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ABSTRAK 

 Penggugusan data adalah salah satu cabang yang paling popular dalam pembelajaran 

mesin dan analisis data. Algoritma penggugusan berasaskan pemetakan seperti 

pendekatan cara K terdedah kepada masalah penghasilan satu set gugusan yang jauh 

dari sempurna disebabkan sifat kebarangkalian. Proses penggugusan bermula dengan 

beberapa sekatan rawak yang mencuba untuk memperbaiki sekatan secara beransur-

ansur. Sekatan awalan yang berbeza boleh menghasilkan gugusan akhiran yang berbeza. 

Mencuba semua calon gugusan untuk hasil yang sempurna terlalu memakan masa. 

Algoritma metaheuristik bertujuan mencari global optimum dalam masalah berdimensi 

tinggi. Algoritma metaheuristik berjaya dilaksanakan pada masalah penggugusan data 

yang mencari penyelesaian optimum yang terhampir dari segi kualiti gugusan yang 

dihasilkan. Baru-baru ini, algoritma yang diilhami semula jadi dicadangkan dan 

digunakan untuk menyelesaikan masalah pengoptimuman secara umum dan masalah 

penggugusan data khususnya. Algoritma pengoptimuman lohong hitam (BH) digariskan 

sebagai penyelesaian bagi masalah-masalah penggugusan data. BH adalah metaheuristik 

berasaskan populasi yang meniru fenomena BH di alam semesta. Dalam hal ini, setiap 

penyelesaian yang bergerak dalam ruang carian mewakili bintang individu. BH asli 

menunjukkan prestasi yang baik apabila diterapkan pada dataset tanda aras; walau 

bagaimanapun, ia tidak mempunyai keupayaan penerokaan. Selaras dengan batasan ini, 

kajian ini mencadangkan varian baru BH melalui dua modifikasi yang berbeza pada BH 

asli. Pengubahsuaian pertama ialah penyepaduan algoritma BH dan penerbangan Levy, 

yang menghasilkan kaedah penggugusan data, iaitu "lohong hitam penerbangan Levy 

(LBH)". Dalam LBH, pergerakan setiap bintang bergantung pada saiz langkah yang 

dihasilkan oleh pengagihan Levy. Oleh itu, bintang akan meneroka kawasan yang lebih 

jauh dari BH terkini apabila nilai saiz langkahnya besar, dan sebaliknya. 

Pengubahsuaian kedua adalah BH populasi berganda yang dicadangkan sebagai 

generalisasi kepada algoritma BH, di mana algoritmanya tidak bergantung kepada 

penyelesaian terbaik, tetapi pada satu set penyelesaian terbaik yang dihasilkan, yang 

dikenali sebagai "MBH". Hasilnya, varian baru BH untuk dataset dimensi tinggi yang 

dipanggil lohong hitam Levy populasi berganda (MLBH) dicadangkan untuk 

mengendalikan dataset dimensi biasa dan tinggi melalui penyepaduan LBH dan MBH. 

Hasil yang diperoleh dibandingkan dengan BH dan algoritma-algoritma 

pengoptimuman sebelumnya untuk kedua-dua fungsi ujian serta penggugusan data dari 

segi dataset dimensi biasa dan tinggi. Keseluruhan hasil eksperimen dan analisis hasil 

yang diperoleh menunjukkan bahawa algoritma yang dicadangkan memenuhi sebagian 

besar kriteria yang diperlukan. Tambahan pula, keputusan menunjukkan kadar 

penumpuan yang tinggi, di mana prestasi algoritma tertakluk kepada masalah 

penggugusan data dan disiasat menggunakan enam dataset sebenar. Data-data ini 

diambil dari makmal pembelajaran mesin UCI. Arah penyelidikan masa depan juga 

dibincangkan dalam kajian ini. 
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 ABSTRACT 

Data clustering is one of the most popular branches in machine learning and data 

analysis. Partitioning-based type of clustering algorithms, such as K-means, is prone to 

the problem of producing a set of clusters that is far from perfect due to its probabilistic 

nature. The clustering process starts with some random partitions at the beginning, and 

it tries to improve the partitions progressively. Different initial partitions can result in 

different final clusters. Trying through all the possible candidate clusters for the perfect 

result is too time consuming. Metaheuristic algorithm aims to search for global 

optimum in high dimensional problems. Meta-heuristic algorithm has been successfully 

implemented on data clustering problems seeking a near optimal solution in terms of 

quality of the resultant clusters. Recently, nature-inspired algorithms have been 

proposed and utilized for solving the optimization problems in general, and data 

clustering problem in particular. Black Hole (BH) optimization algorithm has been 

underlined as a solution for data clustering problems. The BH is a population-based 

metaheuristic that emulates the phenomenon of the BH in the universe. In this instance, 

every solution in motion within the search space represents an individual star. The 

original BH has shown a superior performance when applied on a benchmark dataset; 

however, it lacks exploration capabilities. In keeping with this limitation, this study 

proposes a new variant of BH through two different modifications on the original BH. 

The first modification is the integration of BH algorithm and levy flight, which result in 

data clustering method, namely “Levy Flight Black Hole (LBH)”. In LBH, the 

movement of each star mainly depends on the step size generated by the Levy 

distribution. Therefore, the star explores a far area from the current BH when the value 

step size is big, and vice versa. The second modification is the multiple population BH 

that is proposed as a generalization to the BH algorithm, in which the algorithm was not 

reliant upon the best solution but rather on a set of best solutions generated, called 

“MBH”. As a result, a new variant of BH for high dimensional datasets which is called 

multiple population levy black hole (MLBH) has been proposed for handling normal 

and high dimensional datasets through the integration of LBH and MBH. The obtained 

results were compared with the BH and previous optimization algorithms for both test 

functions as well as data clustering in terms of normal and high dimensional datasets. 

Overall, the experimental outcomes and analysis of the obtained results indicated that 

the proposed algorithms have satisfied most of the required criteria. Furthermore, the 

results revealed a high convergence rate, upon which the algorithm’s performance was 

subjected to data clustering problems and investigated using six real datasets. The 

datasets were retrieved from the UCI machine-learning laboratory. The future research 

directions are also discussed in the study. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background 

We are living in an information explosion era where data is produced every 

second in numerous formats including text, characteristic, number, voice, video, etc. 

Recently with the concept of big data and its “4V” features –volume, velocity, variety 

and value, data scientists are confronted with a new realm of computational challenges. 

Exploring this data and extracting meaningful patterns has become a hot topic in 

Knowledge Discovery in Database and Data Analysis that attracts unprecedented 

research attention from academia and industry. New models, methods and techniques 

are proposed to solve these problems, i.e. deep learning and distributed operating 

system. 

Data clustering is one of the most significant branches of machine learning and 

data analysis. It has been widely applied in many research areas including pattern 

recognition, image segmentation. Data clustering aims to find the structure of a given 

dataset by grouping together data vectors into a number of clusters according to their 

similarity. Owing to most data clustering is used for unsupervised learning, it is more 

challengeable than supervised regression or classification (Sarstedt & Mooi, 2019).  

Data clustering is widely used in many areas including data mining, statistical 

data analysis, machine learning, pattern recognition, image analysis, information 

retrieval, and more. This is due to clustering methods that can be categorized into 

various methods, such as partitional, hierarchical, density-based, grid-based, and model-

based methods, accordingly (Arora & Chana, 2014). Per the above methods, partitional 
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clustering methods are the type that is commonly used, in which the K-means algorithm 

is an example of partitional and center-based clustering algorithms.  

Since 1960s, most of the clustering algorithms were developed from the 

classical data clustering principles, including partition-based method i.e. K-means 

algorithm, hierarchical algorithm which is also known as single-link algorithm, density 

based method e.g. DBSCAN, and model-based algorithm e.g. Gaussian Mixture Model 

Expectation Maximization Algorithm (GMM-EM) algorithm. Some algorithms are 

developed from famous classification algorithms, e.g. support vector clustering (SVC). 

These methods differ in the choices of the definition of objective function, probabilistic 

generative models, and heuristics methods (Diaz et al., 2018). 

Clustering could be seen as an optimization problem that tries to label all the 

data instances into a certain set of classes, where the distances between the data in 

different classes are maximized and the distances among the data within the same class 

are minimized. Classical algorithms have their own shortcomings that many parameters 

need to be manually predefined and the choices have great effect on clustering results. 

For instance, the pre-set parameter k in K-means algorithm refers to how many clusters 

the algorithm aims to find (Janardhanan et al., 2019). The radius and eps in DBSCAN, 

refer to the maximum distance of two data that can be clustered into one class and the 

minimum number of data a cluster should have, respectively. Although a number of 

clustering methods have been proposed, they are confronted with difficulties in meeting 

the requirements of automation, high quality, and high efficiency at the same time 

(Gupta & Jha, 2018). Classical clustering method, such as K-means algorithm, has the 

advantage of being simple and fast. However, its iterative and probabilistic nature may 

lead the clustering centers stuck into local optimum easily. That means better 

arrangements of clusters could be available ahead, after some clusters were formed 

prematurely (Aggarwal & Reddy, 2013). 

Meta-heuristic algorithms are some branches of optimization algorithms which 

are designed to find global or near global optimal solutions at reasonable computational 

cost. These algorithms have unique designs usually equipped with powerful searching 

ability (Kumar et al., 2018). They have been successfully implemented in many 

application areas including pattern recognition, data mining, parameter tuning and so 

on. The well-known metaheuristic algorithms that have ever been applied to data 
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clustering successfully include but not limit to Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Cuckoo Search Algorithm (CS), Firefly Algorithm (FF), and Wolf 

Search Algorithm (WSA) (Yang, 2010c). 

In case of its implementation to solve a data clustering issue, the black hole 

remains relevant despite performance evaluation showing that BH is superior compared 

to other similar processes. Similarly, further enhancement for the approach will allow 

the discovery of powerful phenomenon in the solution space, while also making space 

for effectual clustering processing. In this perspective, the original black hole algorithm 

suffers from weaknesses in exploration (Kumar et al., 2015; Piotrowski et al., 2014). 

Therefore, it requires too many reiterations to attain an optimum resolution. In addition, 

the formula for moving the stars to explore the solution space also causes them to over-

scatter and leads to slow convergence.  

1.2 Problem Statement  

Data clustering is one of the common data mining techniques that is used for 

retrieving useful information from a particular dataset (Agarwal & Mehta, 2019). Data 

clustering involves selecting the k-cluster centers randomly and grouping that data 

around those centers. Clustering techniques have been used in many areas such as 

image processing, document clustering, geophysics, prediction, marketing and 

customers’ analysis, agriculture, security and crime detection, medicine, anomaly 

detection and biology (Mahdavi & Abolhassani, 2009; Škrjanc et al., 2018). 

With the advancement in complementary data and knowledge base, gene 

expression data analysis is gradually shifting from the application of pure data-oriented 

methods to those that aim to include additional knowledge in data analysis, otherwise 

known as intelligent data analysis (Bellazzi & Zupan, 2007). Clustering techniques help 

in the understanding of the functions of genes, gene regulation, cellular processes and 

cell subtypes; genes with similar expression patterns and cellular functions can be 

clustered together. This approach can also help in understanding the unexpressed 

functions of many genes (Eisen et al., 1998). Co-expressed genes in the same cluster 

may be involved in the same cellular processes; a strong correlation of the expression 

patterns between such genes can indicate co-regulation (Clough & Barrett, 2016; 

Fehrmann et al., 2015; McDowell et al., 2018). 
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The nature inspired clustering techniques have been introduced recently as soft 

computing techniques based on the natural behaviour of swarms. These clustering 

algorithms generally make predictions on gene expression datasets by exploiting the 

similarity of gene expression patterns to make good clusters. However, such clustering 

suffers from incorrect grouping of genes. Although the soft clustering approach 

performs better than the traditional clustering, it still lags in adapting intelligence to 

discover inherent structure of clusters (Banu & Andrews, 2015). 

Clustering problems can also be considered as optimization problems which can 

be addressed using either single or multi-objective metaheuristics (Jaiprakash & Nanda, 

2019; Kowalski et al., 2019). A meta-heuristic optimization approach called Black Hole 

(BH) was invented recently. The BH optimization was inspired by nature or physics of 

BH and its interaction with the surrounding stars. It mimics the behaviour of the black 

hole in pulling the surrounding stars to itself (Hatamlou, 2013). This algorithm has been 

used to solve data clustering problems and it showed a superior performance compared 

to meta-heuristics (Zuwairie et al., 2018). The BH algorithm consists of two main 

searching components- the global search ability (exploration) and local search ability 

(exploitation). In the BH, the stars should explore the search space while moving 

towards the best solution (i.e., Black Hole) in a uniform distribution (randomly) 

generated step size (Piotrowski et al., 2014). This leads to the generation of almost the 

same step sizes for every star in the population to ensure the stars do not explore far 

areas from the best solution. In other words, the BH algorithm does not perform 

exploration in most iterations (Kumar et al., 2015); thus, the exploitation ability will be 

much higher than the exploration. Consequently, the algorithm will be easily trap in 

local optima (Mirjalili et al., 2016; Wang et al., 2015).  

The BH was hybridized with a HS algorithm to solve the problem of BH. In this 

framework, the BH is used to produce an initial clustering solution to a problem while 

the HS algorithm is applied to improve the solution’s quality (Chandrasekar & 

Krishnamoorthi, 2014; Eskandarzadehalamdary et al., 2014). 

To overcome the issue of the BH being easily trapped in local optima, this study 

proposes the combination of Levy Flight with the uniform distribution movement 

equation in order to generate long and small step sizes (Chawla & Duhan, 2018; Emary 

et al., 2019), which will enhance the exploration ability of BH and keep it from local 



 

5 

optima entrapment. The proposed algorithm is called Levy flight black hole (LBH) 

algorithm. Even after the use of the Levy Flight to enhance the exploration of the BH, 

the exploration and exploitation capabilities of the resulting LBH are still not balanced. 

This is because of the failure of the best solution to explore different areas of the 

solution space when all the stars move towards the best solution (Hussain et al., 2018; 

Niu et al., 2005). To address this imbalance, the Multiple Population Black Hole 

(MBH), a new variant of the BH, was proposed for the enhancement of the trade-off 

between the exploration and exploitation capabilities of original BH. The overall 

problem of the BH (easy entrapment in local optima and exploration-exploitation 

imbalance) was solved in this study by combining LBH and MBH to produce a new 

variant of the BH algorithm called “Multiple Levy Flight Black Hole (MLBH)” 

algorithm. This algorithm ensures the minimization of the intra-cluster distance in the 

original BH and a trade-off between the exploration and exploitation capabilities of the 

BH. The MLBH was proposed to handle these issues in both normal and high 

dimensional datasets. 

1.3 Research Objectives 

The main goal of this research is to develop a new clustering algorithm for 

normal and high dimensional data based on Black Hole algorithm. In order to achieve 

this goal, the following objectives are formulated:  

i. To design a new variant of black hole (BH) algorithm with levy flight (called 

LBH) 

ii. To improve the BH and LBH by introducing the multi-population support 

(called MBH) and its ensemble algorithm (called MLBH).  

iii. To evaluate LBH, MBH and MLBH with existing meta-heuristic algorithms use 

standard functions and datasets. 

1.4 Research Scope and Limitations 

As stated previously, data clustering is a very important process that is used to 

enhance the performance of data mining tasks. MLBH is single objective algorithm 

consists of two modifications, first the Levy Flight Black Hole (LBH), while the second 
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is the Multiple Black Hole (MBH). The proposed algorithm with their modifications is 

tested and validated over nine continuous benchmark test functions (unimodal and 

multimodal). The results of MLBH, LBH, and MBH are compared with of Big Bang–

Big Crunch (BB-BC), Artificial Bees Colony (ABC), Particle Swarm Optimization 

(PSO), and Levy Firefly Algorithm (LFFA), Grey Wolf Optimizer (GWO), 

Gravitational search algorithm (GSA), Bat algorithm (BA), cat swarm algorithm (CSA), 

and Black hole (BH) respectively. Additionally, the proposed algorithm with their 

modifications are tested and validated on data clustering problem, over 6 normal well-

known University of California Irvine (UCI) data sets, which have been used by many 

researchers in the literature. These datasets are Iris, Wine, Glass, Cancer, Contraceptive 

Method Choice (CMC) and Vowel. Finally, MLBH, LBH and MLBH used to solve the 

clustering problem in the high dimensional datasets.  

1.5 Thesis Organization 

The remainder of this thesis is organized into five chapters. The current chapter 

gives an overview of data clustering the background followed by problem statement, 

then the research objectives and scope.  

Chapter 2 is basically divided into three main sections. The first section is about 

data clustering. The second section covers extensive review on the metaheuristic 

algorithm in data clustering and also various approaches were used to solve data 

clustering problem. The third section is about Black hole algorithm, a meta-heuristic 

algorithm which is inspired by the behaviour of physics phenomena, followed by review 

of Black Hole algorithm in different fields and the pros and cons of the algorithm. The 

chapter is concluded with highlights of the research gap in applying Black Hole 

algorithm for data clustering. 

Chapter 3 discusses and justifies the detailed of research methodology that 

applied to achieve the research objectives. It describes all the new modification applies 

for the new variant and evaluation measures. The components of the LBH, MBH and 

MLBH are explained in detail. Moreover, the chapter describes the normal datasets and 

the high dimensional datasets.  

Chapter 4 presents the experimental evaluation including: experimental setting, 

searching performance, clustering performance as well as the statistical analysis of this 
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study. Moreover, the chapter describes the experimental evaluation results of the 

proposed MLBH, LBH and MBH on high dimensional datasets. In the last chapter is 

concluded with the analysis and findings.   

Finally, the conclusion of this work is given in chapter 5, where the 

achievements and contributions are summarised.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction  

In this chapter, first the thesis briefly described data science, then, the main steps 

in data clustering before providing an overview of clustering based on metaheuristic 

algorithms. Additionally, the thesis also described the concept of black hole. An 

illustration of the review process carried out in this chapter is depicted in Figure 2.1. 
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Figure 2.1 Main concepts covered in chapter two 
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2.2 Clustering 

Clustering is a data mining technique (unsupervised) which can be applied 

effectively in such circumstance. In this technique, the data is partitioned into clusters 

and each cluster has elements of the same attributes but different from the elements of 

the other clusters. Clustering is applicable in data exploration to find the shape of the 

dataset; it can also be applied in the detection of anomalies. Data clustering before the 

analysis minimizes the computational cost significantly (Aggarwal & Reddy, 2013).  

The term data clustering came into print for the first time in the year 1954 when 

an article dealing with anthropological data had this term in its title (Cohen et al., 1954). 

Cluster analysis has its origin in domains, such as machine learning, artificial 

intelligence, data mining, biology, statistics, and so on. Different fields use distinctive 

names for cluster analysis; some of them are as follows: Q Analysis, data visualization, 

typology, numerical taxonomy, clumping, and so on.  

Clustering can be categorized into hard clustering or fuzzy clustering; hard 

clustering refers to the process of assigning each object to just one of the clusters with a 

certain level of membership (equal to 1) and well-defined boundaries with the other 

clusters. In Fuzzy clustering, each object can be assigned to more than one cluster with 

different degrees of membership (between 0 and 1), and fuzzy boundaries with the other 

clusters. The aim of hard clustering is to divide the dataset Z into c clusters (assuming 

that c is known based on the previous knowledge). A hard partition of Z can be defined 

using classical sets as a family of the subsets {𝐴𝑖|1 ≤ 𝑖 ≤ 𝑐} ⊂ 𝑃(𝑍). 

 Union of all the 𝐴𝑖𝑠 is equal to the data set 𝑍 itself.  

 All these subsets are disjoint. 

 There is no empty set, but no one contains all the data in 𝑍. 

Considering the membership functions (MF), a cluster can be conveniently 

represented by the partition matrix U = [𝜇𝑖𝑘]𝑐∗𝑁. In this matrix, the 𝑖𝑡ℎ contains values 

of the MF 𝜇𝑖 of the 𝑖𝑡ℎ subset 𝐴𝑖 𝑜𝑓 𝑍 𝜇𝑖 and can take the value 0 and 1, and a classic 

one is described as follows: 
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(i) In the cluster, all the instances closely be alike while those in different clusters 

must significantly differ. 

(ii) There must be a clear measure of similarity and differences, and they must have 

a practical meaning. 

Similarity and dissimilarity measures are an important notion in clustering 

which deals with the similarities and differences between the objects to be clustered. 

There are several similarity measures, as discussed below: 

 Euclidean Distance (ED): The ED between two points (𝑝 and 𝑞) is a measure of the 

length of the line that connects them. In Cartesian coordinates, if 𝑝 =

 𝑝1, 𝑝2, 𝑝3 … . . 𝑝𝑛),  and 𝑞 = (𝑞1, 𝑞2, … … , 𝑞𝑛), the ED from p to q or vice versa is 

given by: 

D(p, q) = d(q, p) =  √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ (𝑞𝑛 − 𝑝𝑛)2 = √∑ (𝑞𝑖 − 𝑝𝑖)2𝑛
𝑖=1   2.1 

 Manhattan Distance: Also known as rectilinear distance, 𝐿1 distance or 1norm, city 

block distance, Manhattan distance or Manhattan length, with corresponding 

variations in the name of the geometry. 

                                     d(p, q) = ‖𝑝 − 𝑞‖ =√∑ |𝑞𝑖 − 𝑝𝑖‖
𝑛
𝑖=1    2.2 

 Mahalabonis Distance: This measure is based on the relationship between variables 

through which different patterns can be identified and analysed. This measure 

determines the similarity between a known and an unknown sample set. It is 

different from the ED by considering the relationship between a dataset and its 

scale-invariant. The Mahalanobis distance of a multivariate vector 𝑥 from a group of 

values with mean and covariance matrix 𝑆 is defined as: 

𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛)𝑇 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛)𝑇 
2.3 

𝑥𝜇 = (𝜇1, 𝜇2, … . , 𝜇𝑛)𝑇 
2.4 
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𝐷𝑀(𝑥) = √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇) 2.5 

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces 

to the Euclidean distance (Nerurkar et al., 2019). If the covariance matrix is diagonal, 

then the resulting distance measure is called the normalized Euclidean distance. 

 Hamming Distance: The Hamming distance between two strings of equal length is 

the number of positions at which the corresponding symbols are different. It 

measures the minimum number of substitutions required to change one string into 

the other, or the number of errors that transformed one string into the other. For 

binary strings 𝑎  and 𝑏  the Hamming distance is equal to the number of ones in 

𝑎 𝑋𝑂𝑅 𝑏. 

 Minkowski distance: The Minkowski distance is generalization of both the 

Euclidean distance and the Manhattan distance. The Minkowski distance of order 𝑝 

between two points 𝑝 = (𝑥1, 𝑥2, 𝑥3 … . . 𝑥𝑛)  and 𝑄 =  𝑦1, 𝑦2, 𝑦3 … . . 𝑦𝑛) ∈ 𝑅𝑛  is: 

(∑ 𝑥1
𝑛
𝑖=1 |𝑦1)

1
𝑝 2.6 

 Jaccard Distance: Jaccard index (Jaccard, 1901) is one of the external metrics that 

has been used in various studies as external index (Chaovalit, 2009; Papapetrou & 

Chen, 2011; Kremer et al., 2011). The Jaccard score is defined as: 

Jaccard(C, G) = √
|𝑇𝑃|

|TP| + |FN| + |FP|
 

2.7 

The standard clustering process can be classified into the following steps:  

1- Feature extraction/selection: During feature selection, the specific features that 

portrays the differences between different patterns that belongs to different 

clusters (features such as immune to noise, easy to extract and interpret) are 

selected. However, some clustering frameworks perform poorly when applied to 

large highly dimensional datasets, especially the model-based algorithms which 

have been shown to be good on small-sized datasets but poor when applied to 

large-scale datasets.   
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2- Design/selection of a clustering algorithm: Usually, this step is combined with 

the corresponding proximity measure selection and the criterion function 

construction. Virtually, all clustering frameworks are explicitly or implicitly 

associated with some proximity measures definition. Upon the selection of a 

proximity measure, the clustering criterion function construction makes the 

clusters partitioning an optimization problem which is mathematically well 

defined but with several solutions in the literature. Several clustering algorithms 

have been developed to address different problems in several fields; however, no 

universal algorithm which can solve all problems currently exists.  

3- Cluster validation: To provide users with a certain level of confidence for 

clustering results derived from certain algorithms, there is a need to have 

effective evaluation criteria and standards.  

4- Results interpretation: Clustering processes mainly aims at the provision of 

meaningful insights from the original data which can be used to effectively solve 

the problems at hand. However, there may be a ned for further analyses to 

ensure the reliability of the extracted information from the dataset. 

Clustering is often applied in image processing, medical imaging analysis, data 

statistical analysis, and other scientific/engineering fields. Additionally, it is a common 

statistical data analysis technique used in different fields such as machine learning, 

image analysis, pattern recognition, information retrieval, and bioinformatics. The 

differences in clusters based on their shape, size, and density. Figure 2.2 and Figure 2.3 

demonstrates that clusters may differ in terms of their shape, size, and Density. 

 

Figure 2.2 Random point
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Figure 2.3 Input data 

2.2.1 Clustering Optimization Problem 

Clustering problems can be considered as optimization problems that could be 

addressed using either single or multi-objective metaheuristics (Nayak et al., 2019; 

Ramadas & Abraham, 2019). L𝑒𝑡 Ω = {𝐶1, 𝐶2, … . 𝐶𝐵(𝑛)}  represent a set of all the 

feasible clustering whose elements are the clustering solutions of a given dataset 𝑋, and 

let 𝑓 represent a single criterion function. Then, the major aim of a single-objective 

clustering problem (Ω, 𝑓) is the determination of the clustering 𝐶∗ for which 𝑓(𝐶∗) =

𝑚𝑖𝑛{𝑓(𝐶)|𝐶 ∈ Ω} ; note the minimization of 𝑓  (·) without a loss of generality. 

Contrarily, a multi-objective clustering problem (Ω, 𝑓1, 𝑓2, . . . , 𝑓𝑚) aims at the 

determination of the clustering 𝐶∗ for which 𝑓(𝐶∗) = 𝑚𝑖𝑛{𝑓(𝐶)|𝐶 ∈ Ω}, 𝑡 = 1,2, … 𝑚, 

where 𝑓_𝑡, 𝑡 = 1,2, … 𝑚 represents a set of m criterion functions. Normally, there are 

multiple optimal solution to multi-objective problems the pareto dominance principle 

(Nayak et al., 2019) which are often identified using. Considering two clustering 

solutions 𝐶_1, 𝐶_2 ∈  Ω, 𝐶_1 is said to have dominated 𝐶2  (denoted as 𝐶1≺𝐶2) if the 

following two criteria are met equation 2.8, 2.9 and 2.10 (Prakash & Singh, 2019): 

𝑓(𝐶1) ≤ 𝑓𝑡(𝐶2)∀𝑡 ∈ 1,2, … . 𝑚     2.8 

  

𝑓(𝐶1) < 𝑓𝑡(𝐶2)∃𝑡 ∈ 1,2, … . 𝑚 
2.9 
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𝐹(𝑂. 𝑍) = ∑ ∑ ‖𝑂𝑖 − 𝑍𝑗‖
2𝐾

𝑗=1
𝑁
𝑖=1   2.10 

 

It is worth to mention that the proposed algorithms in this thesis solves the 

clustering problem as a single objective problem, where the main goal is to minimize 

the distance between the intra-clusters.  

2.2.2 Challenges of Clustering 

Clustering is an exploratory analysis technique that performs unsupervised learning. It 

has received several attentions because in practice, labelled data is usually available in a 

small proportion along with unlabelled data (Sivaraman et al., 2019). As no information 

is available regarding the number of clusters or with regard to specific assignments of 

objects, the clustering problem leaves space to a wide choice of objective functions and 

similarity functions, depending strongly on the domain under investigation. The choice 

is not straight forward. Thus, several challenges can be identified in the clustering 

analysis.  

 An objective function must be formulated to quantify the degree of interest or 

naturalness in groupings. 

  Although in clustering the data items are grouped based on similarity, the 

notion of similarity is seldom given in the problem statement. The metric 

employed has a great impact on the result of the clustering algorithm since under 

different metrics, the similarity space changes. If extra-information is available 

in the form of pair-wise constraints of data items that must reside in the same 

cluster, then, an optimal distance metric can be learned.  

 The definition formulates clustering as an optimization problem. It is a hard 

optimization problem due to the huge search space. Even if the number of 

clusters is fixed, the number of possible partitions increases exponentially with 

the number of objects; the size of the search space in this case is given by the 

Stirling number of the second kind. When the number of clusters is not known, 

the number of ways to partition a set of n objects into non-empty subsets is 

given by the nth Bell number.  



 

15 

 A noisy data makes clusters detection more difficult; an ideal cluster is 

considered as a set of compact and isolated points. Although humans can seek 

clusters excellently in two or three dimensions, there is a need for automatic 

algorithms for highly dimensional datasets. In this challenge, the increased 

number of unknown number of clusters for a given data has resulted in the 

development of several clustering algorithms.  

