𝑖 −  𝑓𝑖 𝑚𝑖𝑛)(𝑓�̅� 𝑚𝑎𝑥 −  𝑓�̅� 𝑚𝑖𝑛)

(𝑓𝑖 𝑚𝑎𝑥 −  𝑓𝑖 𝑚𝑖𝑛)
+ 𝑓�̅� 𝑚𝑖𝑛 

𝑓1̅ =  
(3 − 3)(10 − 1) 

(5 − 3)
 + 1 = 1 

𝑓2̅ =  
(4 − 2)(10 − 1) 

(10 − 2)
 + 1 = 3.25 

𝑓3̅ =  
(3 − 3)(10 − 1) 

(7 − 3)
 + 1 = 1 

Feasible sequence s2 

𝑓�̅� =  
(𝑓𝑖 −  𝑓𝑖 𝑚𝑖𝑛)(𝑓�̅� 𝑚𝑎𝑥 −  𝑓�̅� 𝑚𝑖𝑛)

(𝑓𝑖 𝑚𝑎𝑥 −  𝑓𝑖 𝑚𝑖𝑛)
+ 𝑓�̅� 𝑚𝑖𝑛 

𝑓1̅ =  
(4 − 3)(10 − 1) 

(5 − 3)
 + 1 = 5.5 

𝑓2̅ =  
(5 − 2)(10 − 1) 

(10 − 2)
 + 1 = 4.375 

𝑓3̅ =  
(5 − 3)(10 − 1) 

(7 − 3)
 + 1 = 5.5 

 

 Fitness function for is calculated by using equation 3.11. 

Feasible sequence s1 

𝐹 =  𝑤1𝑓1̅ + 𝑤2𝑓2̅ +  𝑤3𝑓3̅ 

𝐹1 = (0.33 × 1)  + (0.33 × 3.25) + (0.33 × 1) = 1.733 

 

Feasible sequence s2 

𝐹 =  𝑤1𝑓1̅ + 𝑤2𝑓2̅ +  𝑤3𝑓3̅ 

𝐹2 = (0.33 × 5.5)  + (0.33 × 4.375) + (0.33 × 5.5) = 5.074 

 

 

Therefore, the result for test problems as presented in Table 3.8. 
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Table 3.8 Result for test problem 

s1 3 4 3 1.733 

s2 4 5 5 5.074 

 

Table 3.8 presents the optimisation objective value in term of number of 

workstation, tool and worker obtained by using different feasible sequence for test 

problem.  A weighted sum approach is then used for combining those three objective 

functions into a scalar fitness solution.  The fitness value is determined the best feasible 

sequence that will produce the best solution for the problem given. In Table 3.8, sequence 

s1 produce fitness value 1.733 compared to sequence s2 with fitness value 5.074. From 

literature review, a chromosome that has a minimum fitness function value is the best 

chromosome.  

 

3.3 Genetic Algorithm with Rank Based Crossovers 

Figure 3.5 Flowchart of GA with Rank Based Crossovers 
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Genetic algorithm is an optimisation technique that mimics the survival for the 

fitness concept. Solutions with better fitness have larger possibilities to remain in the 

population, while the solution with bad fitness will be eliminated from the population. In 

general, GA consists of five main steps; Initialization, Evaluation, Selection, Crossover 

and Mutation. 

 

Step 1: Initialization  

In the initialization step, the GA parameter such as population size, npop, 

maximum generation, genmax and GA coefficients are set up. For the chromosome 

representation, S, a set of permutation integer is used. In this case, the integer is directly 

representing the assembly task. For example, the first chromosome in the assembly 

problem with six tasks as in Figure 3.6 might be, S1 = [3 4 1 6 2 5]. Besides that, the 

initial population, pop that consist of npop of chromosomes are randomly generated. These 

sequences normally did not satisfy the precedence constraint. 

 

 

 

 

 

 

Figure 3.6 Example of ALBP-RC 

 

Step 2: Decoding 

Before the solution can be evaluated using the fitness function, the chromosome 

must be decoded into feasible solution, f. Feasible solution refers to the assembly 

sequence that fulfils the constraint. In ALB problem, the compulsory constraint is the 

precedence constraint. For the given example chromosome in the previous step, S1 = [3 4 

1 6 2 5], the sequence in the S1 violate the precedence constraint. In this example, the 

assembly task 3 only can be started after task 1 is completed (Figure 3.6). 

 3 

4 

2 5 

7 

1 
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A topological sort is implemented to decode the solution. The topological sort is 

started by identifying the candidate tasks. The candidate tasks refer to the task/s without 

the precedence. For the example in Figure 3.6 the candidate tasks are task 1 and 2. Since 

the candidate tasks is more than one, a selection based on the earliest task appearance in 

the chromosome is applied. Referring to the S1 = [3 4 1 6 2 5], task 1 appears earlier than 

task 2. Therefore, task 1 is selected and stored in feasible solution f1 = [1]. Next, the 

selected task is removed from the precedence graph. So now, the new candidate tasks are 

task 2 and 3. In this case, task 3 appeared earlier than task 2 in S1. Therefore, the feasible 

solution become f1 = [1 3]. These steps are repeated until all the assembly tasks are 

selected and stored in f1. For this example, the feasible solution decoded using this 

procedure is f1 = [1 3 2 4 5 6].  

 

Step 3: Evaluation 

In this step, the encoded feasible sequence is evaluated by using predefined 

objective functions. The objective functions are calculated using procedures and formulas 

in Equation 3.4 – 3.11.  

 

Step 4: Selection  

The purpose of selection step is to choose the chromosome to be placed in the 

mating pool. The selected chromosome will be the parent of the children in a new 

generation. The selection process is conducted using a Roulette wheel selection (RWS) 

mechanism. In the RWS, the chromosome with better fitness will have a larger portion of 

the space on the Roulette wheel. Therefore, the solution with better fitness will have a 

larger chance to be chosen as the parent for a new generation. In the RWS, there is a 

possibility where the same solution is chosen more than once.  

 

Step 5: Crossover  

In the reproduction of children, crossover operator plays an important rule. In 

general, crossover works by manipulating two parent chromosomes to produce two new 
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children. In this work, we introduced two crossover operators, named Rank based 

crossover type I and II (RBC-I and RBC-II). The proposed crossovers are compared with 

popular crossover operator for permutation problem, i.e. ordered crossover (OX), 

partially matched crossover (PMX) and Moon crossover (C. Moon, Kim, Choi, & Seo, 

2002). 

Both of the proposed crossovers taken into account the best chromosome from the 

population in the reproduction process. In both of the proposed crossover, each of the 

assembly tasks will be given a rank according to their position in the chromosome. Then 

the rank for parent and best chromosome will be summed up to form a new rank. The 

child solution will be generated based on the new rank. By using this approach, the new 

child will inherit the gene from their parent and also the best solution. The detail 

explanation on the proposed crossover as in section 3.3.1 and 3.3.2. 

 

Step 6: Mutation  

Mutation is exploration mechanism in GA. The purpose of mutation is to explore 

the search space to obtain a better solution. Besides that, mutation is also function to avoid 

the solution from trapped in local optima. For this purpose, a single point swapped 

mechanism is used. For a child that produced from the crossover, a random cutting point 

is selected. Then, the chromosome is swapped the position between front and rear.  

 

Step 7: Termination  

Termination criteria determine how long the optimisation will run. There are a 

few termination criteria used to determine the optimisation run. One of the termination 

criteria is stall generation. Stall generation means that the optimisation result did not 

converge for a particular number of generations. When the generation is stall, the 

optimisation run will automatically stop. In this work, we used the maximum number of 

generation to stop the optimisation.  
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3.3.1 Rank based crossover type-I (RBC-I)  

In RBC-I, one parent (P1) is mated with the best chromosome (Xbest) to produce 

one new offspring. Firstly, gene in P1 and Xbest is ranked according to the position in the 

string. Next, P1 and Xbest is accendingly sorted to produce new rank for sorted rank P1 

(R’1) and sorted rank Xbest (R’best). Then, R’1 and the R’best is added to form sorted 

offspring rank (R’O1). Finally, the P’1 is sorted back according to the R’O1 to generate 

offspring solution, O1. In the case where the rank is tied, the selection is made randomly. 

This offspring solution will be used for mutation in the next steps of the process in GA to 

find the optimal solution. The numerical procedure for RBC-I is presented in Figure 3.7.  

Step 1: Assign rank to the P1 and Xbest 

P1 4 2 5 3 1 

R1 1 2 3 4 5 

 

Xbest 2 3 1 4 5 

Rbest 1 2 3 4 5 

 

Step 2: Sort rank according to P’1 and X’best 

P’
1 1 2 3 4 5 

R’1 5 2 4 1 3 

 

X’
best 1 2 3 4 5 

R’
best 3 1 2 4 5 

 

Step 3: Sum up R’1 and R’
best as R’

O1 

P’
1 1 2 3 4 5 

R’1 5 2 4 1 3 

R’
best 3 1 2 4 5 

R’
O1 8 3 6 5 8 

 

Step 4: Sort P1 according to the sum rank to generate O1 

O1 2 4 3 1 1 

RO1 3 5 6 8 8 

 

Figure 3.7 Numerical procedure for RBC-I 
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A pseudo-code of the RBC-I is given in Procedure for RBC-I below. 

 

Procedure for RBC-I 

Begin 

Identify the best chromosome from Evaluation, Xbest 

Assign rank, Rbest to Xbest 

Sort Xbest in ascending order, X’best 

Sort Rbest according to X’best, R’best 

Do 

 For each parent, Pi 

  Assign rank, Ri to Pi 

  Sort Pi in ascending order, P’i 

  Sort Ri according to P’i, R’i 

  Calculate sorted offspring rank, R’Oi 

   R’Oi = R’i + R’best 

  New offspring, Oi  Sort P’i according to R’Oi in ascending order 

End 

 

 

3.3.2 Rank based crossover type-II (RBC-II) 

The RBC-II applied the same rank concept as in RBC-I, but this crossover 

considers two parents to mate with one best chromosome. The early steps where the rank 

is assigned and sorted is the same with RBC-I as shown in Figure 3.8. However, to 

calculate the rank for offspring solutions (R’O), the following formula is used in RBC-II. 

𝑅′𝑂 =  𝐶𝑏𝑒𝑠𝑡(𝑅′𝑏𝑒𝑠𝑡) +  𝐶1(𝑅′1)  +  𝐶2(𝑅′2) 
3.12 

 

Cbest, C1 and C2 are the coefficients for the best chromosome (Xbest), parent 1 (P1) and 

parent 2 (P2) respectively. The Cbest is fixed at 0.2 where the offspring solution will only 

inherit 20% from the best chromosome.  Meanwhile, the C1 and C2 coefficient is depend 

on the offspring. To generate offspring 1 (O1), the C1 and C2 are as follow. 

