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Abstract. The aim of this review paper is to explore and examine hybrid processes and systems 

for polishing palm oil mill effluent (POME). Nitrification process, and nutrients removal are 

highly significant to process highly contaminated POME. Besides, quality of POME process is 

extremely important to solve fresh water shortage that has blocked millions of people from 

accessing a clean water. Hence, attentions have been made on water pollution to raise a global 

demand to improve POME processing and discharge unharmful effluent to the waterways. For 

decades, using a stand-alone technology to treat POME has faced fouling, and disability to 

deliver the promising quality. A new approach is termed as hybrid or combined system has the 

ability to deliver higher performance and more effective contamination removal than stand-alone 

technologies. Hybrid system is a novel technique can be used to achieve higher efficacy that 

single physical, chemical, or biological technology can’t accomplish. This review reports various 

hybrid systems and united technologies to treat POME including their advantages, 

disadvantages, and limitations. 

 

1. Introduction  

Annually, diarrhea problem causes death for two million people and 1.2 billion people suffer from water 

scarcity and can’t find valid water for drinking purposes [1]. These consequences are still occurring 

because of careless wastewater discharge that have grown awareness towards fresh water lack, and 

wastewater treatment [2]. Wastewater contains various pollutants could be biological, chemical, and 

physical, which dangerously and severely impact the waterways [3]. Nutrients in palm oil mill effluent 

(POME), such as phosphorus (P), and nitrogen can cause groundwater contamination, and undesirable 

aquatic evolution, while physical pollution such as suspended solids (SS), and biodegradable matter can 

produce septic conditions, and oxygen depletion [4]. Therefore, polishing processes are made to deliver 

satisfying treatment quality, prevent diseases spread, secure aquatic life, and provide harmless 

environment [5][6]. Consequently, the concept of hybrid system has been introduced showing decent 

ability to produce energy and deliver treatment in one time for wastewater. However, hybrid system is 

still in their early stages because there are several unbeaten challenges yet, such as poor electricity 

generation, require expensive materials, and slow wastewater treatment.  

Globally, Malaysia is the second major producer of the most traded cooking oil, named as palm oil. 

It produces massive discharge of palm oil mill effluent which leads to global pollution into the fresh 
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water sources. The generated POME amount in 2011 was around 60 million ton, while it was around 30 

million ton in year 2004 and 44 million ton in year 2008 [6][7][8]. Major demands to invent sustainable 

technologies having strong management system to protect and secure the waterways. Also, governments 

have decided to look for sustainable methods to polish POME [9]. Aerobic, anaerobic, and facultative 

operations have been advanced for POME treatment, but they are still costly, and requiring large surface 

area, long retention time, and gas capture facilities.  

2. Hybrid System 

Since POME is contaminated with multiple pollutants, such as metals, phosphorus, nitrogen, irons, 

degradable organics, volatile organics, oil and grease, and suspended solids, for that it requires a massive 

technology to remove all kinds of contamination, and it’s impossible to make it done with a stand-alone 

technology. A system from various mechanisms like biological, chemical, and physical can be united in 

one system to defeat treatment limitations and disadvantages and deliver efficiency, performance, 

quality, and energy saving named as combined or hybrid system [10]. Also, combining two or more 

technologies unites their weaknesses and strengths which leads to major obtainable balance. Therefore, 

hybrid system can remove more than one sort of pollutants so that its more preferable. For instance, A 

physical-biological treatment like membrane bioreactor (MBR) can be employed to remove organic and 

inorganic matters, oil and grease, and high suspended solids from wastewater. In addition, MBR has 

many advantages such as stable nitrification, reusable water production, and good capability for handling 

large organic loading rates [11][12][13][14][15][16]. There are numerous possible combinations of 

