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ABSTRAK 

Konsep kemapanan alam sekitar pertama kali diperkenalkan oleh Harlem Brundtland 

pada tahun 1980-an, terdiri daripada tiga kriteria iaitu ekonomi, alam sekitar dan sosial. 

Penyelidikan terkini mengenai petunjuk prestasi yang digunakan pada masa kini semakin 

dipersoalkan oleh para penyelidik lain kerana ia sukar difahami dan di nilai. Keaslian 

kajian yang dijalankan adalah bertumpu kepada pembangunan kaedah penilaian 

kemampanan baharu berdasarkan situasi di malaysia; tertumpu kepada proses melarik 

dan pengoptimuman parameter pemotongan. Dari perspektif pembuatan, kos pengeluaran 

berfungsi mengukur kemampanan ekonomi sebuah syarikat dalam jangka masa panjang. 

Alam sekitar pula adalah ukuran impak kesan daripada aktiviti pembuatan terhadap alam 

sekitar. Aspek sosial adalah rumit untuk dinilai; tetapi apabila merujuk kepada aktiviti 

pengeluaran, kesihatan pekerja boleh dipertimbangkan. Tiga jenis penilaian digunakan 

setelah mendapat maklum balas daripada responden yang bekerja di bidang pembuatan 

iaitu kos pembuatan, impak kesan alam sekitar, impak ergonomik dan satu kriteria 

tambahan iaitu tenaga yang digunakan semasa proses pembuatan pneumatic nipple hose 

connector. Kriteria tenaga diperkenalkan bagi mengatasi kelemahan pricipal component 

analysis (PCA). Jumlah kos pembuatan terdiri daripada enam jenis iaitu bahan mentah, 

alat pemotongan besi, cecair penyejuk pemotongan, cecair pelincir, tenaga elektrik dan 

tenaga manusia. Penilaian kesan alam sekitar yang digunakan adalah impak kitar semula 

bahan buangan dan tenaga terhadap alam sekitar. Impak mata alat, cecair penyejuk dan 

cecair pelincir terhadap alam sekitar tidak diambil kira kerana sumbangannya adalah 

terlalu kecil jika dibandingkan dengan jumlah bilangan produk yang boleh dihasilkan. 

Penilaian ergonomik yang digunakan adalah The Revised NIOSH Weight Lifting Index di 

mana ia mengukur impak kepada para pekerja semasa melakukan aktiviti mengangkat 

barang di dalam kilang. Pengiraan indeks ini mengambil kira data berat seunit bahan 

mentah yang digunakan dimana ianya juga digunakan di dalam pegiraan impak kitar 

semula bahan buangan dan kos bahan mentah. Kajian ini juga menggunakan kaedah 

neural network dan inversed neural network. Data yang diperolehi daripada kaedah 

pengiraan secara teori dan eksperimen dibandingkan bagi tujuan penentusahan di mana 

perbezaan penetusahan adalah kurang daripada 12%. Data eksperimen digunakan kerana 

model neural network menyediakan keputusan yang komprehensif berbanding data yang 

diperolehi melalui kaedah pengiraan secara teori. Data input yang digunakan untuk 

membangunkan model neural network dibandingkan dengan data eksperimen dengan 

penentusahan adalah kurang daripada 5%. Seterusnya, data input dan output eksperimen 

yang digunakan kemudiannya dibalikkan dengan input digunakan adalah sebagai output 

dan sebaliknya untuk mendapatkan parameter pemotongan optimum menggunakan 

model inversed neural network. Bagi mengoptimumkan parameter pemotongan, nilai 

minimum daripada setiap kriteria digunakan. Data tersebut diuji bagi tujuan pengesahan 

dan penentusahan dengan matlamat peratusan perbezaan kurang daripada 5%. Kelajuan 

pemotongan optimum dan feedrate adalah 55.25 m / min dan 0.10 mm / rev bagi 

Aluminium 6061 dan 82.00 m / min dan 0.10 mm / rev untuk bahan Tembaga C3604. 

Kesimpulannya, kajian ini membuktikan kaedah penilaian yang digunakan boleh 

mendapatkan parameter pemotongan optimum. Penambahan kriteria tenaga yang 

diperkenalkan bertujuan mengawal data tenaga semasa proses ramalan disebabkan 

kaedah penjumlahan yang digunakan di dalam setiap kriteria. Kaedah yang diperkenalkan 

ini boleh digunakan dalam menentukan parameter pemotongan bagi pelbagai proses 

pemesinan di masa hadapan.  
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ABSTRACT 

Sustainability concept was introduced by Harlem Brundtland in the 1980s, consists of 

three evaluation criteria’s; namely economics, environmental and social. However, recent 

research on the indicator used had increasingly called into question where the indicator is 

difficult to be assessed and the measurement is indirect. The novelty of the present study 

is to focus on the development of new sustainability assessment methods based on 

Malaysia industry scenario, demonstrating the new sustainability assessment model 

focusing on a turning process and optimized the assessment model to obtain the optimum 

cutting parameter. In the manufacturing industry perspective, manufacturing costs criteria 

is known to measure the company economic sustainability. Whilst, environmental criteria 

is a measure of the impact of manufacturing activities on the environment. The social 

criteria can be measured by using the production operator health. In the present study, 

three main sustainability evaluation methods are used after getting feedback from the 

survey respondents which mostly works in the manufacturing industry. They are the total 

manufacturing costs, environmental impact, ergonomics impact and combined with 

energy criteria used during the manufacturing process of a pneumatic nipple hose 

connector. Energy criteria was introduced because of the implementation of principal 

component analysis (PCA) disadvantage. The total manufacturing costs consists of six 

cost assessments which include raw material, tool, coolant, lubricant, energy and 

manpower. The environmental impact assessments used are chip recycling impact and 

energy impact. Cutting tool impact, coolant impact and lubricant impact did not take into 

account as the contribution of impact to the environment is too small when compared to 

the number of the produced product. The ergonomic assessment used is The Revised 

NIOSH Weight Lifting Index as the method measures the potential impact of the worker 

during lifting activities. The index calculation requires raw material mass data as this also 

used either in chip recycling impact and raw material cost assessment. The present study 

also highlights the usage of neural network and inversion of the neural network model 

assessment. The data obtained from both theoretical and experimental methods were 

compared for their validity which is proved to be less than 12%. The experimental data 

used for the development of neural network model provides comprehensive results in 

comparison to the theoretical data. Additionally, inputs data tested using the developed 

neural network model produced the predicted neural network results for all the four 

criteria. These data were compared with the experimental data for validation and showed 

the value of less than 5%. Later, the input and output experimental data used are then 

inversed with the input is used as an output and (vice-versa) to obtain the optimum cutting 

parameters by using the inversion of neural network model method. For optimization of 

cutting parameters, the minimum values from each criteria were selected. These 

parameters were tested for verification and validation purpose in both experimental and 

theoretical assessment methods. The targeted percentage difference used at this stage is 

5%. The results of optimum cutting speed and feedrate obtained in this project is 55.25 

m/min for cutting speed and 0.10 mm/rev for Aluminum 6061 and 82.00 m/min and 0.10 

mm/rev for Brass C3604 material. As a conclusion, this study proved that sustainability 

assessment method can be used to select optimum cutting parameters. Additional energy 

criteria being introduce able to specifically control the energy data since the summation 

of all assessment data being used in each criterion. In the future, the proposed method can 

be applied in other machining process for a better machining parameter optimization in 

others machining process.  
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