C1 = 0.7(1 – Cbest)  
3.13 

C2 = 0.3(1 – Cbest)  
3.14 

 

On the other hand, to generate offspring 2 (O2), the following coefficients are used. 
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C1 = 0.3(1 – Cbest)  
3.15 

C2 = 0.7(1 – Cbest)  
3.16 

Next, after the rank for offspring is calculated, the offspring solutions (O1 and O2) 

are generated by sorting the rank for offspring (R’O) in the ascending orders. As in RBC-

I, in the event of tie rank, the selection is made randomly. The numerical example for 

RBC-II is shown in Figure 3.8. 

A pseudo-code of the RBC-II is given in Procedure for RBC-II below. 

 

Procedure for RBC-II 

Begin 

Identify the best chromosome from Evaluation, Xbest 

Assign rank, Rbest to Xbest 

Sort Xbest in ascending order, X’best 

Sort Rbest according to X’best, R’best 

Do 

 For a pair of parent, Pi and Pj 

  Assign rank, Ri to Pi and Rj to Pj 

  Sort Pi and Pj in ascending order, P’i, P’j 

  Sort Ri according to P’i, R’i 

  Sort Rj according to P’j, R’j 

  Calculate sorted offspring rank, R’Oi  

For coefficient, Cbest = 0.2 

   R’Oi = Cbest(R’best) + C1(R’i) + C2(R’j) 

    C1 = 0.7(1 – Cbest) 

    C2 = 0.3(1 – Cbest) 

   R’Oj = Cbest(R’best) + C1(R’i) + C2(R’j) 

    C1 = 0.3(1 – Cbest) 

    C2 = 0.7(1 – Cbest) 

 

  Generate new offsprings,  

Oi  Sort P’i according to R’Oi in ascending order 

Oj  Sort P’j according to R’Oj in ascending order 

 

End 
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Step 1: Assign rank to the P1 and Xbest 

P1 4 2 5 3 1 

R1 1 2 3 4 5 

 

P2 1 5 2 4 3 

R2 1 2 3 4 5 

 

Xbest 2 3 1 4 5 

Rbest 1 2 3 4 5 

 

Step 2: Sort rank according to P1 , P2 and Xbest 

P’
1 1 2 3 4 5 

R’1 5 2 4 1 3 

 

P’
2 1 2 3 4 5 

R’2 1 3 5 4 5 

 

X’
best 1 2 3 4 5 

R’
best 3 1 2 4 5 

 

Step 3: Calculate rank for offspring 

O’1 1 2 3 4 5 

R’O1 3.64 2.04 3.84 2.32 3.16 

 

O’2 1 2 3 4 5 

R’O2 2.36 2.36 4.16 3.28 2.48 

 

Step 4: Sort O’ according to RO to generate offspring 

O1 2 4 5 1 3 

RO1 2.04 2.32 3.6 3.64 3.84 

 

O2 1 2 5 4 3 

RO2 2.36 2.36 2.48 3.28 4.16 

 

Figure 3.8 Numerical example of RBC-II 
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3.4 Computational Experiment 

A computational experiment was carried out in order to evaluate the effectiveness 

and the performance of RBC-I and RBC-II on the problem of SALBP-1 with tool and 

worker constraints. For this purpose, a set of ALB benchmark problem by Scholl is used 

(Scholl, 1993). This benchmark data sets have been used for testing and comparing 

solution procedures in SALBP by Scholl et al. (2008), Taylor et al. (2012), Saif et al. 

(2014) and Sikora et al. (2016). The instances in the SALBP-1 benchmark problem 

contain a wide range of values of the cycle time (from 6 to 17,067 units of time) and 

number of tasks (from 7 to 297 tasks).  

 From 47 instances for SALBP-1 in the benchmark problem, 17 problems that 

varies in term of the size is selected. The benchmark test problem is divided into 

three categories; small (n ≤ 20 task), medium (20 < n ≤ 70) and large (n > 70).  

 The mathematical programming language for the problems of SALBP-1 with 

tools and workers constraint is coded into MATLAB Version 7.0 with a HP Intel 

Core i5 at 2.5 GHz and with 4 GB of RAM. 

 For the computational experiment, the population size is set to 30, maximum 

generation is 300, probability of crossover is 0.7 and probability of mutation is 

0.2.  

In order to reduce pseudorandom effect in finding the optimal solution for the 

problem, the optimisation is run for five times. The best solution will be selected for 

comparison purpose. For comparison purpose, the RBC-I and RBC-II are compared with 

popular crossover operators for the combinatorial problem. The comparison crossovers 

are the ordered crossover (OX), partially matched crossover (PMX) and Moon crossover. 

The OX and PMX are among popular crossover operator for the combinatorial problem. 

Meanwhile, the Moon crossover is used since it was claimed to be the best crossover for 

the combinatorial problem (C. Moon et al., 2002). 
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3.5 Case Study 

An industrial case study has been conducted in an electronics manufacturing 

company. The purpose of the industrial case study is to evaluate the proposed ALB-RC 

model and the GA using RBC to optimise the problem. The industrial case study started 

with understanding the assembly process for the studied product. Then, the assembly task 

for the studied product is identified. In this case, the assembly tasks are directly defined 

based on the work elements used by the company.  

Next, the precedence constraints are defined according to the engineer’s input and 

the assembly process observation. Then, the assembly data collection is made. For the 

assembly task time, five repetitions are made and the average time is calculated. Besides 

the assembly time, the main machine or equipment used to conduct the assembly task is 

also recorded. In addition, the details of worker skills and requirements are gathered. The 

precedence graph of the studied product is shown in Figure 3.9.  

 

Figure 3.9 Precedence diagram for the case study 

 

The assembly data for this problem is presented in Table 3.9. For the optimisation 

purpose, the average time will be used. Table 3.9 also presents the required machine or 

tool for the equipment. Since the proposed model allows one machine per assembly task, 

only the main machine or equipment is considered. It should be noted that some of the 

assembly tasks requires more than one tools to be completed. The last column in Table 

3.9 shows the worker that needs to conduct a particular assembly task. Currently, 10 
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workers are needed to perform the assembly process. According to the line supervisor, 

the workers can conduct any assembly task with minimum training required. Therefore, 

it is assumed that any assembly task can be assigned to any worker. 

Table 3.9 Assembly data for case study problem 

Task 
Task time (s)   

1 2 3 4 5 Average Machine Worker 

1 35.2 37.3 38.1 40.4 43.1 38.82 M1 W1 

2 27.6 34.5 33.7 30.2 29.7 31.14 M1 W1 

3 43.9 50.2 51.8 47.7 46.2 47.96 M2 W1 

4 84.2 92.1 91.4 90.7 85.9 88.86 M2 W2 

5 29.1 27.7 25.2 25.6 29.0 27.32 M3 W2 

6 42.8 46.7 53.2 51.7 44.3 47.74 M2 W3 

7 78.8 76.4 66.8 69.7 74.0 73.14 M3 W3 

8 20.5 16.9 24.9 23.4 18.8 20.90 M2 W4 

9 64.3 63.9 62.1 62.5 68.7 64.30 M3 W4 

10 14.2 12.3 10.6 10.7 11.6 11.88 M4 W4 

11 14.6 17.4 13.6 14.3 15.8 15.14 M4 W4 

12 69.6 61.1 57.7 67.1 68.4 64.78 M5 W5 

13 63.3 55.5 58.9 55.1 56.8 57.92 M6 W5 

14 62.5 63.6 55.2 56.4 61.7 59.88 M5 W6 

15 38.5 46.3 47.8 48.7 43.4 44.94 M5 W6 

16 29.3 30.4 34.2 29.1 36.0 31.80 M7 W7 

17 28.3 24.7 26.2 31.8 25.3 27.26 M6 W7 

18 65.4 73.1 64.1 71.7 74.8 69.82 M6 W8 

19 25.2 20.8 22.6 19.5 23.3 22.28 M7 W8 

20 42.7 46.3 39.6 47.4 43.5 43.90 M4 W9 

21 17.7 17.6 22.4 18.2 20.9 19.36 M8 W9 

22 16.8 20.1 24.3 15.5 23.7 20.08 M7 W9 

23 36.5 36.5 34.8 29.1 32.2 33.82 M8 W10 

 

The efficiency of the assembly line configuration can be measured using the 

objective function as explained in section 3.2.3. In addition to the optimisation objective 

function, the following indicators are used to measure the efficiency of the assembly line. 

 

Smoothness index (SI): 
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𝑆𝐼 = √∑(𝑐𝑡 − 𝑝𝑡𝑘)2

𝐾

𝑘=1

 

  

3.17 

 

Line efficiency (LE): 

𝐿𝐸 =
∑ 𝑡𝑖

𝑛
𝑖=1

𝑛𝑤𝑠 × 𝑐𝑡
 

  

3.18 

SI measure how balance the workload assignment between workstation. The 

smaller SI represent better workload balance. This will smoothen the flow of the 

assembled product in the assembly line. Meanwhile, the LE shows the level of value 

added time utilization in assembly line. The higher LE indicated the lower wasting time 

in the assembly line. 

 

3.6 Witness Simulation 

A discrete event simulation has been conducted for an industrial case study 

problem. Simulation is a tool to mimic a real-world situation, without disturbing the 

physical system. In assembly line, simulation is also a tool to validate the changes or 

improvement achieved by a proposed solution, without changing the real assembly 

process. In this research, the purpose of discrete event simulation is to measure the 

changes in the assembly line when the assembly task configuration is changed. To be 

more specific, this simulation will measure the assembly line before and after the 

optimisation using the proposed crossovers. This activity is also a method to validate the 

ALB-RC model and the proposed assembly task configuration by new crossovers. 

For simulation purpose, Witness simulation software by Lanner Group is used. In 

the Witness simulation software, the Machine element is defined as a workstation for the 

assembly line. The elements set up in Witness software is presented in Figure 3.10. 
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Figure 3.10 Witness basic elements setup 

 

In the simulation mode, one part element is set to represent the product. The 

detailed setup for the part element is shown in Figure 3.11. 

 

Figure 3.11 Detail element setup 

 

For simulation purpose, the part arrival is assumed as follow: 

Inter-arrival time = 1.0 second 

Maximum arrival = Unlimited 

First arrival = 0.0 second 

In this model, the push system is used to transfer the part from one station to 

another station as in Figure 3.12. 
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Figure 3.12 Witness push system setup 

 

Meanwhile, the processing time for each workstation then is assumed as normally 

distributed. This time is defined from the cumulative task time in a particular workstation. 

In the Detail Machine element, the average time is used for the duration as shown in 

Figure 3.13. Besides that, the user also needs to specify the standard deviation and also 

the pseudo-random seed. 