POME hybrid systems, such as coagulation and flocculation, activated sludge and biofilm process, and 

hybrid membrane. Combined system owns many advantages such as stability, bioenergy generation, 

efficacy, and energy saving, while often, it requires costly materials, and this can be considered as a 

major disadvantage. There are several limitations restrict the hybrid system from getting developed like 

low energy production. Moreover, selection of a reliant combined system is very complex because it 

depends on kind and amount of POME pollutants. For instance, chemical treatment is used for heavy 

metals removal, physical treatment for suspended solids removal, and bioprocess for toxic organic, 

phosphorus, nitrogen, volatile organics, and degradable organics removal. Figure 1 presents the possible 

hybrid systems between biological, chemical, and physical treatments to treat wastewater. It’s worth 

mentioning that there are differences between hybrid systems and group of processes employed to 

produce various polishing level named as preliminary, primary, secondary, and tertiary. 

 

Figure 1. Possible combined systems for wastewater treatment [17] 



Energy Security and Chemical Engineering Congress

IOP Conf. Series: Materials Science and Engineering 736 (2020) 022036

IOP Publishing

doi:10.1088/1757-899X/736/2/022036

3

2.1 Coagulation and Flocculation 

When a coagulant and flocculant are streamed in a wastewater treatment tank, the operation is named as 

coagulation and flocculation process. Norulaini et al. (2013) defined coagulation-flocculation process 

as a physical-chemical hybrid system, which through this integration a reagent should be added and 

mixed thoroughly with the contaminated water to thicken solids layer into larger particles so its easily 

removed with physical means. This type of hybrid system is used to drop turbidity concentration in 

wastewater [18]. The most common coagulants for wastewater treatment are aluminum chlorohydrate, 

ferric sulfate, ferric chloride, and aluminum sulfate. Using poly aluminum as a coagulant can deliver 75, 

88.8, and 99.9% reduction of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus 

(TP), respectively. Satyanarayan et al. (2005) examined wastewater coagulation-flocculation by using 

many coagulants materials such as alum, lime, ferrous sulfate, and anionic polyelectrolyte [19]. It 

removed 41.9, 36.1, and 38.9% of TSS, COD, and biochemical oxygen demand (BOD) concentrations, 

respectively by using lime, while using lime-ferrous sulfate combination produced 56.8% removal of 

COD. In addition, combining alum and lime had given 42.6% removal of COD. This empirical work 

proves that using a hybrid system produces efficacy and quality. Figure 2 shows simple scheme for 

coagulation and flocculation process. 

 

Figure 2. Coagulation and Flocculation system 

Non-renewable, and oil based raw materials are employed to synthesis polymers for the coagulation-

flocculation process. For decades, polymers have been used to reduce dosages of coagulants [20]. Since 

the world style is moving towards sustainable way, so a great interest to replace polymers with 

biopolymers which they are cellulose derivatives. Liimatainen et al. (2012) examined flocculation 

process by using cationic (CDAC) and anionic (ADAC) cellulose derivatives, and figured out using 

anionic cellulose produces higher flocculation efficacy, also Hok-kanen et al. (2013) confirmed 

Liimatainen’s results [21][22]. Amuda and Alade (2006) conducted laboratory scale coagulation-

flocculation treatments for wastewater with utilizing many reagents. It eliminated 98, 34, and 65% of 

TSS, TP, and COD, respectively [23].  

Coagulation-flocculation combination for POME processing can reduce turbidity, and COD 

concentrations, and utilizing ferric sulfate as coagulant, with employing high dicarboxylic acid 

nanocellulose nanofibril content gives tremendous polishing process for POME. Ho and Tan (1989) had 

examined POME treatment by using coagulation (aluminum sulphite)-flocculation (cationic 

polyacrylamide) and it removed 97% of the suspended solids [24].  

