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Abstract. The present numerical solution is to theoretically investigate the 

magnetohydrodynamic (MHD) free convection boundary layer flow and the heat transfer of 

ferrofluid near the lower stagnation point of a horizontal circular cylinder. The conventional heat 

transfer of fluids such as water and oil is inherently the poor heat transfer performance. Nanofluid 

which is formed by magnetic nanoparticles is known as ferrofluid and has shown a particular 

achievement when the effect of external magnetic is applied. For this purpose, ferrofluid that 

contains magnetite, Fe3O4 and water are considered. The dimensional governing equations are 

transformed by using non-dimensional variables and non-similar transformations to form 

nonlinear partial differential equations. The numerical solution using the implicit finite 

difference scheme namely Keller-box method is used to solve the nonlinear partial differential 

equations. Numerical results on velocity and temperature distributions as well as the quantity of 

interest of pertinent parameters such as magnetic parameter and the volume fraction of 

ferroparticles parameter are discussed. It is noticeable that the reduced Nusselt number of 

ferrofluid decreases through the increase of magnetic parameter strength.  

1.  Introduction 

The discovery of the term nanofluid  that is first introduced by Choi and Eastman [1] shows that the 

nanoparticles added in the conventional base fluid exhibit high thermal conductivity and enhance the 

heat transfer. Based on material type, nanofluid is classified as metallic nanoparticles (Cu, Al, Fe, Au 

and Ag) and non-metallic nanoparticles (Al2O3, CuO, Fe3O4, TiO2 and SiC). Magnetic nanofluid which 

is also known as ferrofluid has been widely investigated in theoretical [2-4] and experimental studies 

[5-7] because of its incredible outcomes on thermal conductivity. Ferrofluid contains magnetic 

nanoparticles (ferroparticles) such as magnetite (Fe3O4), hematite (Fe2O3), cobalt ferrite (CoFe2O4) and 

other compound with iron oxides which suspended in a liquid carrier like water, oil, ethylene glycol and 

so forth. According to Papell [8], despite the presence of various magnetic nanofluid materials, 

magnetite (Fe3O4) has been found to be the most satisfactory in practice. 

The component of ferrofluid contains approximately 85% volume of base fluid, 5% volume of 

magnetic nanoparticles and 10% volume of surfactants [9]. Ferrofluid  exhibits superparamagnetism 

which means the magnetic field consists of ferromagnetic with no long-range order between particles 
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[10, 11]. Subsequently, ferrofluid becomes strongly magnetized in the presence of magnetic field that 

provides low viscosity, easy flowability and low energy. The flow of ferrofluid through the surface can 

be controlled with the presence of magnetic field and it also has the ability to prevent the devices or 

equipment from overheating and reduce clogging.  Ferrofluid has been utilized in many technological 

industries such as in sealing hard drives, rotating shafts, rotating X-ray tubes, rods and sink float 

systems for separation of materials, lubricating bearing and dumpers, as well as heating 

controller in electric motors and speakers. The fluid characteristics and heat transfer have different 

performance and outcomes when the fluid flows at different geometries such as flat plate, inclined plate, 

stretching or shrinking sheet, wedge, horizontal circular cylinder and sphere [12]. It should be noted that 

the geometry of interest in this study is the horizontal circular cylinder. 

Joshi and Sukhatme [13], Merkin [14], Merkin and Pop [15] are among the pioneers who studied the 

boundary layer flow of free, forced and mixed convection in viscous fluid over a horizontal circular 

cylinder. After a few years, Aldoss et al. [16] investigated the magnetohydrodynamic (MHD) mixed 

convection of viscous fluid over a horizontal circular cylinder and found the presence of magnetic field 

leads to the decrease of velocity field, local wall shear stress and local Nusselt number as well as an 

increased value of temperature. The idea is then extended by Aldos and Ali [17], who considers the 

effects of  suction and blowing on MHD force and free convection from a horizontal circular cylinder. 

The observation on the wall shear stress and Nusselt number showed a prominent decrease with the 

application of magnetic field. However, there are some drawbacks of viscous fluid flow over a horizontal 

circular cylinder in terms of sedimentation, surface abrasion and thermal conductivity. 

