EXTENDED BAT ALGORITHM FOR PID CONTROLLER TUNING OF WHEELED MOBILE ROBOT AND SWARM ROBOTICS TARGET SEARCHING STRATEGY

NUR AISYAH SYAFINAZ BT. SUARIN

MASTER OF SCIENCE
UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that We have checked this thesis, and, in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

(Supervisor’s Signature)
Full Name : DR. DWI PEBRIANTI
Position : SENIOR LECTURER
Date : 20th FEBRUARY 2020

(Co-supervisor’s Signature)
Full Name : MR. ZULKIFLI B. MUSA
Position : LECTURER
Date : 20th FEBRUARY 2020
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__

(Student’s Signature)

Full Name : NUR AISYAH SYAFINAZ BT. SUARIN
ID Number : MEG18002
Date : 20th FEBRUARY 2020
EXTENDED BAT ALGORITHM
FOR PID CONTROLLER TUNING OF WHEELED MOBILE
ROBOT AND SWARM ROBOTICS
TARGET SEARCHING STRATEGY

NUR AISYAH SYAFINAZ BT. SUARIN

Thesis submitted in fulfillment of the requirements
for the award of the degree of
Master of Science

Faculty of Electrical & Electronic Engineering Technology
UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2020
ACKNOWLEDGEMENTS

Alhamdulillah. All praises belong to Allah, the lord of the whole universe who blesses my life with his greatest blessing and love.

My deepest and highest appreciation to my family: my late father, Suarin bin Ibrahim and my mother, Noriah bt. Abu Samah, my siblings, my nephew, Muhammad Rayyan and my whole family. Their endless support, prayers and unconditional love have made me for who I am today.

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Dwi Pebrianti for the continuous support during the journey of my master research study, for the patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me for all the time of research and writing of this thesis. Not to forget as well the spiritual and motivational support from my co-supervisor, Mr. Zulkifli b. Musa.

Next, I would like to thank my thesis examiners: Associate Prof. Dr. Hamzah Ahmad, Associate Prof. Dr. Razali Daud and Dr. Fadhil Abas for the time they spent to review my thesis, encouragement words and insightful comments. My sincere thanks also go to my sponsor of this master study, Universiti Malaysia Pahang under Master Research Scheme which supports me financially.

I would like to thank my fellow lab mates in Universiti Malaysia Pahang: Nurnajmin Qasrina Ann and Nurul Fadzlina bt. Jamin for all the discussions, for the sleepless nights we were working together of our own research study, and for all the fun we have had in the last two years. Also, I thank my friends in Universiti Tun Hussein Onn: Nor Fareza bt. Kosmani and Ong Kok Meng for all the meaningful discussions and spiritual support along this journey. In particular, I am grateful to Dr. Chia Kim Seng for enlightening me the first glance of research.
ABSTRAK