2.2 Activated Sludge and Biofilm Process 

Activated sludge process has been employed as a secondary polishing process for wastewater with using 

long time hydraulic. It can be improved by many ways but combing it with another process leads to 

impressive performances. For instance, additional clarifier is highly required from time to time to 

improve the activated sludge quality and defeat the high organic load. Besides, purchasing and installing 

another stand-alone process is costly, and may not produce the expected treatment. Hence, the hybrid 



Energy Security and Chemical Engineering Congress

IOP Conf. Series: Materials Science and Engineering 736 (2020) 022036

IOP Publishing

doi:10.1088/1757-899X/736/2/022036

4

system got a huge attention by proposing to unite two different biomass processes through using 

suspended biofilm carriers, named as integrated fixed film activated sludge process (IFAS) 

[25][26][27][28]. It handles a higher dosage of the bio sludge and the final settling tank faces not a 

significant growth in the organic load. It occurs because biofilm have attached naturally by effective 

bacteria on the media elements and it is counted as a huge advantage for the IFAS hybrid system. In 

addition, the high retention time allows biofilm bacteria to acclimatize, develop, and mature [29][30]. 

Many studies conducted and investigated the quality of IFAS process with using different media 

elements for nitrogen and organic matter removal [31][32][33]. It confirmed that biofilm have the ability 

to attach on fixed or moving carrier media, for that these carriers can be fixed inside the reactor or freely 

moving [25][34][35][36].  

There are advantages of using IFAS system, such as high surface area, low cost, low sludge 

production, doesn’t need backwashing, doesn’t require filter channeling, and can be operated in various 

temperatures and pH. On the other hand, uncontrollable biofilm growth, and longtime startup are major 

disadvantages for this hybrid system, and these are limiting the process efficiency. The below diagram 

presents IFAS system for wastewater treatment. 

 

Figure 3. IFAS process 

2.3 Hybrid Membrane 

Hybrid membrane system refers to a combined system involving a biological, chemical, or physical 

process followed by ultrafiltration, reverse osmosis (RO), forward osmosis, nanofiltration, or 

microfiltration membrane. This integration empowers membrane process to defeat their limitations (e.g., 

membrane clog, fouling). Figure 4 shows a general hybrid membrane system for treating wastewater. 

 

Figure 4. Flow process of general Hybrid membrane treatment 

A lot of studies have showed that using a stand-alone membrane is pricy because it has many 

limitations, and it’s unprofessional to neglect it (see table 1). Hence, membrane bioreactors (MBR) have 

been used broadly for wastewater treatment [37]. The selection process of a hybrid membrane system is 

quite sensitive because it should be constructed based on the wastewater characteristics, and depending 

on the wanted treatment quality [38][39]. The most common used membranes in MBR system is 

microfiltration (MF) and ultrafiltration (UF). Also, the combination between biological and membrane 
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treatment produces high declining in ammonia nitrogen (NH3-N), biochemical oxygen demand (BOD), 

and chemical oxygen demand (COD).  

Table 1. Hybrid Membrane Systems 
System Membrane type Results  Limitations  Ref. 

MBR Chlorinated polyethylene nano 

filtration (NF) + conventional 

activated sludge 

Good efficiency in 

removing polar 

pollutants 

TN/TP removal [43] 

Hybrid membrane 

bioreactor (HMBR)/ 

conventional 

membrane bioreactor 

(CMBR) 

Aerobic reactor + hollow fiber 

membrane (MF) 

Eliminating organic 

contaminants and 

lowering COD 

concentration   

- [44] 

Nonwoven fabric filter 

bag (NFFB)+MBR 

Nonwoven polyester fabric + 

conventional activated sludge 

Good performance in 

removing TSS, and 

sludge 

- [37] 

ANMBR Polyvinylidene difluoride (PVDF) 

flat sheet membrane/ PES tubular 

membrane 

Great discharge quality 

with low sludge 

production  

High organic 

strength, pore 

size, and 

membrane 

operational 

properties 

[45] 

Hybrid membrane 

anaerobic membrane 

bioreactors (ANMBRs) 

Polyethylene (PE) flat sheet 

membrane + CSTR 

Efficiency in removing 

TSS, and COD 

concentrations 

Flux, and pore 

size 

[46] 

Submerged anaerobic 

membrane bioreactor 

(SANMBR)/HANMBR 

PE flat sheet membrane High COD, and SCOD 

removal with low 

energy consumption but 

it is easy to foul.   