Since Choi and Eastman [1] discovered the significant increase in thermal conductivity of liquid 

dispersant with nanoparticles, the studies of nanofluid have attracted interests from many researchers 

lately. Recently, the studies of convective flow over a horizontal circular cylinder in nanofluid have 

been carried out by Tlili et al.[18], Mahat et al. [19], Reddy and Chamkha [20], Mohamed et al. [21] 

and Mabood et al. [22] who have solved the nanofluid flow and heat transfer problems. There are two 

different nanofluid models which are constantly used by the researchers to study the Brownian motion 

and the thermophoresis on heat transfer characteristics namely Buongiorno model [23] and Tiwari and 

Das model [24] that focus on the behaviour of nanofluid. Reddy and Chamkha [20] conducted the 

numerical solution by using Buongiorno model [23] and finite-element method for free convection 

boundary layer flow and found that an upsurge of buoyancy ratio parameter leads to the decline of the 

reduced Nusselt number. Besides, the increment in Brownian motion parameter elevates the reduced 

Nusselt number but when the thermophoresis motion parameter increases, the reduced Nusselt number 

declines. However, different results were obtained by Mohamed et al. [21] where the reduced Nusselt 

number decreases as Brownian motion and the thermophoresis motion increases. Mahat et al. [19] and 

Mabood et al. [22] applied the Tiwari and Das model [24] and finite difference method for mixed and 

forced convection respectively. Mahat et al. [19] explored the effect of viscous dissipation but did not 

discuss the volume fraction of Cu nanoparticles in details and concluded that the reduced Nusselt 

number decreases with an increase of the value of the Eckert number. Meanwhile,  Mabood et al. [22] 

explained that the reduced Nusselt number increases with an increase in the volume fraction of Cu and 

Al2O3 nanoparticles. Most of the earlier studies considered copper (Cu), alumina (Al2O3) and titania 

(TiO2) as nanoparticles materials in their numerical studies. 

The studies mentioned above gave an idea and inspired the authors to the investigation of free 

convection ferrofluid flows at a lower stagnation point of a horizontal circular cylinder. This 

investigation also considered the magnetohydrodynamic (MHD) flow because of the ferrofluid 

characteristics change in the presence of a magnetic field. This present study is undertaken to estimate 

the trend of ferrofluid flow and heat transfer at different values magnetic parameter and ferroparticle 

volume fraction. The stable colloidal suspension of magnetite (Fe3O4) nanoparticles and water as a 

carrier fluid also have been considered. The Tiwari and Das model [24] is implemented to investigate 

this problem and numerically solve it by applying an implicit finite difference scheme which is known 

as the Keller-box method. 
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2.  Mathematical formulation 

Consider a steady, two-dimensional laminar free convection boundary layer flows of incompressible 

ferrofluid over a horizontal circular cylinder. A horizontal circular cylinder of radius a , which is heated 

to a constant temperature, 
wT  embedded in a ferrofluid with ambient temperature, T

 and free stream 

velocity, U
 as shown in figure 1. The orthogonal coordinates of x  and y  are measured along the 

cylinder surface, starting with the lower stagnation point, 0x   and normal to it, respectively. Further, 

a uniform magnetic field of strength, 
oB

 
is assumed applied normal on the cylinder surface. The 

magnetic Reynolds number is assumed small, and thus the induced magnetic field is negligible. Both 

the base fluid and ferroparticles are assumed to be in thermal equilibrium. The cylinder surface is 

subjected to a constant wall temperature and no slip velocity condition is considered. Under the 

assumptions that the boundary layer approximation is valid, the dimensional governing equations of 

laminar and steady free convection boundary layer flow are [25-27]:  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 1. Physical model and coordinate system 
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where u  and v  indicates  the velocity components along the x  and y  axes, respectively. Further, the 

subscripts ff, f and s respectively referring to ferrofluid, base fluid and ferroparticles.   is the kinematic 

viscosity,   
is the dynamic viscosity,   is the density, g  is the gravity acceleration,   is the electrical 

conductivity,   is the ferrofluid thermal expansion, T  is local temperature,  pC  
is the effective heat 

capacity and   is the thermal diffusivity which can be expressed in terms of the volume fraction   
as follows [25, 28, 29]:  
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where k represents the thermal conductivity and can be defined as  
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Note that the thermophysical properties of base fluid (water) and ferroparticles (magnetite) have been 

listed in table 1.  

 

Table 1.  Thermophysical properties of base fluid and ferroparticles [30, 31]. 

Physical Properties Water Magnetite (Fe3O4) 
 (kg/m3) 997.1 5200 

p
C (J/kg·K) 4179 670 

k (W/m·K) 0.613 6 

 1 1m    0.05 25000 

  (1/K) 0.00021 0.000013 

 

Next, the governing non-dimensional variables are introduced: 
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where   is the rescaled dimensionless temperature of the fluid and   is the 

Grashof number. Using variables (7) and definitions (5) and (6), equations (1) to (3) becomes 
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The boundary conditions (10) becomes: 
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It is worth mentioning that the lower stagnation point of a horizontal circular cylinder when 0x  , the 

equations (13) and (14) are reduced to the following ordinary differential equations that the f   and    

denotes the differentiation with respect to the variable y . 