 

Figure 3.13 Detail machine element setup 

 

In this model, the pseudo-random random seed is defined on the action on creating 

part element as in Figure 3.14. 
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Figure 3.14 Pseudo-random seed control 

 

The simulation is conducted for a period of eight working hours. For this purpose, 

the simulation duration is set at the simulation control panel, as shown in Figure 3.15.  

 

Figure 3.15 Simulation control panel 

 

Simulation is repeated for ten times, with different pseudo-random seeds. In this 

simulation, four output are measured as follow: 

i. Average idle percentage 

ii. Average busy percentage 

iii. Average block percentage 

iv. Number of output per simulation duration 

 

The example of Witness simulation output is presented in Figure 3.16. 
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Figure 3.16 Example of Witness simulation output
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RESULTS AND DISCUSSION  

4.1 Optimisation Results for Benchmark Problem  

In the computational experiment for the benchmark problem, the optimal solution 

for the problem is depends on the fitness function. In this problem, the fitness function 

consists of the following optimisation objectives; (1) minimise number of workstation, 

(2) minimise number of machine, and (3) minimise number of worker. These optimisation 

objectives are then combined using a weighted sum approach as presented in section 3.2.  

Table 4.1 presents the best fitness values (minimum fitness function) obtained by 

GA using different crossovers strategies tested on 17 benchmark problems range from 7 

to 148 number of tasks. In Table 4.1, the bolded values show the best fitness for a 

particular problem. Based on the results, all the crossovers were able to search for an 

optimum solution for the small size problems (Problem 1 to 5). The fitness value shows 

the same value when tested using different crossovers.  

However, when the problem size is increased from small to medium and large size 

problem, the RBC-I and RBC-II have shown a better performance compared with other 

crossovers. In medium-size problem (Problem 6 to 11), the RBC-II has better fitness in 

83% (5 out of 6) of the benchmark problems, except in Hahn problem. Meanwhile, in 

large size problem (Problem 12 to 17), the RBC-I and II individually has better fitness in 

50% of the problem. Other type of crossover are not able to obtain the best fitness values 

in large size benchmark problem.  
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Table 4.1 Optimisation results 

1 Mertens 7 8 8.7500 8.7500 8.7500 8.7500 8.7500 
2 Bowman 8 20 8.5000 8.5000 8.5000 8.5000 8.5000 

3 Jaeschke 9 18 3.5000 3.5000 3.5000 3.5000 3.5000 

4 Mansoor 11 48 2.9286 2.9286 2.9286 2.9286 2.9286 

5 Jackson 11 13 2.2857 2.2857 2.2857 2.2857 2.2857 

6 Buxey 29 54 4.0457 4.0576 4.0517 3.7789 3.5181 

7 Sawyer 30 75 1.6800 1.6800 1.6800 1.8000 1.4400 

8 Gunther 35 69 2.7952 2.8952 2.7810 2.6738 2.5881 

9 Kilbridge 45 69 3.8831 3.9642 3.9599 3.8789 3.7999 

10 Hahn 53 2004 5.6467 5.5190 5.5815 5.6495 5.6440 

11 Warnecke 58 111 3.4024 3.5080 3.8168 3.5628 3.1858 

12 Wee Mag 75 56 4.1857 4.1303 4.0446 4.0053 3.8964 

13 Arc83 83 6540 2.4743 2.5198 2.5879 2.4320 2.5132 

14 Lutz 2 89 19 3.0760 2.9237 3.0062 2.5626 2.9492 

15 Mukherje 94 263 3.2866 3.3370 3.2747 3.4274 3.0903 

16 Arc111 111 6540 6.7874 6.6003 6.5334 6.4993 5.5394 

17 Barthol2 148 170 3.2254 3.1278 3.1912 2.9669 3.1034 

 

Table 4.2 until Table 4.4 presents the optimisation objective value in term of the 

number of workstation, machine and worker for small, medium and large size problem 

respectively. For the small size problem in Table 4.2, all crossovers came out with the 

same objective values. This result is directly related with the size of search space for this 

problem. For small size problem, the search space is relatively small compared with 

medium and large size problem. Therefore, the chances for the algorithm to find the best 

solution is much better in this problem.    

Table 4.2 Optimisation objective value for small size problem 

Martens Workstation 5 5 5 5 5 

Machine 8 8 8 8 8 

Worker 6 6 6 6 6 

Bowman Workstation 2 2 2 2 2 

Machine 4 4 4 4 4 

Worker 4 4 4 4 4 

Jaeschke Workstation 3 3 3 3 3 

Machine 6 6 6 6 6 

Worker 7 7 7 7 7 

Mansoor Workstation 4 4 4 4 4 

Machine 10 10 10 10 10 

Worker 5 5 5 5 5 

 

No Problem 
No. of 

Task 

Given 

Cycle Time 

Crossover type 

OX PMX Moon RBC-I RBC-II 

Problem Objective OX PMX Moon RBC-I RBC-II 
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Table 4.2 Continued 

Jackson Workstation 4 4 4 4 4 

Machine 7 7 7 7 7 

Worker 7 7 7 7 7 

 

In Table 4.3, the minimum objective values mostly found in RBC-II, as presented 

in the fitness function value in Table 4.1. The best fitness function value (Table 4.1) 

however not necessary to have the best value in all objectives. For example in the Gunther 

problem, the best fitness function value is attained by RBC-II. However, in Table 4.3, the 

RBC-II only have the minimum value in two objectives (i.e. Station and Machine), while 

for the number of worker, the best objective is found in Moon crossover. This is because 

of the normalizing effect as explained in section 3.2 in chapter 3. For the optimisation 

objective with a smaller range, small changes in the objective value give larger effect on 

the fitness function, compared with optimisation objective with a larger range.    

Table 4.3 Optimisation objective value for medium size problem 

Buxey Workstation 7 7 7 7 7 

Machine 21 23 22 20 20 

Worker 20 20 19 19 18 

Sawyer Workstation 5 5 5 5 5 

Machine 17 17 17 17 15 

Worker 9 9 9 11 8 

Gunther Workstation 8 8 8 8 8 

Machine 22 23 24 24 21 

Worker 12 17 11 15 12 

Kilbridge Workstation 9 9 9 9 9 

Machine 28 28 30 30 26 

Worker 23 26 22 25 24 

Hahn Workstation 8 8 8 8 8 

Machine 23 22 22 23 22 

Worker 20 18 19 19 19 

Warnecke Workstation 15 15 16 16 15 

Machine 49 45 46 44 43 

Worker 28 29 32 35 32 

 

Table 4.4 shows the optimisation objective value for large size problem. For this 

class of problem, the minimum value is more scattered throughout the crossover types. 

Base on Table 4.1, the minimum fitness was found in RBC-I and II. Here, the normalizing 

Problem Objective OX PMX Moon RBC-I RBC-II 

Problem Objective OX PMX Moon RBC-I RBC-II 
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effect again contributed to the fitness value preference in RBC-I and II. For example in 

Mukherje problem, both Moon and RBC-II have two minimum optimisation objective 

value. However, the fitness for RBC-II is better than Moon crossover because the range 

of the machine number is larger than the range of worker number. Therefore, small 

changes in the number of worker contributed to better fitness compared with the number 

of machine.  

Table 4.4 Optimisation objective value for large size problem 

Wee Mag Workstation 31 31 31 31 31 

Machine 65 71 71 69 66 

Worker 47 50 48 47 44 

Arc83 Workstation 13 13 13 13 13 

Machine 44 43 48 44 45 

Worker 33 33 32 31 37 

Lutz 2 Workstation 28 28 28 27 28 

Machine 58 55 56 51 53 

Worker 52 44 52 47 45 

Mukherje Workstation 17 17 17 18 17 

Machine 66 69 63 65 68 

Worker 36 37 37 38 34 

Arc111 Workstation 26 25 26 26 25 

Machine 103 126 104 99 105 

Worker 52 52 48 56 49 

Barthol2 Workstation 27 27 27 27 27 

Machine 95 95 98 92 94 

Worker 68 64 70 70 66 

 

To have better view from the computational experiment result, a standard 

competition ranking approach is used. The crossover with the best fitness will be given 

rank 1, followed by the next as rank 2, etc. If the crossover performance is equivalent, the 

following rank is ignored. The summary of the standard competition ranking is presented 

in Table 4.5. The value in this table indicated the frequency of the problem being rank in 

a specific ranking. 

Table 4.5 Summary of standard competition ranking 

OX 5 3 3 2 4 2.8235 

PMX 6 2 2 4 3 2.7647 

Moon 5 3 3 4 2 2.7058 

RBC-I 8 5 0 1 3 2.1764 

RBC-II 13 1 3 0 0 1.4117 

Problem Objective OX PMX Moon RBC-I RBC-II 

Crossover Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Average rank 
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Based on Table 4.5, the RBC-II was most frequently ranked as 1, followed by 

RBC-I and PMX. Meanwhile, the OX has the most frequently ranked as 5. The average 

rank for each of crossover is then calculated. Based on the average rank the best crossover 

is RBC-II. The RBC-II is only ranked from 1 until 3. In the meantime, RBC-I is in the 

second best according to the average rank. For RBC-I, besides ranked as 1 and 2, this 

crossover was also ranked as 5 in three cases. On the other hand, the OX is the worst 

crossover based on the average rank.  

The RBC-I and II have shown better performance because of the involvement of 

the best chromosome in the reproduction process. This makes the search direction is more 

guided compared with other crossovers. In the OX, PMX and Moon crossovers, the 

reproduction process solely depend on the parents. Even though the parents were selected 

among the best, the variation in the chromosomes makes the search direction become too 

diverse.  

Meanwhile, in the comparison between RBC-I and II, the RBC-I is too dependent 

on the best solution because a single parent is mated with the best solution for the 

regeneration. This makes the chance for the chromosome to trap in local optima is slightly 

higher. In RBC-II, the regeneration process involved a pair of parents and the best 

solution. Two chromosomes from parents make the regeneration is not too relied on the 

best solution. Furthermore, the generated offspring only inherit 20% of the gene from the 

best solution (since Cbest = 0.2). This makes the RBC-II able to generate more varied 

offspring but in the guided mode.  