Restricted at 

limited 

temperatures  

[47] 

Submerged membrane 

bioreactors (SMBRs) 

Conventional activated sludge + 

hollow fiber MF membrane 

Fouling  Membrane 

fouling with Bio 

sludge generation 

[48] 

SMBR with chorine  PVDF hollow fiber Good performance in 

reducing TSS 

concentration  

Low efficiency 

for dissolved 

organics removal 

[49] 

Nitrogen loading rate 

(NLR)+SMBR 

Acrylic hollow fiber Efficiency in reducing 

TN, and COD amounts 

Low ability to 

remove 

phosphorus in 

high polluted 

wastewater 

[50] 

Staged anaerobic 

fluidized membrane 

bioreactor (SAF-MBR) 

Anaerobic fluidized-bed reactor 

(AFBR) + anaerobic fluidized bed 

membrane bioreactor (AFMBR) 

+PVDF hollow fiber 

Low fouling, with low 

energy consumption  

- [51] 

NF+MBR NF flat sheets +PVDF MF 

membrane hollow fiber + activated 

sludge 

Good quality in 

removing organic matter 

- [52] 

Dynamic membrane 

reactor (DMR) 

Activated sludge, diatomite, kaolin 

clay and powder activated carbon 

(PAC) + nylon membrane flat sheet 

Short treatment time, 

easy backwash, and high 

filtration flux.  

Microbial layer 

formation  

[53] 

Bio-enhanced powder 

activated carbon 

dynamic membrane 

(BPDM) 

Asymmetrical PAC +mesh support Good performance in 

removing organic and 

inorganic matters 

- [11] 

ANMBR-psychrophilic 

condition 

Flat-sheet MF polyether sulfone 

membranes 

Flux managing, with 

efficiency in decreasing 

BOD, and COD levels 

- [54] 

In the pharmaceutical treatment, Dolar et al. (2012) investigated RO and MBR hybrid system for 

polishing wastewater and it delivered 95-99% of total reduction [40]. Moreover, Chon et al. (2013) 
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tested MBR and Nanofiltration membrane for municipal wastewater treatment [41]. The laboratory scale 

hybrid system declined fouling and flux occurring probability. Therefore, hybrid membrane produces 

great quality of wastewater treatment with cost-effectiveness, and eco-friendliness, and it’s expected to 

be employed in industrial and domestic scale.  

POME is highly polluted, and it needs a massive treatment with high quality to stream reusable 

discharge. Hybrid membrane system is quite suitable for POME treatment to deliver high polishing 

process but there are concerns regarding unexpected membrane fouling [42]. The successful treatment 

of membrane is constructed on the previous treatment performance which determines the overall 

treatment quality.  

2.4 Hybrid Up-Flow Anaerobic Sludge Bed (HUASB) Reactor 

Often, wastewater industry uses anaerobic conditions to process POME like HUASB reactor. HUASB 

is a combination of up-flow anaerobic sludge bed (UASB) and anaerobic filter [55]. HUASB reactor 

has several benefits such as stability, and well ability to remove organics, and it can process high organic 

load POME processing. Shivayogimath and Ramanujam (1999) achieved 80% reduction of COD 

concentration by using HUASB reactor for 6 hours of HRT and the organic load rate was 36 kg COD.m-

3.d-1 [56]. In addition, 80% of the produced gas was methane. Lew (2004) had conducted empirical work 

on Hybrid UASB reactor for domestic wastewater treatment at different temperatures [57]. The 

treatment efficiency was found stable by 80% at temperatures range 28 to 20 °C, but COD removal 

performance declined by 60% at temperatures less than 20 °C. Another report by Rajakumar and 

Meenambal (2008) found that HUASB reactor has short-start time around 120 days, with 80% efficiency 

of organic removal. Other researchers, reported that HUASB is very effective to process dilute to 

medium strength contaminated water [58]. Microorganisms have shown fast developing in HUASB 

reactor because POME is quite fitting with their biological activities. It produces biomass, which 

accumulates in major range around 86% at the sludge section, while the rest amount 14% of the total 

biomass settles at the biofilter layer, according to Tur and Huang (1997) [59]. Figure 5 presents HUASB 

structure diagram which is involving packing media, influent distributor, sludge bed, and weirs for 

industrial scale, while laboratory scale involves filter media, sludge blanket, sludge bed, and gas 

displacement system.   