2.2.3 Clustering Categories 

There is not direct or canonical way of classifying clustering algorithms; in fact, 

there is an overlap between different classes of clustering algorithms. The conventional 

clustering techniques are mainly classified into hierarchical, partitioning, grid-based, 

density-based, and model-based frameworks. Hierarchical clustering is further sub 

classified into divisive and agglomerative. Density is also subdivided into micro and 

grid based. The classification of clustering algorithms is depicted Figure 2.4. 

Partitioning methods are among the most popular approaches to clustering due 

to the ease of its implementation and a favourable runtime behaviour. K-means is the 

best-known algorithm in this class. The criterion function used is that of minimum 

variance, i.e., the sum of squares of the differences between data items and their 

assigned cluster centers are minimized. Hierarchical algorithms build clusters gradually.  

Data 

Clustering

Density 

Based
Grid Based Model BasedHierarchical Partiting

Hard 

Clustering

Soft 

Clustering

 

Figure 2.4 The classification of clustering algorithms  
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Furthermore, hierarchical clustering is subdivided into agglomerative and 

divisive approaches; an agglomerative approach is initiated with each pattern in a 

specific cluster before merging the successive clusters until a termination criterion is 

met. For the divisive method, it initialized with all the patterns in one single cluster, 

followed by their splitting until a termination criterion is met. Most of the hierarchical 

clustering algorithms are variants of the single and complete link algorithms.  

In the density-based methods, the density, connectivity, and boundary concepts 

are applied towards the identification of clusters in the input data. The sensitivity of 

these algorithms is lower, and they can identify clusters of irregular shapes. They are 

usually suitable for low-dimensional data of numerical attributes, otherwise known as 

spatial data. Some of the algorithm that uses density-based connectivity are DBSCAN, 

OPTICS, and DBCLASD.  

The grid-based methods perform space segmentation and then aggregate the 

appropriate segments. A partitioning of the input space in hyper rectangles is 

advantageous for application to large datasets. The algorithm, STING (Statistical 

information grid-based method), works with numerical attributes (spatial data) and is 

designed to facilitate “region-oriented” queries. 

2.2.4 Clustering High Dimensional Data 

The expression levels of thousands of genes can be simultaneously monitored 

today due to the emergence of microarray technology. However, the major problem is 

how to effectively manage this large volume of data. Microarray data are usually 

managed using either classification and clustering technique, but the clustering of 

microarray data analysis is the most significant aspect (Eisen et al., 1998). Microarray 

gene expression data clustering can provide information on the level of cellular 

processes, gene functions, and gene regulation (Jiang et al., 2004). Genes can be 

clustered based on tissues to detect a group of genes that undergo changes in their 

expression level or those that follow the same pattern. Genes that exhibit a similar 

pattern of expression under different conditions can participate in the same signal 

pathway; they can also be co-regulated. Clustering is proven to be an effective way of 

relating gene expression patterns with the ligand specificity and functional class of 

neurotransmitter receptors. Clustering has been used in cancer studies to identify both 

gene expression, cell type’s signatures, and signatures for biological processes 
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(Alizadeh et al., 2000; Alon et al., 1999; Eisen et al., 1998; Golub et al., 1999; Spellman 

et al., 1998; Wen et al., 1998)  used gene clustering techniques to analyze temporal gene 

expression data during the development of rat central nervous system.  

2.2.5 Evolutionary Algorithms in Data Clustering 

Darwin’s theory of natural selection formed the basis for the evolutionary 

algorithms (EA) as they are based on the survival of fittest individual in any given 

environment. The EAs are initiated with a population that strives to survive in an 

environment. The offspring of any generation inherits the adaptability of their parents to 

a given via several evolutionary mechanisms such as crossover and mutation. This 

process is repeated over several generations until the most suitable solutions for the 

environment are found (Aljarah et al., 2019; Nayak et al., 2019).  

2.2.5.1 Bio-inspired Data Clustering Algorithms 

The biologically inspired (bio-inspired) frameworks comprise of the natural 

metaheuristics which are inspired by the living patterns and behaviours of biological 

organisms. These bio-inspired frameworks are distributed, self-organizing, 

decentralized, and adaptive in their nature. The major bio-inspired frameworks include 

Artificial Immune Systems (AIS), Dendritic Cell Algorithm, Bacterial Foraging 

Optimization (BFO), and Krill Herd algorithm. These algorithms are efficiently used in 

solving data clustering problems (Esmin et al., 2015; García et al., 2019; Lakshmi et al., 

2018; Sarstedt & Mooi, 2019). 

2.2.5.2 Physical Data Clustering Algorithms 

These are algorithms that were developed based on inspirations from physical 

processes. Such algorithms include Simulated Annealing developed by (Kirkpatrick et 

al., 1983) based on the cooling and heating of materials; Discrete Cultural Information 

which was considered as in-between genetic and culture evolution (Moscato, 1989), 

Harmony Search by (Geem et al., 2001) based on the harmony of music played by 

musicians, and the Gravitational Search algorithm (GSA) based on the Big Bang-Big 

Crunch concept. These algorithms have successfully been applied to data clustering 

problems (Joshua et al., 2019). 
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For the last two decades, most of the nature-inspired metaheuristics have been 

applied for solving the problem of data clustering (Dey et al., 2019). Most of these 

metaheuristics were designed for global optimization problems in both type continuous 

and discrete types while some of them were mainly designed for the data clustering 

problem, such as Black Hole (BH) algorithm.  

2.2.6 State of the Art 

Researchers have always drawn inspiration from natural occurrences. Several 

algorithms have been proposed based on inspiration from natural process of evolution, 

laws, and social behaviour of species (Senthilnath et al., 2019). Nature-inspired 

algorithms are the most recent algorithms and they are efficient in handling 

optimization problems and other problems except the classical methods due to their 

inflexibility. Several researchers have shown that nature-inspired algorithms are 

efficient in handling complex computational problems. Numerous studies have been 

conducted on the use of metaheuristics for solving clustering problems. Thus, this is 

devoted to a brief literature overview of metaheuristic-based clustering algorithms with 

more focus on the most related techniques to the proposed algorithm in this study. 

The Genetic algorithms (GAs) have been initially investigated for the 

improvement of the performance of classic clustering frameworks. For instance, a GA-

based clustering technique known as called GA-clustering was proposed by Maulik and 

Bandyopadhyay (2000) and evaluated for superiority over the K-means algorithm. The 

investigation proved the superiority of the method over the k-means method via several 

dataset experiments. They performance of the algorithm was tested on both synthetic 

and real-life datasets.  

A novel clustering algorithm for unsupervised learning which was inspired by 

the self-organizing behaviour observed in ants has been proposed by Xiao et al. (2003). 

The defined artificial ants similarly build a tree and each ant represents a data. The 

similarity between the data determines the way the ants move and build this tree. The 

obtained results from the proposed algorithm were compared to those from k-means 

algorithm and AntClass on numerical databases (either real, artificial). The result 

showed a significant improvement of the clustering process using the AntTree 

technique. 
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Van der Merwe and Engelbrecht (2003b) also proposed a standard PSO and a 

hybrid approach for clustering problem in the same year. In the proposed methods, the 

members of each swarm are seeded based on the result of the k-means algorithm. The 

performance of the two approaches was compared to that of K-means clustering and 

confirmed to be superior. 

A year later,  the Ant Colony optimization algorithm was proposed for solving 

clustering problems (Shelokar et al., 2004). The ACO software uses pheromone matrix 

(a kind of adaptive memory) to guide the other ants to the optimal clustering solution. 

The value of the objective function and the rate of pheromone evaporation determines 

its rate of deposition at location ( 𝑖, 𝑗 ) (i.e. allocation of sample i to cluster 𝑗  in a 

constructed solution. The rate of pheromone evaporation is a kind of a forgetting factor 

that helps to monitor the other clustering locations of object 𝑖. Thus, the optimal cluster 

representation for a clustering problem must be provided as iterations progress. The 

ACO algorithm can only be applied for data clustering when the number of clusters is 

previously known and are crispy in nature. The performance of the ACO algorithm was 

evaluated by comparison with other stochastic frameworks such as GA, SA, and Tabu 

search. The framework was implemented and evaluated on numerous real and simulated 

datasets and the preliminary computational experience was promising with respect to 

the quality of established solutions, the required processing time, and the average 

number of evaluation functions. 

Handl et al. (2006) proposed an adaptive time-dependent transporter ant for 

clustering (ATTA-C) by suggesting for some modifications to the traditional ACO Ant-

based clustering framework to penalize high dissimilarities, accelerate the clustering 

process, and improve the spatial separation between clusters. A neighbourhood function 

(NF) was used to calculate the fitness value of each clustering solution.  

Chandramouli and Izquierdo (2006) proposed a PSO-based cluster analysis for 

image clustering. (Chu et al., 2004) suggested a constrained ACO (C-ACO) for the 

handling of arbitrarily shaped data clusters and outliers. Later, several researchers 

proposed the adaptive ACO for the improvement of the convergence rate and the 

determination of the optimal number of clusters (Dorigo et al., 2008).  

A Tabu search-based clustering technique known as TS-Clustering was 

proposed by Liu et al. (2008) to handle the minimum sum of square clustering problem. 
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The author suggested three neighbourhood modes and five improvement operations in 

the algorithm. The suggested improvement operations were for the enhancement of the 

obtained clustering solution during the iteration process, while the neighbourhood mode 

is for the creation of the Tabu search neighbourhood. They used the generalized string 

property for the grouping of similar objects and setting up the initial solution, while the 

releasing procedure is for the separation of the packed elements from each other to 

enhance the effectiveness of the search process. 

Two multiple pheromone concepts (ant-based clustering with ant nest algorithm 

and ant memory algorithm) were proposed by Ngenkaew et al. (2008). The ants were 

directed by the artificial trailing pheromone and foraging pheromone regarding the 

direction to follow or where to pick up or drop food items. 

Chu et al. (2006) proposed a Cats Swarm Optimization algorithm by monitoring 

cats’ natural hunting skills. Later, (Santosa & Ningrum, 2009) deployed the CSO-based 

clustering method to classify UCI benchmark datasets. The determination of the optimal 

solution by the algorithm is based on two operation modes of cats which are the seeking 

mode (representing the global search process which mimics the cats’ resting position 

with slow movement) and the tracing mode (a local search technique that reflects the 

rapid chase of the target by the cat).  

 Cheng et al. (2009) artificial fish swarm algorithm, The AFSA several good 

application properties such as good optimization precision, strong robustness and 

flexibility in practice, rapidness to search the global optimum, searching adaptability, 

and tolerance of parameter setting. To reduce the complexity of the algorithm, a new 

fish behaviour called swallowing behaviour was proposed in the AFSA. The 

experimental results demonstrated a lower complexity of IAFSA compared to that of 

AFSA but with an almost the same performance with AFSA. 

(Bhaduri & Bhaduri, 2009), the Shuffled Frog-Leaping Algorithm (SFLA) was 

proposed to solve clustering problems. The SFLA was developed as a metaheuristic to 

carry out an informed heuristic search based on a heuristic function to establish the 

solution to a combinatorial optimization problem. The SFLA was inspired by the 

evolution of memes carried by the interactive individuals and a global exchange of 

information among themselves. The algorithm is regarded as a typical swarm-based 

optimization approach. The formulation of the SFLA is based on two other search 
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techniques which are the local search of PSO and the competitiveness mixing of the 

Shuffled Complex Evolution technique. The application of the SFLA for data clustering 

can be done when the number of clusters is previously known, and the data are crisp in 

nature. The performance of the SFLA was evaluated by its comparison with other 

stochastic algorithms such as Ant colony, GA, SA, and Tabu search after its 

implementation on several real and simulations datasets.  

An Artificial Bee Colony(ABC) was presented by Zhang et al. (2010) as a state-

of-the-art clustering approach. To solve infeasible solutions, they authors adopted Deb’s 

constrained handling method (Goldberg & Deb, 1991) usually used in the ABC 

algorithm instead of the greedy selection process. Upon testing the algorithm, the results 

were promising in terms of efficiency and effectiveness. 

PSO-based clustering frameworks have been used effectively in several real-life 

applications such as node clustering (in wireless sensor network (WSN) for the 

enhancement of the sensors’ lifetime and coverage area), energy-balanced cluster 

routing in WSN, cluster analysis of stock market data for portfolio management, 

clustering in ad hoc mobile networks for the determination of the cluster heads that will 

be responsible for topology information aggregation, grouping for security checks in 

power systems, colour image segmentation, gene expression data analysis, image 

clustering, clustering for manufacturing cell design, document clustering, network 

anomaly detection, and cluster analysis of web data usage (Rana et al., 2011). 

A new nature-inspired algorithm called FA has been proposed for clustering and 

evaluation performance by Senthilnath et al. (2011) The performance of the proposed 

FA was compared with those of ABC, PSO, and other population-based nature-inspired 

optimization techniques. The performance of the technique was demonstrated using 

thirteen typical benchmark datasets sourced from the UCI machine learning repository 

and the results showed the FA to perform better than the benchmarking algorithms for 

clustering. The proposed ABC-based clustering algorithm was applied for solving 

sensor deployment and network routings problems in WSNs. 

A new hybrid GSA-HS algorithm was proposed by Hatamlou et al. (2011c) 

based on GSA and heuristic search techniques. The initial population in the proposed 

algorithm was generated by the GSA after the application of the heuristic search 

technique for the exploration of the population. The evaluation of the GSA-HS 
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performance was based on two parameters (i.e. sum of intra-cluster distance and canter 

of the corresponding cluster, including four benchmark datasets) and compared with 

PSO and K-means, where the proposed GSA-HS was found to provide better results. 

A Cuckoo Search Clustering Algorithm (CSCA) was proposed by Goel et al. 

(2011) and found to yield good results on the benchmark dataset. Based on the results, 

the proposed CSCA was validated for water body extraction on two real-time remote 

sensing satellite-image datasets, which on its own, is a complex problem. The CSCA 

depends on the Davies-Bouldin index (DBI) as a fitness function, while a method for 

the generation of new cuckoos was introduced in the algorithm. Conceptually, the 

resulting algorithm was simpler, required less parameter compared to the other nature-

inspired frameworks, and yields good results after some parameter tuning, 

A quantum-based PSO algorithm (QPSO) was proposed by Sun et al. (2012) for 

cluster analysis of gene expression database. The algorithm was based on an improved 

functional flow based approach through QPSO algorithm for automatically finding the 

optimum threshold when calculating the least similarity between modules. Bridging 

nodes were also considered to improve the clustering outcome. The performance of the 

algorithms was tested on the Munich Information Center for Protein Sequences (MIPS) 

PPI datasets and shown to have a better performance compared to the functional flow 

method in terms of the number of matched clusters and accuracy. 

A novel PSO algorithm inspired by the flocking and schooling behaviours of 

birds and fishes was developed by Cura (2012) to solve clustering problems. Unlike any 

other approach, the PSO can be applied with both unknown and known number of 

clusters. The proposed PSO was confirmed to be computationally effective, robust, easy 

to tune, and tolerable compared to the other approaches. 

The Firefly algorithm (FA) was proposed by Yang based o inspiration from the 

rhythmic flashes of light by fireflies (Yang, 2009) . The performance of the algorithm 

was evaluated for clustering purposes on the UCI datasets. The movement of the 

fireflies is determined by the intensity of light emitted by the adjacent fireflies; those 

with weaker light intensities are attracted to those with a higher light intensity. 

(Hassanzadeh & Meybodi, 2012) successfully applied the FA as a clustering algorithm 

for image segmentation. 
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A novel algorithm which incorporated ACO with kernel Principal component 

analysis (KPCA) was proposed by Zhang and Cao (2011). In the proposed algorithm, 

efficient data features are computed by applying the KPCA on the dataset while the 

ACO-based clustering is performed in the feature space.  

The BB-BC is one of the recently developed heuristics which can be used to 

solve search and optimization problems. Its applicability and potential in cluster 

analysis has been demonstrated via simulation studies which confirmed the BB-BC 

algorithm as a reliable and suitable data clustering technique. It provides quality clusters 

(based on the sum of intra-cluster distance) and has a simple structure (Hatamlou et al., 

2011a). 

The GSA-HS was proposed in 2011 as an efficient framework for cluster 

analysis based on a heuristic search algorithm and gravitational search. The GSA in the 

GSA-HS is used to find the near optimal solution for clustering problem while the HS 

algorithm is for the improvement of the initial solution by searching around it. The 

performance of the GSA-HS was evaluated on four benchmark datasets and later 

compared with two other known clustering algorithms which are K-means and PSO 

(Yin et al., 2011). 

A clustering algorithm called Bacterial Foraging clustering (BF-C) was 

proposed in 2012 for data grouping based on the bacterial foraging behaviour. BF-C is a 

global optimization-based framework which provides a new perspective towards 

solving NP-hard problems. However, it is a recent application of the foraging behaviour 

of bacterial. In this algorithm, the clustering problem is transformed into that of finding 

the centre of each cluster via the optimization of the objective function. Based on 

numerical experiments, the BF-C achieved high-quality performance on multi-

dimensional real datasets and can detect clusters with different densities and shapes, 

multi-clusters or isolated points (Wan et al., 2012).  

Cura (2012) proposed a new version of the PSO called CPSO for solving 

clustering problems. This version is applicable when there is a known or unknown 

number of clusters. The CPSO follows the gbest neighbourhood topology and encodes 

the cluster centroids in particles. During an optimization procedure, it creates new 

partitions by removing or splitting clusters until the required number of clusters is 

achieved (Cura, 2012). 
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Yan et al. (2012) proposed a hybrid clustering algorithm called Hybrid Artificial 

Bee Colony (HABC) for data clustering. The HABC is based on the enhancement of the 

mechanism of information exchange between bees through the introduction of a 

crossover operator of GA to ABC. The performance of HABC was evaluated on 10 

benchmark functions and proved to be significantly improved compared to the normal 

ABC and most of the benchmarking algorithms. Later, the HABC was used for data 

clustering on 6 real datasets selected from the UCI machine learning database where it 

performed compared to the other data clustering approaches (Yan et al., 2012).  

Senthilnath et al. (2013) comparatively studied three nature-inspired algorithms, 

namely GA, PSO, and Cuckoo Search (CS) on clustering problem. During the analysis 

CS was used with levy flight and the heavy-tail property of levy flight was exploited. 

The performance of these algorithms was evaluated on three standard datasets and one 

real-time multi-spectral satellite dataset while the results were analysed using various 

analytical techniques. The authors concluded that based on the given set of parameters, 

CS works better for most of the dataset due to the important role played by levy flight. 

A new clustering method based on the light flashing pattern of fireflies was 

proposed by Fister et al. (2013) for solving clustering problems. This proposal was a 

recast of the work previously done by Łukasik and Żak (2009) for continuous 

constrained optimisation problems to be applicable to data clustering. The study 

demonstrated the suitability of the standard FA to cluster arbitrary data and proposed 

the FA-based clustering algorithm called FClust as a centroid evolutionary-based 

framework. Thus, the performance of FClust was compared with two centroid 

evolutionary approaches which are PSO and DE. Each algorithm was evaluated for 

performance based on two statistical criteria which are TWR and VRC. 

In (Hatamlou & Hatamlou, 2013), the PSO is one of the commonest heuristic 

optimization frameworks which has been successfully used to solve clustering 

problems. At the early stage of a search process, the PSO converges rapidly, but as it 

approaches the global optimum, the convergence speed slows down. The PSO may be 

trapped in local optimum if the local best and global best values are equal to the 

position of the particle over a given range of iterations. However, this problem has been 

addressed by the proposal of a two-stage clustering algorithm based on PSO and a 

heuristic search algorithm (2013). The PSO algorithm is used at the first stage to 
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produce the initial solution to the problem while a heuristic search algorithm is used and 

in the second stage to improve the initial solution by searching around it. 

Singh and Sood (2013) proposed a hybrid approach to show the swarm 

behaviour of clusters. They used a Krill herd algorithm to simulate the herding 

behaviour of each krill. The clusters were discovered using a density-based approach; it 

was also used to show the regions with sufficiently high-density krill clusters. The 

minimum distance from each krill to the food source and from high-density of herds 

were considered as the objective function of the krill movement. The movement of each 

krill is determined by the random diffusion and foraging movement. 

A global optimization algorithm for large-scale computational problems was 

proposed by Jadidoleslamy (2014). The proposed algorithm is a variant of the PSO but 

based on a parallel annealing clustering algorithm. It was proposed as a novel algorithm 

based on a group method and is effective for solving continuous variable problems. The 

proposed parallel PSO algorithm has less computation time and provides clusters with 

improved quality. The effectiveness of the algorithm was evaluated on large datasets. 

An approach based on the combination of Levy flight with modified Bat 

algorithm to improve the clustering result has been proposed (Jensi & Jiji, 2015). The 

proposed approach was tested on ten datasets and the experimental results showed that 

the proposed algorithm clusters the data objects efficiently. It also illustrates that it 

escapes from local optima and explores the search space effectively. 

Ji et al. (2015) suggested an ABC clustering approach for categorical data by 

first introducing a one-step k-modes procedure before integrating this procedure with 

the ABC heuristic to cluster categorical data. 

An FA-based GA (FAG) was proposed by Kaushik and Arora (2015) in which 

the selection of the initial population is from a pool of population using an FA. The 

proposed FAG was applied to the UCI database and the results were satisfactory and 

better than that of the basic GA and FA.  

A new quantum chaotic cuckoo search algorithm (QCCS) was proposed by 

Boushaki et al. (2018) for data clustering. The superiority of CS over the conventional 

metaheuristics for clustering problems has been confirmed by various studies. However, 

all the cuckoos have a similar search pattern, and this may result to the premature 
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convergence of the algorithm to local optima. Similarly, the convergence rate of the CS 

is sensitive to the randomly generated initial centroids seeds. Thus, the authors strived 

to extend the CS capabilities using nonhomogeneous update based on the quantum 

theory in a bid to tackle CS clustering problem in terms of the global search ability. 

They also replaced the randomness at the initialization step with a chaotic map to 

increase the efficiency of the search process and improve the convergence speed. An 

effective strategy was further developed for a proper management of the boundaries. 

The results of the experiments on six common real-life datasets show a significant 

superiority of the developed QCCS over eight recently developed algorithms, including, 

hybrid cuckoo search, genetic quantum cuckoo search, differential evolution, hybrid K-

means, standard cuckoo search, improved cuckoo search, quantum particle swarm 

optimization, hybrid K-means chaotic PSO, differential evolution, and GA in terms of 

external and internal clustering quality. 

Alswaitti et al. (2018) developed a new heuristic gravitational-based framework 

for data clustering with the aim of addressing the excessive centroid movement (due to 

the accumulation of the centroid velocity history in the gravitational clustering 

algorithm) to achieve a better trade-off between exploration and exploitation. The 

initialization step of the proposed algorithm uses the variance and median method to 

avoid random initialization effects. Then, the accumulated velocity history of a centroid 

is discarded; hence, during an iteration, only the force exerted by the data points in a 

cluster is affecting the position of the centroid associated with this centroid.  

A combination of K-Harmonic Means with improved cuckoo search algorithm 

(ICS) and PSO has been proposed by Bouyer and Hatamlou (2018)for the enhancement 

of the search for solutions and achieving a quick convergence while avoiding local 

optima entrapment. The standard CSA has a lower convergence speed compared to 

most of the other evolutionary algorithms like SA and PSO. Hence, ICS was proposed 

for finding the optimum clusters with fast convergence. The convergence of ICS is 

enhanced by computing a better radius in each iteration. Furthermore, a good variant of 

the PSO called MPSO to help the ICS avoid local optimum and avoid fast convergence 

to local optima. It can, therefore, be argued that the proposed ICMPKHM combines the 

advantages of ICS and MPSO to achieve efficient data clustering. Another benefit of 

this combination is that it achieved a stable data-clustering algorithm compared to all 

the evolutionary-based methods. Generally, the major objective of most clustering 
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algorithms is to meet the required qualities in clusters such as standard deviation 

parameters, processing time, F-measure, k-Error, and Error. In this study, the selected 

test suits include two artificial data sets, UCI real datasets, and 31 standard benchmark 

functions. The results of the evaluations showed the proposed algorithm to perform 

better than the other algorithms tested. 

A new version of Artificial Bee Colony (ABC) algorithm called History-driven 

Artificial Bee Colony (Hd-ABC) was proposed by Zabihi and Nasiri (2018) by applying 

a memory mechanism to improve the performance of ABC. The proposed Hd-ABC uses 

a binary space partitioning (BSP) tree to memorize useful information of evaluated 

solutions. By the application of this memory mechanism, the fitness landscape can be 

approximated before the actual fitness evaluation. Fitness evaluation is a time and cost 

inefficient process in clustering problem, but the use of a memory mechanism has 

significantly reduced the number of fitness evaluations and facilitated the optimization 

process via the estimation of the solutions’ fitness value instead of estimating the actual 

fitness values. The proposed data clustering algorithm was applied on 9 UCI datasets 

and 2 artificial datasets and both the statistical and experimental outcomes showed the 

proposed algorithm to perform better than the original ABC, its variants, and the other 

recent clustering algorithms. 

Elephant Herding Optimization (EHO) was proposed as a nature-inspired 

algorithm by Jaiprakash and Nanda (2019). The algorithm combined swarm intelligence 

(the life pattern of elephants living in groups) and evolutionary algorithm (reproduction 

to create baby elephant). The algorithm has both exploitation (clan updating operator) 

and exploration (separating operator) capabilities, making it a potential optimization 

algorithm. The EHO was suitably formulated for clustering analysis by reducing the 

intra-cluster distance as a cost function. The performance of the algorithm was 

evaluation based on simulations on three synthetic and six benchmark datasets and 

compared with RCGA, PSO, and K-means algorithm where it showed a superior level 

of accuracy in the form of box plots.  

The computational time of EHO was also observed to be higher than K means 

but lower than PSO and RCGA. A comparison of all the clustering algorithms is 

presented in Table 2.1. 
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Table 2.1 The analysis of existing clustering algorithms 

NO. Algorithm Method Type Approach Merits Demerits 

1. (Van der Merwe & 

Engelbrecht, 2003b) 

PSO Standard A PSO-based data clustering method for 

large dataset clustering. 

Have better convergence 

to lower quantization 

errors. 

 

Takes more time to 

converge and also 

suffers problem to stuck 

at some local solution. 

2. (Maulik & 

Bandyopadhyay, 2000) 

GA Standard Exploited the searching capability of 

GA to search for suitable cluster centers 

within the feature space. 

The good ability for 

exploration and global 

search. 

Very sensitive to 

parameter setting. 

3. (Karaboga & Ozturk, 

2011) 

ABC Standard (ABC) algorithm for benchmark 

problems data clustering. 

The good ability in local 

search for exploration. 

Weak in exploration. 

4. (Zhang et al., 2010) ABC Standard An artificial bee colony algorithm is 

developed to solve clustering problems 

which are inspired by the bees’ forage 

behavior. 

Good ability to produce a 

good suboptimal solution. 

Lacking in structures 

which can provide every 

individual of population 

with simple memory 

mechanism. 

5. (Wan et al., 2012) BFO Standard A novel clustering framework based on 

the Bacterial Foraging (BF) mechanism. 

Good ability for 

exploration and avoiding 

local optima. 

Weak ability to perceive 

the environment which 

may be effect the 

solution quality. 

6. (Senthilnath et al., 

2011) 

FA Standard They measured the performance of FA 

with respect to supervised clustering 

problem and the results show that the 

algorithm is robust and efficient. 

Good ability for 

exploration. 

Computational time is 

high due to too many 

attractions. 

7. (Hatamlou et al., 

2011a) 

BB-BC Standard An approach that demonstrates the 

effectiveness and applicability of the 

BB-BC algorithm in cluster analysis. 

Provides high-quality 

clusters with respect to 

intra-cluster distance; has 

a simple structure. 

Sensitive to parameter 

setting. 
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Table 2.1 Continued      

NO. Algorithm Method Type Approach Merits Demerits 

8. (Hatamlou et al., 

2011b) 

GSA Standard Demonstrate the clustering capability of 

the GSA. 

Good ability for 

exploration and avoiding 

local optima. 

Sensitive to parameter 

setting. 

9. (Hatamlou, 2014) Heart Standard A new clustering algorithm based on the 

action of the heart and circulatory 

system. 

Can be easily 

implemented, few 

parameters can be 

manipulated. 

Quality of cluster is not 

very good. 

10. (Saida et al., 2014) CS Standard A new cuckoo search optimization-

based algorithm for data clustering. 

It is easy to implement, 

and it manipulates a few 

parameters. 

suffers from the problem 

of slow convergence and 

also stuck at local 

minima. 

11. (Bagirov & Yearwood, 

2006) 

TS Standard TS-Clustering is developed to explore 

the clustering result 

Good ability for 

exploration. 

