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ABSTRAK 

Seiring dengan perkembangan revolusi industri keempat, revolusi kenderaan 

konvensional telah mengalami perubahan yang drastik, di mana kenderaan konvensional 

kini telah berevolusi kepada kenderaan elektrik dan dipacu sendiri. Antara teknologi baru 

di dalam pembinaan kenderaan elektrik adalah teknologi berasaskan pacuan motor dari 

dalam tayar (IWMEV). Seperti kenderaan pembakaran dalaman konvensional, IWMEV 

juga mudah terdedah kepada ketidakstabilan yang boleh mengundang kemalangan. 
Kemalangan boleh dibahagikan kepada tiga kategori berdasarkan punca, iaitu keadaan 

kenderaan, kesilapan manusia dan keadaan alam sekitar. Kebanyakan kemalangan yang 

berlaku adalah hasil tingkah laku manusia. Beban berlebihan yang tidak seimbang telah 

dikenalpasti sebagai salah satu faktor yang mempengaruhi kestabilan kenderaan sehingga 

menyebabkan kemalangan berlaku. Peningkatan beban hanya di satu sisi kenderaan 

mengubah kedudukan pusat graviti yang membawa kepada peningkatan kebarangkalian 

untuk ketidakstabilan kenderaan berlaku. Berbanding kenderaan pembakaran dalaman 

konvensional, IWMEV dianggap sebagai kenderaan ringan kerana ketiadaan struktur 

mekanikal dan enjin yang kompleks. Objektif penyelidikan ini adalah untuk 

mengenalpasti kesan pengagihan beban berlebihan yang tidak seimbang terhadap 

kestabilan kenderaan elektrik. Oleh itu, model simulasi matematik EV dihasilkan dengan 

menggabungkan persamaan pemindahan beban, model tayar Dugoff, gabungan 

persamaan dinamik kenderaan dan model motor arus terus. Model matematik yang 

dibangunkan divalidasi menggunakan kereta EV kompak. Seterusnya, model ini 

digunakan untuk mengenal pasti kesan pengagihan beban di sebelah kiri dan kanan kereta 

EV semasa pusingan tajam. Simulasi dijalankan dengan menggunakan empat profil 

halaju iaitu 10 km/j, 15 km/j, 20 km/j dan 25 km/j. Keputusan analisis menunjukkan 

bahawa kenderaan mencapai had kestabilan kadar pekali bulatan geseran (FCC) pada 

60% daripada pengedaran beban di sebelah kanan semasa pusingan ke kanan pada 

25km/j. Ini menyebabkan kenderaan tersebut untuk terbabas. Selain itu, satu indeks 

kestabilan berdasarkan beban yang dinamakan Binary Attribute Stability Indicator 

(BASI), diperkenalkan untuk mengukur kesan pengedaran beban terhadap kestabilan EV. 

BASI boleh membantu mengenalpasti tahap kestabilan EV tersebut berdasarkan pecutan 

sisi, kadar olengan, pekali bulatan geseran (FCC) dan indeks golekan. 
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ABSTRACT 

The recent development of vehicle technology is shifting towards the autonomous and 

electric vehicle. Electric vehicle technology has grown to pave a path towards wheel 

motored electric vehicles (IWMEV). Like conventional internal combustion vehicle, 

IWMEV are also susceptible to instability which could result in accidents. Accidents are 

divided into three categories based on the cause, namely vehicle condition, human error 

and environmental condition. Most accidents that occur are results of human behaviour. 

Unbalanced overloading is identified as one of the factors that affect the stability of the 

vehicle thus, leading to accidents. Increasing load on one side of the vehicle moves the 

position of the centre of gravity leading to an increase in the probability of vehicle 

instability. Moreover, compared to conventional internal combustion vehicle, IWMEV 

are considered lightweight vehicle due to the absence of mechanical linkage and engine. 

This causes IWMEVs to be affected by unbalanced overloading. Therefore, the objective 

of this research is to identify the effect of unbalanced overloading on the stability profile 

of the electric vehicle. Thus, a simulation model of an IWMEV is developed by 

combining the load transfer equation, Dugoff’s tire model, nonlinear vehicle dynamic 

equation and the DC motor model. The developed model is verified using a compact 

IWMEV. Then, the model is used to identify the effect of load increase at the left and 

right side during a sharp right turn. The vehicle is set to run at four different velocities 

namely 10 km/h, 15 km/h, 20 km/h and 25 km/h. It is observed that the vehicle reaches 

the Friction Circle Coefficient limit at the front left tire for a 60% right load increase 

condition. This causes the vehicle to crash. A load stability index named Binary Attribute 

Stability Indicator (BASI) is proposed to identify the stability of the vehicle at different 

load distribution. The BASI can help determine the stability level of the vehicle based on 

lateral acceleration, yaw rate, FCC, and rollover index. 
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