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Abstract: A printed compact monopole antenna based on a single negative (SNG) metamaterial is
proposed for ultra-wideband (UWB) applications. A low-profile, key-shaped structure forms the
radiating monopole and is loaded with metamaterial unit cells with negative permittivity and more
than 1.5 GHz bandwidth of near-zero refractive index (NZRI) property. The antenna offers a wide
bandwidth from 3.08 to 14.1 GHz and an average gain of 4.54 dBi, with a peak gain of 6.12 dBi; this
is in contrast to the poor performance when metamaterial is not used. Moreover, the maximum
obtained radiation efficiency is 97%. A reasonable agreement between simulation and experiments
is realized, demonstrating that the proposed antenna can operate over a wide bandwidth with
symmetric split-ring resonator (SSRR) metamaterial structures and compact size of 14.5 × 22 mm2

(0.148 λ0 × 0.226 λ0) with respect to the lowest operating frequency.

Keywords: monopole antenna; ultra-wideband (UWB); wideband; ENG metamaterial; near-zero
refractive index (NZRI)

1. Introduction

In the past decades, an essential amount of research has been dedicated to planar antennas that
allow one to use the increased spectrum demanded for modern wireless communication systems [1,2].
Nowadays, the development of planar wideband antennas supports applications requiring high data
rates, very precise localization, and high-resolution radar systems [3–5]. One of many examples is
Wireless Personal Area Networks (WPAN), where wide bandwidth antennas are required to cover
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both on-body and off-body communication [6]. The required antennas should offer small size, low cost,
and be lightweight and able to be easily integrated with other circuitry. However, a narrow bandwidth
is one of the drawback’s challenges that limits the usages of wideband modern wireless applications.
To circumvent these challenges, various techniques have been developed recently. For instance,
bandwidth and the radiation characteristics of an antenna can be improved using a reactive impedance
surface (RIS) method [7]. Basically, by tuning RIS between magnetic and electric conductor (PEC and
PMC) surfaces, antenna size can be miniaturized with a noticeable enhancement in bandwidth property.
In reference [8], a significant impact on the antenna performance enhancement is demonstrated by
applying a planar left-handed metamaterial (LHM) patterned structure on the bottom ground and
upper patch of the dielectric substrate. This technique features capacitive-inductive characteristics due
to the coupled bottom plane and upper patch configuration that can generate a traveling backward
wave along the patch plane. However, a passive antenna with periodic structures on the bottom layers
is applied and tested for temperature sensing, as presented in reference [9]. The bottom surface allows
for significant enhancement in the bandwidth despite the compact antenna size.

Metamaterial was demonstrated to increase antennas’ bandwidth due to the ability to produce
a negative refractive index (NRI) within both negative permeability (µ) and permittivity (ε) [10].
Furthermore, applying the metamaterial into the antenna design can offer increased gain, and good
radiation patterns can be obtained [11]. However, a metamaterial structure with near-zero refractive
(NZRI) properties has been investigated for specific applications, including several bands such as S, C,
and X bands, to improve the antenna performance [12].

Monopole antennas are often preferred, as they offer small size, good radiation patterns, low
cost, and high gain [13]; however, conventional antennas still suffer many challenges for both large
size and narrow bandwidth. Therefore, advancements in metamaterial designs promise to mitigate
those problems. Several types of metamaterial structures are proposed in the literature: split-ring
resonators (SRRs) [14], complementary SRR (CSRR) [15], planar pattern, and capacitance-loaded strip
(CLS) [16,17].