 

4.2 Optimisation Results for Case Study 

Optimisation for the case study problem has been conducted using Genetic 

Algorithm with different crossovers as in section 4.1. For the case study optimisation, ten 

optimisation runs with different pseudo-random seeds have been done. The number of 

maximum generation is set to 300, while the probability of crossover (pc) and mutation 

(pm) are 0.8 and 0.2 respectively. Table 4.6 presents the fitness value for the case study 

problem from ten different runs. 
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Table 4.6 Fitness value for the case study problem 

Run 1 2.61 2.40 2.00 2.40 2.20 

Run 2 2.40 2.60 2.60 2.01 2.20 

Run 3 2.40 2.60 2.60 2.20 2.00 

Run 4 2.60 2.60 2.41 2.20 2.41 

Run 5 2.40 2.40 2.40 2.60 2.40 

Run 6 2.40 2.40 2.60 2.60 2.40 

Run 7 2.40 2.40 2.80 2.21 2.00 

Run 8 2.40 2.40 2.40 2.00 2.20 

Run 9 2.40 2.40 2.20 2.40 2.20 

Run 10 2.60 2.60 2.40 2.60 2.00 

Min 2.40 2.40 2.00 2.00 2.00 

Max 2.61 2.60 2.80 2.60 2.41 

Average 2.4614 2.4800 2.4414 2.3229 2.2014 

 

Based on the optimisation result for the case study problem in Table 4.6, the 

minimum fitness is 2.00, while the maximum fitness is 2.80. For the minimum fitness, 

three crossovers able to search for this solution. These crossovers were OX, RBC-I and 

RBC-II. Based on the average fitness value, the best crossover is the RBC-II. This is 

followed by RBC-I, OX, PMX and finally the Moon crossover. The details of solution 

found by the algorithms are in Appendix B.  

The optimisation result for the case study problem indicated that the PMX and 

Moon crossovers have almost similar performance. Both crossovers are incapable to 

converge to minimum fitness. The OX crossover on the other hand able to search for 

optimum solution. However, the obtained fitness range was too diverged since the largest 

fitness value was also obtained by OX crossover. Meanwhile, the RBC-II has the best 

performance with 2.20 average fitness. In comparison with other crossover types, the 

RBC-II was also obtained the smallest maximum fitness value.  

Figure 4.1 shows the average convergence of different crossover for the case study 

problem. According to the plot, the Moon crossover has the slowest convergence in the 

first 50 generations. Then the convergence was slowly occurred 50 to 200 generations. 

Meanwhile, the PMX and OX crossovers have moderate convergence in the early 

generation. Then a similar trend as found in Moon crossover was also observed from the 

50 to the end of the generation. The RBC-I and RBC-II on the other hand converge rapidly 

in the first 20 generations. Then the convergence of RBC-I and RBC-II were almost 

No. 
Crossover type 

PMX Moon OX RBC-I RBC-II 
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equivalent between 100 to 200 generations. The RBC-II continued to converge until the 

end of the total generation.  

 

Figure 4.1 Convergence plot for different crossovers 

 

The existing assembly process in the studied line is conducted in ten workstations 

and required ten workers. The existing assembly task assignment is presented in Table 

4.7 Configuration of existing assembly layout. For the existing layout, 20 machines were 

needed to complete all assembly tasks. 

Table 4.7 Configuration of existing assembly layout 

1 1 38.82 

117.92 M1, M2 W1 2 31.14 

3 47.96 

2 4 88.86 
116.18 M2,M3 W2 

5 27.32 

3 6 47.74 
120.88 M2,M3 W3 

7 73.14 

4 8 20.90 

112.22 M2,M3,M4 W4 
9 64.30 

10 11.88 

11 15.14 
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Table 4.7 Continued 

Workstation Assembly 

Task 

Task Time 

(s) 

Workstation 

time (s) 
Machine Worker 

5 12 64.78 
122.70 M5,M6 W5 

13 57.92 

6 14 59.88 
104.82 M5 W6 

15 44.94 

7 16 31.80 
59.06 M6,M7 W7 

17 27.26 

8 18 69.82 
92.10 M6,M7 W8 

19 22.28 

9 20 43.90 

83.34 M4,M7,M8 W9 21 19.36 

22 20.08 

10 23 33.82 33.82 M5 W10 

 

Table 4.8 meanwhile shows the best optimisation result obtained by the GA with 

RBC-II. For the same work content, the suggested solution by RBC-II can be completed 

in nine workstations that operated by nine workers. On the other hand, the number of 

required machine was reduced to 17.  

Table 4.8 Configuration of optimised assembly layout 

1 

1 38.82 

117.92 M1,M2 W1 2 31.14 

3 47.96 

2 
4 88.86 

116.18 M2,M3 W2 
5 27.32 

3 

6 47.74 

83.78 M2,M4 W3 8 20.90 

11 15.14 

4 
20 43.90 

117.04 M3,M4 W4 
7 73.14 

5 

9 64.30 

118.38 M3,M7 W5 16 31.80 

19 22.28 

6 
22 20.08 

78.00 M6,M7 W6 
13 57.92 

7 
14 59.88 

104.82 M5 W7 
15 44.94 

8 

17 27.26 

108.96 M4,M6 W8 18 69.82 

10 11.88 

9 

12 64.78 

117.96 M5,M8 W9 21 19.36 

23 33.82 

Workstation Assembly 

Task 

Task 

Time (s) 

Workstation 

time (s) 

Machine Worker 
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Figure 4.2 Comparison of workstation time 

 

Figure 4.2 shows a comparison of workstation time for existing and optimised 

layout. Based on the bar graph, the optimised layout is more balanced within a smaller 

gap between minimum and maximum time compared with the existing layout. It indicated 

that the optimised layout has better (smaller) idle time compared with the existing layout. 

Based on this observation, the percentage of busy in the optimise layout will increase. 

Besides that, the maximum workstation time for the optimised layout is slightly 

smaller than the existing layout. In the assembly line, the maximum workstation time is 

also known as cycle time for the assembly. The cycle time will control the production 

pace for the whole assembly line. With a smaller cycle time, the optimised layout is 

predicted to produce more output compared with the existing layout.  

Besides the objective function in the optimisation that measure the number of 

workstation, machine and worker, a few other indicators to measure the line balance and 

efficiency can be used to compare the assembly layout before and after optimisation.  The 

comparison of existing and optimised assembly layout indicators is shown in Table 4.9. 
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Table 4.9 Comparison of existing and optimised assembly layout indicators 

Number of workstation 10 9 

Number of machine 20 17 

Number of worker 10 9 

Smoothness index 122.20 55.74 

Line efficiency (%) 78.48 90.39 

 

Based on the comparison of the existing and optimised layout, the number of 

workstation and worker were reduced about 10% from the existing configuration. 

Meanwhile, the number of machine also was reduced from 20 to 17 units. This is about 

15% reduction from the existing layout. Besides that, the smoothness index and line 

efficiency for the optimised layout were also better than the existing. This is because the 

number of workstation and also the cycle time for the optimised layout is lower than the 

current layout. The cycle time refers to the maximum workstation time among all 

workstations. In the existing layout, the cycle time is 122.7 seconds, while in the 

optimised layout, the cycle time was reduced to 118.38 seconds. The cycle time will 

control the production pace in assembly line.  

 

4.3 Simulation of Case Study Problem 

This section presents simulation results for the case study problem to validate the 

optimisation output. Simulation has been conducted using Witness simulation software, 

by Lanner Group with computation time is one (1) hour. The simulation is conducted for 

the assembly line before and after optimisation.  

Table 4.10 and Table 4.11 presents the workstation time before and after 

optimisation. The workstation time is the cumulative time for all tasks in a particular 

workstation. For example, the first data for workstation 1 (106.7 seconds) is the 

summation of time for task 1, 2 and 3 (since task 1-3 are in workstation 1) for the first 

reading (Refer to Table 4.7 and Table 4.8).  Then the standard deviation for each time is 

calculated. In the simulation model, the average time is inserted, with the calculated 

standard deviation. 

Indicator Existing Layout Optimised Layout 
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Table 4.10 Workstation time before optimisation 

1 106.7 122 123.6 118.3 119 117.92 6.63 

2 113.3 119.8 116.6 116.3 114.9 116.18 2.41 

3 121.6 123.1 120 121.4 118.3 120.88 1.81 

4 113.6 110.5 111.2 110.9 114.9 112.22 1.93 

5 132.9 116.6 116.6 122.2 125.2 122.70 6.80 

6 101 109.9 103 105.1 105.1 104.82 3.31 

7 57.6 55.1 60.4 60.9 61.3 59.06 2.65 

8 90.6 93.9 86.7 91.2 98.1 92.10 4.23 

9 77.2 84 86.3 81.1 88.1 83.34 4.32 

10 36.5 36.5 34.8 29.1 32.2 33.82 3.17 

 

Table 4.11 Workstation time after optimisation 

1 106.7 122 123.6 118.3 119 117.92 6.65 

2 113.3 119.8 116.6 116.3 114.9 116.18 2.41 

3 77.9 81 91.7 89.4 78.9 83.78 6.33 

4 121.5 122.7 106.4 117.1 117.5 117.04 6.43 

5 118.8 115.1 118.9 111.1 128 118.38 6.26 

6 80.1 75.6 83.2 70.6 80.5 78.00 4.96 

7 101 109.9 103 105.1 105.1 104.82 3.31 

8 107.9 110.1 100.9 114.2 111.7 108.96 5.06 

9 123.8 115.2 114.9 114.4 121.5 117.96 4.37 

 

Table 4.12 and Table 4.13 presents the simulation results for the existing and 

optimised layout. In this study, four simulation outputs are considered; the average idle, 

busy and block percentages, and the number of output. 

Table 4.12 Simulation result for existing layout 

1 21.442 76.855 1.703 226 

2 21.487 76.976 1.536 227 

3 21.547 76.547 1.905 225 

4 21.413 76.704 1.884 225 

5 21.495 76.59 1.916 225 

6 21.897 76.574 1.527 225 

7 21.664 76.622 1.713 225 

8 21.59 76.703 1.709 226 

9 21.482 76.694 1.824 225 

10 21.351 77.031 1.618 227 

 

Workstation Workstation time (s) Average 

time 

Standard 

deviation 1 2 3 4 5 

Workstation Workstation time (s) Average 

time 

Standard 

deviation 1 2 3 4 5 

Repetition 
Average Idle 

% 
Average Busy % Average Block % No. of Output 
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The company has targeted to produce 6000 unit of product per month with average 

daily output is 240 units per day. If compared the existing daily output in the simulation, 

number of output was 225 units to 227 units. This simulation result is acceptable since 

the percentage of error is only 5-6%. Referring to Baril et al.  (2016) this percentage of 

error is acceptable since the margin of error related to the statistics curves and the error 

induced by a simplified process is ±10%. 

 

Table 4.13 Simulation result for optimised layout 

1 9.453 86.470 4.078 229 

2 9.204 86.880 3.916 230 

3 9.279 86.788 3.932 229 

4 8.847 87.069 4.084 230 

5 8.939 86.792 4.269 229 

6 8.896 86.608 4.497 228 

7 9.132 86.332 4.538 228 

8 8.840 86.953 4.206 230 

9 8.967 86.707 4.327 229 

10 8.969 86.887 4.144 229 

 

According to the observation from Table 4.12 and Table 4.13, the average idle 

percentage for optimised layout has reduced compared with the original layout. 