 

Figure 5. HUASB reactor schematic diagram  
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2.5 Ultraviolet and Fenton Oxidation (UV-Fenton) 

Fenton oxidation process is the most common process for eliminating organic pollutants among 

advanced oxidation processes (AOPs). It requires high chemical amounts, and high operating costs and 

leads to excessive sludge production. Hence, a hybrid system termed as UV-Fenton has been introduced 

to decrease operating cost and improve the treatment quality. UV-Fenton system oxidizes and breaks 

down large organic matters into smaller size. Hydrogen peroxide (H2O2) can be photolysis by using UV 

lights, which leads to oxidation process by radical addition, electron transfer, or hydrogen abstraction 

and generates powerful fundamental of HO [60][61][62]. In comparing to all AOPs, UV-Fenton can 

deliver wastewater treatment in short time, without sludge production at the end of the reaction [63][64]. 

UV-Fenton system can remove 91.2% of COD concentration, while using stand-alone Fenton process 

removes 81.4% of COD concentration. It shows that using UV-Fenton for high polluted discharges such 

as POME, can produce well treated effluent with major reduction in COD, color, and total organic 

carbon (TOC) concentrations with ranges 91.2, 99.9, and 78.5%, respectively. In below, combined 

pictures to illustrate UV-Fenton process.  

 

Figure 6. UV-Fenton process 

There are parameters affect UV-Fenton process quality, such as pH, pollutants, H2O2 concentration, 

light intensity, catalyst, and temperature [65][66][67][68][69]. Muruganandham et al. (2006) and Shu et 

al. (2005) reported that pH level is a major factor determining UV-Fenton degradation performance 

[70][71]. Another report by Schrank et al. (2007) and Shu et al. (2005) declared that high pH level 

increases the degradation efficiency [72][73]. Some advantages of UV-Fenton are effective destruction 

of hazardous organic pollutants, and organic matter mineralization [74]. 

2.6 Ultrasound and H2O2  

Ultrasound and H2O2 combination produce higher quantity of radicals than using a stand-alone oxidation 

process like Fenton oxidation. The attach of the free radicals against wastewater pollutants over time 

period determines the process quality. Several parameters can advance process performance such as 

influent composition, pollutants concentration, temperature, Fenton’s reagent dosage and pH. A report 

by Olson and Barbier (1994) found that increasing ultrasound intensity raised the rate of degradation 

process [75]. Another researcher reported that ozone amount rapidly declined from 620 µM to 40 µM 

when ultrasound was applied during 3 minutes of time period [76]. The generated acoustic streaming by 

ultrasound leads to turbulence which terminates mass transfer limitations with the ozonation process. 

Hence, combined system comprising of ultrasound and H2O2 can give impressive treatment due high 

degradation rate [77][78][79]. Moreover, it shows a great promise for wastewater treatment because it 

possesses simple design and easy operation.  

There are two kinds of pollutants in the wastewater, known as hydrophobic and hydrophilic. The 

degradation rate is determined by the pollutants kind and amount. Also, Ultrasound and H2O2 hybrid 

system causes pyrolysis followed by high temperature and pressure [80]. In addition, there are two kinds 
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of cavitation or sonication process which they are hydrodynamic and acoustic cavitation. Several reports 

declared that it’s hard to use acoustic cavitation process for wastewater treatment in industrial scale 

because its associated with issues and high costs, but it’s a quite successful process at the lab scale [81]. 