The number of clusters 

should be known a 

priori. 

12. (Hatamlou, 2013) BH Standard A new Blackhole principle-based 

heuristic optimization algorithm. 

Simple structure, easy 

implementation, and free 

from issues of parameter 

tuning. 

Require better control 

for exploration and 

exploitation to prevent 

parameter convergence. 

13. (Yan et al., 2012) HABC Hybrid Introduced the crossover operator of GA 

into ABC to enhance the exchange of 

information between bees.  

Good ability for 

exploration and avoiding 

local optima. 

Cannot work properly in 

high dimensional data. 

14. (Senthilnath et al., 

2013) 

CS-LV Modified Exploited the heavy-tail property of levy 

flight in a hybrid combination with 

Cuckoo search. 

Good ability for 

exploration for better 

clustering quality. 

It needs more evaluation 

test. 
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Table 2.1 Continued      

NO. Algorithm Method Type Approach Merits Demerits 

15. (Bouyer et al., 2015) HCSDE Hybrid Improved the capability of the CS 

algorithm in obtaining a better 

convergence seed with high precision in 

a short time. Also improved the CS 

algorithm capability in solving the 

number of functional evaluations.  

Improves the quality of 

clustering. 

Depends on many 

parameter. 

16. (Abualigah et al., 

2017a) 

KHA-HS Hybrid A data clustering algorithm based on a 

hybrid combination of krill herd 

algorithm (KHA) and harmony search 

(HS) to improve data clustering. 

Good computational 

efficiency, easy to 

implement, improves the 

method for best value 

detection. 

Depends on many 

parameter. 

17. (Yang et al., 2009) Harmony-

PSO 

Hybrid A PSO and K-harmonic mean-based 

approach for the data clustering 

Fully utilize the merits of 

both algorithms. 

Cannot work properly in 

high dimensional data. 

18. (Hatamlou et al., 

2011c) 

GSA-HS Hybrid Used gravitational search algorithm to 

establish the initial solution for 

clustering problems; then, used a 

heuristic search algorithm to search 

around this established to improve its 

quality. 

Improves the quality of 

clustering. 

Sensitive to parameter 

setting. 

19. (Jensi & Jiji, 2016) IKH Modified Proposed an improved krill herd by 

introducing a global exploration 

operator. These modifications improved 

the ability of the IKH algorithm to 

quickly converge to optimal solutions. 

Improves the quality Runtime time  and not 

easy to implement. 

20. (Jensi & Jiji, 2015) MBA-LF Modified A hybrid combination of modified bat 

algorithm with levy flight for efficient 

data clustering. 

Good ability for 

exploration 

It needs more evaluation 

test. 
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Table 2.1 Continued      

NO. Algorithm Method Type Approach Merits Demerits 

20. (Jensi & Jiji, 2015) MBA-LF Modified A hybrid combination of modified bat 

algorithm with levy flight for efficient 

data clustering. 

Good ability for 

exploration 

It needs more evaluation 

test. 

21. (Sun et al., 2006) QPSO Hybrid Explored the applicability of the 

Quantum-behaved PSO for data 

clustering. 

Improves the quality Quality of cluster is not 

very good. 

22. (Chikhi et al., 2014) GQCS Hybrid A new data clustering method based on 

a hybrid combination of GA and CSA. 

The approach fully uses 

the merits of all 

algorithms. 

Depends on many 

parameters. Quality of 

cluster is not very good. 

23. (Boushaki et al., 2018) 

 

QCCS Hybrid A new quantum chaotic CSA for data 

clustering. 

The approach fully uses 

the merits of all 

algorithms. 

Cannot work properly in 

high dimensional data. 

24. (Emami et al., 2015) ICAKHM Hybrid A method based on the hybrid 

combination of K-harmonic means 

algorithm and a modified imperialist 

competitive algorithm (ICA). 

Can reduce the 

intracluster distance in 

clustering problems. 

 

This algorithm is 

generally unstable and 

its result may or may not 

be improved. 

25. (Sun & Peng, 2014) PSO-GSA Hybrid A clustering algorithm based on the 

combination of PSO with GSA for 

clustering. 

Combined the 

exploitation ability of 

PSO with the exploration 

ability of GSA to update 

velocity equations and 

improve the clustering 

performance. 

Cannot work properly in 

high dimensional data. 
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Table 2.1 Continued      

NO. Algorithm Method Type Approach Merits Demerits 

26. (Bouyer, 2016) KHM-

IPSO 

Hybrid A clustering algorithm based on the 

combination of KHM, IPSO and CS for 

large data datasets in a faster and 

accurate manner compared the other 

algorithms. 

Addressed the 

initialization sensitivity 

problem of KHM and 

achieved good 

convergence to the global 

optimum. 

Its runtime compared to 

KHM due to using PSO 

and Cuckoo search 

optimization too long. 

27. (Mageshkumar et al.) ACO–

ALO 

Hybrid Clustering algorithm for solving data 

clustering problems. Incorporates 

Cauchy’s mutation operator to avoid the 

problem of local minima traps. 

Reduced intra cluster 

distance in clustering 

problems. 

Depends on many 

parameter. 

28. (Yin et al., 2011) IGSAKH

M 

Hybrid Clustering algorithm based on a hybrid 

combination of KHM and IGSA 

algorithms. 

Can converge quickly to 

local optima. 

Cannot work properly in 

high dimensional data. 

29. (Ilango et al., 2018) 

 

Hd-ABC Modified A new variant of Artificial Bee Colony 

(ABC) algorithm called History-driven 

Artificial Bee Colony 

Reduced the intracluster 

distance in clustering 

problems. 

Depends on many 

parameter. 

30. (Bouyer & Hatamlou, 

2018) 

ICMPKH

M 

Hybrid A clustering method based on a hybrid 

combination of the improved cuckoo 

optimization and modified PSO 

algorithms. 

Can solve the local 

optima problem of KHM 

and can significantly 

improve its efficacy and 

stability. 

Cannot work properly in 

high dimensional data. 
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2.3 Metaheuristic Algorithms 

Optimization is the process of finding the best solution from some sets of 

available alternatives solutions under certain constraints (Alia and Mandava 2011). This 

can be achieved by minimizing/maximizing the objective function of the given problem. 

Optimization techniques are used in real life problems such as scheduling, resource 

allocation, and many other computer science applications. A large number of algorithms 

have been developed to solve the optimization problems in recent years. These are 

broadly classified into two main categories: deterministic and stochastic (Yang, 2008). 

The former ones produce the same set of solutions if the iterations start with 

initialization of the same parameters. These are local search algorithms and have the 

tendency of being easily trapped in a local minimum. Most of the deterministic 

algorithms used the gradient information. The gradient-based algorithm uses the 

function values and their derivatives, and work well for smooth unimodal functions 

(Yang, 2010c). However, it fails on discontinuous functions. To solve this problem, 

non-gradient-based or gradient-tree algorithms are used as they require only fiinction 

values. 

The stochastic algorithms produce different solutions even if initialized with the 

same set of parameters (Yang, 2010a). However, these are able to converge to the same 

optimal solution within a given accuracy. Generally, they are classified into two types: 

heuristic and metaheuristic. Heuristic means 'to find' or 'to discover by trial and error' 

(Yang, 2008). They provide quality solutions for an optimization problem within a 

reasonable amount of time. However, there is no guarantee that optimal solutions are 

achieved. Further development over the heuristic algorithms is known as meta-heuristic 

algorithms. The word Meta means 'higher level' and they usually perform better than 

heuristic algorithms. 

All the metaheuristic algorithms use randomization and local search. 

Randomization helps in avoiding the solutions being stuck in local optima. 

Intensification and diversification are the two major components of metaheuristic 

algorithms (Yang, 2008). Intensification intends to search around the current best 

solutions and selects the best solution. Whereas, diversification avoids solutions being 

trapped in the local optima and hence increases the diversity of solutions. The best 

combination of these may ensure the achievement of global optimality. The most 
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popular metaheuristic algorithms are Genetic Algorithm (GA), Differential Evolution 

(DE), Particle Swarm Optimization (PSO), Ant Colony Optimization (AGO), Artificial 

Hone Bee Algorithm (ABC), Firefly Algorithm (FA), Cuckoo Search Algorithm (CS), 

Grey Wolf Optimization (GWO), etc. 

Metaheuristics are the key strategy for the modification and updating of the 

other heuristically-produced solution. Such solutions are mainly generated when 

searching for the local optimal (Jourdan et al., 2009).The suffix “meta” in the name is 

generated from a Greek word which means “upper level methodology”; they are 

generally better than the simple heuristic approach in performance. Metaheuristics are a 

conceptual set of all the heuristic approaches which is used to establish the optimal 

solution of a combinatorial optimization problem. Additionally, metaheuristics use 

certain balances between randomization and local search to find the near and optimal 

solutions to a given problem. Local search is a generalized method of finding high 

quality solutions to hard/complex combinatorial optimization problems within a 

reasonable length of time. Basically, it is an iterative-based search technique used for 

the diversification of the neighbouring solutions in a bid to enhance the current solution 

by local changes (Mirjalili, 2016). 

2.3.1 Exploration and Exploitation  

The search process of each metaheuristic is dependent on the trade-off between 

its exploration (diversification) and exploitation (intensification) capabilities. 

Metaheuristics depends on the local search information to establish better solutions of 

problems. With too much exploitation capability, a metaheuristic may converge 

prematurely and often results in a local optimum or a wrong solution. It will also reduce 

the chances of reaching the global optimum solutions of a complex problem. Hence, 

there is a need to ensure that there is a fine balance between the intensification and 

diversification capabilities of metaheuristics.  

Metaheuristic techniques can be combined with other concepts to find the best 

solutions to complex combinatorial optimization problems. Metaheuristics achieves 

good solutions due to the convergence of all the identified solutions to the optimal 

solution; the diversification capability, via randomization, ensures that the solution is 

not trapped at local minima and equally increase the range of the solutions to hard 
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problems. The provision of the solutions to multi-objective optimization problems is 

generally difficult; however, a good combination of the explorative and exploitative 

capabilities of metaheuristics ensures the achievement of the global solution to hard or 

complex optimization problems and always provides a way of solving large-sized 

population- based problems by delivering the right solutions in a reasonable amount of 

time (Greiner et al., 2018). 

Metaheuristics are a high-level approach for the diversification of a search space 

by using different algorithmic methods. It is greatly important that there should be a 

dynamic balance between the explorative and exploitative capabilities of metaheuristics. 

Diversification generally refers to the exploration of the search space while exploitation 

refers to the intensification of the accumulated search experience. 

2.3.2 Types of Metaheuristics 

Several nature-inspired metaheuristics have been developed in the last two 

decades and applied to several real-life situations. Metaheuristics are used in recent 

years to solve several unsupervised optimization problems. People easily picks a 

metaheuristic method to solve any unsupervised optimization problem at hand (Yang, 

2010c) because they guarantee optimal solutions and explores the entire search space 

with the progress in generations.  

Many classification criteria may be used for metaheuristics. This may be 

illustrated by considering the classification of metaheuristics in terms of their features 

with respect to different aspects concerning the search path they follow, the use of 

memory, the kind of neighbourhood exploration used or the number of current solutions 

carried from one iteration to the next. The metaheuristic classification, which 

differentiates between Single-Solution Based Metaheuristics and Population-Based 

Metaheuristics, is often taken to be a fundamental distinction in the literature. Roughly, 

speaking, basic single-solution based metaheuristics are more exploitation oriented 

whereas basic population-based metaheuristics are more exploration oriented. The type 

of meta-heuristic is only a  single-solution based metaheuristics and population-based 

metaheuristics. 
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2.3.2.1 Single-Solution Based Metaheuristics 

In this section, we outline single-solution based metaheuristics, also called 

trajectory methods. Unlike population-based metaheuristics, they start with a single 

initial solution and move away from it, describing a trajectory in the search space. Some 

of them can be seen as ‘‘intelligent’’ extensions of local search algorithms. Trajectory 

methods mainly encompass the simulated annealing method, the tabu search, the 

variable neighborhood search, the guided local search and the iterated local search 

(Metropolis et al., 1953). 

 Simulated Annealing Method 

The origins of the Simulated Annealing method (SA) are in statistical mechanics 

(Metropolis algorithm)(Černý, 1985). SA is inspired by the annealing technique used by 

the metallurgists to obtain a ‘‘well ordered’’ solid state of minimal energy (while 

avoiding the ‘‘metastable’’ structures, characteristic of the local minima of energy). 

This technique consists in carrying a material at high temperature, then in lowering this 

temperature slowly. SA transposes the process of the annealing to the solution of an 

optimization problem: the objective function of the problem, similar to the energy of a 

material, is then minimized, by introducing a fictitious temperature T, which is a simple 

controllable parameter of the algorithm. 

 Tabu Search 

Tabu Search (TS) was formalized in 1986 by Glover (Glover, 1986) . TS was 

designed to manage an embedded local search algorithm. It explicitly uses the history of 

the search, both to escape from local minima and to implement an explorative strategy. 

Its main characteristic is indeed based on the use of mechanisms inspired by human 

memory. It takes, from this point of view, a path opposite to that of SA, which does not 

use memory, and thus is unable to learn from the past. 

 Variable Neighborhood Search 

Variable Neighborhood Search (VNS) is a metaheuristic proposed by Hansen 

and Mladenovic (Hansen & Mladenović, 1997). Its strategy consists in the exploration 

of dynamically changing neighborhoods for a given solution. At the initialization step, a 
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set of neighborhood structures has to be defined. These neighborhoods can be arbitrarily 

chosen, but often a sequence N1; N2; . . . ; N𝑛𝑚𝑎𝑥
  of neighborhoods with increasing 

cardinality is defined. In principle, they could be included one in the other (N1 ∈ N2∈ . . 

. ∈N𝑛𝑚𝑎𝑥
 ). However, such a sequence may produce an inefficient search, because a 

large number of solutions can be revisited. Then an initial solution is generated, and the 

main cycle of VNS begins. This cycle consists of three steps: shaking, local search and 

move. In the shaking step, a solution Ś is randomly selected in the 𝑛th neighbourhood 

of the current solution s. Then, Ś is used as the initial solution of a local search 

procedure, to generate the solution Ś. The local search can use any neighborhood 

structure and is not restricted to the set Nn, n = 1, . . . , N𝑛𝑚𝑎𝑥
. At the end of the local 

search process, if Ś is better than s, then Ś replaces s and the cycle starts again with  =

 1. Otherwise, the algorithm moves to the next neighborhood 𝑛 +  1 and a new shaking 

phase starts using this neighborhood. 

 The Guided Local Search 

In GLS, this memory is called an augmented objective function (Voudouris, 

1997). Indeed, GLS dynamically changes the objective function optimized by a local 

search, according to the found local optima. First, a set of features 𝑓𝑡n,𝑛 =  1, . . . , 𝑛𝑚𝑎𝑥 

has to be defined. Each feature defines a characteristic of a solution regarding the 

optimization problem to solve. Then, a cost 𝑐i and a penalty value 𝑝i are associated with 

each feature. For instance, in the traveling salesman problem, a feature 𝑓𝑡𝑖 can be the 

presence of an edge from a city A to a city B in the solution, and the corresponding cost 

𝑐𝑖 can be the distance, or the travel time, between these two cities. The penalties are 

initialized to 0 and updated when the local search reaches a local optimum. 

 The Iterated Local Search 

            ILS is a metaheuristic based on a simple idea: instead of repeatedly applying a 

local search procedure to randomly generated starting solutions, ILS generates the 

starting solution for the next iteration by perturbing the local optimum found at the 

current iteration (Ebert et al., 1994). This is done in the expectation that the perturbation 

mechanism provides a solution located in the basin of attraction of a better local 

optimum. The perturbation mechanism is a key feature of ILS: on the one hand, a too 

weak perturbation may not be sufficient to escape from the basin of attraction of the 
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current local optimum; on the other hand, a too strong perturbation would make the 

algorithm similar to a multi-start local search with randomly generated starting 

solutions. 

2.3.2.2 Population-Based Metaheuristics 

Regarding the population-based metaheuristics (P-metaheuristics), they are 

iterative processes that strives to enhance the number of solutions (Mitchell et al., 

1994). In these metaheuristics, the population is first randomly initialized before 

generating a new population of potential solutions which, based on certain selection 

criteria, could be integrated into the current solution. Upon meeting a certain 

termination criterion, the search process is terminated. P-metaheuristics are exploration-

based, meaning that they encourage a greater diversification of the search process 

compared to the single solution metaheuristics. As such, P-metaheuristics, such as those 

based on evolutionary algorithms (EA), artificial immune systems (AIS), and swarm 

intelligence (SI) paradigms have grown in popularity with respect to providing solutions 

to clustering problems.  

 Evolutionary Computation (EC) 

Evolutionary Computation (EC) is the general term for several 

optimization algorithms that are inspired by the Darwiniann principles of 

nature’s capability to evolve living beings well adapted to their environment. 

Usually found grouped under the term of EC algorithms (also called 

Evolutionary Algorithms (EAs)) (Vent, 1975), are the domains of genetic 

algorithms (Holland, 1975), evolution strategies (Vent, 1975) , evolutionary 

programming (Fogel et al., 1966), and genetic programming (Koza & Koza, 

1992). 

 Genetic Algorithms (GA) 

Based on population genetics and Darwin’s theory of natural selection, genetic 

algorithms are a type of evolutionary computing that solves problems by 

probabilistically searching the solution space (Holland, 1975). In contrast to most 

algorithms that work by successively improving a single estimate of the desired 

optimum via iterations, GA’s work with several estimates at once, which together form 
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a population. Given an initial population of individuals representing possible solutions 

to the problem, genetic algorithms simulate evolution by allowing the most fit 

individuals to reproduce to form subsequent generations. After several generations, 

convergence to an optimal solution is often accomplished. Determining the fitness of an 

individual is problem dependent and the fitness function usually incorporates a priori 

knowledge of the desired optimum. 

 Swarm Intelligence (SI) 

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for 

solving optimization problems that takes inspiration from the collective behavior of a 

group of social insect colonies and of other animal societies(Engelbrecht & Wiley, 

2006) . SI systems are typically made up of a population of simple agents (an entity 

capable of performing/executing certain operations) interacting locally with one another 

and with their environment. These entities with very limited individual capability can 

jointly (cooperatively) perform many complex tasks necessary for their survival. 

Although there is normally no centralized control structure dictating how individual 

agents should behave, local interactions between such agents often lead to the 

emergence of global and self-organized behavior. Several optimization algorithms 

inspired by the metaphors of swarming behavior in nature are proposed. Ant colony 

optimization, Particle Swarm Optimization, Bacterial foraging optimization, Bee 

Colony Optimization, Artificial Immune Systems and Biogeography-Based 

Optimization are examples to this effect. 

 Particle Swarm Optimization (PSO) 

PSO exploits a population of individuals to probe promising regions of the 

search space. PSO follows a stochastic optimization method based on Swarm 

Intelligence (SI) (Kennedy & Eberhart, 1997). The fundamental idea is that each 

particle represents a potential solution, which it updates according to its own experience 

and that of neighbours. The PSO algorithm searches in parallel using a group of 

individuals. Individuals or particles in a swarm, approach to the optimum through its 

present velocity, previous experience and the experience of its neighbours. PSO 

searches the problem domain by adjusting the trajectories of moving points in a 

multidimensional space. The motion of individual particles for the optimal solution is 
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governed through the interactions of the position and velocity of each individual, their 

own previous best performance and the best performance of their neighbours. 

 Ant Colony Optimization (ACO) 

The ant colony is an adaptive nature-inspired meta-heuristic optimization 

method introduced by Dorigo (Colorni et al., 1992; Dorigo et al., 1996). The ant 

optimization paradigm was related to the behaviour of real ants. Ethnologists have 

studied how blind animals, such as ants, can establish the shortest paths from their nest 

to food sources. Pheromone is an aromatic material. Ants lay down this in some 

quantity when they are on their way to food and are back to the home. The possibility of 

ants to follow a particular pheromone path depends upon the pheromone intensity. 

Researchers have shown that ants identify the shortest path from their home to a food 

source by pheromone trail following behaviour. Pheromone is the source of information 

among individual ants regarding paths. A moving ant lays some pheromone on the 

ground, thus making the path. The pheromone gradually dissipates over time. It is 

reinforced, as other ants use the same path. Therefore, efficient trails increase their 

pheromone level over time while the poor ones reduce to nil. 

 Gravitational Search Algorithm (GSA) 

Gravitational Search Algorithm (GSA) was first introduced by (Rashedi et al. 

2009), which is inspired by the laws of gravitation and motion. GSA could be 

considered as a collection of agents having masses proportional to their fitness function 

value. All masses attract each other through gravitational force. The gravitational force 

is directly proportional to product of masses and inversely proportional to distance 

between masses. A heavier mass which has small distance generates more attraction 

force. The heavier masses are possibly close to the global optimum. 

 Grey Wolf Algorithm 

Grey wolf algorithm (GWA) is an efficient optimization algorithm that is 

inspired by behaviours of grey wolves (Mirjalili et al., 2014). It mimics the leadership 

hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves 

such as alpha, beta, delta and omega are employed for simulating the leadership 

hierarchy. In addition to these, three main steps of hunting, searching for prey, 
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encircling prey and attacking prey are used. In GWA, the search process starts with 

random population of grey wolves (candidate solutions). During the course of iterations, 

alpha, beta and delta wolves estimate the approximate position of the prey. Each 

candidate solution updates its distance from the prey. Candidate solutions tend to 

converge towards the prey. The GWA produces the best candidate solution at end of 

iteration. 

2.3.2.3 Multi-Population-based metaheuristics  

Many real-world problems have been recently solved using many natural or 

biological inspired population-based techniques (Yildiz, 2012, 2013a, 2013b). However, 

the last decade witnessed the use of population-based methods to solve dynamic 

optimization problems (Blackwell & Branke, 2004; Branke, 1999; Cruz et al., 2011; 

Yang et al., 2007). Being that population-based methods deal with a set of solutions 

scattered over the whole solution space, this feature helps them to monitor changes by 

allocating each solution from the population to a different section of the solution space 

(Yang et al., 2007). When solving dynamic optimization problems, the major problem 

encountered is the controlling of the solution diversity; hence, the combination of the 

population-based techniques with several mechanisms have been proposed to ensure 

population diversity (Branke, 1999). For instance, Self-Organizing Scouts (SOS) has 

been proposed by Branke (1999) as a multi-population evolutionary algorithm for 

solving the Moving Peaks Benchmark (MPB). This algorithm divides the population 

into 2 subgroups (small and large). For the smaller populations, the goal is to monitor 

the most promising peaks over time while the larger population will keep searching for 

new peaks. The performance of the proposed algorithm was positive when applied to 

the MPB.  

A multiswarm PSO was proposed by (Blackwell & Branke, 2004, 2006) in 

which the swarm was partitioned into a mutable interacting subset of swarms which 

interacts locally by exchanging algorithmic parametric information. However, the 

global interaction is based on the anti-convergence mechanism that strived to eliminate 

the worst swarm from its peak in order to re-initialize it in the solution space. The 

results of the proposed algorithm, when applied on the MPB, were positive. A 

clustering PSO for the MPB was developed by (Yang & Li, 2010). This algorithm 
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tracks and locates multiple peaks using a hierarchical clustering method. The algorithm 

also achieved positive results. 

A cooperative PSO approach (CPSO-S) was suggested by (Van den Bergh & 

Engelbrecht, 2004). This approach splits the solution vector into sub-vectors which will 

individually be optimized by a specific swarm. The best solutions discovered by each 

swarm is used to build the complete solution vector. This approach is based on an 

initially proposed method using a GA (Potter & De Jong, 1994). Then in (Baskar & 

Suganthan, 2004) a method that involves 2 swarms parallelly searching for a solution 

using frequent passing of information was developed by . A Master-Slave multi-

population for PSO was proposed by (Niu et al., 2005) to ensure the particles’ diversity. 

Several other works have also been reported in this regard, such as (Yildiz, 2013a) 

where cooperating swarms which use a diversity strategy to exchange information are 

used.(Hongwei et al., 2010) used a fuzzy multi-population cooperative GA for multi-

objective transportation (El-Abd et al., 2010) suggested a discrete cooperative PSO for 

FPGA placement and (El-Abd & Kamel, 2010) proposed a cooperative PSO with the 

migration of heterogeneous probabilistic models. A study presented by (Akbari & 

Ziarati, 2011) presented a cooperative approach to bee swarm optimization, while (Guo 

et al., 2011) proposed a multi-population cooperative cultural algorithm which brought 

the competition cooperative GA into the population space of the cultural algorithm. 

These are mainly stochastic search techniques that are based on the principles of the 

individual and collective behaviour of insect swarms (Zhou et al., 2019). They are 

robust, efficient, and adaptive search methods that produces near to optimal solutions 

and are endowed with a great implicit parallelism.  Contrarily, data clustering can be 

formulated as a global optimization problem.  

2.4 Metaheuristics based Levy Flight (LF) 

 The Basic Concepts of Levy Flight (LF) 

Levy flight (LF) refers to a group of non-Gaussian random processes in which 

the distribution of its stationary increments follows a Levy stable distribution (Haklı & 

Uğuz, 2014). Paul Pierre Levy is a French mathematician who provided the first insight 

into Levy motion (Lévy, 2001); hence, the term ‘Levy’ in LF was taken after his name. 

The term ‘flight’ in this concept is taken as the maximum distance (in a straight line) 
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cover by an object in motion between 2 points without any halt or directional variation. 

Levy walk and LF are used interchangeably in the literature. In scenarios where birds or 

animals have little or no information of where to find their food, it has been observed 

that LF can efficiently provide such information with randomly distributed targets 

compared to BM (Brownian motion) which is efficient in scenarios with enough and 

more predictable targets (Reynolds & Rhodes, 2009; Yang & Deb, 2010). 

Levy flight (Chechkin et al., 2008) can be defined as a type of arbitrary 

processes that is characterized by a jump size that adheres to the levy probability 

distribution function. Its name was derivative of a French mathematician named Paul 

Pierre Levy. The distribution is simple power-law formula 𝐿(𝑠)|𝑠|−1−𝛽 where 0 <

 𝛽 ≤  2  is an index. The Levy distribution can be defined using an uncomplicated 

mathematical definition, as seen below (Yang & Deb, 2013):  

𝐿(𝑠)~|𝑠|(−1−𝛽), 𝑤ℎ𝑒𝑟𝑒 𝛽 (0 <  𝛽 ≤ 2)  2.11 

where 𝛽 and s represents an index and the step length, respectively. This study 

utilized a Mantegna algorithm for a symmetric Levy stable distribution to generate the 

sizes of the random steps. The term ‘symmetric’ in this concept implies that the step 

size will assume either a positive or negative value. The step length s in the Mantegna’s 

algorithm can be calculated thus:  

 𝑠 = 𝑢/|𝑣|(1/𝛽)  2.12 

where 𝑢 and v are drawn from normal distributions; i.e., 

𝑢 ~ 𝑁(0, 𝜎_𝑢2),   𝑣 ~ 𝑁(0, 𝜎_𝑢2) 2.13 

Where 

                               𝜎𝑢 =  
𝜏(1+ 𝛽) sin

𝜋𝛽

2

𝜏[(
1+ 𝛽 

2
)𝛽2

𝛽−1
2

     , 𝜎𝑣 = 1 2.14 

The distribution for s follows the anticipated Levy distribution for |𝑠| ≥ |𝑠_0 |, 

where 𝑠_0 represent the least step length and 𝜏(. ) represent the Gamma function which 

is estimated thus: 
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                                    𝜏(1 + 𝛽) = ∫ 𝑡𝛽𝑒−1𝑑𝑡
∞

0
 2.15 

The Levy distribution is used to generate the step sizes in the proposed 

technique. This is aimed at exploiting the search area. The step sizes are calculated thus: 

                        𝑠𝑡𝑒𝑝(𝑡) = 0.01 ×  𝑠(𝑡)  ×  𝑟𝑎𝑛𝑑(0,1) 2.16 

where t represents an iteration counter, 𝑠(𝑡) is estimated as shown in Equation 

(2.12) using Levy distribution, while 𝑟𝑎𝑛𝑑(0,1) is a random value ranging from [0,1].  

The step sizes in the Levy flights are too aggressive; this implies that they can 

often generate new solutions which are off the domain or on the boundary. Since the 

movement equation represented in the BH algorithm is a stochastic method search for 

new better positions within the search space, therefore, 0.01  multiplier is used in 

Equation (2.16) to reduce the step sizes when they get large. The positions of the stars 

are updated in the LBH as follows: 

𝑥𝑡(𝑡 + 1) = 𝑥𝑡(𝑡) + (𝑠𝑡𝑒𝑝(𝑡) ×  (𝑥𝐵𝐻 − 𝑥𝑡(𝑡))) 2.17 

where 𝑥𝑡 is an individual star in iteration 𝑡 while 𝑠𝑡𝑒𝑝(𝑡) is the actual step sizes 

generated using Equation (10). 𝑥𝐵𝐻 denotes the current best solution or the black hole.  