Robotik kawanan adalah sistem multi-robot yang mengandungi lebih dari dua robot bekerja bersama-sama untuk mencapai satu tugas yang tertentu. Robotik kawanan mempunyai potensi besar yang boleh digunakan dalam pelbagai sektor seperti dalam bidang pertanian dan tentera kerana bilangan ketersediaan tenaga kerja dalam sistem dan keupayaan robot untuk melaksanakan dan menyelesaikan tugas lebih cepat daripada kerja kasar. Sistem robotic kawanan terdiri daripada sekurang-kurangnya dua robot dan boleh sehingga beratus-ratus dan beribu-ribu bilangan robot dalam kawanan. Oleh itu, terdapat keperluan segera untuk memantau dan menguruskan pergerakan semua robot untuk mengelakkan apa-apa perlanggaran dan kemalangan antara robot dan pada masa yang sama mengoptimumkan prestasi sistem robotic kawanan. Dalam usaha untuk membina sebuah sistem robotic kawanan yang dapat melaksanakan tugas sasaran mencari, keperluan sistem adalah untuk mempunyai strategi yang mantap. Walau bagaimanapun, penyelesaian semasa strategi pencarian sasaran untuk robotic kawanan adalah tidak memuaskan kerana penyelesaian tidak dapat bergerak dengan cekap dan tidak tiba di kedudukan sasaran dengan tepat. Terdapat banyak faktor yang mungkin menyumbang kepada pengawal bahawa keadaan contohnya, algoritma dan komunikasi. Setiap robot dalam keperluan swarm yang dilengkapi dengan pengawal yang baik, contohnya keteguhan pengawal PID. Walaupun PID adalah pengawal tradisional dengan seni bina mudah, tetapi, penalaan PID pengawal untuk keuntungan yang terbaik dalam usaha untuk membangunkan sistem prestasi yang baik adalah sukar. Oleh itu, untuk mengenal pasti dan menyediakan penyelesaian, kajian penyelidikan ini memutuskan untuk memulakan pendekatan dengan menggunakan pengawal PID di robot beroda bergerak (WMR). Ini kerana, WMR mesti dapat bergerak dengan berkesan dari satu titik ke titik yang lain untuk melaksanakan tugas pencarian sasaran dan menunjukkan prestasi yang baik dalam sistem robotic kawanan. Objektif kajian ini bertujuan untuk penelaan dan mengoptimumkan daripada berkadar-Integral-derivatif (PID) pengawal untuk beroda robot mudah alih (WMR), membangunkan sasaran mencari strategi untuk sistem robotic kawanan dan membandingkan prestasi kaedah dicadangkan dengan kaedah, strategi sasaran pencarian berdasarkan Particle Swarm Optimization (PSO) dan Bat Algoritma (BA). EBA adalah kaedah swarm pengoptimuman hibrid BA dengan SDA. Kelemahan BA untuk meneroka penyelesaian sewajarnya telah diatasi dengan teknik SDA. Kaedah kajian ini dimulakan dengan pengawal berasaskan penelaan PID untuk WMR. Seterusnya, EBA penyesuaian digunakan untuk membangunkan sasaran pencarian robotik swarm untuk dua kes iaitu kedudukan awal yang berbeza dan berbeza jarak robot dalam kawanan dan berbeza penduduk robot dalam kawanan. Akhir sekali, prestasi algoritma dicadangkan berbanding dengan PSO dan BA. Keputusan yang diperolehi daripada kajian penyelidikan ini menunjukkan bahawa pengawal PD ditala oleh EBA mengatasi prestasi PID dan pengawal PI oleh daripada 11.00s dan 12.11s masa kenaikan untuk kedudukan X dan Y masing-masing, 20.08s dan 22.08s menetap masa dan tiada masa terlajak. Dengan menggunakan robot maju dengan pengawal PD, EBA membuktikan potensi untuk membangunkan sasaran terbaik strategi pencarian kepada sistem robotic swarm dengan nombor 5 larian dalam tempoh 49 saat yang merupakan nombor yang paling rendah lelaran dalam masa yang singkat dan 99% daripada ketepatan untuk tiba di lokasi yang dikehendaki berbanding dengan strategi pencarian sasar daripada PSO dan BA. Oleh itu, EBA yang merupakan kaedah yang dicadangkan mampu untuk membangunkan sasaran pencarian algoritma untuk swarm sistem robotic dan keuntungan pengawal penelaan PD untuk robot beroda mudah alih.
ABSTRACT

Swarm robotics is a multi-robot system which consists of more than two robots working together to accomplish a specific task. Swarm robotics has a huge potentiality to be applied in many sectors such as in agriculture and military due to the availability number of manpower in the system and the capability of robots to execute and accomplish task faster than manual labor. Swarm robotics system consists of at least two robots and can up to hundreds and thousands number of robots in the swarm. Thus, there is an urgent need to monitor and manage the movement of all robots in order to avoid any collision and accident among robots and at the same time to optimize the performance of swarm robotics system. In order to build a swarm robotics system that able to perform target searching task, the system needs to have a robust strategy. However, current solutions of target searching strategy for swarm robotics are unsatisfactory as the solutions are unable to make the robots move efficiently and not arrive at the target position precisely. There are many factors that might contribute to that condition e.g. controller, algorithm and communication. Each robot in the swarm needs to be equipped with good controller, e.g. robust PID controller. Although PID controller is a traditional controller with simple architecture, tuning PID controller to the best gains in order to develop good performance system is difficult. Thus, in order to identify and provide the solution, this research study decided to start the approach with the optimization of PID controller of Wheeled Mobile Robot (WMR). This is because, WMR must able to move effectively from one point to another point in order to execute the target searching task and to perform well in swarm robotics system. The objectives of this research study is 1) to tune and optimize gains of Proportional-Integral-Derivative (PID) controller for wheeled mobile robot (WMR), 2) develop target searching strategy for swarm robotics system and 3) compared the performance of proposed method with the well-established methods, target searching strategy based on Particle Swarm Optimization (PSO) and Bat Algorithm (BA). Extended Bat Algorithm (EBA) has been chosen as swarm intelligent based method for this research study. EBA is the hybrid swarm optimization method of BA with SDA. The weakness of BA to explore the solution appropriately has been overcome with SDA technique. The method of the research study is initiate with tune PID based controller for WMR. Next, adaptive EBA is applied to develop target searching of swarm robotics for two cases i.e. 1) different initial position and varies distance of robots in the swarm and 2) different population of robots in the swarm. Last but not least, the performance of proposed algorithm is compared with PSO and BA. Results obtained from this research study indicates that PD controller tuned by EBA outperformed the performance of PID and PI controller by of 11.00s and 12.11s of rise time for X and Y position respectively, 20.08s and 22.08s settling time X and Y position respectively and no overshoot for both position. By applying the developed robot with PD controller, EBA prove its potentiality to develop the best target searching strategy to the swarm robotics system with 5 number of iterations within 49 seconds. The result is the lowest number of iterations in the shortest of time. The accuracy is 99% to arrive at the desired location compared with target searching strategy based on PSO and BA. Hence, EBA which is the proposed method is able to develop target searching algorithm for swarm robotic system and tuning PD controller gains for wheeled mobile robot.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 3