A compact UWB antenna is presented in reference [18] by appling multibranch T-shaped stub,
which features a reconfigurable band notch and achieving a wide impedance bandwidth from 3
to 11 GHz. The aforementioned antenna is complicated. Therefore, a simplified UWB antenna
design using a discrete embedded dielectric resonator (DR) structure has been proposed in [19]
or semi-circular monopole antenna in [20]. The reported antennas obtained bandwidths form
1.44–18.8 GHz and 0.95–13.8 GHz, respectively. Vivaldi antenna in reference [21] is loaded with
anisotropic zero-index metamaterial (AZIM) to realize a wideband frequency range of 1–10 GHz. Its
overall size is 105 × 125 mm2, which is greater than the proposed antenna. In reference [22], a tapered
slot antenna has been designed as well as several parallel-line unit cells with a broadband gradient
refractive index (GRIN). An array of cells was placed at the forefront of the antenna to enhance the
directivity, with antenna’s bandwidth being 3–11 GHz, which is less than the proposed work.

This paper presents a compact ultra-wideband monopole antenna using SNG metamaterial
cells for wide bandwidth applications. The proposed key-shaped monopole with integrated SNG
metamaterial cells offers a wide bandwidth from 3.08 GHz to 14.1 GHz. The metamaterial cells are
located on the front and back sides of the antenna’s substrate. However, for the case of the antenna
without SNG, the continuity of the bandwidth is disturbed, e.g., with a deteriorated impedance match
for 11.5–14.1 GHz. Besides enabling wide bandwidth operation, SNG material allows a compact
antenna size of 14.5 × 22 mm2 (0.148 λ0 × 0.226) with high gain, a quasiomnidirectional radiation
pattern, and radiation efficiency ranging from 80% to 95%. To validate the efficacious of the proposed
antenna, an overview of similar antennas published in the literature is reported in Table 1.
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Table 1. Comparison of the designed antenna with others in the state of art.

Ref. Size W × L
(mm2)

Operating
Freq. Rang

(GHz)
Technique 10-dB

BW (%)
Max.

Gain (dBi)

[6] 27.00 × 33.00 3.20–14.00 Metamaterial 126 3.90
[18] 40.00× 20.00 3.00–11.00 T-shaped ground 114 5.00
[19] 17.60 × 33.60 3.20–10.96 - - - 110 3.30
[23] 12.00 × 22.00 3.10–11.10 Slots 114 4.00
[24] 40.00 × 40.00 3.10–11.00 Vivaldi antenna 114 7.06

This work 14.50 × 22.00 3.08–14.10 NZRI/SNG metamaterial 128.3 6.12

2. Unit Cell Design Architecture

Figure 1a shows the proposed unit cell structure. It consists of several pairs of symmetric c-shaped
split-ring resonators, which cover each other. The unit cell is designed by applying FR-4 substrate with
4.7 dielectric constant, and a thickness (d) of 1.6 mm. However, the conductor thickness is 0.035 mm.
Finite integration technique (FIT)-based CST Microwave Studio computer simulation software has
been used to design and simulate the unit cell. The proposed structure is simulated over 0.1–15 GHz
by placing the structure between two waveguide ports situated on each side of the z-axis that was used
for the electromagnetic excitation as shown in Figure 1b. However, perfect electric conductor (PEC)
and perfect magnetic conductor (PMC) are deployed as boundary conditions along the x-axis and
y-axis, respectively. The dimensions specifications of the proposed unit cells are illustrated in Table 2.
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 Figure 1. Metamaterial unit cell: (a) 2D view unit cell structure and (b) 3D view simulation setup (unit
cell size 4.9 × 4.9 × 1.6 mm).

Table 2. Parameters dimensions of the proposed unit cell and antenna.

Para. Value
(mm) Para. Value

(mm) Para. Value
(mm) Para. Value

(mm) Para. Value
(mm)

g1 0.7 r1 3 r3 1 L 22.5 t 8
g2 0.5 r2 2 R 3 W 14 Lg 6.5

The proposed metamaterial (MTM) unit cell is composed of several metallic rings and separated by
0.5 mm gape (see Figure 2a). Each inner ring has two splits; however, they are connected together using
a metal strip with a 0.5 mm width as shown in Figure 2b,c, respectively. The outer ring is composed
of two narrow gapes, and they are spaced 180 degrees apart from each other, as demonstrated in
Figure 2d. Furthermore, the stopband increases in the case of using two thin arms between the inner
and outer rings (see Figure 2e), which is the final optimize MTM unit cell. The metal rings act as
inductors, while the gaps between the outer and inner rings act as capacitors. Figure 2 summarizes the
evaluating steps of the proposed MTM.
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 Figure 2. Schematic views for the evaluation of the proposed MTM.