Levy flight is characterized by an important parameter of 𝛽, whereby each star is 

a solution and an arbitrary number is produced as 𝛽  between 0 and 2 . Its different 

values may result in dissimilar outcomes. Therefore, larger values of 𝛽 pose a higher 

likelihood to result in jumps to unexplored areas (i.e. higher exploration) and avoidance 

of being trapped in local optimums. However, smaller values will provoke the new 

positions to be viewed as near the obtained solutions (i.e. higher exploitation). The BH 

algorithm is particularly well-perceived for its excellent local search ability (Piotrowski 

et al., 2014), but within the surround of the optimum point, it is characterized by a low 

convergence rate. This is due to higher exploitation rate compared to the exploration 

rate.  

 



 

45 

 Properties and Attributes of LF 

LF is a tool commonly used to describe abnormal stochastic processes. 

Mathematically, LF is Markovian and their statistical distribution limit arises from 

identical independent randomly distributed variables based on the generalized central 

limit theorem. Some of the characteristics of LF include: 

1. Stable distribution 

As a stable distribution, the sum of 2 independent random variables with a 𝛽 

stable distribution and index 𝛽 is also 𝛽 stable with the same index 𝛽. However, this 

invariance property is not applicable to differing values of 𝛽. 

2. Infinite mean and infinite variance 

LF has an infinite mean and variance. A stable distribution is said to have 

infinite variance if it has fatter tails than the GD (Yang, 2010a). An infinite variance 

distribution is mainly characterized by having the average of its independent draws 

being no less indeterminate than a single draw. The progression of tails with infinite 

mean and variance to zero is slow while that of the normal distribution is faster. 

3. Heavy tailed probability distribution 

As a distinct type of generalized RW, the step length in LF during a walk is 

described by a heavy-tailed probability distribution or LD. Here, a heavy tail implies a 

gentler fall of the tail of LD compared to a GD (Yang & Deb, 2013); however, more 

heavy-tailed distribution is exponentially unconstrained. 

4. Capability of escaping local optimum 

Being that LD variance portrays divergence attributes, there is a chance of 

having enormous long jumps. On all scales, classical flights are similar as they display 

numerous smaller jumps intermixed with long searches. For this type of flight, the 

advantage is that it allows for an efficient and effective search of the distant solution 

spaces when solving global optimization tasks. It also prevents the algorithm from being 

trapped at a local minimum especially when the solution space is enormous. 
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5. Faster algorithmic convergence 

The use of Levy Flight (LF) reduces the chances of searching the previously 

searched areas in the solution space. As such, it improves the algorithmic performance 

by ensuring that it is not trapped in any local optima so that it can search the unexplored 

areas of the search space. With LF, the required number of iterations to lunch the 

program is reduced by a factor of 104 compared to Gaussian distribution (GD), and by a 

factor of 108 compared to the use of ES combined with LF. This improves the overall 

algorithmic convergence speed. This is expressed mathematically in the subsequent 

sections. 

6. Random numbers implementation with LF 

There are 2 phases of implementing random numbers with LF, the first phase 

involves the selection of the random direction from a uniform distribution while the 

second phase considered the generation of the steps that follow the selected Levy 

Distribution (LD). 

7. Search efficiency of LF 

LF concept has been observed in the foraging behavior of various species, such 

as eagle, spider monkey, honeybee, shark, etc. Other physical processes that exhibit LF 

include the diffusion of fluorescent molecules, as well as the noise and cooling 

characteristics under a set of conditions. LF-based frameworks have been shown to 

produce better results when there is no prior information about resource availability 

compared to the non-LF frameworks. LF-based frameworks also work better in 

scenarios where targets are hard to detect or where the targets distribution is meager. 

However, the fine-tuning capability of LF is lower than that of Gaussian distributed in 

situations with small to mid-range search spaces. For the GD-based algorithms, problem 

search is controlled by varying the mean and standard deviation (𝜎) , but this 

mechanism is not applicable due to the infinite variance of LD. 
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 LF in metaheuristics 

Most of the latest metaheuristics are based on LF (Fister et al., 2013). Such 

algorithms have been successfully applied in several science and engineering problems. 

The use of LF in these metaheuristics is described in the following paragraphs. 

The FPA was developed based on inspiration from the pollination event of 

plants where reproduction occurs via the transfer of pollen grains from the source 

flower to the recipient flower (Yang, 2012). Several studies have provided the 

pseudocode and rules of the FPA (Chakravarthy & Rao, 2015; Yang et al., 2013b). The 

global pollination process involves the carriage of the flower pollen gametes by certain 

agents (pollinators) over a long distance as they move across distances, exhibiting Levy 

walk characteristics (Yang et al., 2016). 

Regarding the CS algorithm which was presented by Yang and Deb (2009), each 

egg in a nest is a potential solution while a cuckoo egg denotes a new solution. In the 

CS, the basic concept is the replacement of the not-so-good solutions with the new and 

potentially better solutions (Rajabioun, 2011). The mathematical analysis, pseudocode, 

and governing rules of the CS have been provided by Yang and Deb (2009) . The 

cuckoos’ consecutive steps form an RW process which follows a heavy-tailed power-

law step length distribution. Ideally, a cuckoo’s egg may resemble that of some bird 

species, and if this is the case, the cuckoo’s egg may less likely be noticed by the host 

bird. Hence, fitness is a function of the variation in solutions (Chawla & Duhan, 2014; 

Yang & Deb, 2013). The CS has exhibited a better number of function evaluations in 

terms of mean and SD compared to GA and PSO on a small set of test functions (Yang 

& Deb, 2010). As per Rehman et al. (2016), the LF in the CS brings about the 

possibility of finding all the optima for multimodal functions in a solution space. 

There are 2 stages in eagles’ foraging activity (Yang et al., 2013a). While 

searching for food, the eagle flies randomly like an LF and performs LW in the entire 

space. Upon the detection of a target, the eagle moves to a chase stratagem in order to 

catch the target. The ES ensures a good mix of exploration with an efficient and 

intensive local search method. Local minima entrapment is avoided by first executing 
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an exploratory search before an exploitation search. This process is iteratively repeated. 

Two different algorithms are used in the ES at different stages and at different iteration 

times. LF is employed for global exploration to provide enough randomness to explore 

the solution space efficiently. The second step involves the use of an effective local 

optimizer to establish the local best using the least number of evaluation functions. This 

step is faster compared to the global exploration stage. ES has been proven to achieve 

better efficiency and success rate compared to PSO and other metaheuristics (Yang & 

Deb, 2010). 

The FA was presented by Yang based on inspiration from the light flashing 

pattern of fireflies. The pseudocode and the idealized rules of the FA were also provided 

by (Yang, 2010a, 2010b). A firefly’s level of attractiveness is a function of its 

brightness which is dependent on the encoded objective function (Marichelvam et al., 

2013). 

The BA was developed based on the echolocation pattern of bats (echolocation 

can be likened to a sonar) (Yang, 2010d). when searching for targets, bats, especially 

microbats, makes a loud sound (short-pulsed) and wait for the sound to hit the target 

and return to their ears after a short while. Based on the returned sound and the timing, 

the bats can determine the distance to the target. In the BA, the echolocation capability 

of the bats is the objective function that needs to be optimized; hence, optimization 

frameworks which can imitate this process in establishing the optimal solution to a 

problem can be formulated (Chawla & Duhan, 2014). The pseudocode of BA and its 

guiding rules have been provided by Yang (2010d). To generate new solutions, the 

frequencies, loudness and the bats’ pulse emission rates are adjusted, while the 

acceptability of the proposed solution is a function of its quality or the loudness and 

pulse rate which are dependent on the closeness of the solution to the global best 

solution (Yang, 2013). 

Richer and Blackwell (2006) used LF in PSO and modified PSO by replacing 

the particles’ motion with LF to provide an effective solution to optimization problems 

(Chawla & Duhan, 2018; Kennedy & Eberhart, 1995). The performance of the LF-

based PSO was evaluated on a set of 9 different benchmark functions where the LF-
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based PSO was observed to achieve a better convergence speed compared to the normal 

PSO due to the fat tail characteristics of its LD. 

(Haklı & Uğuz, 2014) this study hybridized PSO with LF to address the problem 

of local minima and the inability to perform a well global search in the original PSO. 

The SPSO and LFPSO were compared on 21 benchmark functions with 30 and 50 

dimensions where the LFPSO was more robust and produced better average results in 

most of the tested benchmark functions. The performance of the LFPSO algorithm was 

also compared to that of other PSO variants. The evaluation of the experimental results 

also showed the LFPSO to be more efficient compared to the benchmarked PSO 

variants. However, the proposed LFPSO was also compared with some of the recent and 

well-known population-based optimization techniques and found to perform better than 

most of the methods but close to the ABC algorithm. 

2.5 Analysis of the Previous Work 

The metaheuristic algorithms discussed previously generally have their various 

strengths and weaknesses. Most of these techniques require many iterations and perform 

poorly if there is no adequate parameter tuning. Moreover, metaheuristics are designed 

to search for near-optimal solutions, as these do not have the capacity to provide an 

optimal solution. Nevertheless, metaheuristics have some advantages that can be 

applied to a wide range of problems, either independently or in combination with other 

traditional techniques. Moreover, most metaheuristics have mechanisms for information 

sharing, which are responsible for enhancing quick convergence. Further, NI inspired 

optimization techniques provide a very effective way of handling complex problems 

and are good substitutes for existing techniques that normally get trapped in local 

optima . In addition, most of these algorithms have the capacity to escape from local 

optima which provides the ability to locate near-optimal solutions in a reasonable 

amount of time. Also, most metaheuristics are simple to understand, design and 

implement. In Table 2.2, some of the specific advantages and disadvantages of these 

metaheuristic algorithms presented in this study are outlined. 
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Table 2.2  Summary of the Classification of Snapshot Metaheuristics Agorithms 

Algorithm Advantages Disadvantages 

GA GA is easy to implement. GA has high likelihood of getting 

trapped in the local maxima 

GA has the ability to handle 

random types of objectives and 

constraints (Bousquet et al., 2016). 

GA does not have a standard method 

for defining a good fitness function. 

The best solutions majorly depend on 

the problem defined fitness function 

and hence the fitness function must 

be very accurate (Bousquet et al., 

2016). 

 

GA can be used independently to 

solve a given problem. It does not 

depend on other algorithms or 

heuristics for it to function well 

 

In GA, premature convergence 

seldom occurs, thus losing the 

population diversity 

GA can be used to handle problems 

whose constraints and objective 

functions are nonlinear or 

discontinuous 

GA does not have a standard 

termination criterion; neither does it 

have a standard method for adjusting 

its parameters. Therefore, parameter 

fne tuning is necessary for optimal 

solution realization (Bousquet et al., 

2016). 

 

GA uses simple operators and can 

be used to solve problems that have 

high computational complexity, 

such as the travelling salesman 

problem and data clustering 

problem as well (Bousquet et al., 

2016). 

 

GA can be time consuming, 

especially for problems with large 

number of variables 

ACO The construction process for ACO 

is inherently parallel, as ant builds 

solutions independently and 

simultaneously (Selvi & Umarani, 

2010). 

 

ACO probability distribution changes 

with iteration. 

Distributed computation in ACO 

evades premature convergence 

Although convergence in ACO is 

guaranteed, convergence time is 

undefined (Selvi & Umarani, 2010). 

 

ACO can be used to efficiently 

handle Travelling Salesman 

Problem and related problems 

It is difficult to theoretically analyse 

the behaviour of ACO, since ACO is 

based on sequences of random 

decisions of different independent 

artificial ants 
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Table 2.3  Summary of the Classification of Snapshot Metaheuristics Agorithms 

PSO PSO is very simple to implement (Bai, 

2010). 

In PSO, solutions are more likely to 

converge prematurely and 

consequently 

loses the population diversity (Bai, 

2010). 

 

PSO is very robustness and has excellent 

ability to control parameters 

PSO suffers from partial optimism 

PSO is computationally efficient when 

compared with mathematical algorithm 

and other heuristic optimization 

techniques 

 

PSO has the potential to easily fall 

into local optimum in high-

dimensional 

space 

PSO is useful in scientific research and in 

engineering and therefore has wide 

coverage in its application to solving real 

world problems 

 

 

GWO The Grey wolves conclude the hunt by 

attacking the prey when it ceases to 

move. It allows the position of its search 

agents to be updated based on the 

location of the alpha, beta, and delta; and 

attack towards the prey(Fister Jr et al., 

2013). 

 

It faces the problem of premature 

convergence due to the problem of 

stagnation of wolf pack in local 

optima (Fister Jr et al., 2013). 

 

CSA CSA has the ability to converge to a true 

global optimum (Fister Jr et al., 2013). 

CSA produces low classification 

accuracy (Qu & He, 2015). 

CSA can handle local and global search. 

It makes use of Levy flight as a strategy 

for global search (Fister Jr et al., 2013) 

 

CSA has low convergence rate (Qu & 

He, 2015). 

FPA FPA is flexible, simple, easy to 

implement, has few parameters and can 

be used to handle both single and 

multiple objective optimisation problems 

(Zhao & Zhou, 2016). 

 

It has the problem of slow 

convergence, low precision and easy 

to fall into a local optimum (Wang et 

al., 2017). 

ABC Does not require external parameters 

such as the crossover rate and mutation 

rate as in case of GA. Global search 

ability in the algorithm is implemented 

by employing neighbourhood based 

source production mechanism, which is a 

comparable to mutation process. 

 

ABC algorithm has premature 

convergence in the later stage of its 

search and the classification accuracy 

of its best obtained value may not be 

high enough to meet the requirements 

BH It has a simple structure and it is easy to 

implement (Zuwairie et al., 2018). 

BH easily fall into local optimum in 

high-dimensional space (Kumar et 

al., 2015). 
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From Table 2.2, it can be seen that the existing metaheuristic algorithms have 

not coverd all the features. However, all these algorithms do not work properly on high 

dimensional data and they take more time to converge. This will result undiscovered 

search space and the algorithm trapped at local minima. It is evident from the summary 

of the analysis presented that the existing algorithms still need improvements in order to 

deliver an efficiency algorithm. Moreover, an existing clustering algorithm namely BH, 

have promising results on normal datasets, but there are still some issues that need to be 

addressed such as exploration and high dimensionality. In the present research, levy 

flight on the multi-population black hole (MLBH) has been proposed to overcome these 

issues. MLBH is an algorithm that combines the levy flight and the multi-population in 

the black hole algorithm. 

BH superiority has been conformed against several state-of-art metaheuristics 

algorithms (Hatamlou, 2013) The BH algorithm has proven successful in solving data 

clustering problems even though the evaluation performance showed this approach to 

perform better than the other metaheuristics in optimization processes (Munoz et al., 

2018). Moreover, BH does not require any controlling parameter for balancing the 

global search and the local search abilities of the algorithm (Ezugwu, 2020), therefore, 

it has a simple structure and it is easy to implement. These two mentioned 

characteristics have led the researchers to apply BH algorithm for solving different 

optimization problems,  

Black hole algorithm is weak to perform global search perfectly in the big 

problem spaces . In other words, the movement of the stars depends mainly on 

generating step sizes by using a Uniform distribution values, which may lead to 

generate almost same steps. Additionally, the weak balancing between the exploration 

and exploitation increases the chances of the algorithm to trap in the local optima 

(Kumar et al., 2015).  Therefore, the absorption process of the BH algorithm should be 

improved, which is the main contribution of this study. 

2.6 Review on BH algorithm 

As per (Li & Pei, 2015), the BH can be applied based on the membrane system. 

(Tsai et al., 2015) introduced the BH algorithm to enhance the clustering speed using 

both software and hardware. They introduced an input data solution which exceeds the 
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memory of such a system. To solve this problem, MapReduce Black Hole (MRBH), an 

efficient clustering algorithm, was presented to leverage the strength of the BH and the 

MapReduce programming model. Using MapReduce, MRBH will partition a large 

dataset into numerous small datasets before clustering them in parallel. 

 The original BH need to be extended for solving combinatorial optimization 

problems. One of the extensions of BH algorithm is called Binary Black Holes (BBH) 

and it is used to solve multiple instances of known benchmarks obtained from the O 

library (Pashaei & Aydin, 2017). Another binary version of BH called BBHA, which is 

used to solve feature selection problem in biological data (Rubio et al., 2016). The BH 

has been actively hybridized with other algorithms. For example, the BH is combined 

with the stars gravities information and applied to unmanned combat aerial vehicle 

(UCAV) planning (Heidari & Abbaspour, 2014). The BH is also used as an operator 

and hybridized with GSA in order to prevent facing premature convergence and to 

improve the abilities of GSA in exploration and exploitation (Doraghinejad & 

Nezamabadi-pour, 2014; Mohammed et al., 2016). 

In another study, the BH is hybridized with a HS algorithm to solve the problem 

of BH. In this framework, the BH is used to produce an initial clustering solution to a 

problem while the HS algorithm is applied to improve the solution’s quality 

(Chandrasekar & Krishnamoorthi, 2014; Eskandarzadehalamdary et al., 2014).  

In addition, a bisecting k-means algorithm is hybridized with BH to improve the 

performance of bisecting k-means algorithm (Eskandarzadehalamdary et al., 2014). 

Moreover, Black Hole Artificial Bee Colony (BHABC) algorithm has been introduced 

in 2016. In this new algorithm, the BH gives a high exploration ability while 

maintaining the original exploitation ability of the ABC algorithm (Bansal, 2016).  

Genetic algorithm operators have been used to improve the diversity of BH 

(Yaghoobi & Mojallali, 2016). Other studies have shown that chaotic features can also 

be used to enhance the performance of BH and as such, a Chaotic Inertia Weight Black 

Hole (CIWBH) algorithm has been developed (Aslani et al., 2015). 

A white hole operator has been introduced in BH to avoid premature 

convergence in BH (Suad Khairi et al., 2016) In general relativity, theoretically, if black 

holes exist, then, it should be possible to reverse the equations governing them to get the 
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opposite of black hole, which is the white hole (Mirjalili et al., 2016). As opposed to 

black hole agent in the BH, the white hole was assigned to the worst agent in the 

population. 

The BLA was developed based on inspiration from black holes. This algorithm 

has three main steps; birth of black holes, calculating forces, and hawking radiation. 

The experimental results on different benchmarks indicate that the performance of the 

proposed algorithm is better than PSO, AFS and RBH-PSO. Six benchmark functions 

with different levels of complexity are used to evaluate the performance of the proposed 

algorithm (Premalatha & Balamurugan, 2015).  

The BH is used in engineering design of electromagnetic devices (Bouchekara, 

2013). The new optimization technique based on the black hole phenomenon is called 

the black-hole-based optimization technique. To show the effectiveness of the proposed 

technique, it has been demonstrated on a magnetizer by optimizing its pole face to 

obtain a desired magnetic flux density distribution. 

The BH has been introduced into the generalized constitutive law civil 

engineering. The model identification problem is transformed into a parameter back 

analysis problem which represents a typical and complicated optimization task. The BH 

algorithm was introduced in this study to improve the efficiency of the conventional 

optimization method. Its mechanism involved the combination of the generalized 

constitutive law for an elastic–plastic constitutive model with the BH algorithm. A new 

back analysis method has been proposed for model identification of rocks lining 

underground roadways in a coal mine in a bid to solve a parameter back analysis for the 

elastic-plastic constitutive model (Gao et al., 2016a). The slope instability of 

embankment is complicated and may develop locally within the embankment, near the 

facing, or through the foundation soil as local, general, deep-seated, or surficial failure. 

The BH is used to analyze the stability of one high embankment slope for one airport in 

the plateau loess area (Gao et al., 2016b). 

In the field of operations research, the BH has been employed by Soto et al., in 

which, they presented two new systems for online control of enumeration strategies 

based on bat algorithm and BH (Soto et al., 2017b). The BH is used to improve 
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performance in the exploration of the search tree and updating the enumeration strategy 

online (Olivares et al., 2016). 

Industrially, the design, control, and performance evaluation of induction motors 

are dependent on circuit parameters. Despite the capability of the conventional methods 

to produce accurate electrical parameters (such as resistance) measurements, the swarm 

intelligence-based methods are for real-world optimization problems. (Sharma & 

Kapoor, 2017) proposed the use of the disrupted Black Hole Artificial Bee Colony 

(DBHABC) algorithm for the optimization of induction motor parameter estimation. 

One of the commonest optimization problems is the set covering problem (SCP). 

Multiple instances of this problem have been solved using the BH, with known 

benchmarks obtained from the OR-library (Rubio et al., 2016). Set covering problems 

were also solved in 2016 by employing a recent nature-inspired metaheuristic based on 

the black hole phenomena (Soto et al., 2016). A multi-dynamic binary black hole 

algorithm for resolving the set covering problem has been introduced (García et al., 

2017). The same problems were also solved by cuckoo search and BH (Soto et al., 

2017a). 

A new method of adjusting metaheuristic-based classifiers based on BH algorithm 

has bee proposed. The aim of the method is to obtain results close to those obtained by 

using manual noise elimination methods. The proposed method was evaluated using the 

MAHNOB HCI Tagging Database and the results show the BH to achieve an accuracy 

of 92.56% over 30 executions when used to optimize the feature vector of the SVM 

(Munoz et al., 2018). 

Lastly, the differential evaluation (DE) algorithm is a population-based meta-

heuristic which was developed to address complex real-world optimization problems. 

However, a variant of DE called Black-hole Gbest DE algorithm (BHGDE) was 

developed based on the black-hole (BH) phenomenon. With the incorporation of the 

Black-Hole, the exploration capability of BHGDE was improved while still retaining 

the original exploitation capability of DE (Sharma et al., 2019). 
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2.7 Gap Analysis 

It can be observed from Table 2-1 and Table 2-2 that in all standard meta-

heuristics, the number of iterations usually increases in a bid to find an optimal solution 

due to the random initialization at the initial step. Furthermore, all metaheuristics are 

characterized by two major problems; first, they require several parameters which are 

difficult to tune; second, they often require several iterations due to the large search 

space (rendering them computationally prohibitive). Therefore, most of the recently 

proposed approaches are just an extension of the capabilities of the original algorithm 

through hybridization (in most cases) with either K-means algorithm or any other 

algorithm. However, hybridized algorithms are characterized by high complexity and 

often requires more computation. To avoid promoting a certain meta-heuristic, other 

approaches depend on new concepts inspired by recent theories such as chaos and 

quantum theory to enhance performance. All the meta-heuristics perform differently 

when they are used to solve different optimization problems. One algorithm may 

perform better than the other in solving one problem and it may perform unsatisfactorily 

in other set of problems. We conclude that black hole algorithm is population-based 

same as particle swarm optimization, firefly, genetic algorithm, BAT algorithm, and 

other evolutionary methods. It is free from parameter tuning issues like genetic 

algorithms and others. It does not suffer from premature convergence problem. This 

implies that black hole is potentially more powerful in solving NP-hard (e.g. data 

clustering problem). Based on the review in this study, is weak to perform global search 

completely especially in the big problem spaces due to its limited exploration and 

exploitation capability (Kumar et al., 2015). The standard version of BH algorithm does 

not perform the global search well, it is only performed when there is a star with fitness 

lower than the even horizon (R). Which means only small number of stars are re-

generated for the exploration purposes, while in some problems there is a need for 

exploring the search space more than what BH does. 

2.8 Summary  

This chapter has introduced and briefly described the basic concepts of meta 

heuristic, exploration and exploitation, and types of meta heuristic. Special attention has 

been given to meta heuristic based levy flight, single and multi-population meta 
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heuristic algorithms. Moreover, clustering since it has been clarified in this chapter as 

well as clustering optimization, clustering challenges, clustering categories,  high 

dimensional clustering. Next, a survey of the state of art of existing meta heuristics 

clustering algorithm has been presented. Finally, an overview of the black hole 

algorithm along with the justification and the gap analysis for black hole algorithm is 

provided. 
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CHAPTER 3 

 

 

RESEARCH METHODOLOGY 

3.1 Introduction 

In previous chapter, the concept of clustering, the problem of clustering, the 

metaheuristic, and analysis of the existing data clustering algorithms were introduced. 

Finally, the BH was explained in detail with the pros and cons then the subsection ends 

with a review on the black hole algorithms. This chapter presents a full details 

description of the design methods of the current study. This chapter specifically 

describes the phases involved for designing clustering algorithm, including its two 

modified versions, the performance test criteria of the new variant of BH will be 

presented at the end of this chapter. 

As remainder, this chapter describes the research methodology used to develop 

the proposed algorithm in solving data clustering problem. Section 3.2 offers an 

elaborated detail of research methodology adopted as well as the tools for testing and 

validation. Section 3.3 presents a full description of the original black hole algorithm. 

Section 3.4 then explain the Multiple Levy Flight Black Hole algorithm for high 

dimensional data clustering. Moreover Section 3.5 presents the high dimensional 

MLBH followed by Section 3.6 will analysis the test function, datasets and the 

evaluation measures. Finally, Section 3.9 summarize and conclude this chapter. 

3.2 Research Methodology 

Most real-world problems can be considered as NP-hard problems because there 

are no exact methods that could efficiently solve the problem within an acceptable range 

of computational time. One promising method is metaheuristic since they return good 
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quality solution quite reasonably (Talbi, 2009). Nonetheless, many metaheuristic 

methods have a stochastic component, which then leads to different solutions over 

multiple runs even if the initial solution is the same. At the end, it is very difficult to 

study their behaviour or characteristic analytically (Bartz-Beielstein et al., 2010). As 

shown in Figure 3.1, the phases are problem understanding and literature review, design 

and development and benchmarking and analysis of this study.  
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Figure 3.1 The research process 
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3.2.1  Literature Review Phase   

This phase begins with identifying the most relevant works. Particularly, this 

phase concentrates on understanding the challenges in developing effective and efficient 

modify BH for data clustering. This is achieved by carrying out a literature review, 

exploring the existing approaches and finding the research gaps. Then, the proposed 

solution for the identified gap is presented in the following phase.  

3.2.2 The Methodology  

The data clustering problem with its challenges have been addressed in the 

previous phase. In addition, the two major drawbacks of BH algorithm have been 

identified, they are: The weak exploration capabilities of BH algorithm, and the weak 

balancing between the exploration and exploitation which may increase the chances for 

the algorithm to trap in the local optima. In this phase, a new variant of BH algorithm is 

proposed to overcome the above-mentioned issues for the problems of optimization and 

data clustering. Moreover, the proposed algorithm called ‘Multiple Levy Flight Black 

Hole (MLBH)’ is developed to handle the high dimensional datasets. There are two 

main differences between MLBH and the original BH, first, the exploration is enhanced 

by using Levy Flight. While the second, is that the balancing between exploration and 

exploitation is enhanced by developing a new multi-population architecture. These two 

modifications are ‘Levy Flight Black Hole Algorithm (LBH)’ and ‘Multiple Black Hole 

(MBH). The new variant MLBH, with the modifications LBH, and MBH are explained 

in detail in this chapter. The notations defined are as follows: 

i.  𝜇 is position or shift parameter; 

ii.  𝛾 
scale parameter that controls the scale of 

distribution; 

iii.  𝑟𝑎𝑛𝑑 an arbitrary number within the range[0,1]; 

iv.  ⨁ indicates entry-wise multiplications; 

v.  𝑆 is a monumental process; 

vi.  𝑢 and 𝑣 
are random numbers produced by a normal 

distribution; 

vii.  𝜏 is the standard gamma function; 

viii.  𝛽 Levy flight parameter; 

ix.  𝑥𝑖(𝑡) the location of the star; 

x.  𝑥BH 
the location of the black hole in the search 

space; 
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xi.  c is a constant; 

xii.  N 
is the number of stars (candidate solutions) 

in the population; 

xiii.  (𝑆𝐶) Search Counter; 

xiv.  𝑆𝐶𝑚𝑎𝑥 is the maximum value of 𝑆𝐶; 

xv.  probability (𝑝𝑟𝑜𝑏𝑟𝑒𝑝𝑙𝑎𝑐𝑒) 
every star death is characterized with a new 

replacement star; 

xvi.  𝑟𝑔 
the ratio is used to mix between the two 

ways; 

xvii.  𝐵𝐻𝐺 the global best black hole; 

xviii.  𝑋𝑖 represents a new star; 

xix.  𝑃 population; 

xx.  𝑋𝑅 
represents a randomly selected star from 

another randomly selected population; 

xxi.  𝐹𝑖 
represents the current feature needs to be 

normalized; 

xxii.  𝑀𝑖𝑛𝑖 and 𝑀𝑎𝑥𝑖  
represent the minimum and the maximum 

value for that feature respectively; 

xxiii.  MI 
is a well-known filter based feature 

selection method; 

xxiv.  𝐼 
represents the value of weight of individual 

feature; 

xxv.  𝐻 denotes the entropy value; 

xxvi.  Entropy 

is calculated by the summation of all the 

probability  

distribution of values of the feature, 

multiplied by the natural 𝑙𝑜𝑔 of those 

probability distribution; 

xxvii.  𝑥 represent a value of the set 𝑋; 

xxviii.  𝑝(𝑥) represents the probability distribution of 𝑥; 

 

3.2.3 Result and Discussion  

In this phase, the developed algorithm is verified by testing it based on two 

aspects; first, the proposed algorithm has been verified based on nine benchmark 

mathematical functions. Then, the proposed algorithm (MLBH) with the two 

modifications (LBH and MBH) are evaluated based on two types of benchmark datasets 

(normal and high-dimensional), in order to demonstrate that the proposed algorithm 

perform well. The normal datasets are: Iris, Wine, Glass, Cancer, Vowel and 

Contraceptive Method Choice (CMC), which are available in the repository of the 

machine learning databases. On the other hand, the high dimensional datasets are: 

Colon tumour, Breast Cancer and central nervous system (CNS). Since the objective of 



 

62 

this thesis is to improve the effectiveness and efficiency of the clustering, this phase 

provides different means of evaluation as shown in Figure 3.2.  
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Figure 3.2 Experiment evaluation process 

 

3.3 The Original Black Hole (BH)  

3.3.1 Black Hole Phenomena  

The black hole concept was established by Dr John Michel and Pierre Pierre 

Simon de Laplace in the eighteenth century when they depended on Newton’s law to 

invent the concept of a star becoming invisible to the human eye. This concept was not 

recognized as black hole until in 1967 when John Wheeler, an American physicist, first 
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referred to this concept of mass collapsing as a black hole (Talbi, 2009). A black hole is 

formed in nature when a massive star collapses in a process called mass collapsing. The 

black hole has a strong gravitational force that no form of light can escape from it. This 

strong gravitational force is because a large matter has been squeezed into a tiny space 

such that anything that crosses its boundary will be trapped. 