1.3 Objectives 4

1.4 Significance of Study 5

1.5 Scopes and Limitations of Study 5

1.6 Thesis Organization 6

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Swarm Robotics 10

2.2.1 Swarm Robotics Target Searching 13

2.3 Wheeled Mobile Robot Controller 16

2.3.1 Tuning PID Controller 22
2.4 Bat Algorithm (BA) and Spiral Dynamic Algorithm (SDA) 23
2.5 Summary 25

CHAPTER 3 METHODOLOGY 26
3.1 Introduction 26
3.2 Project Flowchart 27
3.3 Development of Kinematic Model for WMR with PID Controller 31
3.4 Formulation of Extended Bat Algorithm 34
 3.4.1 Bat Algorithm 34
 3.4.2 Spiral Dynamic Algorithm (SDA) 36
 3.4.3 Extended Bat Algorithm 37
3.5 Optimize PID Controller of WMR 40
3.6 Development of Simulation System of Swarm Robotics 44
3.7 Target Searching of Swarm Robotics 44
3.8 Summary 45

CHAPTER 4 RESULTS AND DISCUSSION 47
4.1 Introduction 47
4.2 Experiment Setup 47
 4.2.1 PID Controller Design for Wheeled Mobile Robot (WMR) 47
 4.2.2 Target Searching Strategy for Swarm Robotics System (SRS) 48
4.3 Analysis on PID controller for Wheeled Mobile Robot 50
4.4 Comparison of PD controller tune and optimized by PSO and BA 55
4.5 Target searching algorithm based on EBA 61
 4.5.1 First case: Five homogenous robots with different distances with target 61
 4.5.2 Second case: Different number of robots in swarm 68
4.6 Comparison of target searching develop by PSO and BA with proposed method, EBA 69
4.7 Summary 72

CHAPTER 5 CONCLUSION 73
5.1 Introduction 73
5.2 Significant Contribution of the Research 74
5.3 Future Recommendation 74

REFERENCES 75
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Comparison for BA, SDA and EBA</td>
<td>39</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Parameters control setup for EBA, PSO and BA for phase 1</td>
<td>48</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Parameters control setup for EBA, PSO and BA for phase 2</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>PID gains value tuned by EBA</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Result analysis performance of WMR for X and Y position</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Table of weightage values for WS-EBA, WS-PSO and WS-BA</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Information of box plot for EBA, BA and PSO for Figure 4.2</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>PD gains value for comparison with different algorithm</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Performance of WMR for X position tuning by WS-EBA, WS-PSO and WS-BA</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Performance of WMR for Y position tuning by WS-EBA, WS-PSO and WS-BA</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Initial position of all robots in case I</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Result of swarm robotics system target searching strategy based on EBA</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Result of performance for each robot in the swarm robotics system for X position.</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Result of performance for each robot in the swarm robotics system for Y position.</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Initial position of robots in the swarm robotics system</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Can A Thousand Tiny Swarming Robots Outsmart Nature? | Robotics | DeepLook retrieve on 22nd May 2019, www.google.com/swarmrobots 3
Figure 2.1 K-Chart of Swarm Robotics Target Searching Strategy based on Extended Bat Algorithm research study 9
Figure 2.2 Example of robots collision in swarm robotics system (Source: Nazarahari, Khanmirza, & Doostie, 2019) 11
Figure 2.3 A sample run of BEECLUST aggregation developed by Farshad Arvin (Arvin et al., 2017). 12
Figure 2.4 Example of wheeled mobile robot developed by Makerblock Inc 17
Figure 3.1 Project flowchart for phase 1. 29
Figure 3.2 Project flowchart for phase 2. 30
Figure 3.3 Wheeled mobile robot (WMR), mBot. 31
Figure 3.4 Closed loop control system of WMR 33
Figure 3.5 Closed loop kinematic model WMR of mBot with PID controller tuned by EBA. 40
Figure 3.6 Flowchart of multiple objective optimization, weighted–sum Extended Bat Algorithm 42
Figure 3.7 Simulation based design for swarm robotics system 43
Figure 3.8 Flowchart of target searching algorithm for swarm robotics system. 46
Figure 4.1 Convergence curve fitness function for WS-EBA, WS-BA and WS PSO 56
Figure 4.2 Box plot of EBA, BA and PSO for result of fitness values for five times repeatability. 58
Figure 4.3 Graph of X position for optimizing PD controller by using different algorithm 59
Figure 4.4 Graph of Y position for optimizing PD controller by using different algorithm. 60
Figure 4.5 Initial position of robots in swarm with different distance from desired position (x: initial position of robots, bull eye: target/desired position. 62
Figure 4.6 Velocity graph of X position for five robots in swarm robot system perform target searching strategy develop by EBA 64
Figure 4.7 Velocity graph of Y position for five robots in swarm robot system perform target searching strategy develop by EBA. 65
Figure 4.8 Trajectories for five WMR robots with PD controller in swarm robotics system perform a navigation control based on EBA (a) t = 0s, initial position (b) t = 5s, (c) t = 10s, (d) t = 20s, (e) t = 50s, (f) final position 67
Figure 4.9 Performance of swarm robotics system by varies the number of robot in the swarm based on EBA target searching algorithm. 69