Meanwhile, the average busy, average block and number of daily output for optimised 

layout have increased compared with the existing layout. This observation has been 

expected based on the line efficiency and smoothness index in Table 4.9, except for the 

average block percentage. 

Based on the detail simulation result for optimised layout (Appendix C2), the 

highest blockage occurred at station 3. This is because station 3 has lower workstation 

time compared with station 4. For the time difference is about 40%, the task in station 3 

will be completed faster than station 4. This makes the part from station 3 cannot be 

transferred into station 4 since the buffer is not used in the model.  

In order to measure the simulation results before and after optimisation, a two-

sample t-test is conducted. At 95% confidence interval, the t-test for each of simulation 

output is conducted with the following hypothesis. 

Repetition Average Idle % 
Average Busy 

% 

Average Block 

% 
No. of Output 



72 

H0: The mean of the two samples are equal 

H1: The mean of the two samples are different  

For the simulation result with ten repetitions, the degree of freedom is 17, while 

the critical t (t*) value is 2.1098. The summary of t-test is presented in Table 4.14. 

Table 4.14 Summary of t-test 

Average Idle % 3.7599E-28 153.4502 

Average Busy % 7.4634E-26 112.3768 

Average Block % 1.49608E-15 30.2615 

No. of Output 1.0791E-08 9.8775 

 

Based on Table 4.14, all P values are smaller than α = 0.05, for 95% confidence 

interval. In the same time, all the t values are larger than critical t. This result means that 

the null hypothesis needs to be rejected. Therefore, the t-test indicated that there is a 

significant difference between the simulation result before and after optimisation. In other 

words, the optimised results have shown significant improvement for the average idle 

percentage, average busy percentage and the number of daily output. The result also 

means that the average blockage percentage is significantly increased in the optimised 

layout.  

The result from industrial case study shows that the proposed ALB-RC model able 

to reduce the assembly resources in actual assembly environment without ignoring the 

standard indicators in assembly line balancing such as number of workstation, cycle time, 

smoothness index and line efficiency. This result also verified that the proposed RBC-II 

crossovers capable to perform well compared with comparison crossovers for the actual 

industrial data. The simulation result has validated the proposed assembly task 

configuration from optimisation. 

 

4.4 Comparison Results for Benchmark Problem and Case Study 

In order to make a comparison on the result obtained in benchmark problem and 

case study, average fitness value in medium size problem for benchmark problem 

Simulation indicator P value t value 
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(Problem 6 to 11 in Table 4.1) is calculated and ranked as in Table 4.15. This is to make 

a valid comparison since the size problem of the case study is a medium size problem.  

Table 4.15 Rank for benchmark medium size problem 

 OX PMX Moon RBC-I RBC-II 

Average 3.5755 3.6040 3.6452 3.5573 3.3627 

Rank 3 4 5 2 1 

 

The rank for benchmark problem and case study is then compared as in Table 

4.16. The rank result shows that RBC-II is rank as 1 followed by RBC-I, OX, PMX. 

Meanwhile, Moon is the worst compared to other types of crossover. This result can 

validate the effectiveness of the proposed crossover in optimizing ALB-RC.  

Table 4.16 Comparison of crossover for medium size problem 

Benchmark 3 4 5 2 1 

Case Study 3 4 5 2 1 

 

 

4.5 Summary of the Results 

This chapter presents the result of this research. In section 4.1, the computational 

experiment results were discussed. The computational experiment result indicated that 

the proposed Rank Based Crossover type I and II (RBC-I and RBC-II) have better overall 

performance. This finding answered the second research objective: to propose an 

improved algorithm to optimise Simple Assembly Line Balancing Problem Type 1 with 

resource and worker constraints. 

Section 4.2 meanwhile presents the finding for the case study problem. For the 

optimisation of the case study problem, the RBC-II came out with the best solution. In 

comparison with the existing layout configuration, the proposed solution by RBC-II is 

predicted to reduce the number of workstation, machine and worker. At the same time, 

the assembly line efficiency is also increased. The optimisation result for case study 

problem is then being simulated using Witness software as presented in Section 4.3. The 

t-test for simulation results validated that the output from optimisation is capable to 

improve the assembly line efficiency. 

 OX PMX Moon RBC-I RBC-II 
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CONCLUSIONS  

5.1 Summary of the Research  

In this research, problems of assembly line balancing with resource constraints 

(ALB-RC) were studied. The problem is a non-deterministic polynomial (NP) hard class 

problem due to the complexity of the problems. The existing methods such as exact 

methods have the limitation of size to solve ALB-RC. Meanwhile, the heuristic 

approaches have a limitation in term of solution quality.  

Metaheuristic approach is more practical for large problems and can locate 

optimum solution. In metaheuristic approach, a wide range of algorithm can be used to 

solve different types of problems. In this research, Genetic Algorithm was used to solve 

ALB-RC due to the capability of the algorithm to find the best feasible solution in 

different applications. In order to strengthen the algorithm to find the best solution for 

ALB-RC, two proposed crossovers were introduced. The algorithm with the proposed 

new crossovers were successfully developed using the rank-based mechanism. These 

crossovers are known as Rank Based Crossover Type I and II (RBC-I and RBC-II).  

In this research, the optimisation objectives are to minimise the number of 

workstation, number of machine/tool and number of worker while at the same time 

balancing and optimizing the assembly line. The proposed algorithm with the new 

crossovers are searching for the best feasible arrangement of task, worker and machine 

without violating the constraints and limitation which may have in the assembly line.  

Numerical experiment was conducted to evaluate and verified the performance of 

the proposed RBC-I and II for ALB-RC before it is applied and tested on an industrial 

case study problem. The numerical experiment was conducted by using different sizes of 
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benchmark problem range from small to large size. For comparison purpose, three 

popular crossovers for line balancing problem were also implemented. These crossovers 

are Ordered crossover (OX), Partially Matched crossover (PMX) and Moon crossover. 

The numerical experiment and the industrial case study results show that the proposed 

RBC-I and RBC-II is more efficient and capable in generating the optimal solution for 

ALB-RC compared to OX, PMX and Moon crossover. Meanwhile, when comparing 

RBC-I and RBC-II, RBC-II has the best performance. 

Later, an industrial case study problem was used to validate the proposed model 

and algorithm for ALB-RC. This problem was optimised using GA with different 

crossovers as mention earlier. The optimisation result indicated that the best solution 

provided by RBC-II able to reduce the number of workstation, machine and worker. For 

validation purpose, a discrete event simulation was conducted using Witness simulation 

software. The simulation results concluded that the optimised layout by RBC-II has a 

significant improvement compared with the existing line in term of idle and busy 

percentage, and also in term of the number of daily output.  

 

5.2 Research Contributions  

The general contribution of this research as outlined in the research aim is the 

establishment of a methodology and algorithm for optimisation of ALB-RC. In order to 

achieve the research aim, this research has delivered a number of specific contributions 

to knowledge. 

The proposed ALB resource constraint model was developed based on the 

assembly task. The proposed representation scheme clearly defines the resource 

constraints; machine and worker on assembly tasks, which has not been done before. This 

contribution is important because without clear definition of assembly line with resource 

constraint on the representation, the implementation of this scheme to real-world 

problems would be impossible. 

The second contribution is the proposed Rank-based crossovers for Genetic 

Algorithm to optimise ALB-RC. This algorithm has been tested using a different range 

of problem from the benchmark test problem and have performed well in finding the 
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optimal solutions. The Rank-based crossovers for Genetic Algorithm performance has 

been validated using the benchmark problem, while the optimisation results (optimised 

layout) has been validated using simulation. The proposed formulation allows 

manufacturers to gain benefits such as cost saving for production line where they can 

reduce the number of machine and worker needed to perform task in an assembly line.  

 

5.3 Research Conclusions  

In relation to the research objectives; 

i. This research had successfully proposed a model of Assembly Line Balancing 

with resource constraints (ALB-RC) for SALBP-1. The resources considered in 

this research were the machines and workers. 

ii. An improved version of Genetic Algorithm was successfully proposed using new 

Rank-Based Crossovers for ALB-RC. The performance was validated through 

computational experiment using benchmark problem. 

iii. The proposed ALB-RC model and RBC-II result had successfully being validated 

through industrial case study problem. 

Based on the accomplishment of research objectives, it can be concluded that this 

research has established a methodology and algorithm for generating optimal solution for 

ALB-RC. Therefore, the aim of this research has successfully been achieved. 

 

5.4 Limitations and Recommendations for Future Works  

Although this research had successfully been done, there are a few limitations that 

observed. 

 The proposed model is limited to simple assembly line balancing type I (SALBP-

I) only. Besides SALBP-I there are many other types of assembly line problem 

used in industry. 
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 The algorithm comparison is limited to Genetic Algorithm only. Recently, there 

are various type of metaheuristic algorithms have been introduced for 

optimisation. 

 

Based on the limitations of this research, several recommendations for future 

research are proposed. The future directions of the research are summarised as follows. 

 Extend the application for other types of assembly line problem. For instant, this 

research is limited to the simple assembly line resource constraints problem type 

1 which only can be applied if the assembly line produce a single product on a 

single assembly line.  