 The sphere-shaped boundary of a black hole in space is referred to as the event 

horizon and the radius of this event horizon is referred to as the Schwarzschild radius. 

The speed of escape at this radius is equal to the speed of light, and once light passes 

through, it cannot escape. The Schwarzschild radius (R) is calculate as follows: 𝑅 =

2𝐺𝑀

𝑐2 , where G = the gravitational constant (6.67 ∗ 10−11𝑁 ∗ (
𝑚

𝑘𝑔
)2), M = mass of the 

black hole, and c = speed of light. If a star moves towards the event horizon or crosses 

the Schwarzschild radius of the black hole, it will be trapped into the black hole and will 

disappear permanently. The effect of black hole on objects that surrounds it proves its 

existence (Giacconi, 2001; Pickover, 1998). 

 Black hole behaviour  

A black hole is a region of space-time (𝑥, 𝑦, 𝑡) with a strong gravitational field 

that nothing can escape from it. According to the theory and principle of general 

relativity, “a sufficiently compact mass will deform space-time to form a black hole”. 

There is a mathematically defined surface around a black hole called an event horizon 

which marks the point of no return. Because this hole can absorb all lights that hits it, it 

is referred to as black hole (Schutz, 2003). There are three independent physical 

properties of a black hole, its mass (𝑀), charge (𝑄), and angular momentum (𝐽). A 

charged black hole repels like charges like any other charged object in a given space. 

Although the simplest black holes have mass, however, they lack angular momentum 

and electric charge. 

3.3.2 Black Hole Algorithm 

The black hole concept is simply a region of space with so much mass 

concentrated in it such that no nearby object can escape its gravitational pull. Anything 

that falls into a black hole (including light) is permanently gone. Figure 3.3 presents the 

steps of the Black Hole algorithm. 
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Figure 3.3 The Black Hole Algorithm 

BH algorithm consists of three main components. First, Black Hole, which 

represents the best candidate – or solution – among all the candidates at each iteration. 

Second, the Stars which denotes the other normal solutions or candidates. The creation 

of the black hole is not random, and it is one of the real candidates of the population. 

Finally, Movement component, all the candidates are moved towards the black hole 

based on their current location and a random number. 

The mathematical model of BH can be summarized in three main stages, as 

follows:  

Stage 1: Initialization and Fitness value calculation  

1. Initial population: 𝑃(𝑥) = {𝑥1
𝑡 , 𝑥2

𝑡 , 𝑥3
𝑡𝑥4

𝑡 , … . , 𝑥𝑛
𝑡 }  randomly generated individual 

solutions are placed in the solution space of some problem/function. 

2. Determine the total fitness of the population as equation 3.1: 

𝑓(𝑥𝑖) = ∑ 𝑒𝑣𝑎𝑙(𝑝(𝑡)

𝑝𝑜𝑝_𝑠𝑖𝑧𝑒

𝑖=1

 3.1 
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Where 𝑓𝑖 represents the fitness function for the position of each star 𝑥𝑖 , while 

𝑒𝑣𝑎𝑙(𝑥𝑖 ) represents the defined objective function which either be maximized or 

minimized. The best star or candidate in terms of the fitness value is then determined 

and selected as the Black Hole (𝑥𝐵𝐻). After initializing the first black hole and stars, the 

black hole starts absorbing the stars around it and all the stars start moving towards the 

black hole. 

Stage 2: Absorption rate of the stars by the BH 

The black hole starts absorbing the stars around it and all the stars start moving 

towards the black hole. The absorption of stars by the black hole is formulated as 

equation     3.2: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑥𝐵𝐻 − 𝑥𝑖(𝑡))  𝑖 = 1.2. ⋯  𝑁,     3.2 

 

Where 𝑥𝑖(𝑡 + 1) and 𝑥𝑖(𝑡) = location of the 𝑖th star at iteration 𝑡 and 𝑡 + 1 respectively, 

𝑥BH = location of the BH in the solution space, 𝑟𝑎𝑛𝑑 = random number in the range 

[0, 1] which is generated using a uniform distribution, and 𝑁 = number of individual 

solutions in the population. When a star is moving towards the BH, it may reach a 

location with a lower cost compared to the BH; in such case, the BH will move to the 

location of that star and vice versa. Then BH algorithm will then proceed with the BH in 

the new location, pulling the stars to its new location. 

Stage 3: Probability of Crossing the Event Horizon during Moving Stars 

In the BH algorithm, the probability of a moving star crossing the event horizon 

of BH is used to gather more optimal data points from the solution space of a problem. 

Each star (individual solution) that crosses the BH’s event horizon will be drawn into 

the BH and whenever a star (an individual solution) dies, another star will be nominated 

and randomly distributed in the search space and a new search will be initiated in the 

search space. The next iteration can only commence when all the stars have been 

moved. The radius of the BH’s event horizon in the algorithm is calculated using the 

equation 3.3: 
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𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

 3.3 

Where 𝑓𝐵𝐻 = the BH’s ffitness value, 𝑓𝑖 = fitness value of the 𝑖𝑡ℎ star, 𝑁 = number of 

stars in the population. A population that has a less number of stars than the allowed 

minimum number of stars will be omitted. When 𝑅 is greater than the distance between 

an individual solution and the BH (the best candidate), that candidate is collapsed, 

giving room for the creation of a new candidate which will be randomly distributed in 

the search space.  

 BH Algorithm 

1.  Input: Dataset or Test Function, 𝑀𝑎𝑥𝐼𝑡𝑟, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, 𝑈𝑝𝑝𝑒𝑟, 𝐿𝑜𝑤𝑒𝑟 

2.  Output: Best Solution 𝑋𝐵𝐻  

3.  Procedure: 

4.        Define Objective Function 𝑓(𝑥𝑖) 

5.        Initialize all the stars 𝑥𝑖 in the population via Uniform Distribution 

6.        Evaluate the fitness value of each star 𝑋 in the population via 𝑓 

7.        Set the best star in the population as Black Hole 𝑥𝐵𝐻  

8.        While 𝑖𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 

9.                For each star 𝑋𝑖 in the population 

10.  
                    Update the positon of each star 𝑋𝑖 via equation     3.2 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑥𝐵𝐻 − 𝑥𝑖(𝑡)) 

11.                      Check the boundaries of each star 𝑋𝑖 

12.                      Evaluate the fitness value of the star 𝑋𝑖 in the population via 𝑓 

13.                End For 

14.  

              Calculate the event horizon via equation  

𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

 

15.                For each star 𝑋𝑖 in the population 

16.                       If 𝑋𝑖 crosses the event horizon (𝑅) Then  

17.                               Remove the star 𝑋𝑖 

18.                               Generate a new star via Uniform Distribution 

19.                       End If 

20.                End For 

21.         Set the best star in the population as Black Hole 𝑋𝐵𝐻  

22.          Loop 

23.          Return 𝑋𝐵𝐻  

                                                                                                                                                   

Figure 3.4 Pseudocode of BH algorithm 

 

3.4 Multiple Levy Flight Black Hole (MLBH) Algorithm 

As mentioned previously in the methodology of this thesis, a new variant of BH 

algorithm is design in this thesis, which is called (MLBH). MLBH consists of two main 
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modifications LBH and MBH. In next subsection, LBH, MBH, and MLBH are 

explained in details.  

3.4.1 Levy Flight Black Hole (LBH) Algorithm 

The BH algorithm has been recently developed by (Hatamlou, 2013), it 

simulates the movement of the stars surrounding the black hole stars. In the standard 

version of BH, all stars are moved based on the distance between the position of the star 

and the position of the black hole (best solution), multiplied by a random number 

generated by a uniform distribution in range [0,1], as shown in equation     3.2 section 

3.3.2. This equation represents the exploration or the global search ability of BH. The 

𝑟𝑎𝑛𝑑 parameter in equation     3.2 section 3.3.2 may leads to almost same values, which 

cause to move the stars into a close position to the current. Therefore, the formula for 

moving the stars to explore the solution space causes them to over-scatter and leads to 

slow convergence and may leads to a trapping in the local optima. 

A new modification in this thesis is proposed to overcome the issue of the 

movement equation. The long jumps have been undertaken via Levy distribution in 

order to ensure effectual use of the search space in comparison with BH. Previously 

investigated works have aimed to improve BH, whereby the current proposal calls for 

BH to perform random walks and global search. Levy flight, in particular, improves the 

global search capacity for the BH algorithm, preventing one to be stuck in local minima. 

Additionally, the proposed modification enhances the global search ability of BH 

algorithm as per the new equation of star movements underlined. As BH algorithm is 

incapable of attaining the optimum results in a specific number of iterations, an efficient 

Levy-flight selection is imperative to avoid being stuck in local optimum as it results in 

improved global and local search capability concomitantly. 

Hence, the suggested algorithm is designed in a manner that it allows the BH 

algorithm’s local search ability, which will improve the method’s efficiency in 

generating the optimal resolution and accelerating the convergence rate. Some examples 

of Levy flight compared with the Brownian walk (random) have been displayed in 

Figure 3.5(Haklı & Uğuz, 2014) . After the first movements around a point, sudden 

jumps are encountered; it generates the simultaneous local and global search. The 

suggested method describes the creation of an arbitrary population of stars, which then 

requires their respective cost to be calculated. The black hole is next marked in the 
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ensuing stage, which is followed by movement operations and stars disappearing in the 

black hole.  

Figure 3.5 Motion path in Levy flight and Brownian (random) walk (Haklı & Uğuz, 

2014) 

 

The pseudocode and flowchart of LBH are presented in Figure 3.6 and Figure 3.7 

respectively. 

 LBH Algorithm 

1.  Input: Dataset or Test Function, 𝑀𝑎𝑥𝐼𝑡𝑟, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, 𝑈𝑝𝑝𝑒𝑟, 𝐿𝑜𝑤𝑒𝑟 

2.  Output: Best Solution 𝑋𝐵𝐻  

3.  Procedure: 
4.        Define Objective Function 𝑓(𝑥𝑖) 

5.        Initialize all the stars 𝑥𝑖 in the population via the uniform distribution 

6.        Evaluate the fitness value of each star 𝑋 in the population via 𝑓 

7.        Set the best star in the population as Black Hole 𝑥𝐵𝐻  

8.        While 𝑖𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 

9.                For each star 𝑋𝑖 in the population 

10.  

                    Update the positon of each star 𝑋𝑖 via the following equations :  

𝑠𝑡𝑒𝑝(𝑡) = 0.01 ×  𝑠(𝑡)  ×  𝑟𝑎𝑛𝑑(0,1) 
𝑥𝑡(𝑡 + 1) = 𝑥𝑡(𝑡) + (𝑠𝑡𝑒𝑝(𝑡) ×  (𝑥𝐵𝐻 − 𝑥𝑡(𝑡))) 

11.                      Check the boundaries of each star 𝑋𝑖 

12.                      Evaluate the fitness value of the star 𝑋𝑖 in the population via 𝑓 

13.               Set the best star in the population as Black Hole 𝑥𝐵𝐻  

14.                End For 

15.  

              Calculate the event horizon via the following equation:  

𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

 

16.                For each star 𝑋𝑖 in the population 

17.                       If 𝑋𝑖 crosses the event horizon (𝑅) Then  

18.                               Remove the star 𝑋𝑖 

19.                               Generate a new star via uniform distribution 

20.                       End If 

21.                End For 

22.         Set the best star in the population as Black Hole 𝑋𝐵𝐻  
23.          Loop 

24.          Return 𝑋𝐵𝐻  

  
Figure 3.6 Pseudocode of LBH  
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Figure 3.7 Flowchart of LBH algorithm 

3.4.2 Multiple Black Hole (MBH) Algorithm 

The standard version of BH algorithm does not perform the global search well, it 

is only performed when there is a star with fitness lower than the event horizon (R). 

Which means only small number of stars are re-generated for the exploration purposes, 

while in some problems there is a need for exploring the search space more than what 

BH does. Therefore, in case of the exploitation capabilities, being performed more than 

the exploration capabilities; the chances of trapping in the local optimum are increased. 

An enhanced version of BH algorithm was proposed and called as the “Multiple Black 

Hole (MBH) Algorithm” for the problem of data clustering. MBH is based on the 

original BH algorithm but uses multiple populations instead of a single one. Each 

population is composed of a number of candidate solutions (stars) that undergoes 

random generation in the search space. Then, the populations are initialized and each of 

their fitness values is assessed, whereby the best candidate having the best fitness value 
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is chosen as the black hole, while the rest reverts to become normal stars. As the black 

hole is capable of absorbing stars around it, such process of star absorption occurs after 

the black hole and stars are initialized, at which the stars move. The absorption process 

has been formulated as seen below: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) × 𝑟𝑎𝑛𝑑 × (𝑥𝐵𝐻 − 𝑥𝑖(𝑡))  𝑖 = 1.2. ⋯  𝑁, 3.4 

Where 𝑥𝑖(𝑡 + 1) and 𝑥𝑖(𝑡) are the location of the 𝑖th star at iteration 𝑡 and 𝑡 + 1, 

𝑥BH  is the location of the black hole in the search space, c is a constant, 𝑟𝑎𝑛𝑑  is a 

random number in the interval [0, 1], and 𝑁 is the number of stars (candidate solutions) 

in the population.  

A population must be omitted if the number of its stars becomes less than the 

minimum allowed number of stars in a population. At each iteration, there will be a 

probability of generating a new population (𝑝𝑟𝑜𝑏𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛), which will help 

to explore the entire search space and avoid the local minima at a minimum number of 

iterations (speedup the convergence to global optima in early iterations). 

𝑝𝑟𝑜𝑏𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑟𝑎𝑛𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
  3.5 

Where 𝑟𝑎𝑛𝑑 is a random number in the interval[0.1]. The solutions of the new 

population are generated in two ways:  

1) Arbitrarily in the search space, and  

2) Arbitrarily chosen from other populations.  

The ratio 𝑟𝑔 is used to mix between the two ways and is formulated as equation 

3.6: 

𝑟𝑔 =
𝑖𝑡𝑟

𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
,  3.6 

Where itr is the iteration of generating the new population and max iterations 

refers to the total number of iterations. Therefore, the searching process during the early 

iterations is considered to be a global search ( 𝑟𝑔)  is small and the solutions are 

arbitrarily generated in the search space. As the iterations go on, it becomes a local 

search (𝑟𝑔) is getting bigger and the solutions are taken from other populations. Note 
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that the value of 𝑟𝑔 can be also selected as constant. Thus, in order to generate a new 

population, there are two cases: if 𝑟𝑔 is less than 50% of the total no. of iterations then 

generate a new random population, otherwise, generate the population based on the 

position of the global best black hole (𝐵𝐻𝐺) as shown in the equations 3.7 and 3.8:   

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑃) {
𝑟𝑔 ≤ 0.5  𝑡ℎ𝑒𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐵𝐻𝐺
  3.7 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑃). 𝑋𝑖 =  𝑋𝑖 + (𝐵𝐻𝐺 − 𝑋𝑅) ∗ 𝑟𝑎𝑛𝑑 3.8 

Where 𝑋𝑖  represensts a new star. In the population 𝑃,  while 𝑋𝑅 represents a 

randomly selected star from another randomly selected population, 𝑟𝑎𝑛𝑑 is a random 

number in range [0, 1] . The key processes for the enhanced BH algorithm are 

subsequently summarized using the Figure 3.8 pseudocode, while the flowchart is given 

in Figure 3.9.  
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MBH Algorithm 

1.  Inputs: Dataset or Test Function, 𝑁𝑢𝑚_𝑜𝑓_𝑃𝑜𝑝𝑠, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, 𝑀𝑎𝑥_𝑆𝑜𝑙𝑠, 𝑀𝑖𝑛_𝑆𝑜𝑙𝑠, 𝑀𝑎𝑥𝐼𝑡𝑟, 𝑆𝐶𝑚𝑎𝑥, 𝑈𝑝𝑝𝑒𝑟, Lower 

2.  Output: Best Solution 𝐵𝐻𝐺 

3.  Procedure 

4.        Define Objective Function 𝑓(𝑥𝑖) 

5.  Initialize all populations of stars with random locations in the search space, as follows:  

                   𝑝𝑜𝑝(𝑝). 𝑥𝑖 = (𝑈𝑝𝑝𝑒𝑟 − 𝐿𝑜𝑤𝑒𝑟) × 𝑟𝑎𝑛𝑑 + 𝐿𝑜𝑤𝑒𝑟 

6.  Evaluate the objective function for each star in each population using the define objective function 

7.  Determine the best star in each populations 𝑝𝑜𝑝(𝑝). 𝑥𝑖  

EvaluationNum=0; MaxEvaluation = P * 𝑁𝑢𝑚_𝑜𝑓_𝑃𝑜𝑝𝑠 * MaxItr; 

8.        While 𝑖𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 

9.               For 𝑝 = 1 𝑡𝑜 𝑁𝑢𝑚_𝑜𝑓_𝑃𝑜𝑝𝑠 

10.                   For each star 𝑋𝑖 in Pop (p) MaxEvaluation 

11.                           Move the star 𝑝𝑜𝑝(𝑝). 𝑥𝑖via the following equation: 

                                  𝑝𝑜𝑝(𝑝). 𝑥𝑖(𝑡 + 1) = 𝑝𝑜𝑝(𝑝). 𝑥𝑖(𝑡)  × 𝑟𝑎𝑛𝑑 × (𝑝𝑜𝑝(𝑝). 𝑥𝐵𝐻 − 𝑝𝑜𝑝(𝑝). 𝑥𝑖(𝑡)) 

12.                           Check the boundaries of 𝑝𝑜𝑝(𝑝). 𝑥𝑖  

13.                           Evaluate the objective function for 𝑝𝑜𝑝(𝑝). 𝑥𝑖  

14.                              EvaluationNum + 1; 
15.                           If EvaluationNum ≥ MaxEvaluation 

                                    Go to line 40 

16.                    End For  

17.                      Determine the best star in Pop (p) as ( 𝑝𝑜𝑝(𝑝). 𝑥𝐵𝐻) as follows: 

𝑝𝑜𝑝(𝑝). 𝑥𝐵𝐻=Min 𝑝𝑜𝑝(𝑝) 

18.                       Calculate the value of the event horizon for 𝑝𝑜𝑝(𝑝) 𝑣𝑖𝑎 the following equation: 

𝑝𝑜𝑝(𝑝). 𝑅 =
𝑓(𝑝𝑜𝑝(𝑝). 𝑥𝐵𝐻)

∑ 𝑓(𝑝𝑜𝑝(𝑝). 𝑥𝑖)𝑁
𝑖=1

 

19.                       For each star 𝑋𝑖 in Pop (p) 

20.                            If  𝑓(𝑝𝑜𝑝 (𝑝). 𝑋𝑖  ) < (𝑝𝑜𝑝(𝑝). 𝑅) Then  

21.                                 Re-generate a new 𝑝𝑜𝑝 (𝑝). 𝑋𝑖 via the uniform distribution 

22.                                      EvaluationNum + 1; 

23.                                  If EvaluationNum ≥ MaxEvaluation 
                                          Go to line 40 

24.                            End If 

25.                       End For 

26.               End For  

27.               Set the global best solution overall population as the global best black hole (𝐵𝐻𝐺) 

28.               For 𝑝 = 1 𝑡𝑜 𝑁𝑢𝑚_𝑜𝑓_𝑃𝑜𝑝𝑠 

29.                    Calculate the probability of generating or replacing the population, as follows:  

                               𝑝𝑟𝑜𝑏𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=

𝑟𝑎𝑛𝑑

𝑛𝑜.𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  

30.                    If 𝑟𝑎𝑛𝑑 < 𝑝𝑟𝑜𝑏𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 Then 

31.                           Calculate the generating ratio 𝑟𝑔 as follows:  

𝑟𝑔 =
𝑖𝑡𝑟

𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

32.                           If 𝑟𝑔 ≤ 0.5 Then   

33.                                     Generate new 𝑝𝑜𝑝(𝑝) of stars with random locations in the search space via  
                                    the uniform distribution 

𝑝𝑜𝑝(𝑝). 𝑥𝑖 = (𝑈𝑝𝑝𝑒𝑟 − 𝐿𝑜𝑤𝑒𝑟) × 𝑟𝑎𝑛𝑑 + 𝐿𝑜𝑤𝑒𝑟 

34.                           Else 

35.                                     Generate new 𝑝𝑜𝑝(𝑝) based on 𝐵𝐻𝑔 as follows:  

𝑝𝑜𝑝(𝑝). 𝑥𝑖 =  𝑝𝑜𝑝(𝑝). 𝑥𝑖 + (𝐵𝐻𝐺 − 𝑝𝑜𝑝(𝑟1). 𝑥𝑟2) ∗ 𝑟𝑎𝑛𝑑 

36.                           End If 

                 

37.                    End If 

38.                End For  

39.         Loop 

40.        Determine the best solution in all populations as (𝐵𝐻𝐺) 

41.        Return 𝐵𝐻𝐺 

 

    Figure 3.8      Psuedocode of MBH  
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Figure 3.9 Flowchart of MBH algorithm.
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3.4.3 Multiple Levy Flight Black Hole 

Multiple Levy Flight Black Hole (MLBH) algorithm which is the main 

contribution of this thesis is presented and explained in this subsection. MLBH is a new 

variant of Black Hole algorithm, the main difference between the original BH and 

MLBH is that MLBH contains a new mechanism for exploring the search space more 

than the original BH algorithm. Therefore, the chances of falling in the local optima are 

less when using MLBH for the global optimization problems in general, and data 

clustering problems in particular due to its ability of visiting positions which are not 

explored by the standard version of BH.  

In the previous two subsections, two enhancements or modifications for the 

original BH algorithm, they (LBH and MBH) were explained in details. Although these 

two modifications had enhanced the global search ability of the original BH, these two 

modifications have their drawbacks. These drawbacks are: 

i. LBH: The Levy Flight formula generates the step sizes in the movement 

equation in LBH. The values of the step sizes depend mainly on the value of the 

𝛽, as it gets larger, the stars jump for new positions far from the current local 

best or the previous positions, and vice versa. Although the large value of 𝛽 

enhances the exploration rate of BH algorithm, but it may keep generating large 

values even when the stars or the solutions converged towards the optimal 

solutions. Therefore, there is a chance when the exploration rate of LBH is 

more than exploitation which leads to premature convergence.   

ii. MBH: The main structure of MBH consists of two main parts, the 

generating/mixing the populations, and the movement of the stars towards the 

black hole or the current best solution inside each population. Therefore, for 

each population, there is a chance to fall in the local optima due to the low 

exploration rate of the stars in the populations, which leads to search in area 

near to the current local best solution and the rest parts of the search space 

remain undiscovered. However, MBH enhances the exploration of the original 

BH by using a multi population architecture.  

In order to overcome the above mentioned issues, MLBH combines both LBH 

and MBH. In other words, the multi-population structure of MBH decreases the chances 
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of premature convergence in LBH by generating several populations instead of one, 

meaning that the populations help each other when any one failed to perform a good 

local search. Moreover, the Levy Flight distribution in LBH enhances the movements of 

stars in MBH, which enhances the global search ability in MBH and decreases the 

chances of falling in local optima. Therefore, MLBH is more stable than the original 

BH, LBH and MBH, because the above-mentioned reasons. Figure 3.10 below depicts 

the different between BH, LBH, MBH, and MLBH.  

It is worth to mention that the mathematical model of MLBH is the same of 

MBH with Levy Flight distribution equation in the movements of stars. Therefore, there 

is no specific mathematical model for MLBH. Error! Reference source not found., 

Figure 3.11, and Figure 3.11 present the pseudocode, the block diagram of the flowchart 

of MLBH. 

 

  

Figure 3.10a. The movement of a star in BH  Figure 3.10b. The movement of a star in LBH 

  

Figure 3.10c. The movement of a star in 

MBH 
Figure 3.10d. The movement of a star in 

MLBH 

Figure 3.10 Graphical illustration of a star movment in BH, LBH, MBH, and MLBH 
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It can be seen from the graphical illustration above, that movements of an 

individual star or solution is different between each algorithm. The drawback of LBH is 

clear in Figure 3.10b, when star moved to a far position from the optimal solution and 

the current black hole because the Levy Flight generated a large. Moreover, the 

drawback of MBH is clear in Figure 3.10c, when the star moved to a position close to 

the current black hole. In other words, the star tried to find a better position near to the 

current best solution instead of moving towards the optimal solution (i.e., less 

exploration). In MLBH, the stars in each population moved towards different position 

based on different generated step sizes.  
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MLBH Algorithm 

1.  Inputs: Dataset or Test Function, 𝑁𝑢𝑚_𝑜𝑓_𝑃𝑜𝑝𝑠, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, 𝑀𝑎𝑥_𝑆𝑜𝑙𝑠, 𝑀𝑖𝑛_𝑆𝑜𝑙𝑠, 𝑀𝑎𝑥𝐼𝑡𝑟, 𝑆𝐶𝑚𝑎𝑥, 𝑈𝑝𝑝𝑒𝑟, Lower 

2.  Output: Best Solution 𝐵𝐻𝐺 

3.  Procedure 

4.        Define Objective Function 𝑓(𝑥𝑖) 

5.  Initialize all populations of stars with random locations in the search space, as follows:  

                   𝑝𝑜𝑝(𝑝). 𝑥𝑖 = (𝑈𝑝𝑝𝑒𝑟 − 𝐿𝑜𝑤𝑒𝑟) × 𝑟𝑎𝑛𝑑 + 𝐿𝑜𝑤𝑒𝑟 

6.  Evaluate the objective function for each star in each population using the define objective function 

7.  Determine the best star in each populations 𝑝𝑜𝑝(𝑝). 𝑥𝑖  

EvaluationNum=0; MaxEvaluation = Number_of_stars * MaxItr; 

8.        While 𝑖𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 

9.               For 𝑝 = 1 𝑡𝑜 𝑁𝑢𝑚_𝑜𝑓_𝑃𝑜𝑝𝑠 

10.                   For each star 𝑋𝑖 in Pop (p) MaxEvaluation 

11.                           Move the star 𝑝𝑜𝑝(𝑝). 𝑥𝑖via the following equation: 

                                  𝑠𝑡𝑒𝑝(𝑡) = 0.01 ×  𝑠(𝑡)  ×  𝑟𝑎𝑛𝑑(0,1) 

𝑥𝑡(𝑡 + 1) = 𝑥𝑡(𝑡) + (𝑠𝑡𝑒𝑝(𝑡) ×  (𝑥𝐵𝐻 − 𝑥𝑡(𝑡))) 

12.                           Check the boundaries of 𝑝𝑜𝑝(𝑝). 𝑥𝑖  

13.                           Evaluate the objective function for 𝑝𝑜𝑝(𝑝). 𝑥𝑖  

14.                              EvaluationNum + 1; 
15.                           If EvaluationNum ≥ MaxEvaluation 

                                    Go to line 40 

16.                    End For  

17.                      Determine the best star in Pop (p) as ( 𝑝𝑜𝑝(𝑝). 𝑥𝐵𝐻) as follows: 

𝑝𝑜𝑝(𝑝). 𝑥𝐵𝐻=Min 𝑝𝑜𝑝(𝑝) 

18.                       Calculate the value of the event horizon for 𝑝𝑜𝑝(𝑝) 𝑣𝑖𝑎 the following equation: 

𝑝𝑜𝑝(𝑝). 𝑅 =
𝑓(𝑝𝑜𝑝(𝑝). 𝑥𝐵𝐻)

∑ 𝑓(𝑝𝑜𝑝(𝑝). 𝑥𝑖)𝑁
𝑖=1

 

19.                       For each star 𝑋𝑖 in Pop (p) 

20.                            If  𝑓(𝑝𝑜𝑝 (𝑝). 𝑋𝑖  ) < (𝑝𝑜𝑝(𝑝). 𝑅) Then  

21.                                 Re-generate a new 𝑝𝑜𝑝 (𝑝). 𝑋𝑖 via the uniform distribution 

22.                                      EvaluationNum + 1; 

23.                                  If EvaluationNum ≥ MaxEvaluation 
                                          Go to line 40 

24.                            End If 

25.                       End For 

26.               End For  

27.               Set the global best solution overall population as the global best black hole (𝐵𝐻𝐺) 

28.               For 𝑝 = 1 𝑡𝑜 𝑁𝑢𝑚_𝑜𝑓_𝑃𝑜𝑝𝑠 

29.                    Calculate the probability of generating or replacing the population, as follows:  

                               𝑝𝑟𝑜𝑏𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=

𝑟𝑎𝑛𝑑

𝑛𝑜.𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  

30.                    If 𝑟𝑎𝑛𝑑 < 𝑝𝑟𝑜𝑏𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 Then 

31.                           Calculate the generating ratio 𝑟𝑔 as follows:  

𝑟𝑔 =
𝑖𝑡𝑟

𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

32.                           If 𝑟𝑔 ≤ 0.5 Then   

33.                                     Generate new 𝑝𝑜𝑝(𝑝) of stars with random locations in the search space via  
                                    the uniform distribution 

𝑝𝑜𝑝(𝑝). 𝑥𝑖 = (𝑈𝑝𝑝𝑒𝑟 − 𝐿𝑜𝑤𝑒𝑟) × 𝑟𝑎𝑛𝑑 + 𝐿𝑜𝑤𝑒𝑟 

34.                           Else 

35.                                     Generate new 𝑝𝑜𝑝(𝑝) based on 𝐵𝐻𝑔 as follows:  

𝑝𝑜𝑝(𝑝). 𝑥𝑖 =  𝑝𝑜𝑝(𝑝). 𝑥𝑖 + (𝐵𝐻𝐺 − 𝑝𝑜𝑝(𝑟1). 𝑥𝑟2) ∗ 𝑟𝑎𝑛𝑑 

36.                           End If 

                 

37.                    End If 

38.                End For  

39.         Loop 

40.        Determine the best solution in all populations as (𝐵𝐻𝐺) 

41.        Return 𝐵𝐻𝐺 

Figure 3.11 Psuedocode of MLBH  
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Based on the aforementioned description of BH, Figure 3.11 depicts the 

complete algorithm as the backbone of the BH for data clustering. Unlike the standard 

BH, the Levy Flight formula, which is utilized to generates the step sizes in the 

movement equation in LBH. The values of the step sizes depend mainly on the value of 

the 𝛽, as it gets larger, the stars jump for new positions far from the current local best or 

the previous positions, and vice versa. 