Venturi, valve, or orifice passages are capable to produce hydrodynamic cavitation when the liquid is 

streamed and constricted through it. In comparing to acoustic cavitation process, hydrodynamic method 

produces less destruction rate within same pressure and temperature [82]. Ma (2010) conducted 

experimental work to compare the performance of individual Fenton process against Ultrasound and 

Fenton (US-Fenton) system [83]. The stand-alone system reduced 15% of TOC, and 40% of carbofuran 

within 120 minutes, while the hybrid system gave more than 99% of carbofuran removal with 40% 

mineralization for 30 minutes.  

2.7 Sequential Batch Reactor and Forward Osmosis (SBR–FO) 

Forward osmosis is a novel technology of membrane separation family which can be used to save 

energy. FO membrane has been combined with various technologies such as electro dialysis (ED), and 

membrane distillation (MD). This combined system of Sequential Batch Reactor and Forward Osmosis 

(SBR–FO) involves a two flat sheets of FO membrane submerged inside SBR. Sequential batch reactor 

and forward osmosis (SBR–FO) can achieve 100, 88.4, 96.2, 58.4, 62.4, and 98.55% reduction of 

phosphate, ammonia, nitrite, nitrate, total nitrogen, and dissolved organic carbon concentrations. Two 

different liquid concentrations are separated by FO membrane, water moves from the low concentration 

liquid (FO influent) to the high concentration side (Draw solution) to get equilibrium state. While SBR 

process involves various stages of treatment like filling, aeration, settling, decantation, and idling, with 

great ability to remove COD and phosphor concentration [84]. Fouling is still a major issue with all the 

kind of membrane because of organic molecules, colloids, and particles, and when a clog occurs because 

of extracellular polymer substance (EPS) it is named as biofouling.  

2.8 Other Combinations   

Majority of other combinations are expensive, hard to be operated at the industrial scale, and not quite 

effective for POME treatment. Hence, at the present, researches and developments are conducted to 

come out with high performance, and appropriate hybrid system for large quantities, and highly polluted 

wastewater like POME. Some researches occurred on uniting electrocoagulation with electro dialysis 

system for wastewater. It can deliver 100, 100, 100, 92-87% of color, Cr, NH3-N, and COD removal, 

respectively. Mahtab et al. (2009) evaluated combined system of coagulation and adsorption for 

wastewater processing with using different coagulants like lime, ferric chloride, ferrous sulfate, and 

alum. The process delivered optimum reduction up to 92% removal of COD by using alum. Table 2 

shows researches results on combined or hybrid systems for the last five years. In addition, figure 7 

presents the achievement of stand-alone technologies versus their hybrid systems. 

 
Figure 7. stand-alone technologies versus their hybrid systems. Where FL is flocculation, AD is 

adsorption, and ED is electrodialysis 
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Table 2. Hybrid systems for wastewater treatment  
Hybrid System Wastewater Characteristics Results Ref.  

Anaerobic Hybrid 

Reactor Packed with 

Special Floating 

Media 

Slaughter 

House 

Wastewater 

pH (6.9-7.1), COD 

(27800), BOD 

(16680), Oil and grease 

(246) 

COD (86.0%-93.58%), BOD 

(88.9%-95.71%), HRT (1) 

[85] 

Hybrid anaerobic 

baffled reactors 

Dairy 

wastewater 

Organic loading rate 

(OLR) (3.33±0.03), 

packed with sponge 

media characterized by 

specific surface area 

(157), density (65), and 

voids ratio (0.65) 

COD (87.86±2.12%), biogas yield 

(155.80±7.02), sludge yield (0.067) 

[86] 

SBR–FO Synthetic 

domestic 

wastewater 

COD (439.47), TN 

(60.23), P (9.42) 

 

Dissolved organic carbon (DOC) 

(98.55%), TN (62.4%), nitrate 

(58.4%), nitrite (96.2%) ammonium 

(88.4%), phosphate (100%) 

[87] 

Hybrid Constructed 

Wetland 

Domestic 

Wastewater 

pH (7.91), NO2 (0.059), 

NO3 (2.83), 

PO4 (0.197), SO4 (0.095), 

total dissolved solids 

(TDS) (480), electrical 

conductivity (EC) (510), 

Cl (35.87), TSS (478), 

DO (2.5), BOD5 

(134.83), COD (199.23) 