 Compare the performance of the proposed algorithm with other algorithms that 

have good potential such as Simulated Annealing, Memetic Algorithm or hybrid 

algorithms. 
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APPENDIX A 

MATLAB CODE 

Appendix A1: Fitness Function Code 

function [ res ] = obj_func3(n,max_ct,seq)  
 

aspdata; 
 

for i=1:n 
    test_time(1, i)=data_mat(seq(1,i),1); 
    test_mach(1, i)=data_mat(seq(1,i),2); 
end 

  
ws=1; 
pt=0; 

 
for i=1:n 
    if pt+test_time(1,i)<=max_ct 
        test_ws(1,i)=ws; 
        pt=pt+test_time(1,i); 
    else 
        ws=ws+1; 
        pt=test_time(1,i); 
        test_ws(1,i)=ws; 
    end 
end 
no_ws=test_ws(1,n); 
mach_counter=0; 

  
for i=1:no_ws 
    nc=0; 
    for j=1:n 
        if test_ws(1,j)==i 
            nc=nc+1; 
            req_m(1,nc)=test_mach(1,j); 
        end 
    end 
    mach_counter=length(unique((req_m(1,:))))+mach_counter; 
end 

 
%disp('Workstation Machine Worker') 
res=[no_ws mach_counter no_w]; 

  
end 
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Appendix A2: Worker Assignment Code 

%to calculate/assign worker 

%1. establish table rw 

nworker=length(worker_mat(1,:)); 

w_mat=worker_mat; 

w_assign=zeros(1,n); 

for i=1:n 

    s=[];sel_task=[];av_worker=[]; 

    sum_w=sum(w_mat')'; 

    s1=nonzeros(sum_w); 

    if isempty(s1)==1 

        %disp('stop') 

        worker_assignment; 

        break 

    end 

     

    s2=min(s1); 

    s=find(sum_w==s2); 

    sel_task=s(randi(length(s))); 

     

    c2=0; 

    av_worker=[]; 

    for j=1:nworker 

        if w_mat(sel_task,j)==1 

            c2=c2+1; 

            av_worker(1,c2)=j; 

        end 

    end 

    sel_worker=av_worker(randi(length(av_worker))); 

     

    w_assign(1,sel_task)=sel_worker; 

     

    w_mat(:,sel_worker)=0; 

    w_mat(sel_task,:)=0; 

    if i==n 

        break 

    end 

     

end 

w_assign; 

zz=zeros(1,n); 

no_w=0; 

worker_task=[seq; zz]; 

for i=1:no_ws 

    nc=0; 

    req_task=[]; 

    new_worker_mat=[]; 

    for j=1:n 

        if test_ws(1,j)==i 

            nc=nc+1; 

            req_task(1,nc)=seq(1,j); 

        end 

    end 

    req_task; 

     

    for task=1:length(req_task) 

        new_worker_mat(task,:)=worker_mat(req_task(1,task),:); 

    end 

    if length(new_worker_mat(:,1))>1 

        summatrix=sum(new_worker_mat); 

    else 

        summatrix=new_worker_mat; 

    end 

    as2=zeros(3,length(req_task)); 

    for worker=1:length(req_task) 

        as2(1,worker)=req_task(1,worker);   %req task- sequence in station 
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        as2(2,worker)=w_assign(1,req_task(1,worker)); %assigned worker for 

particular task 

        as2(3,worker)=summatrix(1,as2(2,worker)); 

         

    end 

    as2; 

    cm=0; 

    for i2=1:length(as2(1,:)) 

        if as2(3,i2)>cm 

            sel2=as2(2,i2); 

            cm=as2(3,i2); 

        end 

    end 

    for i2=1:length(as2(1,:)) 

        if worker_mat(as2(1,i2),sel2)==1 

            %count=count+1; 

            %worker_task(2,count)=sel2; 

            as2(2,i2)=sel2; 

        end 

    end 

    ww=length(unique(as2(2,:))); 

    no_w=no_w+ww; 

    tp=length(nonzeros(worker_task(2,:))); 

     

    worker_task(2,tp+1:tp+length(as2(1,:)))=as2(2,:); 

end 

worker_task; 

no_w; 
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Appendix A3: Crossovers Code 

%Specify Crossover type 

%1=PMX Crossover; 2=Moon Crossover; 3=OX Crossover; 4=RBC-I; 5=RBC-II 

  

if crover_type==1; 

%=============CROSSOVER PMX==================================== 

    pair_sel=randperm(npop); 

    p1=[];p2=[];offspring=[]; 

    for pair=1:npop/2; 

        p1=sel_parent(pair_sel(1,pair*2-1),:); 

        p2=sel_parent(pair_sel(1,pair*2),:); 

         

        unqran=0; 

        while unqran==0 

            cp1=randi([2,n-1],1,2); 

            if cp1(1)~=cp1(2) 

                unqran=1; 

            end 

        end 

        cp1=sort(cp1); 

        c1=zeros(1,n);c2=zeros(1,n); 

        c1=[p1(1:cp1(1)-1) p2(cp1(1):cp1(2)) p1(cp1(2)+1:end)]; 

%(cp1(1):cp1(2))=%p2((cp1(1)):cp1(2)) 

        c2=[p2(1:cp1(1)-1) p1(cp1(1):cp1(2)) p2(cp1(2)+1:end)]; 

        

        tempc1=c1;tempc2=c2; 

        tempc1(cp1(1):cp1(2))=0; 

        tempc2(cp1(1):cp1(2))=0; 

         

        exc=[]; 

        exc(1,:)=p2(cp1(1):cp1(2)); 

        exc(2,:)=p1(cp1(1):cp1(2)); 

         

        % Check crossover probability 

        if rand>pc      %if random number > prob crossover 

            c1=p1; 

        else            %if random no < prob crossover 

            %Regenerate c1 

            exc_loop=0; 

            while exc_loop==0 

                for i=1:n 

                    findmatch=[]; 

                    findmatch=find(exc(1,:)==tempc1(i)); 

                    is_empty_match=isempty(findmatch); 

                    if is_empty_match==0 

                        tempc1(i)=exc(2,findmatch); 

                    end 

                end 

                redun_check=ismember(tempc1,exc(1,:)); 

                if nnz(redun_check)==0 

                    exc_loop=1; 

                end 

            end 

            c1=[tempc1(1:cp1(1)-1) exc(1,:) tempc1(cp1(2)+1:end)]; 

        end 

         

        if rand>pc          %if random number > prob crossover 

            c2=p2; 

        else 

            %Regenerate c2 

            exc_loop=0; 

            while exc_loop==0 

                for i=1:n 

                    findmatch=[]; 

                    findmatch=find(exc(2,:)==tempc2(i)); 

                    is_empty_match=isempty(findmatch); 

                    if is_empty_match==0 
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                        tempc2(i)=exc(1,findmatch); 

                    end 

                end 

                redun_check=ismember(tempc2,exc(2,:)); 

                if nnz(redun_check)==0 

                    exc_loop=1; 

                end 

            end 

            c2=[tempc2(1:cp1(1)-1) exc(2,:) tempc2(cp1(2)+1:end)]; 

        end 

        offspring(pair*2-1,:)=c1; 

        offspring(pair*2,:)=c2; 

    end 

    offspring; 

     

elseif crover_type==2 

%==================MOON CROSSOVER============================= 

     

    pair_sel=1:npop; 

    p1=[];p2=[];offspring=[]; 

    for pair=1:npop/2; 

        Pa=sel_parent(pair_sel(1,pair*2-1),:); 

        Pb=sel_parent(pair_sel(1,pair*2),:); 

        if rand<=pm 

            moon_cross; 

            offspring(pair*2-1,:)=child1; 

            offspring(pair*2,:)=child2; 

        else 

            offspring(pair*2-1,:)=Pa; 

            offspring(pair*2,:)=Pb; 

        end 

    end 

    offspring; 

         

elseif crover_type==3; 

%=============CROSSOVER OX==================================== 

  

    pair_sel=randperm(npop); 

     

    %pair_sel=1:npop 

    %return 

    p1=[];p2=[];offspring=[]; 

    for pair=1:npop/2; 

        p1=sel_parent(pair_sel(1,pair*2-1),:); 

        p2=sel_parent(pair_sel(1,pair*2),:); 

        ch1=zeros(1,n);ch2=zeros(1,n); 

        unqran=0; 

        while unqran==0 

            cp1=randi([2,n-1],1,2); 

            if cp1(1)~=cp1(2) 

                unqran=1; 

            end 

        end 

        cp1=sort(cp1); 

        %Insert gene from cp1 of p2 into ch1 

        ch1(1,cp1(1):cp1(2))=p2(1,cp1(1):cp1(2)); 

        for i=1:n 

            if ch1(1,i)==0 

                for j=1:n 

                    if ismember(p1(1,j),ch1)==0 

                        ch1(1,i)=p1(1,j); 

                        break 

                    end 

                end 

            end 

        end 

        ch1; 

        %Process ch2 
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        ch2(1,cp1(1):cp1(2))=p1(1,cp1(1):cp1(2)); 

        for i=1:n 

            if ch2(1,i)==0 

                for j=1:n 

                    if ismember(p2(1,j),ch2)==0 

                        ch2(1,i)=p2(1,j); 

                        break 

                    end 

                end 

            end 

        end 

        ch2; 

        offspring(pair*2-1,:)=ch1; 

        offspring(pair*2,:)=ch2; 

    end 

    offspring; 

%=============RBC-I==================================== 

elseif crover_type==4; 

    alpha_w=[alpha_pop;1:n]; 

    [Y,I]=sort(alpha_w(1,:)); 

    alpha_inv=alpha_w(:,I); 

        pair_sel=randperm(npop); 

        for i=1:npop 

            parent_pop=sel_parent(i,:); 

            parent_w=[parent_pop;1:n]; 

            [D,S]=sort(parent_w(1,:)); 

            par_inv=parent_w(:,S); 

            add_alpha_parent=[1:n;alpha_inv(2,:)+par_inv(2,:)]; 

            [DD,SS]=sort(add_alpha_parent(2,:)); 

            new_ospring=add_alpha_parent(:,SS); 

            offspring(i,:)=new_ospring(1,:); 

        end 

         

%=============RBC-II==================================== 

elseif crover_type==5; 

    w_alpha=0.3; 

    alpha_w=[alpha_pop;1:n]; 

    [Y,I]=sort(alpha_w(1,:)); 

    alpha_inv=alpha_w(:,I); 

    pair_sel=randperm(npop); 

    vy=0; 

    for pair=1:npop/2; 

        p1=sel_parent(pair_sel(1,pair*2-1),:); 

        p2=sel_parent(pair_sel(1,pair*2),:); 

         

        p1_w=[p1;1:n]; 

        [D1,S1]=sort(p1_w(1,:)); 

        p1_inv=p1_w(:,S1); 

         

        p2_w=[p2;1:n]; 

        [D2,S2]=sort(p2_w(1,:)); 

        p2_inv=p2_w(:,S2); 

         

        par_wmat=[p1_inv;p2_inv]; 

         

        for j=1:2 

            vy=vy+1; 

            if j==1 

                w_p1=(1-w_alpha)*0.7; 

                w_p2=(1-w_alpha)*0.3; 

            else 

                w_p1=(1-w_alpha)*0.3; 

                w_p2=(1-w_alpha)*0.7; 

            end 

            

add_prime_w=w_alpha*(alpha_inv(2,:))+w_p1*(p1_inv(2,:))+w_p2*(p2_inv(2,:)); 

            apr=[1:n;add_prime_w]; 

            [DD,SS]=sort(apr(2,:)); 
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            new_ospring=apr(:,SS); 

            offspring(vy,:)=new_ospring(1,:); 