3. Metamaterial Unit Cell Working Principle

To observe the proposed metamaterial behavior and understand the physical phenomena of how
it works when it is located into an electric and magnetic field region, the surface current distributions
are analyzed and discussed for different frequencies. The surface current distributions of the proposed
MTM unit cell at 3.5 GHz, 10.3 GHz, 11 GHz, and 11.9 GHz are illustrated in Figure 3a–d. The arrows
indicate the current distribution direction in the overall structure, and the colors represent the current
intensity. In Figure 3a, weak distributed surface current can be observed clearly via the overall structure
at 3.5 GHz. However, strong surface current at 10.3 GHz is present across the whole structure, especially
at edges and corners of the inner symmetric C-shaped structure, as shown in Figure 3b, although the
current distribution flows in opposite directions regarding the upper and down C-shaped etching
strips, which are nullifying the current and generates a stop band for frequencies above 9.8 GHz.

In Figure 3c,d, the surface current distribution behavior is relatively in fluctuation mode at the
symmetrical C-shape of outer and middle ring’s regions, whereas currents flow in two different
directions. Furthermore, those two anti-symmetric conductor currents are observed at the resonance,
which can be depicted as an equivalent magnetic moment, whereas the featured artificial magnetism of
the proposed structure is generated in this magnetic moment, which can cause the influential negative
permeability of the metamaterial structure [25].

The simulated reflection coefficient (S11) and the transmission coefficient (S21) results of the cell
are demonstrated in Figure 4. It shows a stop-band in the range of 9.8–12.8 GHz, which is applicable
for some applications, which are operating within this range like the Ku band (downlink) and the
highest frequencies of UWB. The outer and inner split ring-shaped resonators are considered as the
sufficient cause to achieve an extensive stopband operation, which has a higher resonance at 11.9 GHz
(denoted by a blue dotted line).
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Figure 4. Simulated metamaterial reflection and transmission coefficients.

Metamaterial structure conducts like an inductance–capacitance (LC) resonant circuit.
Two characteristics properties are considered for creating the metamaterial resonances: firstly, a split
gap and then a metal strip. The metal strip line is excited via the magnetic field, which is parallel
to the metal axis. However, the electric field is caused in the unit cell split gape. The LC resonance
frequency leads to a decrease or increase in the resonance towards lower or higher frequency by
controlling the split gap capacitance [25]. Here, the selected gap is considered as a capacitor, while the
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C-shaped resonators, including the rectangular small copper arms, act as an inductor that can control
the metamaterial resonant characteristics. Figure 5 shows the transmission coefficients of different
unit cell arrays of 1 × 1 and 2 × 1 array structures. The 1 × 1 array structure indicates resonance at the
range of 9.8–12.8 GHz whereas better match exhibits for 2 × 1 array.
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Figure 5. Transmission coefficients for different unit cell array structures.

Robust method is implemented to characterize the effective parameters from the normal incidences
scattering parameters data [26,27]. It starts by presenting the transmission (S21) and refraction
coefficients (S11) compound terms, whereas the simulations are performed in the frequency range
between 2 and 14 GHz. Based on that method, Equations (1) and (7) are used to retrieve the
effective parameters.

S11 =

R01
(
1− ei2nk0d

)
1− R01

2 ei2nk0d

 (1)

S21 =


(
1− R01

2
)

eink0d

1− R01
2 ei2nk0d

 (2)

where k0 is the wave vector in free space and d is the prototype thickness and R01 = z−1
z+1 .