HRT (20), COD (97.55%), BOD5 

(97.5%), PO4 (89.35%), SO4 

(80.75%), NO3 (96.04%), NO2 

(91.52%), fecal coliforms (98.6%) 

[88] 

Hybrid moving bed 

biofilm reactor 

(MBBR) 

Municipal 

wastewater 

Hydraulic load (2208), 

TSS (28), COD (214), 

BOD (111), total kjeldahl 

nitrogen (TKN) (41.3), 

TN (41.3) 

TSS (63%), COD (56%), BOD 

(74%), TKN (85%), TN (20%)  

[89] 

Adsorption-

Flocculation-MF 

Biologically 

treated 

wastewater  

TOC (1.6–3.8), Turbidity 

(0.8–6), PO4
-3 (0.5–12), 

SS (2–15) 

TOC (99.7%), PO4
-3 (94%) [90] 

EC- electro dialysis 

(ED) 

Tannery 

wastewater 

pH (4.10) at T (6.5), 

Conductivity (11.71), 

COD (2200-3000), SS 

(912), Color (824), NH3-

N (180) 

COD (92%), NH3-N (100%), Cr 

(100%) and color (100%) were 

based on conductivity value (0.371) 

at 45 minutes, and by using 

aluminum electrodes 

[91] 

UF-osmotic 

membrane bioreactors 

Raw 

wastewater  

- COD (96%), TN (82%), P (99%) [92] 

Ultrasonic-Membrane 

Anaerobic System 

(UMAS) 

POME BOD (437.31), COD 

(42800), total solid (TS) 

(11740), volatile 

suspended solid (VSS) 

(13270), T (55), pH 

(3.97) 

HRT (11), sonication operation 

(2 hr.), COD (98.75%), CH4 

generation (32,595) 
 

[93] 

Fenton and 

sequencing batch 

reactor (FE-SBR) 

Petroleum 

refinery 

wastewater 

BOD5 (173), COD 

(1259), TOC (186), DO 

(3), pH (9.4), TSS (124), 

Oil and grease (233) 

COD (76.5%), BOD (37.6%), TOC 

(45.0%), oil and grease (100%) 

[94] 

HUASB reactor POME COD (47750), TN 

(817.5), TP (272.5), TSS 

(9225), Color (5975), 

turbidity (5887), pH 

(4.45) 

COD (82%), TSS (80%), turbidity 

(45%), HRT (57) 

[95] 
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OLR (g-COD/L.d), Hydraulic load (m3/d), Turbidity (NTU), T (℃), Conductivity (mS.cm-1), biogas 

yield (mL.CH4/g. CODr), sludge yield (g.VSS/g.COD), HRT (day), gas size (ml), specific surface area 

(m2/m3), density (kg/m3), the rest is in mg/l, except pH. 
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4. Conclusion and Future trends 

Majority of the reviewed hybrid systems show great capability to lead wastewater treatment. For 

instance, Mahmoud et al. (2014) proved that using a hybrid system involving anaerobic baffled reactor 

is highly efficient than using the conventional method [86]. In addition, the hybrid system had reduced 

87.86±2.12% of COD, while the conventional anaerobic baffled reactor had delivered 72.50±2.40% of 

COD for dairy wastewater treatment.  

Hybrid system empowers and raises the treatment quality, and possibly able to eliminate several core 

weaknesses. On the other hand, there are disadvantage like limited energy generation, slow treatment, 

costly, and vast dosage of wastes. 

It is important to knock out the negative aspects and produce a concrete hybrid system involving 

quality, performance, low operation and maintenance requirement, ecofriendly, cost-effective, and 

energy productive. In addition, a lot of R&D are occurring on different combinations. Lastly, Global 

warming, pollution, and contamination, won’t stop and wait us till we achieve the optimistic operation, 

it’s quite depressed to notice pollution rises in vast amounts over the planet, and between us, while we 

are highly powered to defeat it.  
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