             

        end 

         

    end 

end 
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APPENDIX B 

CASE STUDY OPTIMISATION RESULTS 

Appendix B1 : Case study optimisation results using PMX crossover 

 Run 1 Run 

2 

Run 

3 

Run 

4 

Run 

5 

Run 

6 

Run 

7 

Run 

8 

Run 

9 

Run 

10 

Fitness 2.614286 2.4 2.4 2.6 2.4 2.4 2.4 2.4 2.4 2.6 

Assembly 

Sequence 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

4 3 3 3 4 6 3 3 3 6 

5 4 4 4 5 4 4 4 4 7 

20 5 5 5 8 7 5 5 5 11 

6 6 8 8 20 5 20 6 8 13 

8 11 6 20 6 8 8 11 20 15 

11 20 7 6 22 3 6 20 6 4 

22 22 20 11 11 20 11 22 11 5 

7 8 22 22 7 22 22 8 22 20 

13 7 11 7 9 9 7 7 7 22 

15 13 13 9 16 16 9 9 9 8 

3 15 15 16 19 19 10 14 13 3 

9 9 9 19 14 14 14 16 15 9 

16 14 16 13 17 17 13 19 10 14 

19 16 19 15 21 18 17 13 16 16 

14 19 14 10 23 10 18 17 19 19 

17 10 17 12 18 12 16 21 14 17 

18 17 18 14 13 21 19 23 17 18 

21 18 10 17 3 23 12 18 18 10 

23 12 21 21 10 11 21 10 12 21 

10 21 23 23 12 13 23 12 21 23 

12 23 12 18 15 15 15 15 23 12 
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Appendix B2: Case study optimisation results using Moon crossover 

Fitness 

Run 

1 

Run 

2 

Run 

3 

Run 

4 

Run 

5 

Run 

6 

Run 

7 

Run 

8 

Run 

9 

Run 

10 

2.4 2.6 2.6 2.6 2.4 2.4 2.4 2.4 2.4 2.6 

Assembl

y 

Sequenc

e 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

6 6 3 3 6 3 6 3 6 3 

4 4 4 4 7 4 11 4 4 4 

5 5 5 5 11 5 7 5 5 5 

8 20 8 8 9 8 13 20 20 8 

3 8 20 20 3 20 3 8 8 20 

11 3 6 6 4 6 4 6 3 6 

7 7 11 7 5 11 5 11 22 11 

20 9 22 11 8 22 8 22 7 22 

22 16 7 13 16 7 9 7 11 7 

9 19 13 15 13 9 10 9 9 9 

16 11 15 22 15 13 16 10 14 16 

19 13 9 9 14 14 19 12 16 19 

10 15 10 16 17 17 14 16 19 13 

12 10 12 19 18 18 12 19 13 15 

13 12 16 14 19 10 15 13 17 10 

15 22 19 17 20 12 17 14 21 12 

14 14 14 18 22 16 18 17 23 14 

17 17 17 10 10 19 20 18 18 17 

21 21 21 12 12 21 22 15 10 21 

23 18 23 21 21 23 21 21 12 18 

18 23 18 23 23 15 23 23 15 23 
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Appendix B3: Case study optimisation results using OX crossover 

Fitness 

Run 

1 

Run 

2 

Run 

3 
Run 4 

Run 

5 

Run 

6 

Run 

7 

Run 

8 

Run 

9 

Run 

10 

2 2.6 2.6 
2.4142

86 
2.4 2.6 2.8 2.4 2.2 2.4 

Assemb

ly 

Sequenc

e 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

6 3 6 6 6 6 6 6 3 6 

4 4 11 4 4 7 4 11 4 7 

5 5 7 5 5 11 7 7 5 11 

8 6 13 8 20 4 5 13 20 4 

7 8 15 3 3 5 20 3 8 5 

9 20 4 20 8 8 11 4 6 20 

3 22 5 22 22 3 13 5 7 8 

16 11 20 11 7 20 15 8 11 3 

19 7 22 7 9 22 9 9 9 9 

14 13 8 9 14 9 14 10 16 16 

17 15 3 13 16 16 10 16 19 22 

11 9 9 16 19 19 17 19 10 19 

13 10 16 19 10 10 3 14 22 10 

15 12 19 10 17 12 18 17 13 14 

18 16 14 15 18 14 12 18 15 17 

20 19 17 14 21 13 21 12 14 18 

22 14 18 17 23 15 22 15 17 13 

10 17 10 18 12 17 23 21 18 15 

12 21 12 21 11 21 8 20 12 21 

21 23 21 23 13 23 16 22 21 23 

23 18 23 12 15 18 19 23 23 12 
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Appendix B4 : Case study optimisation results using RBC-I crossover 

Fitness 

Run 

1 
Run 2 

Run 

3 

Run 

4 

Run 

5 

Run 

6 
Run 7 

Run 

8 

Run 

9 

Run 

10 

2.4 
2.0142

86 
2.2 2.2 2.6 2.6 

2.2142

86 
2 2.4 2.6 

Assemb

ly 

Sequen

ce 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

4 4 3 4 6 6 4 4 4 3 

5 5 4 5 11 4 5 5 5 4 

3 8 5 20 7 5 8 3 8 5 

8 3 8 8 13 11 6 6 3 8 

6 6 6 6 15 20 3 7 6 20 

7 7 20 22 4 3 7 20 7 6 

20 9 11 11 5 22 9 22 20 7 

22 16 22 7 20 8 16 8 11 22 

11 19 7 13 8 7 19 9 13 11 

9 14 9 15 3 9 20 14 15 13 

14 10 13 3 22 16 11 16 22 15 

17 20 16 9 9 14 14 19 9 9 

21 22 19 16 16 17 17 10 16 10 

23 17 10 19 19 21 21 17 14 12 

18 18 14 14 14 18 18 18 17 16 

10 11 15 17 17 23 13 21 21 19 

16 13 17 18 18 19 15 23 23 14 

19 15 18 10 10 10 10 12 18 17 

12 12 12 12 12 12 12 11 19 21 

13 21 21 21 21 13 22 13 10 23 

15 23 23 23 23 15 23 15 12 18 
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Appendix B5 : Case study optimisation results using RBC-I crossover 

Fitness 

Run 

1 

Run 

2 

Run 

3 
Run 4 

Run 

5 

Run 

6 

Run 

7 

Run 

8 

Run 

9 

Run 

10 

2.2 2.2 2 
2.4142

86 
2.4 2.4 2 2.2 2.2 2 

Assemb

ly 

Sequenc

e 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

6 3 6 3 3 4 3 3 4 4 

4 4 4 4 4 5 4 4 5 5 

5 5 5 5 5 3 5 5 8 3 

8 8 20 20 20 8 6 8 6 6 

3 6 11 8 8 6 8 6 3 7 

11 20 3 6 6 7 11 11 7 20 

7 11 8 7 22 20 20 7 20 22 

20 7 7 9 11 22 7 20 22 8 

22 9 9 16 7 11 9 22 11 9 

9 10 16 19 9 9 16 9 13 16 

14 14 19 10 10 14 19 16 15 19 

16 16 22 11 13 17 22 19 9 14 

19 19 13 13 16 21 13 14 16 17 

10 17 15 15 19 23 14 17 19 18 

17 21 14 14 12 18 15 21 14 10 

18 13 17 17 15 10 17 23 17 12 

21 15 18 21 14 16 18 13 18 21 

23 18 10 18 17 19 10 18 10 23 

13 12 12 12 21 12 12 10 12 11 

15 22 21 22 18 13 21 12 21 13 

12 23 23 23 23 15 23 15 23 15 
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APPENDIX C 

SIMULATION OUTPUT 

Appendix C1: Simulation Output for Existing Layout 

 

Name % Idle % Busy % Blocked No. Of 

Operations 

Name Part_

A 

RUN 1 

Station1 0.37 95.25 4.39 233 No. Entered 234 

Station2 1.48 93.62 4.89 232 No. Shipped 226 

Station3 1.21 96.94 1.85 231 No. Scrapped 0 

Station4 4.15 89.96 5.89 230 No. 

Assembled 

0 

Station5 2.24 97.75 0.01 229 No. Rejected 28567 

Station6 16.51 83.49 0 228 W.I.P. 8 

Station7 53.33 46.67 0 228 Avg W.I.P. 7.86 

Station8 27.18 72.82 0 227 Avg Time 966.88 

Station9 34.53 65.47 0 226 Sigma Rating 6 

Station10 73.42 26.58 0 226   

RUN 2 

Station1 0.41 95.67 3.92 234 No. Entered 235 

Station2 1.78 93.58 4.63 233 No. Shipped 227 

Station3 1.22 97.4 1.39 232 No. Scrapped 0 

Station4 4.5 90.07 5.42 231 No. 

Assembled 

0 

Station5 2.4 97.6 0 230 No. Rejected 28566 

Station6 16.87 83.13 0 229 W.I.P. 8 

Station7 53.13 46.87 0 228 Avg W.I.P. 7.85 

Station8 26.84 73.16 0 228 Avg Time 962.2 

Station9 34.23 65.77 0 227 Sigma Rating 6 

Station10 73.49 26.51 0 227   

RUN 3 

Station1 0.42 94.74 4.84 232 No. Entered 233 

Station2 1.5 93.4 5.1 231 No. Shipped 225 

Station3 1.21 96.62 2.17 230 No. Scrapped 0 
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Appendix C1: Continued 

Name % Idle % Busy % Blocked No. Of 

Operations 

Name Part_

A 

Station4 3.59 89.49 6.91 229 No. 

Assembled 

0 

Station5 2.26 97.71 0.03 228 No. Rejected 28568 

Station6 16.96 83.04 0 227 W.I.P. 8 

Station7 53.58 46.42 0 227 Avg W.I.P. 7.85 

Station8 27.62 72.38 0 226 Avg Time 969.72 

Station9 34.87 65.13 0 225 Sigma Rating 6 

Station10 73.46 26.54 0 225   

RUN 4 

Station1 0.41 94.36 5.23 233 No. Entered 233 

Station2 1.44 93.67 4.89 232 No. Shipped 225 

Station3 1.05 96.9 2.06 231 No. Scrapped 0 

Station4 3.85 89.5 6.65 230 No. 

Assembled 

0 

Station5 2.34 97.65 0.01 228 No. Rejected 28568 

Station6 16.68 83.32 0 228 W.I.P. 8 

Station7 53.2 46.8 0 227 Avg W.I.P. 7.86 

Station8 27.17 72.83 0 226 Avg Time 971.38 

Station9 34.56 65.44 0 226 Sigma Rating 6 

Station10 73.43 26.57 0 225   

RUN 5 

Station1 0.39 94.7 4.9 232 No. Entered 233 

Station2 1.34 93.3 5.36 231 No. Shipped 225 

Station3 1.14 96.71 2.16 230 No. Scrapped 0 

Station4 3.76 89.51 6.74 229 No. 