 



Energy Security and Chemical Engineering Congress

IOP Conf. Series: Materials Science and Engineering 736 (2020) 022117

IOP Publishing

doi:10.1088/1757-899X/736/2/022117

6

 

 

 

 

 

 

 

   

2

2.5

(1 ) /1

(1 )(1 ) 1 ( ) / ( )

0,
1

f fs

f ss f

ff f

s f

f ff f

Mf

    


     

 

   

 
    

     

 
 

                    (16) 

 

  
/ 1

0.
(1 ) ( ) / ( ) Pr

ff f

p s p f

k k
f

C C
 

   
  

 
                                       (17) 
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The physical quantities of interest are the skin friction coefficient fC  and the local Nusselt number 
xNu  

are given by [32]: 
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The surface shear stress 
w  and the surface heat flux 

wq  are given by:  
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Using variables (7), definitions (5) and (6) as well the functions (12) turn into: 
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Furthermore, the velocity profiles and temperature distributions at the lower stagnation point of 

horizontal circular cylinder can be obtained from the following relations: 

 

( ) and ( ),u f y y                                 
(22) 

3.  Results and discussion 

Keller-box method is used to numerically solve Eqs. (13) and (14) along with the constant wall 

temperature boundary conditions (15). This is the most preferred method because it is unconditionally 

stable and able to solve the partial differential equation problems in any order. The numerical codes are 

then programmed in Matlab software with the step size 0.005x   and 0.02x  , and the boundary 

layer thickness 8y  . The comparison of present results of the reduced skin friction, 1/4

fC Gr  and the 

reduced Nusselt number, 1/4

xNu Gr  with the previously reported numerical results have been made to 

validate the numerical result obtained. Table 2 and table 3 shows the present results are found in good 

agreement with previous published results for various values of x  when 0M  
 
and Pr 1 . The 
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effect of ferroparticles volume fraction,   and magnetic parameter, M  towards velocity, temperature 

and reduced Nusselt number at the lower stagnation point, 0x   of a horizontal circular cylinder with 

Prandtl number of water are taken at Pr = 6.2 and discussed below (figure 2 to 6). The volume fraction 

of ferroparticles  is studied within the range of 0 0.1   where  0   represent the pure fluid water. 

 

Table 2. Comparison values of 1/4

fC Gr with previously published results when 0M    and Pr 1 . 

    Merkin [14] Azim  [27] Mohamed et al. [21] Zokri et al. [33] Present 

0  0.0000 0.0000 0.0000 0.0000 0.0000 

6  0.4151 0.4139 0.4121 0.4120 0.4121 

3  0.7558 0.7528 0.7538 0.7507 0.7538 

2  0.9579 0.9526 0.9563 0.9554 0.9563 

2 3  0.9756 0.9678 0.9743 0.9728 0.9743 

5 6  0.7822 0.7718 0.7813 0.7761 0.7813 

  0.3391 0.3239 0.3371 0.3301 0.3371 

 

Table 3. Comparison values of 1/4

xNu Gr  with previously published results when  0M   and Pr 1

. 

 Merkin [14] Azim [27] Mohamed et al. [21] Zokri et al. [33] Present 
0  0.4214 0.4216 0.4214 0.4214 0.4214 

6  0.4161 0.4163 0.4163 0.4162 0.4163 

3  0.4007 0.4006 0.4008 0.4009 0.4008 

2  0.3745 0.3742 0.3744 0.3743 0.3744 

2 3  0.3364 0.3356 0.3364 0.3363 0.3364 

5 6  0.2825 0.2811 0.2824 0.2814 0.2824 

  0.1945 0.1912 0.1939 0.1932 0.1939 
 

Figure 2 depicts the magnetohydrodynamic flow while increasing the ferroparticles volume fraction 

towards the velocity of ferrofluid. The increment of ferroparticles volume fraction leads to a decline of 

the velocity of ferrofluid but then, increases until it approaches the free stream which causes it to elevate 

the momentum boundary layer thickness. According to the experiment results conducted by Malekzadeh 

et al. [34] and Toghraie et al. [7], the viscosity of magnetite, Fe3O4-water based increases with the 

increase of the ferroparticles volume fraction. However, temperature is one of the factors that influence 

the variations of dynamic viscosity [35]. Figure 3 shows that the increment in ferroparticles volume 

fraction elevates the temperature and thermal boundary layer. Obviously, figure 2 and 3 illustrate the 

correlation between viscosity and temperature when the ferroparticles volume fraction increases where 

figure 2 shows the velocity of ferrofluid is increases in parallel with the increase of the temperature 

(refer figure 3) due to the decline in ferrofluid viscosity. Similar results were reported in an experimental 

study by Malekzadeh et al. [34], Toghraie et al. [7] and Sundar et al. [36]. Physically, the high 

temperature that is applied to the fluid will cause the random motion of the molecule. Therefore, by 

weakening the intermolecular force of attraction, it will then reduce the viscosity of fluid and increase 

the velocity of fluid.  