Line 5 represents the initialization process, which is done by multi population 

instead of initial population (Equation 3.13), which can carry out the overall search at 

higher speed. Specifically, line 6 defines the initial evaluation and the selection of the 

initial best BH candidate. The evaluation steps calculate the fitness of all the stars in the 

swarm. The BH are evaluated using the objective function specified earlier in Equation 

2.10. The best BH with highest fitness value, is selected and considered as the best BH. 

As the best BH is selected, the iteration is initiated in line 8 where the LBH cycle until 

the condition is reached. This consider as the stopping condition. During this iteration 

from line 22 to line 29 the best BH here is improved in each generation. 

The process of improvement is progressing in line 30 when best BH has better 

intensity than the previous best BH, then best BH will move toward the current best BH 

using Equation 3.4, the movement is executed using the discrete Levy in Equation 3.9, 

and 3.10 respectively. Then, in line 32, In case of best BH is not improved in the current 

generation, using Equation 3.5 a new population will generate using Equation 3.4. The 

solutions of the new population are generated in two ways: 1) arbitrarily in the search 

space, and 2) arbitrarily chosen from other populations. The ratio 𝑟𝑔  is used to mix 

between the two ways in presented in line 34. Finally, line 41 represents the selection 

the best BH with the best fitness value. Based on the aforementioned description of the 

MLBH, Figure 3.13 depicts the complete algorithm as the backbone for BH clustering 

algorithm. Unlike the BH, the MLBH introduce the new movement mechanism aims to 

solve the exploration convergence issues in the BH.  
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Figure 3.11 The block diagram of MLBH 
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Figure 3.12 Flowchart of MLBH 
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3.5 Clustering of High Dimensional Datasets  

In the previous section, the MLBH algorithm has been explained in details. The 

goal of MLBH is to solve the optimization problems by searching for the best decision 

variables which maximize/minimize the objective function. MLBH also can be 

implemented for solving the problem of data clustering by searching for the high quality 

cluster in normal datasets. The main different between the normal and high dimensional 

datasets is the size or the number of features in the datasets. High dimensional datasets 

mean the datasets with hundreds or thousands features, which need for an efficient and 

powerful clustering algorithm. In this section, MLBH algorithm is integrated with 

Mutual information to determine the most relevant features in the datasets is used to 

find the best centroid clusters.  The general framework structure of MLBH for high 

dimensional datasets is presented in Figure 3.13. 

Dataset

Pre-

processing

Mutual 

Information

BH LBH MBH MLBH

Evaluation

Clustering Algorithm

Output

 

Figure 3.13 The framework of MLBH for High dimensional datasets. 
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As shown in Figure 3.13,  the MLBH for High dimensional consists of five main 

components; they are: Datasets, Data Pre-processing, Mutual Information, Clustering 

Algorithm, and Evaluation Metrics.  

3.5.1 Datasets 

Managing and analysis of medical big data involve many different issues 

regarding their structure, storage and analysis. For reducing the dimensions, selecting 

features and classification in such datasets.  

3.5.2 Pre-processing 

In this step, the whole dataset is pre-processed and cleaned from the noise. Pre-

processing consists of two steps, scaling and normalization. In the scaling step, the 

dataset is converted from string representation into numerical representation. In other 

words, any feature or class label represented by a string will be converted into a 

numerical value. The second step is normalization. The normalization cleans the noises 

from the dataset and decreases the differences in the ranges between the features. In this 

work, Min-Max normalization method is implemented, as equation 3.9: 

𝐹𝑖 =
(𝐹𝑖 − 𝑀𝑖𝑛𝑖)

(𝑀𝑎𝑥𝑖 − 𝑀𝑖𝑛𝑖)
 3.9 

Where 𝐹𝑖  represents the current feature needs to be normalized, 𝑀𝑖𝑛𝑖  and 

𝑀𝑎𝑥𝑖  represent the minimum and the maximum value for that feature respectively.  

3.5.3 Mutual Information (MI)  

Mutual information (MI) is a well-known filter-based feature selection method. 

In the filter-based methods, variables are ranked without any form of dependence on the 

classifier, and some of such performance measures are Fisher score, Pearson correlation 

coefficient, and Information theory-based measures. Such techniques are advantageous 

because they are easy to implement, computationally less expensive, and provides a 

more generalizable feature subset since they are not dependent on any classifier or 

cluster algorithm. Having said that, their major problem is that they cannot exploit 

specific machine learning algorithm characteristics which are intended for use, and as 

such, rarely achieve the highest level of classification accuracies.  
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MI refers to the specific information shared by 2 variables. Through entropy, the 

conveyable information from a variable can be quantified, but the major point of 

interest is the level of variables overlaps in the recorded variables. This is important 

when considering the effectiveness of one variable in the prediction of the other; a 

higher level of shared information implies that a similar information source is being 

measured: 

𝐼(𝑋: 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)   
3.10 

Where 𝐼 represents the value of weight of individual feature, while 𝐻 denotes 

the entropy value. Entropy is calculated by the summation of all the probability 

distribution of values of the feature, multiplied by the natural 𝑙𝑜𝑔 of those probability 

distribution, as equation 3.11: 

𝐻(𝑋) =  − ∑ 𝑝(𝑥)log 𝑝(𝑥) 3.11 

Where 𝑥 represent a value of the set 𝑋, while 𝑝(𝑥) represents the probability 

distribution of 𝑥. The resulting weight values of the MI are tested so if it less than 𝑡ℎ it 

will be deleted. The weights of features generated by MI are real values, therefore, the 

weights are more than a threshold value are selected, the rest are removed or unselected. 

The threshold value in this study is zero. Meaning that, any feature with zero weight is 

removed from the dataset.  

3.5.4 Clustering Algorithm 

In this step, the clustering algorithm is applied to find the best intra cluster 

distance in the dataset. The clustering algorithm depends on the resulted subset of 

features from the previous step. There are four clustering algorithms in this study, the 

original BH, LBH, MBH, and MLBH. All of these algorithms are implemented and 

examined based on the same subset of features in order to evaluate them.  
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3.5.5 Evaluation Step 

The results of the clustering algorithms are evaluated based on three main 

measurements; they are: sum of intra destines error rate, and davies-bouldin (DB) index. 

These measurements are explained in details in the next section.  

Our evaluation focuses on two related goals. Firstly, we compare the 

performance of our algorithm against existing algorithms from the literature. Then, we 

verify our findings using statistical analysis. In our evaluation, we note that the 

comparative performances with the same number of objective function evaluation are 

not possible for metaheuristic-based algorithms (i.e. most implementations are not 

publically available; hence, the settings of each of the algorithm parameters are beyond 

our controls).    

3.6 Test Functions, Datasets, and Evaluation Metrics 

3.6.1 Evaluation on Benchmark Test Functions 

In order to further verify that LBH and MBH has a better exploration than the 

standard BH, it has been evaluated on a set of multi-model type of objective functions 

in a multi-dimensional space as defined in Refs. (Jaddi et al., 2017; Niu et al., 2007; 

Zhang et al., 2017). The functions with their main characteristics in terms of Name, 

Dimensions (D), Upper and Lower Boundaries (UB, LB) and the value of optimal 

solution (Opt) are stated in Table 3.1.  The benchmark test functions used in this study 

are classified into two main classes, Unimodal and Multimodal. The function is called 

‘Unimodal’ when it has only single global optima needs to be found, while 

‘Multimodal’ represents the functions with more than one global optima. The algorithm 

has a good exploration ability when it performs better on the multimodal function than 

the other algorithms, while the exploitation is evaluated based on the unimodal test 

functions. 
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Table 3.1 Benchmark Test Functions 

Func. Name Test D LB UB Opt 

𝒇𝟏 Sumsquare 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
2𝐷

𝑖=1   30 -100 100 0 

𝒇𝟐 Rastrigin 𝑓2(𝑥) = ∑ {𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10}𝑁

𝑖=1   30 
-

5.12 
5.12 0 

𝒇𝟑 Quartic 𝑓3(𝑥) = ∑ 𝑖𝑥𝑖
4𝑛

𝑖=1 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)  30 
-

1.28 
1.28 0 

𝒇𝟒 Ackley 
𝑓4(𝑥) = −20𝑒

−0.02√𝐷−1 ∑ 𝑥1
2𝐷

𝑖=1 −

𝑒𝐷−1 ∑ cos(2𝜋𝑥𝑖)𝐷
𝑖=1 + 20 + 𝑒  

30 -32 32 0 

𝒇𝟓 
Alpine 

No.1 
𝑓5(𝑥) =  ∑ |𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|𝐷

𝑖=1    30 -10 10 0 

𝒇𝟔 Griewank 𝑓6(𝑥) = ∑
𝑦𝑖

2

4000
𝐷𝑖𝑚
𝑖=1 − ∏ cos (

𝑦𝑖

√𝑖
)𝐷𝑖𝑚

𝑖=1 + 1  30 -600 600 0 

𝒇𝟕 Penalized 

𝑓7(𝑥) = ∑ (𝑦𝑖 − 1)2𝐷𝑖𝑚−1
𝑖=1 × (1 +

𝑠𝑖𝑛2)(3𝜋𝑦𝑖+1) + (𝑦𝐷𝑖𝑚 − 1)2(1 +

𝑠𝑖𝑛2(2𝜋𝑦𝐷𝑖𝑚))  + 𝑠𝑖𝑛2(3𝜋𝑦1)  

30 -50 50 0 

𝒇𝟖 Zakharov 

𝑓8(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 + (
1

2
∑ 𝑖𝑥𝑖

𝑛
𝑖=1 )2 +

(
1

2
∑ 𝑖𝑥𝑖

𝑛
𝑖=1 )4  

30 -5 10 0 

𝒇𝟗 Sphere 𝑓9(𝑥) = ∑ 𝑥1
2𝑁

𝑖=1   30 -100 100 0 

 

3.6.2 Clustering Datasets 

To evaluate the performance of proposed algorithms (LBH, MBH) for data 

clustering, six datasets have been used. The datasets, namely, Iris, Wine, Glass, Cancer, 

Contraceptive Method Choice (CMC) and Vowel. All data sets are available from UCI 

machine learning laboratory. The datasets utilized in this particular study are displayed 

in Table 3.2.  

I. Iris Dataset 

The dataset consisted of 150 arbitrary samples of flowers having four features 

from the iris. They were differentiated into 3 groups of 50 instances, whereby each 

group represented a form of iris plant (Setosa, Versicolor and Virginica). 
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II. Wine Dataset 

The dataset elucidated the quality of wine using the physicochemical properties, 

in which they were grown in the identical region in Italy but sourced from three 

cultivars, respectively. Each of the three types of wine was linked to 178 instances, with 

13 numeric attributes representing the quantities of 13 components elicited in them. 

III. CMC Dataset 

The dataset was generated by TjenSien Lim, which is a subset of Indonesia’s 

1987 National Contraceptive Prevalence Survey. The sample size consisted of married 

women who were either not pregnant or not in the know of their pregnancy during the 

interview period. It featured the issue of predicting the recent contraceptive method 

choice (i.e. no use, long-term method, or short-term methods) according to a woman’s 

demographic and socioeconomic attributes. 

IV. Cancer Dataset 

The dataset was a representation of the Wisconsin breast cancer database, 

consisting of 683 instances having 9 components. They included: Clump Thickness, 

Cell Size Uniformity, Cell Shape Uniformity, Marginal Adhesion, Single Epithelial Cell 

Size, Bare Nuclei, Bland Chromatin, Normal Nuclei, and Mitoses. Each of the instances 

was possibly of one class, either benign or malignant. 

V. Glass Dataset 

The dataset consisted of 214 objects with nine features, which were: refractive 

index, sodium, magnesium, aluminium, silicon, potassium, calcium, barium, and iron. 

The data sampling was done using six groups of glass, which were: float processed 

building windows, non-float processed building windows, float-processed vehicle 

windows, containers, tableware, and headlamps. 

VI. Vowel Dataset 

The dataset was comprised of 871 Indian Telugu vowel sounds, inclusive of 

three attributes that corresponded to the first, second and third vowel frequencies, as 

well as six overlapping classes.  
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Table 3.2 The main characteristics of the used datasets 

Datasets No. of classes No. of features No of instances Size of classes 

Iris 3 4 150 50,50,50 

Wine 3 13 178 59,71,48 

CMC 3 9 1473 629,334,510 

Cancer 2 9 683 444,178 

Glass 6 9 214 70,17,76,13,9,29 

Vowel 
6 3 871 

72,89,172,151,207,18

0 

 

3.6.3 Evaluation Measures for Normal Datasets 

 Sum of Intra Cluster Distances: The process of evaluating the results of a 

clustering algorithm is called cluster validity assessment. A good clustering 

method will produce high quality clusters with high intra cluster similarity and 

low inter cluster similarity. Sum of Intra Cluster Distances (SICD) is the most 

known evaluating criteria for clustering data. Less value of SICD means higher 

quality clustering is performed (Neshat et al., 2012). 

𝐹(𝑂. 𝑍) = ∑ ∑ ‖𝑂𝑖 − 𝑍𝑗‖
2𝐾

𝑗=1
𝑁
𝑖=1     3.12 

Euclidean distance between each gene vector in a cluster and the centroid of that 

cluster is calculated and summed up. Here, in K clusters 𝐶_𝑖 (1 ≤ 𝑖 ≤ 𝐾), each of N 

gene vector 𝑥𝑗 are clustered on the basis of distance from each other of these cluster 

centers 𝑥_𝑖 (1 ≤ 𝑖 ≤ 𝐾). 

 Error Rate (ER) as an external quality measure: The percentage of misplaced 

data objects, which is formulated as:  

 

𝐸𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
100  3.13 
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3.7 High Dimensional Datasets 

MLBH, LBH and MBH have been evaluated based on three publicly available 

microarray datasets, which are, colon tumor data (Alon et al., 1999), breast cancer 

microarray data (Van't Veer et al., 2002) and central nervous system (CNS) dataset 

(Pomeroy et al., 2002). Gene expression datasets comprise thousands of genes and 

hundreds of conditions for mining functional and class information is becoming highly 

significant. Genes that behave similarly may be co-regulated and belong to a common 

pathway or a cellular structure. Clustering genes, groups similar genes into the same 

cluster based on a proximity measure. In gene-based clustering, the genes are treated as 

objects and samples are the features. The following sections will be briefly give an 

introduction about these datasets, while more detailed information can be found at 

http://www.rii.com/publications/2002/vantveer.html, the data resources are detailed in 

Table 3.3, which displays the main characteristics of these datasets.  

Table 3.3 The main characteristics of high dimensional datasets 

Dataset Size No. of Samples 
Cluster 

Number 

Colon tumour 2,000 62 7 

Breast cancer 1,213 34 7 

CNS 
7,129 52 7 

 

3.7.1 Colon Tumour 

This dataset represents the expression levels for 6500 human genes across 62 

samples used by Alon et al. (1999), it represents colon adenocarcinoma specimen 

collected from several patients, while normal tissues were also obtained from some of 

these patients. The top 2000 genes with highest intensity across the samples were 

selected. The resulting dataset contains 2000 genes across 40 tumorous and 20 normal 

colon tissues. Note that this dataset does not contain negative values and only 1909 of 

the 2000 genes are unique. 

3.7.2 Breast Cancer 

This gene microarray data contains 97  patient samples, among which 46 

samples are from patients who had developed distance metastases within 5 years 
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(labelled as ‘relapse’), the remaining 51  samples are from patients who remained 

healthy from the disease after their initial diagnosis for interval of at least 5 years 

(labelled as ‘non-relapse’). The number of genes in this dataset is 24,481. The detailed 

information regarding this dataset is available from 

http://www.rii.com/publications/2002/vantveer.html. 

3.7.3  CNS 

This microarray data was originally provided by Pomeroy et al. (2002). The 

dataset employed in the experiments is the dataset C used to analyse the outcome of the 

treatment, which contains 60 patient samples, 21 are survivors (patients who were alive 

after treatment), and 39 are failures, (patients who succumbed to their disease). There 

are 7129  genes in the datasets. The associated data resource is 

http://www.broad.mit.edu/mpr/CNS/. 

3.8 Evaluation Measure for High Dimensional Clustering  

In order to evaluate and select an optimal clustering scheme namely 

compactness and separation is proposed (DeRisi et al., 1996). Compactness is defined 

as the number of each cluster that should be as close to each other as possible. A 

common measure of compactness is the variance. Separation is defined, as the clusters 

themselves should be widely separated. There are three common approaches to measure 

the distance between two different clusters: distance between the closest members of 

clusters, distance between the most distant members and distance between the centers of 

the clusters. The most widely used cluster validity indices for clustering high 

dimensional dataset is discussed next section. 

3.8.1 Davies-Bouldin Index 

Davies-Bouldin (DB) index is based on the similarity measure of clusters (𝑅𝑖𝑗) 

whose bases are the dispersion measure of a cluster (𝑆𝑖 ) Si and the cluster dissimilarity 

measure ( 𝑑𝑖𝑗). DB index measures the average of similarity between each cluster and 

its most similar one. As the clusters have to be compact and separated, the lower DB 

index means better cluster configuration. It is a function of the ratio of the sum of 

within-cluster distance to between cluster separations. The DB index according (Davies 

& Bouldin, 1979; Pal & Bezdek, 1995) is defined as 
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𝐷𝐵 =
1

𝐾
∑ 𝑅𝑖

𝐾
𝑖=1    3.14 

Where 𝑅𝑖 = 𝑗 = 1 … . 𝐾𝑚𝑎𝑥(𝑅𝑖𝑗), 𝑖 = 1 … . . 𝐾.  The similarity measure of 

clusters (𝑅𝑖𝑗) is computed using equation 3.15: 

𝑅𝑖𝑗 =
𝑆𝑖+𝑆𝑗

𝑑𝑖𝑗
  3.15 

Where 𝑑𝑖𝑗 = 𝑑(𝑣𝑖 , 𝑣𝑗)the cluster dissimilarity measure and Si are computed as equation 

3.16: 

𝑆𝑖 =
1

𝐶𝑖
∑ 𝑑(𝑥, 𝑣𝑖)𝑥∈𝐶𝑖

  3.16 

3.8.2 Intra Cluster Distance  

The process of evaluating the results of a clustering algorithm is called cluster 

validity assessment. A good clustering method will produce high quality clusters with 

high intra cluster similarity and low inter cluster similarity. Sum of Intra Cluster 

Distances (SICD) is the most known evaluating criteria for clustering data (refer to 

section 3.6.3 for more details). 

3.9 Summary  

This chapter presented the research methodology adopted in this thesis. It is 

experimental based methodology to develop effective and efficient BH algorithm in 

order to solving problem of data clustering. First, the general steps in the research 

methodology were discussed. Then detailed description in each phase were provided 

including the tools used for validation. The two modifications of the Black hole were 

explained. The next chapter will describe the new variation of BH for clustering 

algorithms. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

In chapter three, the proposed variant of Black Hole (BH) algorithm has been 

designed, which is called Multiple Levy Flight Black Hole (MLBH) algorithm. MLBH 

consists of two main modifications, Levy Flight Black Hole (LBH), and Multiple Black 

Hole (MBH). Each modification can be considered as an individual algorithm for the 

optimization problems in general, and data clustering in particular. Therefore, MLBH 

with the two main components should be tested in order to evaluate their performance, 

in terms of finding the optimal solution of the mathematical benchmark test functions 

and searching for the best clustering results.  

In this chapter, the results of all the above-mentioned algorithms are presented 

and discussed. Overall, the chapter is divided into three main sections; searching 

performance Clustering performance in both data types the normal and high 

dimensional datasets and the last part is the analysis and finding.  The chapter started by 

evaluating LBH, MBH, and MLBH based on nine benchmark test functions, then the 

convergence rate for the two modification and the new variant of BH were presented.  

The clustering performance section divided into normal datasets and high dimensional 

datasets.  

4.2 Experimental Settings   

The performance of LBH, MBH and MLBH were evaluated by carrying out two 

main types of experiments. In the first experiment, all algorithms had been evaluated in 

terms of searching for the optimal solutions in a set of nine benchmark test functions. 

This set was divided into two main groups, unimodal and multimodal test functions. 
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The unimodal test functions (i.e., functions with only one global optima) were used to 

test the local search ability of the proposed algorithms. While the multimodal test 

functions (i.e., functions with more than one global optima) were used to test the global 

search ability of the algorithms, in other word, to test the ability of the algorithms to 

escape being trapped in local minima. Table 3.1 presented these test functions in the 

previous chapter.   

In this experiment, the comparison stage is done by benchmarking against nine 

well-known metaheuristics they are: 

 Big Bang–Big Crunch (BB-BC) (Erol & Eksin, 2006). 

  Artificial Bees Colony (ABC) (Karaboga & Basturk, 2007). 

  Particle Swarm Optimization (PSO) (Zambrano-Bigiarini et al., 2013). 

  Levy Firefly Algorithm (LFFA) (Yang, 2010a). 

 Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014). 

 Gravitational search algorithm (GSA) (Rashedi et al., 2009). 

 Cuckoo Search (CS) (Yang & Deb, 2009). 

  Black hole (BH) (Hatamlou, 2013).  

The experiments for all algorithms were executed in 30 different runs as 

recommended by Farah and Belazi (2018), and the best, worst, mean, error rate, and 

standard deviation. Additionally, Table 4.1 showed the specific/default parameters for 

the metaheuristic algorithms used in this experiment. The parameter setting used in 

those algorithms are collected from the respective researcher works.  

In the second experiment, all algorithms had been evaluated in terms of solving 

the problem of data clustering. This experiment was divided into two sub-experiment, 

first, the algorithms had been evaluated based on six normal-dimensional benchmark 
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datasets. Section 3.6.2 presented these datasets in details. The results are measured 

based on sum of intra clusters, and the value of error rate. The comparison stage was 

done by comparing the results of LBH, MBH, and MLBH against several well-known 

metaheuristic clustering algorithms: K-Means, Particle swarm optimization (PSO), Big 

Bang-Big Crunch Algorithm (BB-BC), Gravitational Search Algorithm (GSA), Black 

Hole Algorithm (BH) (Hatamlou, 2013), Genetic Algorithm (GA) , Tabu Search 

Algorithm (TS) , Ant Colony Optimization  (ACO), Krill Herd (KH), Improved Krill 

Herd Algorithm (IKH) (Jensi & Jiji, 2016), Cuckoo Search algorithm (CS), Quantum 

Chaotic Cuckoo Search Algorithm (QCCA) (Boushaki et al., 2018) Artificial Bee 

Colony (ABC) (Yan et al., 2012), The Bat algorithm (BA), Harmony Search Algorithm 

(HS) (Abualigah et al., 2017b), Artificial Bee Colony  and levy Distribution (ABCL) 

(Ghafarzadeh & Bouyer, 2016), K-harmonic means Algorithm and Imperialist 

Competitive Algorithm (ICAKHM) (Bouyer & Hatamlou, 2018), Grey Wolf Optimizer 

with Levy Flight steps (Kumar et al., 2017).  

We need to mention that the population size is 25, which means 24 stars and one 

black hole in the original algorithm. But for the MBH and MLBH we only instead of 

choosing one black hole and the 24 stars we use 5 populations in each population 4 stars 

and one black hole so the number of population doesn't increase the number of stars. 

Table 4.1 Parameter settings 

Method Parameters Definition Value 

General 
𝑛 Population Size 25 

𝑖 Iterations 1000 

𝑁 No. of Runs 30 

LFFA 

𝛽0 Attractiveness 1.0 

𝛾 Light absorption coefficient 1.0 

𝛼 Step scaling factor 0.2 

𝛿 Decreasing the value of 𝑎 0.96 

PSO 𝜔 Inertia weight 0.742 

𝑐1, 𝑐2 Personal Learning Coefficient 1.42 

ABC 
𝑁 No. of Source Size / 2 

𝐿𝑖𝑚𝑖𝑡 Limit for scout bees 50 

GWO 𝑎 Balancing parameter (2 –> 0.1) 

GSA 

𝐺0 Gravitational Constant 100 

𝛽 Selection pressure 20 

휀 A small constant  2.22e-16 

CSA  𝛽 Levy exponent 1.5 
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  The second part of the second experiment was the testing of ability of all 

proposed algorithms for handling and solving the problem of data clustering for high-

dimensional datasets. The evaluation had been measured based on three high-

dimensional datasets, Section 3.7 presented these datasets in details. The results are 

measured based on sum of intra clusters, the value of error rate, and Davies-Bouldin 

(DB) index. In this experiment, the three proposed algorithms had been compared 

against the original BH algorithm, and against each other as well.  

Statistical analysis based on Friedman (Daniel, 1990) and Wilcoxon Signed 

Rank (Wilcoxon, 1945) will be conducted. This is to determine the significance of the 

results of the undertaken work. The rationale for adopting the Friedman and Wilcoxon 

Signed Rank stemmed from the fact that the obtained results are not normally 

distributed. This presented the need for non-parametric test. 

 Basically, the null hypothesis (H0) for the Friedman test is that there is no 

significant difference between the terms of the obtained results for the selected datasets 

for the results sample at 95% confident level. Alternatively, the alternative hypothesis 

(H1) is that there is a significant difference in terms of the results median. This means 

that the results median distribution is not equal (less or greater) for the sample. As 

Friedman test gives a general observation for all the results, a Wilcoxon signed rank test 

is needed to compare original BH results with the results of other proposed methods 

(LBH, MBH, and MLBH) individually. 