Assembled 

0 

Station5 2.19 97.81 0 228 No. Rejected 28568 

Station6 17.03 82.97 0 227 W.I.P. 8 

Station7 53.3 46.7 0 227 Avg W.I.P. 7.85 

Station8 27.55 72.45 0 226 Avg Time 970.36 

Station9 34.57 65.43 0 225 Sigma Rating 6 

Station10 73.68 26.32 0 225   
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Appendix C1: Continued 

Name % Idle % Busy % Blocked No. Of 

Operations 

Name Part_

A 

RUN 6 

Station1 0.39 96.2 3.4 232 No. Entered 233 

Station2 2.42 93.39 4.19 231 No. Shipped 225 

Station3 1.62 96.7 1.67 230 No. Scrapped 0 

Station4 4.67 89.33 6 229 No. 

Assembled 

0 

Station5 2.49 97.5 0.01 228 No. Rejected 28568 

Station6 17.23 82.77 0 227 W.I.P. 8 

Station7 53.58 46.42 0 227 Avg W.I.P. 7.81 

Station8 27.54 72.46 0 226 Avg Time 965.38 

Station9 35.31 64.69 0 225 Sigma Rating 6 

Station10 73.72 26.28 0 225   

RUN 7 

Station1 0.41 95.48 4.11 232 No. Entered 233 

Station2 1.73 93.34 4.92 231 No. Shipped 225 

Station3 1.3 96.68 2.02 230 No. Scrapped 0 

Station4 4.35 89.63 6.02 229 No. 

Assembled 

0 

Station5 2.36 97.58 0.06 228 No. Rejected 28568 

Station6 17.34 82.66 0 227 W.I.P. 8 

Station7 53.27 46.73 0 227 Avg W.I.P. 7.83 

Station8 27.82 72.18 0 226 Avg Time 968.27 

Station9 34.51 65.49 0 225 Sigma Rating 6 

Station10 73.55 26.45 0 225   

RUN 8 

Station1 0.43 95.24 4.34 233 No. Entered 234 

Station2 1.6 93.66 4.75 232 No. Shipped 226 

Station3 1.27 96.95 1.79 231 No. Scrapped 0 

Station4 4.16 89.65 6.19 230 No. 

Assembled 

0 

Station5 2.51 97.46 0.02 229 No. Rejected 28567 

Station6 16.89 83.11 0 228 W.I.P. 8 

 



102 

Appendix C1: Continued 

Name % Idle % Busy % Blocked No. Of 

Operations 

Name Part_

A 

Station7 53.36 46.64 0 227 Avg W.I.P. 7.84 

Station8 27.48 72.52 0 227 Avg Time 965.06 

Station9 34.74 65.26 0 226 Sigma Rating 6 

Station10 73.46 26.54 0 226   

RUN 9 

Station1 0.4 95.3 4.3 232 No. Entered 233 

Station2 1.58 93.25 5.17 231 No. Shipped 225 

Station3 1.22 96.69 2.09 230 No. Scrapped 0 

Station4 3.78 89.55 6.67 229 No. 

Assembled 

0 

Station5 2.15 97.84 0.01 228 No. Rejected 28568 

Station6 16.87 83.13 0 227 W.I.P. 8 

Station7 53.4 46.6 0 227 Avg W.I.P. 7.85 

Station8 26.97 73.03 0 226 Avg Time 970.51 

Station9 34.62 65.38 0 225 Sigma Rating 6 

Station10 73.83 26.17 0 225   

RUN 10 

Station1 0.41 95.51 4.08 234 No. Entered 235 

Station2 1.66 93.81 4.53 233 No. Shipped 227 

Station3 1.13 97.33 1.54 232 No. Scrapped 0 

Station4 4.06 89.92 6.02 231 No. 

Assembled 

0 

Station5 2.28 97.71 0.01 230 No. Rejected 28566 

Station6 16.4 83.6 0 229 W.I.P. 8 

Station7 52.96 47.04 0 228 Avg W.I.P. 7.86 

Station8 27.05 72.95 0 228 Avg Time 963.87 

Station9 34.13 65.87 0 227 Sigma Rating 6 

Station10 73.43 26.57 0 227   
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Appendix C2: Simulation Output for Optimised Layout 

 

Name % Idle % Busy % Blocked No. Of 

Operations 

Name Part_

A 

RUN 1 

Station1 0.4 97.18 2.42 236 No. Entered 237 

Station2 3.02 95 1.98 235 No. Shipped 229 

Station3 9.69 67.7 22.61 235 No. Scrapped 0 

Station4 1.55 94.97 3.49 233 No. 

Assembled 

0 

Station5 3.84 96.16 0 232 No. Rejected 28564 

Station6 36.78 62.73 0.49 232 W.I.P. 8 

Station7 14.22 84.12 1.66 231 Avg W.I.P. 8.15 

Station8 9.32 86.63 4.05 230 Avg Time 990.29 

Station9 6.26 93.74 0 229 Sigma Rating 6 

RUN 2 

Station1 0.4 97.64 1.96 237 No. Entered 238 

Station2 3.11 95.55 1.34 236 No. Shipped 230 

Station3 10.48 68.68 20.84 235 No. Scrapped 0 

Station4 1.51 95.33 3.16 234 No. 

Assembled 

0 

Station5 4.42 95.58 0 233 No. Rejected 28563 

Station6 35.97 62.95 1.08 232 W.I.P. 8 

Station7 12.79 84.61 2.6 232 Avg W.I.P. 8.17 

Station8 8.25 87.49 4.26 231 Avg Time 988.83 

Station9 5.91 94.09 0 230 Sigma Rating 6 

RUN 3 

Station1 0.4 97.52 2.08 237 No. Entered 238 

Station2 3.3 95.36 1.34 236 No. Shipped 229 

Station3 8.47 68.82 22.7 235 No. Scrapped 0 

Station4 1.3 95.15 3.55 234 No. 

Assembled 

0 

Station5 3.67 96.33 0 233 No. Rejected 28563 

Station6 37.03 62.69 0.28 232 W.I.P. 9 

Station7 14.4 84.16 1.44 231 Avg W.I.P. 8.16 

Station8 9.06 86.94 4 230 Avg Time 988.02 

Station9 5.88 94.12 0 229 Sigma Rating 6 

RUN 4 

Station1 0.41 96.85 2.73 238 No. Entered 239 

Station2 2.78 95.87 1.35 237 No. Shipped 230 

Station3 8.91 68.98 22.11 236 No. Scrapped 0 

Station4 1.18 95.26 3.56 235 No. 

Assembled 

0 

Station5 3.87 96.13 0 234 No. Rejected 28562 

Station6 36.2 63.43 0.37 233 W.I.P. 9 

Station7 12.96 85 2.05 233 Avg W.I.P. 8.2 
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Appendix C2: Continued 

Name % Idle % Busy % Blocked No. Of 

Operations 

Name Part_

A 

Station8 7.89 87.52 4.59 232 Avg Time 988.58 

Station9 5.42 94.58 0 230 Sigma Rating 6 

RUN 5 

Station1 0.43 97.33 2.24 237 No. Entered 238 

Station2 3.22 95.57 1.21 236 No. Shipped 229 

Station3 10.64 67.96 21.4 235 No. Scrapped 0 

Station4 1.46 95.13 3.42 234 No. 

Assembled 

0 

Station5 4.14 95.83 0.03 233 No. Rejected 28563 

Station6 34.61 62.86 2.53 232 W.I.P. 9 

Station7 12.59 84.5 2.91 231 Avg W.I.P. 8.2 

Station8 7.96 87.35 4.68 231 Avg Time 991.72 

Station9 5.4 94.6 0 229 Sigma Rating 6 

RUN 6 

Station1 0.4 96.31 3.29 236 No. Entered 237 

Station2 2.42 94.98 2.6 235 No. Shipped 228 

Station3 5.66 68.24 26.1 234 No. Scrapped 0 

Station4 1.16 95.11 3.73 233 No. 

Assembled 

0 

Station5 3.82 96.18 0 232 No. Rejected 28564 

Station6 36.61 63.18 0.21 231 W.I.P. 9 

Station7 14.4 84.24 1.36 230 Avg W.I.P. 8.2 

Station8 9.11 87.71 3.18 230 Avg Time 996.39 

Station9 6.48 93.52 0 228 Sigma Rating 6 

RUN 7 

Station1 0.41 96.34 3.24 236 No. Entered 237 

Station2 2.62 94.93 2.46 235 No. Shipped 228 

Station3 5.46 68.17 26.37 234 No. Scrapped 0 

Station4 1.22 95.59 3.19 233 No. 

Assembled 

0 

Station5 4.2 95.8 0 232 No. Rejected 28564 

Station6 37.29 62.31 0.41 231 W.I.P. 9 

Station7 14.97 83.52 1.51 230 Avg W.I.P. 8.18 

Station8 9.6 86.75 3.66 229 Avg Time 993.81 

Station9 6.42 93.58 0 228 Sigma Rating 6 

RUN 8 

Station1 0.39 97.29 2.32 238 No. Entered 239 

Station2 2.55 95.76 1.68 237 No. Shipped 230 

Station3 7.69 68.69 23.62 236 No. Scrapped 0 

Station4 1.3 95.74 2.96 235 No. 

Assembled 

0 

Station5 4.02 95.98 0 234 No. Rejected 28562 
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Appendix C2: Continued 

Name % Idle % Busy % Blocked No. Of 

Operations 

Name Part_

A 

Station6 36.5 62.99 0.51 233 W.I.P. 9 

Station7 13.35 84.49 2.16 232 Avg W.I.P. 8.2 

Station8 8.18 87.22 4.6 231 Avg Time 988.62 

Station9 5.58 94.42 0 230 Sigma Rating 6 

RUN 9 

Station1 0.41 96.69 2.9 236 No. Entered 237 

Station2 2.87 95.04 2.09 235 No. Shipped 229 

Station3 6.8 68.83 24.37 234 No. Scrapped 0 

Station4 1.24 95.61 3.15 233 No. 

Assembled 

0 

Station5 4.19 95.81 0 232 No. Rejected 28564 

Station6 36.74 62.83 0.43 232 W.I.P. 8 

Station7 13.87 84.1 2.03 231 Avg W.I.P. 8.19 

Station8 8.66 87.37 3.97 230 Avg Time 995.61 

Station9 5.92 94.08 0 229 Sigma Rating 6 

RUN 10 

Station1 0.41 97.81 1.78 237 No. Entered 238 

Station2 3.51 95.19 1.3 236 No. Shipped 229 

Station3 9.01 68.65 22.34 235 No. Scrapped 0 

Station4 1.28 95.35 3.37 234 No. 

Assembled 

0 

Station5 4.31 95.69 0 233 No. Rejected 28563 

Station6 35.86 63.37 0.77 232 W.I.P. 9 

Station7 12.84 84.43 2.73 231 Avg W.I.P. 8.19 

Station8 7.69 87.3 5.01 230 Avg Time 991.4 

Station9 5.81 94.19 0 229 Sigma Rating 6 

 

 

 

 