According to the field theory, dielectric-metal interface (metamaterial) is considered as a passive
medium in electromagnetic filed circumstances. Therefore, impedance imaginary part and refractive
index real part depend on Equations (3) and (4).

real (z) ≥ 0 (3)

imaginary (n) ≥ 0 (4)

Based on that condition, impedance can be calculated by the Equation (5).

z = ±

√√
(1 + s11)

2
− s21

2

(1− s11)
2
− s21

2
(5)

eink0d = X ± i
√

1− X2 (6)

where X = 1
2 s21 (1− s11

2+ s21
2 )

.
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The refractive index can be calculated by the Equation (7), where the real part of the refractive
index n is the branch of the logarithm function.

n =
1

k0d

{[
imaginary

[
ln eink0d

]
+ 2mπ

]
− i

[
real

[
ln eink0d

]]}
(7)

where m is the integer value.
The simulated relative real and imaginary parts of the effective permittivity, permeability, refractive

index, and impedance, of different unit cell array structures are plotted in Figures 6–8. For 1 × 1 unit
cell array, as shown in Figure 6, a real negative permittivity (ε) value exhibits for the frequency range
from 10.7 to 12.85 GHz. However, it is remarkable that a greater than 1.5 GHz bandwidth can be
achieved with a near-zero refractive index (NZRI) property in z-axis wave propagation. In Figure 7,
it is apparent that a different number of unit cells exhibit a slight variation in the characteristics of
metamaterial over the frequency range. As a result, SSRR loading with 2 × 1 unit cell arrays provides
single epsilon-negative (ENG) characteristics over the band (10.6 to 12.7 GHz), as demonstrated in
Figure 7a, as well as near-zero refractive index (NZRI) value over the range from 10.5 to 11.8 GHz.
Figure 8 shows the simulated characteristics of 2 × 2 MTM array structure. It is obviously seen that
the near-zero refractive index (NZRI) has been exhibited over the range of 10.8–12.1 GHz. However,
10.4–12.5 GHz is the effective real value range of the displayed ENG, whereas permeability shows Mu
(µ) near-zero (MNZ) in the frequency range of 9.6–11.2 GHz at z-axis wave propagation.Sensors 2020, 20, 796 8 of 16 
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Figure 6. Metamaterial, simulated results of 1× 1 unit cell: (a) permittivity, (b) permeability, (c) refractive
index, and (d) impedance.
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Figure 8. Metamaterial, simulated results of 2 × 2 unit cells: (a) permittivity, (b) permeability,
(c) refractive index, and (d) impedance.
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4. Configuration of the Proposed Antenna

Figure 9a,b illustrate the proposed antenna structure designed on the FR-4 substrate of 1.6 mm
thickness with a loss tangent of 0.025 and relative permittivity of 4.7. The overall size including the
substrate is 22.5 × 14 × 1.6 mm3. A 50-Ω SMA connector is used to feed the antenna. The parameters of
the proposed antenna and unit cell dimensions are listed in Table 2. It can be seen that 2 × 2 unit cells
are placed on the antenna at the reverse side above the partial ground plane, whereas two unit cells are
placed horizontally side-by-side to the antenna’s key-shaped monopole features refractive index.Sensors 2020, 20, 796 10 of 16 
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Figure 9. Geometry of the proposed antenna: (a) front view and (b) back view.

5. Results and Discussion

The effect of various ring radiator line-width (R) to the proposed antenna performance is shown in
Figure 10. Impedance mismatch was found on some frequency ranges (4.9–8.7 GHz and 11.5–14.1 GHz)
for R = 6 mm. It can be observed that those bands are shifted slightly towards the upper frequency,
where the lower band is matched at 3 mm optimum value of R. Additionally, an additional spike at the
base of the monopole is added to ensure good impedance match, as shown in Figure 10.
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Both width (kw) and length (kl) of the key edge are composed of 1 mm and 2 mm increments,
respectively. Changing of the key edge structure effectively shifts the resonance towards lower
frequencies, as shown in Figure 11. When the kw and kl are kept larger, narrow bandwidth can be
observed, whereas the resonance at high frequency starts to disappear. The final optimized dimensions
of the key edge for each side are kw = 2.2 and kl = 2.1.Sensors 2020, 20, 796 11 of 16 
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Figure 11. Simulated reflection coefficient for different width and length of key edge.