Figure 4.10 Performance of efficiency of swarm robotics system with difference target searching algorithm i.e. PSO, BA and EBA 70

Figure 4.11 Performance of accuracy of swarm robotics system with difference target searching algorithm i.e. PSO, BA and EBA 71
LIST OF SYMBOLS

\[x \] Position robot in x axis
\[y \] Position robot in y axis
\[\theta \] Orientation angle of robot
\[r \] Radius of mBot’s wheel
\[\omega_r \] Right wheel angular velocity
\[\omega_l \] Left wheel angular velocity
\[L \] Distance between mBot’s wheels
\[v \] Velocity of the agents / robots
\[\omega \] Angular velocity of the agents / robots
\[K_p \] Proportional gain
\[K_i \] Integral gain
\[K_d \] Differential gain
\[v_x \] Velocity for x component
\[v_y \] Velocity for y component
\[x_{desired} \] Desired / goal position in x axis
\[y_{desired} \] Desired / goal position in y axis
\[x_{actual} \] Actual / current position in x axis
\[y_{actual} \] Actual / current position in y axis
\[f \] frequency
\[x(agent) \] Agents in algorithm
\[A \] Loudness
\[p \] Pulse rate
\[R(\theta) \] Rotation matrix
\[r(k) \] Step rate
\[t \] time
\[i \] Number of agents/robot
\[f_{min} \] Minimum frequency
\[f_{max} \] Maximum frequency
\[\beta \] Random vector
\[x^* \] Current global best
\[I_n \] Identity matrix
\[k \] Number of iteration
\[\varepsilon \] Random vector for local movement
\[x_{\text{new}} \] New position of agents
\[x_{\text{old}} \] Old position of agents
\[A^+ \] Mean loudness of all bats
\[\alpha \] Random vector for loudness
\[\gamma \] Random vector for pulse rate
\[D \] Distance
\[C_1 \] Social coefficient
\[C_2 \] Cognitive coefficient
\[P_{\text{best}} \] Individual best position
\[g_{\text{best}} \] Local best position
\[w \] Inertia coefficient
\[T_r \] Rise time
\[T_s \] Settling time
\[O_s \] Overshoot
\[P \] The highest peak
\[T_p \] Time for the highest peak
\[f_T \] Total fitness
\[f_1 \] First fitness value
\[f_2 \] Second fitness value
\[W_1 \] First weightage
\[W_2 \] Second weightage
\[SSE \] Steady state error
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Proportional-Integral-Derivative</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional-Integral</td>
</tr>
<tr>
<td>PD</td>
<td>Proportional-Derivative</td>
</tr>
<tr>
<td>WMR</td>
<td>Wheeled mobile robot</td>
</tr>
<tr>
<td>SRS</td>
<td>Swarm Robotics System</td>
</tr>
<tr>
<td>EBA</td>
<td>Extended Bat Algorithm</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>BA</td>
<td>Bat Algorithm</td>
</tr>
<tr>
<td>IAE</td>
<td>Integral Absolute Error</td>
</tr>
<tr>
<td>ISE</td>
<td>Integral Sum Error</td>
</tr>
<tr>
<td>ITAE</td>
<td>Integral Time Absolute Error</td>
</tr>
<tr>
<td>ITSE</td>
<td>Integral Time Sum Error</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multi input multi output</td>
</tr>
<tr>
<td>SAR</td>
<td>Search and Rescue</td>
</tr>
</tbody>
</table>
REFERENCES

Pebriati, D. D., & Zulkifli Musa, E. (n.d.). *DEVELOPMENT OF INDOOR LOCALIZATION MOTION TRACKING ALGORITHM BY USING PARTICLE SWARM OPTIMIZATION FOR SWARM ROBOTICS.*

Suari