 



x

x
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Figure 2. Velocity profile  f y , for increasing the ferroparticles volume fraction,   when 1M  .  

 
Figure 3. Temperature profile, ( )y  for increasing the ferroparticles volume fraction,   when 1M  . 

 

The effect of magnetic parameter on velocity profile and temperature profile are shown in figure 4 

and 5 respectively. It can be seen that the magnetic parameter is enlarging, where the velocity of 

ferrofluid and momentum boundary layer thickness has diminished as depicted in figure 4. These results 

were confirmed and similar as reported by Malekzadeh et al. [34] where the increase of magnetic field 

strength has a major impaction on the viscosity of ferrofluid. The increment of viscosity of ferrofluid 

causes the velocity of ferrofluid to decrease. The state of increasing the magnetic parameter is different 

from the situation occurs in ferroparticles volume fraction as the temperature and viscosity are dependent 

on each other. Conversely, increasing the magnetic parameter has an influence on the Lorentz force. 

The vertical y-direction of magnetic field which generated the Lorentz force in the horizontal x-direction 
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has the same magnetic domain [37]. The Lorentz force leads to the suppression of the fluid flow which 

decreases the velocity of ferrofluid and elevates the temperature of ferrofluid as shown in figure 4 and 

5, respectively. Besides, the increment of magnetic parameter also elevates the thermal boundary layer 

and the thermal conductivity of ferrofluid as discovered by Haiza et al. [6] in their experimental study. 

The magnetic strength and the ferroparticles volume fraction parameter of ferrofluid are observed 

further in the ratio of convective heat transfer over conduction heat transfer or called the reduced Nusselt 

number.  The reduced Nusselt number is calculated using the equation (21) to measure the convective 

heat transfer at the surface as plotted in figure 6. Figure 6 shows that the reduced Nusselt number has 

been decreased by applying the magnetic field. From the physical view, the Lorentz force that is 

produced when magnetic parameter increases have a normal direction to the buoyancy force which 

retards the heat transfer and fluid flow [37]. These phenomena cause the suppression of the fluid 

movement and has tendency to control the cooling rate of the surface. On the other hand, the variation 

of ferroparticles volume fraction shows the reduced Nusselt number in decreasing trends along with the 

increase of the magnetic parameter and ferroparticles volume fraction.  

 

 
Figure 4. Velocity profile  f y , for increasing magnetic parameter, M  when 0.1  . 
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Figure 5. Temperature profile ( )  , for increasing magnetic parameter, M  when 0.1  .  

 

 
Figure 6. Variation of 1/4

xNu Gr  for several values of ferroparticles volume fraction,   and magnetic 

parameter, M . 

 

4.  Conclusions 

In this study, the magnetohydrodynamic (MHD) free convection flow at the lower stagnation point of a 

horizontal circular cylinder with the influence of an external magnetic field on ferrofluid flow and heat 

transfer characteristics have been investigated. The results revealed that by changing the strength of 

magnetic parameter and the ferroparticles volume fraction, it is not impossible to alter the 

thermophysical properties of ferrofluid. It is proven that the viscosity of ferrofluid changes with the 
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temperature when the ferroparicles volume fraction increases or decreases. The viscosity of ferrofluid 

increases when the ferroparticles volume fraction increases while it decreases with an increase in the 

temperature. Consequently, the thermal conductivity is enhanced and the velocity of ferrofluid increases. 

In ensuring a stable control over the fluid flow and the heat transfer, the external magnetic field needs 

to be applied to the lower stagnation point of horizontal circular cylinder hot surface. The magnetic field 

that produces the Lorentz force and the interaction with buoyancy force acts as a determiner of the trend 

of reduced Nusselt number, temperature and velocity of ferrofluid. With the increase of magnetic 

parameter, the domination of the Lorentz force starts to take place which leads to a slower flow and 

subsequently increases the temperature and further leads to the drop of reduced Nusselt number. 
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