4.3 Experimental Results 

Cheng and Lien (2012) previously conducted experiments on all functions with 

a 500,000 maximum number of function evaluations. They reported any value less than 

1𝑒−12 as 0. To maintain comparison consistency, LBH, MBH, and MLBH were also 

tested using these same conditions. This section presents the results of the proposed 

algorithms, after executing and recording all the experiments over the 9 benchmark test 

functions, the outcomes showed that the proposed LBH, MBH and MLBH exerted 

superior performance and could reach the optimal solution for most test functions. Table 

4.3 presents the results of LBH, MBH and MLBH and the other metaheuristics over the 

9 test functions.  
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It is obvious to notice that MLBH outperformed all the other algorithms 

including the original BH in all benchmark test functions; especially the multimodal test 

functions (𝑓2, 𝑓4, 𝑓6). Meaning that, the optimized global search of BH by Levy flight 

(LBH) had enhanced the exploration ability of the algorithm and guided the stars 

towards better positions. The stars visit positions far from the black hole candidate or 

the current best solution, due to the possibility of generating varying step sizes via Levy 

Flight. Therefore, the stars avoid the possibility of trapping in the local optima. In 

conclusion, LBH has overcome the issue of the weak exploration and achieved the 

desired results of the first objective.  

Moreover, MBH algorithm enhances the LBH algorithm for a better exploration 

and exploitation capabilities of the original BH algorithm; because of the multi-

population architecture increases the chances of discovering better position at the first 

50% of the iterations, and controls the search process by replacing the worst population 

with a completely new generated solutions/stars or with a new mixed population from 

the other populations. Therefore, MBH controls the amount of global search and local 

search abilities in the BH algorithm. As a result, MLBH is more stabilized version due 

to the two modifications LBH and MBH. In conclusion, MLBH has overcome the issue 

of the weak balancing between the exploration and exploitation in the original BH 

algorithm and achieved the desired results of the second objective. Figure 4.1 portrays a 

summarized comparison between all algorithms in terms of the number of successful 

tests. 

4.3.1 Test functions comparison 

For highlighting LBH, MBH and MLBH having superior exploration in 

comparison with the standard BH, further verification has been undertaken via a set of 

multi-model type of objective functions in a multi-dimensional space. 
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Table 4.2 Results of LBH, MBH and MLBH  over benchmark test function from f1 

to f9 

Fun. Statistics  BH LBH MBH MLBH 

𝒇𝟏 

Best 0.00348 0.00330 0.00000 0.00000 

Mean 0.09160 0.07189 0.00000 0.00000 

Std. Div. 0.00847 0.00819 0.00000 0.00000 

𝒇𝟐 

Best 0.00845 0.00839 0.00000 0.00000 

Mean 0.08394 0.08384 0.00000 0.00000 

Std. Div. 0.01945 0.01955 0.00000 0.00000 

𝒇𝟑 

Best 0.02348 0.02337 0.01657 0.00697 

Mean 0.03154 0.03146 0.02815 0.01999 

Std. Div. 0.00284 0.00259 0.00133 0.00129 

𝒇𝟒 

Best 1.2293 0.020580523 0.00000 0.00000 

Mean 3.1853 0.069228159 0.00000 0.00000 

Std. Div. 0.024199 0.019449 0.00000 0.00000 

𝒇𝟓 

Best 0.00481 4.91E-05 0.00000 0.00000 

Mean 0.08741 2.48E-04 0.00000 0.00000 

Std. Div. 0.03847 0.00031 0.00000 0.00000 

𝒇𝟔 

Best 0.001584 0.00000 0.00000 0.00000 

Mean 0.009612 0.00000 0.00000 0.00000 

Std. Div. 0.084123 0.00000 0.00000 0.00000 

𝒇𝟕 

Best 0.12245 0.00000 0.12239 0.00000 

Mean 0.26640 0.00000 0.26636 0.00000 

Std. Div. 0.05789 0.00000 0.05785 0.00000 

𝒇𝟖 

Best 3.59778 3.49999 2.89768 0.00000 

Mean 3.94558 3.93899 3.98789 0.00000 

Std. Div. 0.87565 0.87558 0.85965 0.00000 

𝒇𝟗 

Best 0.00094 0.01745 0.00000 0.00000 

Mean 0.00845 0.04478 0.00000 0.00000 

Std. Div. 0.05491 0.00648 0.00000 0.00000 
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Table 4.3 Results of LBH, MBH and MLBH  over benchmark test function from 𝑓1 to 𝑓9 

Fun. Statistics  BB-BC ABC PSO LFFA GWO GSA CSA BH LBH MBH MLBH 

𝒇𝟏 

Best 4.1458 2.79E-16 3195.407 0.0077476 5.14E-30 0.00156 4.97E-04 0.00348 0.00330 0.00000 0.00000 

Mean 5.9475 2.72E-16 4811.7969 0.21006 1.21E-28 0.02943 0.00105 0.09160 0.07189 0.00000 0.00000 

Std. Div. 2.1354 8.51E-12 588.3249 0.34752 1.76E-28 0.08790 4.41E-04 0.00847 0.00819 0.00000 0.00000 

𝒇𝟐 

Best 2.1049 5.68E-14 0.024484 4.94E-10 0.00000 0.90001 0.00000 0.00845 0.00839 0.00000 0.00000 

Mean 3.3085 8.83E-13 1.1077 5.99E-08 0.00000 1.00043 0.00000 0.08394 0.08384 0.00000 0.00000 

Std. Div. 3.5478 2.76E-12 0.55972 5.18E-08 0.00000 0.90536 0.00000 0.01945 0.01955 0.00000 0.00000 

𝒇𝟑 

Best 3.45892 0.11531 1.3389 0.00409 1.85E-04 0.06348 0.01741 0.02348 0.02337 0.01657 0.00697 

Mean 5.48953 0.19593 6.9606 0.02542 4.47E-04 0.08815 0.02845 0.03154 0.03146 0.02815 0.01999 

Std. Div. 0.83211 0.05549 0.6477 0.02312 2.11E-04 0.04413 0.00148 0.00284 0.00259 0.00133 0.00129 

𝒇𝟒 

Best 1.5829 0.02058 1.9877 0.0634 0.0692 2.86E-05 0.9900 1.2293 0.020580523 0.00000 0.00000 

Mean 3.8331 0.15442 2.9439 1.9994 0.0366 0.0002763 0.9989 3.1853 0.069228159 0.00000 0.00000 

Std. Div. 1.0422 0.00000 0.037191 0.00013675 5.49E-10 0.556324 0.0497715 0.024199 0.019449 0.00000 0.00000 

𝒇𝟓 

Best 0.00064 5.04E-08 3.1901 0.0049316 4.60E-41 0.00493 5.82E-05 0.00481 4.91E-05 0.00000 0.00000 

Mean 1.06309 1.76E-06 4.9583 0.010317 4.66E-05 0.02171 2.48E-03 0.08741 2.48E-04 0.00000 0.00000 

Std. Div. 1.79308 3.35E-06 1.4454 0.0039505 0.00017085 0.00928 0.00048 0.03847 0.00031 0.00000 0.00000 

𝒇𝟔 

Best 0.00000 4.44E-16 0.36776 3.20E-07 0.00000 0.00000 0.00019 0.001584 0.00000 0.00000 0.00000 

Mean 0.00000 5.79E-04 1.6518 1.51E-06 0.00000 0.00000 0.00048 0.009612 0.00000 0.00000 0.00000 

Std. Div. 0.00000 0.0067 1.0598 1.88E-06 0.00000 0.00000 0.00082 0.084123 0.00000 0.00000 0.00000 

𝒇𝟕 

Best 0.89765 3.82E-16 8.8242 0.00000 0.0065555 15.3769 0.14548 0.12245 0.00000 0.12239 0.00000 

Mean 0.56432 7.86E-16 11.8403 0.00000 0.024756 32366.20 1.16473 0.26640 0.00000 0.26636 0.00000 

Std. Div. 0.00318 1.61E-16 11.8403 0.00000 0.013532 59623.51 0.40721 0.05789 0.00000 0.05785 0.00000 

𝒇𝟖 

Best 4112.205 1.89E+02 246.5546 4.6417 4.40E-29 4214.467 3.55676 3.59778 3.49999 2.89768 0.00000 

Mean 267.3249 2.48E+02 389.7976 17.9621 6.38E-27 345.7899 4.78767 3.94558 3.93899 3.98789 0.00000 

Std. Div. 189.7456 3.47E+01 72.833 6.80E+00 1.39E-26 189.7867 0.89787 0.87565 0.87558 0.85965 0.00000 

𝒇𝟗 

Best 2.12461 0.00432 1.2945 0.00128 0.00000 0.04871 0.57843 0.00094 0.01745 0.00000 0.00000 

Mean 3.98452 0.00645 2.7707 0.00300 0.00000 0.06643 0.76741 0.00845 0.04478 0.00000 0.00000 

Std. Div. 2.64871 0.03184 1.0831 0.00105 0.00000 0.00384 0.68817 0.05491 0.00648 0.00000 0.00000 
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Figure 4.1 The results of all tests 

All algorithms were evaluated 30 run times on 9 test functions, which means 

each algorithm were ran for a total of 270 times. Figure 4.1 illustrates that the MLBH 

arrived at the best solution for 8 tests, out of 9, while LBH ranked second with 5 best 

solutions. ON the other hand, GWO and MBH managed to solve 4 tests each, BB-BC, 

LFFA and CSA with 2 tests, and finally, PSO, ABC and BH solved only 1 tests, 

respectively. 

4.3.2 Statistical Analysis for the Experimental Results 

Although the statistical results presented in Table 4.3, which provides a first 

insight into the performance of MLBH, a pair-wise statistical test is typically used for a 

better comparison. For this purpose, by using the results obtained from 30 runs of each 

algorithm, a Wilcoxon Signed-Rank Test is performed with a statistical significance 

value of 𝛼 = 0.05. A Wilcoxon signed rank test is performed to compare the obtained 

results of the proposed algorithm such as LBH, MBH and MLBH against the original 

BH. 

Generally, the null hypothesis (H0) for Wilcoxon signed Rank test indicates that 

there is no significant median distribution between the mean pair of samples. The 

results are compared with other methods at a 95% level of confident. Here, if the 

Wilcoxon statistic is less or equal to the alpha (𝛼 = 0.05), then, H0 will be rejected. To 

perform the statistical calculations, the SPSS statistics Software Version 25 and 
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Microsoft Excel 2016 are used. In Table 4.4, the statistical results of LBH, MBH and 

MLBH algorithms compared to BH are given for f6. Also the MLBH results compared 

to LBH and MBH are provided. 

Table 4.4 Wilcoxon test 

Comparison 
Experiments setting 

P-value Decision 
Itre. Run S.size 

LBH vs BH 
2

5
0
 

2
0
 

10 0.133895 Accept H0 

20 0.000053 Reject H0 

30 0.000051 Reject H0 

40 0.000048 Reject H0 

MBH vs BH 

10 0.000043 Reject H0 

20 0.000053 Reject H0 

30 0.000064 Reject H0 

40 0.000053 Reject H0 

MLBH vs BH 

10 0.000066 Reject H0 

20 0.033895 Reject H0 

30 0.000053 Reject H0 

40 0.000051 Reject H0 

LBH vs BH 

5
0
0

 

2
0

 

10 0.000094 Reject H0 

20 0.000065 Reject H0 

30 0.000067 Reject H0 

40 0.000049 Reject H0 

MBH vs BH 

10 0.000053 Reject H0 

20 0.124158 Accept H0 

30 0.000053 Reject H0 

40 0.000043 Reject H0 

MLBH vs BH 

10 0.000094 Reject H0 

20 0.000094 Reject H0 

30 0.000065 Reject H0 

40 0.000067 Reject H0 

LBH vs BH 

1
0

0
0
 

2
0
 

10 0.000053 Reject H0 

20 0.000273 Reject H0 

30 0.000053 Reject H0 

40 0.000080 Reject H0 

MBH vs BH 

10 0.000050 Reject H0 

20 0.000078 Reject H0 

30 0.000053 Reject H0 

40 0.000036 Reject H0 

MLBH vs BH 

10 0.000012 Reject H0 

20 0.000053 Reject H0 

30 0.000273 Reject H0 

40 0.000053 Reject H0 
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Table 4.4 presented the Wilcoxon Signed Rank test for comparison of LBH vs 

BH, MBH vs BH, MLBH vs BH, MLBH vs LBH and MLBH vs MBH, the following 

observations are acknowledged as follows:  

 LBH vs. BH: the Wilcoxon signed rank test in Table 4.4 shows that there is a 

significant difference between the obtained results of LBH against the original BH. 

Which indicates that all cases have been associated with rejected hypothesis. 

 MBH vs. BH: the Wilcoxon signed rank test in Table 4.4 shows that there is a 

significant difference between the obtained results of MBH against the original BH. 

 MLBH vs. BH: the Wilcoxon signed rank test in Table 4.4 shows that there is a 

significant difference between the obtained results of MLBH against the original BH 

 MLBH vs. LBH: the Wilcoxon signed rank test in Table 4.4 shows that there is a 

significant difference between the obtained results of MLBH against the LBH 

 MLBH vs. MBH: the Wilcoxon signed rank test in Table 4.4 shows that there is a 

significant difference between the obtained results of MLBH against the MBH 

The time complexity of the three suggested algorithms is calculated as follows:  

 For LBH algorithm, it has the exact same time complexity of the 

standard version of BH, as it does not add any new loops or controlling parameters, 

which is :  

𝑂(𝑁 . 𝑇) 
4.1 

Where N represents the number of solutions, while T represents the number of 

iterations.  

 For MBH and MLBH, it almost have the same time complexity for BH 

and LBH, however, it requires two loops for the populations. In the first loop, the stars 

in each population are moved or updated, while in the second loop, the population are 

checked for the possibility of the replacing by new populations. It can be calculated as 

follows:  
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𝑂(𝑃. 𝑁. 𝑇) 
4.2 

4.3.3 Convergence Rate Analysis 

The convergence curves for several test functions of LBH, MBH and MLBH 

and the other algorithms are provided in Figure 4.1- Figure 4.7 for the first 100 

iterations. According to Figure 4.2, it can be noticed that LBH has converge more faster 

than all other algorithms in the comparison in test functions of ( 𝑓1  to 𝑓6 ), the 

convergence of BH by Levy flight (LBH) had enhanced the exploration ability of the 

algorithm and guided the stars towards better positions rate. Which means that the stars 

avoid the possibility of trapping in local optima. Furthermore, the convergence rate of 

the MBH and the other algorithms in the comparison for the test function of (𝑓1 to 𝑓6), is 

depicted in Figure 4.3, it is worth to mention that the convergence rate of MlBH has 

faster convergence than all other algorithms in the comparison for the six test function, 

which is clear evidence that the MlBH is capable to controls the global search as well as 

the local search abilities in the BH algorithm.  

 

  

Figure 4.2a The convergence of (𝑓1) Figure 4.2b The 3D plot of sumsqaure (𝑓1) 

 

Figure 4.2 The 3D plot of sumsqaure (𝑓1)with the convergence analysis of LBH and BH 

algorithm.  
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Figure 4.3a The convergence of (𝑓2) Figure 4.3b The 3D plot of Rastrigin (𝑓2) 

Figure 4.3 The 3D plot of Rastrigin (𝑓2)with the convergence analysis of LBH and BH 

algorithm. 

 

 

  

Figure 4.4a The convergence of (𝑓3) Figure 4.4b The 3D plot of Quatric (𝑓3) 

  

Figure 4.4 The 3D plot of Quatric (𝑓3)with the convergence analysis of LBH and BH 

algorithm. 
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Figure 4.5a The convergence of (𝑓4) Figure 4.5b The 3D plot of Ackley (𝑓4) 

Figure 4.5 The 3D plot of Ackley (𝑓4 )with the convergence analysis of LBH and BH 

algorithm. 

 

 

 

 
 

Figure 4.6a The convergence of (𝑓5) Figure 4.6b The 3D plot of Alpin N1 (𝑓5) 

Figure 4.6 The 3D plot of Alpin N1 (𝑓5)with the convergence analysis of LBH and BH 

algorithm. 
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Figure 4.7a The convergence of (𝑓6) Figure 4.7b The 3D plot of Griewauk (𝑓6) 

Figure 4.7 The 3D plot of Griewauk (𝑓6)with the convergence analysis of LBH and BH 

algorithm. 

 

 

 

 
 

Figure 4.8a The convergence of (𝑓1) Figure 4.8b The 3D plot of sumsqaure (𝑓1) 

Figure 4.8 The 3D plot of sumsqaure (𝑓1)with the convergence analysis of MBH and BH 

algorithms  
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Figure 4.9a The convergence of (𝑓2) Figure 4.9b The 3D plot of Rastrigin (𝑓2) 

Figure 4.9 The 3D plot of Rastrigin (𝑓2)with the convergence analysis of MBH and BH 

algorithm. 

 

 

 
 

Figure 4.10a The convergence of (𝑓3) Figure 4.10b The 3D plot of Quatric (𝑓3) 

Figure 4.10 The 3D plot of Quatric (𝑓3)with the convergence analysis of MBH and BH 

algorithm. 
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Figure 4.11a The convergence of (𝑓4) Figure 4.11b The 3D plot of Ackley (𝑓4) 

Figure 4.11 The 3D plot of Ackley (𝑓4)with the convergence analysis of MBH and BH 

algorithm. 

 

 

 

 
 

Figure 4.12a The convergence of (𝑓5) Figure 4.12b The 3D plot of Alpin N1 (𝑓5) 

Figure 4.12 The 3D plot of Alpin N1 (𝑓5)with the convergence analysis of MBH and BH 

algorithm. 
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Figure 4.13a The convergence of (𝑓6) Figure 4.13b The 3D plot of Griewauk (𝑓6) 

Figure 4.13 The 3D plot of Griewauk (𝑓6)with the convergence analysis of MBH and BH 

algorithm.  

 

 

 

  

Figure 4.14a The convergence of (𝑓1) Figure 4.14b The 3D plot of sumsqaure (𝑓1) 

Figure 4.14 The 3D plot of sumsqaure (𝑓1)with the convergence analysis of MLBH and BH 

algorithm. 
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Figure 4.15a The convergence of (𝑓2) Figure 4.15b The 3D plot of Rastrigin (𝑓2) 

Figure 4.15 The 3D plot of Rastrigin (𝑓2)with the convergence analysis of MLBH and BH 

algorithm. 

 

 

 
 

Figure 4.16a The convergence of (𝑓3) Figure 4.16b The 3D plot of Quatric (𝑓3) 

Figure 4.16 The 3D plot of Quatric (𝑓3)with the convergence analysis of MLBH and BH 

algorithm. 
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Figure 4.17a The convergence of (𝑓4) Figure 4.17b The 3D plot of Ackley (𝑓4) 

Figure 4.17 The 3D plot of Ackley (𝑓4)with the convergence analysis of MLBH and BH 

algorithm. 

 

 

 

 

Figure 4.18a The convergence of (𝑓5) Figure 4.18b The 3D plot of Alpin N1 (𝑓5) 

Figure 4.18 The 3D plot of Alpin N1 (𝑓5)with the convergence analysis of MLBH and BH 

algorithm. 
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Figure 4.19a The convergence of (𝑓6) Figure 4.19b The 3D plot of Griewauk (𝑓6) 

Figure 4.19 The 3D plot of Griewauk (𝑓6)with the convergence analysis of MLBH and BH 

algorithm. 
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Figure 4.20a The convergence of (𝑓1) 

 

Figure 4.20b The convergence of (𝑓2) 

  

Figure 4.20c The convergence of (𝑓3) 

 

Figure 4.20d The convergence of (𝑓4) 

 
 

 

Figure 4.20e The convergence of (𝑓5) 

 

Figure 4.20b The convergence of (𝑓6) 

Figure 4.20 Convergence analysis of LBH with other algorithms 
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Figure 4.21a The convergence of (𝑓1) Figure 4. 21b The convergence of (𝑓2) 

 

 
 

Figure 4. 21c The convergence of (𝑓3) 

 

Figure 4. 21d The convergence of (𝑓4) 

  

Figure 4. 21e The convergence of (𝑓5) Figure 4. 21b The convergence of (𝑓6) 

 

Figure 4.21. Convergence analysis of MBH with other algorithms 
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According to Figure 4.22, which depicts the convergence rate for the MLBH and 

the other benchmarking algorithms. It is worth to mention that the MLBH has better 

convergence than all other algorithms in the comparison for the six-test function, which 

also reveals that the MLBH is more version due to the two modifications LBH and 

MBH. In conclusion, MLBH has overcome the issue of the weak balancing between the 

exploration and exploitation in the original BH algorithm.  

 
 

Figure 4.22a The convergence of (𝑓1) Figure 4. 22b The convergence of (𝑓2) 

 
 

Figure 4. 22c The convergence of (𝑓3) Figure 4. 22d The convergence of (𝑓4) 

  

Figure 4. 22e The convergence of (𝑓5) Figure 4. 22f The convergence of (𝑓6) 

Figure 4.22. Convergence analysis of MLBH with other algorithms 
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According to the convergence rate presented in Figure 4.23 for the test function 

𝑓7 (Penalized), it can be seen that MLBH obtained faster convergence rate among the 

other algorithms. While, LBH has also obtained better convergence compared to the 

MBH and BH. Furthermore, the slowest convergence rate has been obtained by BH and 

LBH respectively.   

 

Figure 4.23 The convergence analysis of (𝑓7) for MLBH, LBH, MBH and BH. 

 

Figure 4.24 The convergence analysis of (𝑓8) for MLBH, LBH, MBH and BH. 
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According to Figure 4.24, which depicts the convergence rate for the test 

function 𝑓8 (Zakharov), it is worth to mention that the MLBH has faster convergence 

rate during the search process, whereas, LBH and MBH have obtained different 

convergence rate for 30 iterations, then the convergence rate has been improved to some 

extent for both LBH and MBH respectively.  

 

Figure 4.25 The convergence analysis of  (𝑓9)  for MLBH, LBH, MBH and BH. 

According to Figure 4.25, MLBH and LBH performed the search process with 

faster convergence rate compared to other algorithms. BH and MBH performs the 

search with  close convergence rate, then, MBH convergence rate has improved to some 

extent after certain amount of iterations.  

4.4 Clustering Performance 

In this section, the datasets used, and the number of clusters identified by 

different cluster validity indices after applied on well-known metaheuristic clustering 

algorithms. Instead of using just one technique, the newly proposed LBH, MBH and 

MLBH are tested and compared above-mentioned well-known metaheuristic clustering 

techniques.  

4.4.1 Normal Datasets 

To evaluate the performance of proposed algorithms (LBH, MBH and MLBH) 

for data clustering, six normal datasets have been used. The datasets, namely, Iris, 

Wine, Glass, Cancer, Contraceptive Method Choice (CMC) and Vowel. All data sets 
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are available from UCI machine learning laboratory. Table 4.5 to Table 4.10 shows the 

quality of the solutions found by clustering algorithms on above mentioned datasets. 

The sum of the intra-cluster distance is used to measure the quality of the resulting 

clusters as presented in equation 2.10. Clearly, the small value for the intra-cluster 

distance show the high-quality clusters and vice versa. The results are given in terms of 

the best, average and worst values of the intra-cluster distance after 30 independent runs 

for each of the six datasets. Moreover, the standard deviation of solutions (STD) for 

each algorithm is given to evaluate the reliability and stability of algorithms. A low 

standard deviation indicates that the respective algorithm is more reliable and stable to 

find optimal solution. Keeping in mind that the presented results of the algorithms in the 

comparison are collected from the respective researchers work. 

4.4.1.1 Iris Datasets 

Table 4.5 presents the obtained results for the Iris dataset. The evaluation of 

performance measurement has been conducted based on two criteria such as intra-

cluster distances and error rate.  

Table 4.5 The sum of intra-cluster distances and error rate obtained on Iris datasets. 

Algorithm Best Average Worst Standard Error rate 

K-means 97.325 106.576 123.969 12.938 13.42 

PSO 96.894 97.2320 97.897 0.347 12.58 

GA 113.986 125.197 139.778 14.563 10.00 

ACO 97.100 97.1710 97.808 0.367 10.32 

ABC 95.616 95.8560 95.991 14.630 10.00 

HS 98.648 98.4470 99.144 – 10.50 

BAT 97.433 103.0360 108.870 3.410 10.78 

GSA 96.687 96.73100 96.824 0.027 10.04 

BB-BC 96.676 96.765 97.428 0.204 10.05 

CS 97.983 102.513 106.760 2.182 09.80 

TS 97.365 97.868 98.569 0.53 10.74 

KH 96.655 96.655 96.655 1.9E − 06 10.00 

IKH 96.655 96.655 96.655 9.8E − 06 9.78 

QCCS 96.655 96.656 96.667 0.00266 09.43 

ICAKHM 96.636 96.666 96.691 0.01055 11.23 

EGWO 96.652 99.125 – – 9.76 

ABCL – 96.655 – 1.351 10.45 

BH 96.655 96.656 96.663 0.001 10.02 

LBH 96.540 96.562 96.587 0.00014 9.40 

MBH 96.533 96.522 96.539 0.00010 9.27 

MLBH 95.610 95.851 95.890 0.00005 8.98 
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The simulation results given in Table 4.5, showed that the MLBH performs 

much better than BH and other methods for this dataset in term of the intra-cluster 

distances. Our proposed algorithm MLBH is able to achieve the best optimal value with 

a smaller standard deviation compared to other methods. Moreover for this dataset, 

LBH and MBH are able to converge to global optimum of 96.562, 96.522 for each run. 

While, the best solution of K-means, PSO, GA, ACO, HS, BAT, GSA, BB-BC, CS, TS, 

KH, IKH, QCCS, ICAKHM, EGWO, ABCL, and BH are 97.325, 96.894, 113.986, 

97.100, 98.648, 97.433, 96.687, 96.676, 97.983, 97.365, 96.655, 96.655, 96.655, 

96.636, 96.652, and 96.655 respectively. The standard deviation for LBH and MBH is 

zero, which is much less than other methods. On other hand, the error rate result shows 

that the MLBH obtained lowest error rate value compared to the proposed methods as 

well as the algorithms that been used as a benchmark. Moreover, the best results 

obtained by the all cluster algorithms in the comparison are depicted in Figure 4.26.  

 

Figure 4.26 Best results of Iris datasets 

4.4.1.2 Wine Datasets 

The results for the wine dataset are presented in Table 4.5. The evaluation of 

performance measurement has been conducted based on two criteria such as intra-

cluster distances and error rate. As illustrated in Table 4.6, in Wine dataset, the MLBH 
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algorithm has achieved superior results compared to MBH, LBH and BH algorithms 

and has better intra cluster distance value, also it has efficient standard deviation. The 

MBH is the second best and LBH has obtained almost the same result with slight 

difference compared to BH. Nevertheless, the proposed algorithms (LBH, MBH and 

MLBH) demonstrates better results compared to all other clustering algorithms in terms 

of intra cluster distance values as well as the standard deviation, as the standard 

deviation of LBH was 0.703, while for the MBH 0.697 and the MLBH 0.689. These 

results show that the proposed algorithms demonstrate very similar performance with 

other algorithms both in sum of intra-cluster distances and error rate. Moreover, the best 

results obtained by the all cluster algorithms in the comparison are depicted in Figure 

4.27. 

Table 4.6 The sum of intra-cluster distances and error rate obtained on Wine 

datasets. 

Algorithm Best Average Worst Standard Error rate 

K-means 16,555.68 17,251.35 18,294.85 8.741 31.14 

PSO 16,345.97 16,417.47 16,562.32 8.549 28.52 

GA 16,530.53 16,530.53 16,530.53 3.410 28.76 

ACO 16,530.53 16,530.53 16,530.53 – 28.43 

ABC 16,306.00 16,306.00 16,306.00 2.213 29.55 

HS 16,759.44 16,945.69 16,989.93 5.280 29.86 

BAT 16,391.46 16,606.90 17,160.39 2.377 28.92 

GSA 16,313.87 16,374.30 16,428.86 3.467 29.15 

BB-BC 16,298.67 16,303.41 16,310.11 2.661 28.52 

CS 16,363.12 16,420.81 16,525.72 4.554 29.10 

TS 16,666.23 16,785.45 16,837.54 5.207 29.56 

KH 16,292.19 16,579.66 18,293.60 4.249 29.78 

IKH 16,292.21 16,294.30 16,292.84 0.706 28.90 

QCCS 16,292.26 16,293.26 16,294.34 0.715 28.70 

ICAKHM 16,293.90 16,295.60 16,296.94 1.002 28.73 

EGWO 16,292.15 16,292.43 – – 28.71 

ABCL – 16,295.30 – 1.097 29.80 

BH 16,293.41 16,294.31 16,300.22 1.651 28.47 

LBH 16,291.99 16,292.99 16,296.89 0.703 28.40 

MBH 16,289.34 16,293.40 16,294.23 0.697 28.25 

MLBH 16,284.65 16,286.27 16,289.74 0.689 26.31 
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Figure 4.27  Best results of wine datasets 

 

4.4.1.3 CMC Datasets 

The results for the wine dataset for the proposed algorithms and the clustering 

algorithms in the comparison are presented in Table 4.6, the evaluation of performance 

measurement has been conducted based on two criteria such as intra-cluster distances 

and error rate. 
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Table 4.7 The sum of intra-cluster distances and error rate obtained on CMC 

datasets. 

Algorithm Best Average Worst Standard Error 

rate 

K-means 5703.20 5705.37 5704.57 1.033 54.48 

PSO 5700.98 5820.96 5923.24 46.959 54.49 

GA 5756.59 5705,63 5812.64 50.369 57.68 

ACO 5819.13 5701.92 5912.43 45.634 57.90 

ABC 5695.67 5785.68 5899.00 10.200 56.78 

HS 5698.56 5781.85 5814.86 5.280 56.00 

BAT 5671.52 5802.14 5966.19 88.219 56.00 

GSA 5542.27 5581.94 5658.76 41.136 55.67 

BB-BC 5534.09 5574.75 5644.70 39.434 54.52 

CS 5778.45 5962.09 6205.93 115.239 57.18 

TS 5993.59 5885.06 5999.80 40.845 55.67 

KH 5693.72 5737.23 6755.95 178.024 55.89 

IKH 5693.72 5693.77 5693.73 0.007 55.90 

QCCS 5532.22 5532.71 5535.29 0.134 57.11 

ICAKHM 5699.21 5705.14 5721.17 1.268275 54.47 

EGWO – – – – – 

ABCL – 5533.77 – 0.85343 57.12 

BH 5532.88 5533.63 5534.77 0.599 54.39 

LBH 5531.99 5532.29 5532.58 0.005 54.35 

MBH 5530.80 5530.00 5531.22 0.003 53.12 

MLBH 5527.45 5530.68 5531.47 0.001 52.98 

 

As illustrated in Table 4.7, in CMC dataset the MLBH algorithm has achieved 

the best performance in terms of the average, best, and worst inter-cluster distances 

compared to proposed algorithms as well as to the clustering algorithms in the 

comparison, in which the worst solution attained is 5500.47, This remained to be far 

superior to the best solutions obtained by the other algorithms. Moreover, MLBH has 

obtained the best results error rate value compared to the clustering algorithm with the 

lowest standard deviation. MBH achieved almost closed results to the LBH algorithm in 

terms of intra cluster distance, error rate and standard deviation. Nevertheless, the KH 

gives the worst optimization results on this dataset. The best results obtained by the 

proposed algorithm and all cluster algorithms in the comparison are depicted in Figure 

4.28. 
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Figure 4.28  Best results obtained of CMC datasets 

4.4.1.4 Cancer Datasets 

Table 4.8 presents the results for the cancer dataset for the proposed algorithms 

such as (MBH, LBH and MLBH) and for the clustering algorithms in the comparison. 

As previously mentioned, that the evaluation of performance measurement has been 

carried out based on intra cluster distance and error rate. From Table 4.7, it is clear that 

in Cancer dataset, MLBH achieved superior performance over the proposed algorithms 

(MBH and LBH) and all other clustering algorithms in the comparison in terms of intra 

cluster distance, error rate and standard deviation, as MLBH has obtained standard 

deviation of 0.001 which is same result obtained by IKH and better than all the 

algorithms in the comparison. MBH is the second best and it’s close to LBH. They are 

followed by ICAKHM, then, BB-BC, KH, IKH, QCCS and BH as the mentioned 

algorithms have obtained best optimization values of 2962.42 and 2964.38 respectively. 

The worst result obtained by LBH 2988.43. While, 2960.12 is the obtained value by 

MBH and the worst results obtained by MLBH was 2955.16. Moreover, the best results 

obtained by the proposed algorithms and all clustering algorithms in the comparison are 

depicted in Figure 4.29. 
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Table 4.8 The sum of intra-cluster distances and error rate obtained on Cancer 

datasets. 

Algorithm Best Average Worst Standard Error 

rate 

K-means 2988.43 2988.99 2999.19 2.469 04.39 

PSO 2973.50 3050.04 3318.88 110.801 05.25 

GA 3249.46 2999.32 3427.43 229.734 03.87 

ACO 3046.06 2970.49 3242.01 90.500 04.78 

ABC 3576.87 3576.87 3576.87 0.020 03.93 

HS 2988.85 2990.65 2998.28 45.640 02.28 

BAT 3021.48 3107.12 3250.52 77.110 03.79 

GSA 2965.76 2972.66 2993.24 8.918 03.74 

BB-BC 2964.38 2964.38 2964.38 0.030 03.70 

CS 3089.77 3200.79 3476.06 102.964 04.94 

TS 3251.37 2982.84 3434.16 232.217 03.65 

KH 2964.38 2971.97 3580.31 62.261 05.21 

IKH 2964.387 2964.39 2964.38 0.001 03.69 

ICAKHM 2962.42 3022.81 3150.15 0.396 04.27 

EGWO 2964.11 2964.49 – – 03.75 

ABCL – – – – – 

QCCS 2964.38 2964.41 2964.49 0.027 03.51 

BH 2964.38 2964.39 2964.45 0.009 03.70 

LBH 2961.95 2963.90 2988.43 0.007 03.65 

MBH 2957.77 2958.68 2960.12 0.005 03.61 

MLBH 2951.20 2953.37 2955.16 0.001 03.19 

 

 

Figure 4.29 Best results obtained of cancer datasets 
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4.4.1.5 Glass Datasets 

Table 4.9 presents the results for the Glass dataset. The presented results include 

the obtained results based on intra cluster distance and error rate as well as standard 

deviation for the proposed algorithms such as (LBH, MBH and MLBH) and the 

clustering algorithms in the comparison.  

Table 4.9 The sum of intra-cluster distances and error rate obtained on Glass 

datasets. 

Algorithm Best Average Worst Standard Error rate 

K-means 215.73 218.70 227.35 2.45 38.44 

PSO 270.57 275.71 283.52 4.55 30.58 

GA 282.32 278.37 286.77 4.13 38.67 

ACO 273.46 269.72 280.08 3.58 40.34 

ABC 230.55 254.55 267.65 11.49 30.50 

HS 243.15 246.25 251.55 4.71 41.16 

BAT 232.00 241.91 247.08 5.05 40.56 

GSA 224.98 233.54 248.36 6.13 41.39 

BB-BC 223.89 231.23 243.20 4.65 41.37 

CS 220.12 225.19 227.02 5.66 41.89 

TS 283.79 279.87 286.47 4.19 40.90 

KH 210.24 215.72 251.27 5.44 41.78 

IKH 210.25 222.80 215.93 2.73 33.90 

ICAKHM 199.86 202.41 209.77 0.26 32.61 

EGWO 214.42 242.43 – – 33.60 

ABCL – 220.09 – 4.63 32.56 

QCCS – – – – – 

BH 210.51 211.49 213.95 1.18 36.51 

LBH 209.99 210.97 211.56 0.09 30.50 

MBH 208.76 208.79 208.90 0.09 30.19 

MLBH 207.90 207.55 208.18 0.08 28.54 

 

From Table 4.7, it is clear that in Glass dataset, the best optimization value of 

199.86 which was obtained by ICAKHM. MBLH is the second best in term of the best 

obtained optimization value, which also has slightly close results to LBH and MBH 

respectively. However, MLBH, MBH and LBH have obtained the lowest standard 

deviation compared to all clustering algorithm in the comparison. Moreover, the best 

error rate value has been achieved by the MLBH compared to the proposed algorithms 

as well as to all other clustering algorithms in comparison. Nevertheless, GA and TS 

obtained the worst optimization value of 286.77 and 286.47 accordingly. By contrast, 

all the proposed algorithms achieved similarly very close results in the sense of sum of 
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intra-cluster distance. While, the error rate result obtained by LBH, MBH and MLBH 

are better than the most clustering algorithms. Moreover, the best results obtained by the 

proposed algorithms and all clustering algorithms in the comparison are depicted in 

Figure 4.30. 

 

Figure 4.30 Best results obtained of glass datasets 

4.4.1.6 Vowel Datasets 

Table 4.10 presents the vowel dataset result. The results presented in this Table 
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MLBH and the clustering algorithms selected as benchmark. As illustrated in Table 4.9, 
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standard deviation of 148,900.88, 148,911.56, 148,919.59, 532.040 and 38.15. These 

obtained values were better than the proposed algorithms (MBH and LBH) and all other 

clustering algorithms in the comparison. MBH and LBH comes in the second best 

accordingly. While, TS obtained the worst value of 165,996.42, which is considered to 

be the worst result between all the clustering algorithms in the comparison. 

Furthermore, MLBH achieved the best error rate value compared to the proposed 
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algorithms as well as the other clustering algorithms, whereas, MBH and LBH achieved 

slightly close error rate values of 40.78 and 41.65 respectively. Moreover, the best 

results obtained by the proposed algorithms and all clustering algorithms in the 

comparison are depicted in Figure 4. 31. 

Table 4.10 The sum of intra-cluster distances and error rate obtained on Vowel 

datasets. 

Algorithm Best Average Worst Standard Error rate 

K-means 149,398.66 151,987.98 162,455.69 34,252.500 43.57 

PSO 148,976.01 148,999.82 149,121.18 28,813.469 41.92 

GA 159,153.49 149,513.73 165,991.65 31,055.445 42.87 

ACO 159,458.14 149,395.60 165,939.82 34,853.816 41.90 

ABC – – – – – 

HS 156,155.00 156.489.00 157,548.00 18,560.000 43.67 

BAT 155,163.59 149,411.21 160,783.94 30,018.245 42.55 

GSA 151,317.56 152,931.81 155,346.69 24,867.028 42.26 

BB-BC 149,038.51 151,010.03 153,090.44 18,593.235 41.89 

CS 149,417.31 150.186.12 150,841.40 15,763.697 42.41 

TS 162,108.53 149,468.26 165,996.42 28,462.351 43.44 

KH 148,967.24 150,035.98 158,503.04 17,078.424 42.89 

IKH 148,967.24 158,600.52 150,172.42 17,324.516 41.56 

ICAKHM 149,201.63 161,431.04 165,804.67 2746.041 41.98 

EGWO – – – – – 

ABCL – 149,600.5 – 1.1289e+0 41.90 

QCCS – – – – – 

BH 148,985.61 149,848.18 153,058.98 13,069.537 41.65 

LBH 148,965.64 149,466.52 149,484.69 1,297.647 41.21 

MBH 148,941.18 148,943.67 148,949.48 799.890 40.78 

MLBH 148,900.88 148,911.56 148,919.59 532.040 38.15 
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Figure 4.31 Best results obtained of Vowel datasets. 

 

The statistical analysis performed using the Friedman is reported in Table 4.11. 

Form the statistical results, Friedman test indicate that the null hypothesis is rejected at 

95% confidence level, which is clear evidence for the significant differences among the 

performances of the proposed clustering algorithms.  

Table 4.11 Results of Friedman test based on the error rate  

Test Value p-value Results 

Friedman test 11.9000 0.02481 Rejected 

 

4.4.2 High Dimensional Datasets  

This subsection illustrates the comparative analysis of clusters generated by 

black hole algorithm, Levy flight black hole (LBH), multiple population black hole 

(MBH) and multiple levy black hole algorithm (MLBH). Table 4.12, Table 4.13 and 

Table 4.14 shows the results of Colon Tumour, Breast cancer and CNS evaluated by 

sum of intra cluster distance and DB index as mentioned in 3.6.3 and 3.8 accordingly. 

All the proposed algorithms are executed for 250, 500 and 1000 iterations for 10, 20, 

30, 40, 50 populations respectively.  
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Table 4.12 Comparison result between BH, LBH, MBH and MLBH on Colon Tumor Datasets. 

Dataset Iter. Pop. 
BH LBH MBH MLBH 

Intra DB Intra DB Intra DB Intra DB 

C
o

lo
n

 T
u

m
o
r 

2
5
0

 

10 1845220.1176 163.735 1710613.2899 163.720 1718692.0786 163.701 1668266.7662 163.700 

20 1837532.7078 163.622 1710211.1433 163.598 1713167.0252 163.100 1642995.4386 163.003 

30 1818458.6271 162.899 1694453.7872 162.831 1691314.5003 162.293 1629180.5045 162.110 

40 1807681.8260 162.655 1685076.6086 161.846 1686681.7576 161.691 1595939.4406 161.612 

50 1800374.8607 162.437 1662208.8551 161.653 1677751.6127 161.453 1568777.3465 160.003 

5
0
0

 

10 1843935.1118 163.363 1708499.3873 163.370 1707819.1085 163.369 1651375.3796 162.365 

20 1830946.6141 162.139 1703560.2367 162.437 1701606.5781 163.233 1628639.9007 162.120 

30 1821699.8345 162.110 1675887.2657 162.109 1670451.9627 162.124 1601218.6316 161.400 

40 1803280.0171 161.398 1655296.3704 161.395 1656136.0851 161.589 1587835.9431 160.286 

50 1797511.8181 161.087 1653554.5530 160.385 1652385.1946 160.988 1581755.3851 158.980 

1
0

0
0
 

10 1833411.9781 162.401 1698735.0989 162.403 1699715.8044 162.406 1630208.2575 162.380 

20 1827947.8411 161.966 1694939.7516 161.960 1698911.8589 161.956 1609867.2045 161.950 

30 1822045.9638 161.867 1682146.5878 160.864 1687451.6435 161.857 1597451.6601 159.850 

40 1789381.1057 161.373 1651336.6146 160.371 1656950.0397 160.367 1588752.0336 158.361 

50 1788757.1601 160.835 1641310.3810 160.035 1646848.3186 159.724 1586847.2700 158.115 
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According to experimental results presented in Table 4.11, the following 

observations are acknowledged: 

 The first experiment is performed based on 250 iterations with population size 

of 10, 20, 30, 40 and 50. In the experiment where different numbers of iterations 

are used, the MLBH clearly outperformed the BH, LBH and MBH respectively 

for obtaining the best result in terms of quality solution. Table 4.11 shows that 

the quality solution of obtained results for MLBH improved to some extent 

when population size is increased. Moreover, MLBH obtained the best 

minimum DB index compared to the other proposed algorithm, it is observed 

that BH, LBH and MBH algorithms obtained same values of minimum DB 

index with slight difference. 

 The second experiment is performed based on 500 iterations with population 

size of 10, 20, 30, 40 and 50 respectively. The increase number of iterations has 

slight effect on the quality solution for the obtained Intra results by all the 

proposed algorithms. MLBH achieved best Intra results for different number of 

populations, while there is a small difference for the minimum DB index values 

for the proposed algorithms as well as for the original BH algorithm. However, 

the best minimum DB index is obtained by the MLBH.  

 The third experiment is performed based on 1000 iterations with population size 

of 10, 20, 30, 40 and 50 accordingly. The increase number of iteration has slight 

effect on the obtained Intra results for MLBH and MBH algorithm. While, there 

is some improvement on the obtained results of LBH. Moreover, the best 

minimum DB index is obtained by MLBH. Keeping in mind that there is a slight 

difference between the minimum DB index for MBH, LBH and BH respec
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Table 4.13 Comparison result between BH, LBH, MBH and MLBH on CNS Datasets. 

Dataset Iter. 
Pop. 

size 

BH LBH MBH MLBH 

Intra DB Intra DB Intra DB Intra DB 

C
N

S
 

2
5
0

 

10 9253800.9852 44.494 9184098.9370 44.490 9182507.4068 44.487 9148614.0099 44.480 

20 9228713.0683 44.450 9105732.5859 44.447 9188850.4656 44.443 8855258.2266 44.433 

30 8583355.2429 44.416 8452024.6673 44.412 8444514.2479 44.413 8235156.8172 44.406 

40 8335006.1742 44.390 8266015.0489 44.387 8270169.9580 44.382 8131430.9051 44.371 

50 8773683.2227 44.218 8220835.5967 44.310 8269030.2494 43.380 8119339.2083 43.200 

5
0

0
 

10 9659065.3483 42.783 9087540.0317 42.780 9083247.6393 42.776 8948401.1025 42.772 

20 9175873.1268 42.676 8798261.4417 42.665 8894251.5065 42.662 8480556.7120 42.655 

30 8986447.4812 42.483 8625239.9557 42.386 8662390.9532 42.403 8263209.9966 41.987 

40 8844928.7958 42.215 8598544.165 41.989 8504997.494 41.970 7965622.0981 41.772 

50 8711558.8446 41.890 8484557.4342 41.854 8478236.8278 41.730 7853714.3792 41.459 

1
0

0
0
 

10 9001930.3382 40.683 8997449.0511 40.210 8998395.9382 40.212 8863131.3097 40.206 

20 8736182.3228 40.426 8710268.0874 40.198 8732465.2648 40.181 8260474.0151 39.972 

30 8471992.8770 40.056 8136375.2002 39.950 8561653.6072 39.874 7796869.5953 38.877 

40 8321228.5659 39.890 8136015.9570 39.869 8106310.7939 39.751 7744184.3471 38.420 

50 8211578.2023 39.745 8025967.8655 38.775 7990962.2511 38.578 7706106.3618 38.331 
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According to experimental results presented in Table 4.12, the following observations 

are acknowledged: 

 The first experiment is performed based on 250 iterations with population size 

of 10, 20, 30, 40 and 50. In the experiment where different numbers of iterations 

are used, the MLBH obtained best results compared to the proposed algorithms. 

MBH is the second best for best obtained results of intra cluster distance. LBH 

achieved better results compared to the original BH. Moreover, both MLBH and 

MBH have also obtained best minimum value of DB index with slight difference 

compared to other algorithms. While, there is also slight difference between the 

obtained results of LBH and BH in terms of minimum value of DB index.  

 The second experiment is performed based on 500 iterations with population 

size of 10, 20, 30, 40 and 50 respectively. The increase number of population 

has slight effect on the quality solution for the obtained Intra cluster distance 

results by BH, LBH and MBH. While, the intra distance results of MLBH has 

improved when increasing the number of populations. Moreover, the increase 

number of populations has slight effect on the all proposed algorithms. 

However, MLBH still holding the best minimum value of DB index compared to 

other algorithms. 

 The third experiment is performed based on 1000 iterations with population size 

of 10, 20, 30, 40 and 50 accordingly. The increase number of iterations has 

clearly improved the obtained for MLBH in terms of intra cluster distance. MBH 

and LBH achieved slightly close results and better than the obtained results by 

original BH. Moreover, MLBH, MBH and LBH have obtained slightly same 

results of the minimum value of DB index. Keeping in mind that there is no 

remarkable improvement on the results when increasing the number of 

populations.  
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Table 4.14 Comparison result between BH, LBH, MBH and MLBH on Breast Cancer Datasets. 

Dataset Iter. 
Pop 

size 

BH LBH MBH MLBH 

Intra DB Intra DB Intra DB Intra DB 

B
re

a
st

 C
a
n

ce
r 

2
5
0

 
10 372775.3467 38.881 365160.8251 38.879 356502.6847 38.877 364548.0363 38.870 

20 364031.4425 38.776 354428.4748 38.771 355387.0528 38.770 352752.1064 38.766 

30 363957.0725 38.685 353702.2895 38.585 354200.6553 37.982 342066.8815 37.980 

40 362918.2229 38.422 352978.0609 37.858 352884.7683 37.858 349200.7146 37.850 

50 361058.9541 38.376 350973.5597 37.992 349370.5976 37.847 348677.4692 37.759 

5
0
0

 

10 361106.4442 38.918 364101.1975 38.914 364890.9362 38.912 361848.2368 36.912 

20 360907.5786 38.890 360862.0102 38.885 364214.3398 38.882 360214.3398 36.879 

30 359435.8007 38.860 358125.5003 38.857 359125.7609 38.856 359897.4658 36.853 

40 358979.4239 37.833 357818.5289 37.729 356020.0506 38.828 348978.0717 36.825 

50 357037.8433 37.798 342373.0402 37.695 344063.5666 37.990 332854.8446 35.986 

1
0

0
0
 

10 369963.8410 37.740 367842.3827 37.736 367941.5340 37.732 367197.5154 35.723 

20 365898.1301 37.587 367755.5473 37.583 366857.1114 37.580 349160.3574 35.577 

30 359985.0636 37.230 359812.1738 37.227 356709.6411 37.322 346303.1346 35.219 

40 358718.3228 36.978 358230.4288 36.984 356601.5203 37.100 336630.7741 34.778 

50 358622.5744 36.787 349186.0266 36.682 344557.3041 36.361 325222.1861 34.271 
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According to experimental results presented in Table 4.13, the following 

observations are acknowledged: 

 The first experiment is performed based on 250 iterations with population size 

of 10, 20, 30, 40 and 50. The obtained results of MLBH have been improved 

when increasing the number of populations compared to other algorithms which 

shows no big difference when increasing the number of populations. On other 

hand, all the proposed algorithms demonstrate slightly close minimum value of 

DB index.  

 The second experiment is performed based on 500 iterations with population 

size of 10, 20, 30, 40 and 50 respectively. On this dataset, the best intra cluster 

improvement results when increasing the number of populations was belong to 

MLBH, whereas, there is small improvement when increasing the number of 

population for BH, LBH and MBH respectively. BH, LBH and MBH achieved 

closely same results in terms of minimum DB index. While, MLBH obtained the 

bets minimum values of DB index compared to the other proposed algorithms.  

 The third experiment is performed based on 1000 iterations with population size 

of 10, 20, 30, 40 and 50 accordingly. It is worth to mention that the increasing 

number of populations demonstrated a clear effect on the obtained intra cluster 

distance of MLBH. While, the increase in the obtained intra cluster distance 

results are small compared with the required increase in population size of BH, 

LBH and MBH algorithms. Additionally, the best minimum value of DB index 

is obtained by MLBH as compared to other proposed algorithms. However, BH, 

LBH and MBH obtained closely same minimum values of DB index.    

In Table 4.14, it is obvious that all the suggested modifications were better than 

the original BH. Overall, MLBH was the best, due to two main reasons. First, the 

integration between the mutual information with the clustering algorithm identifies the 

most relevant features, which their weights were more than the threshold value (i.e., 

zero). While the second reason was the unique structure of the MLBH which leads to 

handle the datasets with a large number of features even when mutual information was 

applied. Portray the comparison between the original BH with the other algorithms. 
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Table 4.15 The performance analysis of MLBH and other algorithms 

Dataset Size Clustering algorithms DB index Intra-distance 

Colon Tumor 2000 

BH  160.835 1788757.1601 

LBH 160.035 1641310.3810 

MBH 159.724 1626848.3186 

MLBH 158.115 1586847.2700 

Breast Cancer 24484 

BH  36.787 358622.5744 

LBH 36.682 349186.0266 

MBH 36.361 344557.3041 

MLBH 34.271 325222.1861 

CNS 7134 

BH  39.745 8211578.2023 

LBH 38.775 8025967.8655 

MBH 38.578 7920962.2511 

MLBH 38.331 7706106.3618 

 

4.4.3 Validity Threats 

Empirical and experimental studies are often susceptible to numerous validity 

threats due to the dependence of the external and internal validity of such studies on the 

nature of the research. As such, this study is prone to such threats. The threats to 

external validity are encountered when the experiments are difficult to be generalized to 

real-world problems. In this experiment, external validity threats were eliminated by 

selecting the commonest and most realistic benchmark available in the literature. 

Regarding threats to internal validity, they are threats with factors which can 

have a significant influence on the outcome of the study even without being noticed. 

Some of the common sources of such threats are variations in the population size, the 

number of iterations, as well as the parametric settings for each metaheuristic 

algorithms. Being that the source code for all implementations is not available, it may 

be wrong to state that the LBH, MBH, MLBH and the benchmarked algorithms 

comprised the same number of fitness function evaluations. 
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Additionally, our statistical analysis has been based on two statistical tests 

Wilcoxon-Rank and Friedman test and these tests requires the total sample for all the 

algorithms, therefore, the algorithm with missing value are ignored (Zamli et al., 2016). 

4.5 Summary  

This chapter presented the performance criteria of the LBH, MBH and MLBH. 

The proposed methods are compared against the existing optimization algorithms and 

clustering algorithms. Based on the content of this chapter, the next chapter will 

summarize the study findings, draw the conclusions and contributions, as well as 

provide a roadmap for possible future studies in this direction. Overall, results from this 

chapter allow us to conclude that the proposed clustering algorithms are efficient 

clustering algorithms in most datasets. 
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

5.1 Introduction 

This chapter presents the research summary of the thesis, the main contribution 

along with future work. The previous chapter covered LBH, MBH, and MLBH with a 

number of experiments in order to establish their true performance in terms of searching 

for the optimal solutions on a set of unimodal and multimodal tests functions, 

convergence rate, and finding the minimum intra-clustering distance in normal and high 

dimensional datasets. Based on the content of the previous chapters, this chapter 

highlights the impact of the results obtained, as well as the direction for future works. 

5.2 Objectives Revisited  

The aim of this research work was to design, implement and evaluate MLBH for 

addressing the problem of data clustering. The objectives of this research offort for 

fulfilling the stated aim were as follow:  

i. To design a new variant of black hole (BH) algorithm with levy flight (called 

LBH) 

ii. To improve the BH and LBH by introducing the multi-population support 

(called MBH) and its ensemble algorithm (called MLBH).  

iii. To evaluate LBH, MBH and MLBH with existing meta-heuristic algorithms use 

standard functions and datasets. 

This section attempts to answer the formulated research objectives in this study. 

With reference to objective one, a new modification of BH was proposed. This was 
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accomplished through the integration of BH with Levy flight, in which the new 

algorithm is called LBH. LBH was proposed to overcome the issue of the movement 

equation. The long jumps have been undertaken via Levy distribution in order to ensure 

effectual use of the search space in comparison with BH. Previously investigated works 

have aimed to improve BH, whereby the current proposal calls for BH to perform 

random walks and global search. Levy flight, in particular, improves the global search 

capacity for the BH algorithm, preventing one to be stuck in local minima. Additionally, 

the proposed modification enhances the global search ability of BH algorithm as per the 

new equation of star movements underlined. As BH algorithm is incapable of attaining 

the optimum results in a specific number of iterations, an efficient Levy-flight selection 

is imperative to avoid being stuck in local optimum as it results in improved global and 

local search capability concomitantly. In addition, the LBH achieved significant results 

as compared to the existing algorithms in the literature. 

In terms of the second objective, LBH and MBH were integrated together to 

produce a new variant of BH algorithm that is called MLBH. In that, the MLBH is 

based on the enhanced version of LBH by using a multiple population instead of single 

population. The main difference between the original BH and MLBH is that MLBH 

contains a new mechanism for exploring the search space more than the original BH 

algorithm. Therefore, the chances of falling in the local optima are less when using 

MLBH for the global optimization problems in general, and data clustering problems in 

particular due to its ability of visiting positions, which are not explored by the standard 

version of BH.  

For the final objectives, MLBH and its proposed ensemble in this research were 

successfully employed to undertake all the experimentation, highlighting their 

performance for the test functions and the data sets. The experimentation against several 

well-known methods helped to reveal the performance of the proposed algorithms in a 

seamless manner. In the conducted evaluations, all of the proposed algorithms presented 

successful results compared to the available optimization algorithms. The MLBH 

experimental results were more encouraging as it obtained the best results as compared 

to all the benchmarking algorithms. 
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5.3 Contribution 

The contributions drawn from this study are as follows: 

1. A new optimization algorithm based on the BH algorithm has been developed. It 

consists of two modifications (LBH and MBH), which form together the new 

variant of BH, it is called MLBH. The LBH has enhanced the global search 

ability (exploration) of the BH algorithm with Levy Flight, while the MBH has 

improved the global search ability (exploration) of the BH by using multiple 

population instead of single population. 

2. This study showed that the MLBH has significantly outperformed the existing 

optimization algorithms such as BB-BC, ABC, PSO, LFFA, GWO, GSA, CSA, 

BH, LBH, and MBH by using both unimodal and multimodal. And that the 

MLBH has proven its effectiveness in solving the clustering problems in normal 

and high dimensional datasets. 

5.4 Future Work  

In this study, new variant of Black Hole algorithm was proposed (MLBH) to 

handle the data clustering problems in normal and high dimensional datasets. Although 

the proposed metaheuristic has been successfully applied to several benchmark test 

functions with promising results, there are several suggestions for future investigations.  

A few clustering properties that need to be studied for the proposed methods like 

cluster stability (The clustering must remain stable whenever the data changes by only a 

small amount), effect and identification of outliers (a data different from other data) if 

present in data and the effect of fuzziness in data and deciding membership function. An 

outlier is a data item that is dissimilar from other data items. Outlier detection also 

leaves space for future research.  

MLBH can be improved in many different ways. Currently, MLBH does not 

support multi objectives optimization problems. In wireless sensor network, density of 

deployment, scale, and constraints in battery, storage device, bandwidth and 

computational resources create serious challenges to the developers of WSNs. MLBH 

algorithm can give a model to solve optimization problems in WSNs due to its 
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simplicity, best solution, fast convergence and minimum computational complexity. 

These can be form important topics for further research. 
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