The antenna resonant frequency can be adjusted by changing the place and number of MTM unit
cells. In order to observe the influence of the MTM unit cells on antenna performance, the reflection
coefficient of the proposed antenna without and with MTM is discussed, as shown in Figure 12a;
whereas the investigation of efficient positions of proposed MTM with the antenna is revealed in
Figure 12b. In the case of no MTM applied, it can be seen that impedance mismatching has occurred at
high frequency. However, the resonant mode at 10.5–14 GHz will be excited by applying only two
MTM unit cells on the antenna bake side (close to the partial ground). Furthermore, good impedance
matching and wider bandwidth are gained with the use of four MTM unit cells, including two near to
the transmission line.
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Figure 12. Simulated reflection coefficient with and without MTM. (a) the reflection coefficient of the
proposed antenna without and with MTM; (b) the investigation of efficient positions of proposed MTM
with the antenna.

Two antennas have been fabricated with and without metamaterial, as shown in Figure 13.
The reflection coefficients (S11) of these prototypes are measured using an Agilent E8051C Network
Analyzer (ENA) and compared with simulation results, as demonstrated in Figure 14. Regarding
the reflection coefficients (S11), the measured bandwidths for both cases are similar, stretching from
3.08 GHz to 14.1 GHz, which fulfills ultra-wideband requirements, as shown in Figure 14. However,
for the antenna without MTM, small peaks are seen at higher frequencies that exceed the −10 dB limits,
preventing wideband performance. The introduction of MTM allowed for the suppression of those
peaks, providing continuous operation within the whole bandwidth.
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Figure 13. Fabricated prototypes of the proposed antennas, front view: (a) with MTM and (b) without
MTM; back view: (c) with MTM and (d) without MTM.
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Figure 14. Simulated and measured reflection coefficient (S11).

Figure 15 illustrates the simulation and measurement of both radiation efficiency (denoted as
rad. eff.) and gains. It can be seen that the realized gain is close to omnidirectional antenna at lower
frequencies and gradually increases with frequency up to 6.12 dBi due to larger antenna’s aperture
compared to the wavelength. The achieved gain decreases slightly at higher frequency range due to the
insertion loss caused by using FR-4 substrate and degradation rate of the distributed power on those
bands. In the fabricated PCB circuits using FR-4, the significant loss is observed at higher frequencies
due to the increase of its dielectric constant, which has a higher dissipation factor (Df) and feed line
radiation. However, decrement in the measured result was obtained due to the fabrication precision
issues of the very compact size of the unit cells. Besides, the simulated radiation efficiency in the whole
range varies between 80% and 97%. A good agreement between the simulated and measured results
was observed.
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Figure 15. The proposed antenna gains and radiation efficiency over frequency (a) without MTM and
(b) with MTM.

The simulated face to face group delay (GD) of the proposed UWB antenna is shown in Figure 16.
It is almost uniform with less variation (<1.3 ns) over the UWB frequency range. As a result, it can
be seen that the signal between the transmitting and the receiving UWB antennas system was not
distorted. Moreover, the S21 transfer function (TF) in Figure 16 shows less distortion, except at higher
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bands above 13 GHz. Accordingly, the realized TF, as well as the flat GD over the UWB frequency
range, makes this antenna suitable to be used for short-range communications applications.
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However, the normalized radiation patterns in H-plane and E-plane are shown in Figure 17
for 4 GHz, 8 GHz, and 11 GHz. A bidirectional behavior can be seen at 4 and 8 GHz, while nearly
uni-directional pattern occurs at the higher frequencies of 11 GHz, which is affected by the back MTM.
Furthermore, losses have been occurred at higher frequencies due to the difficulties in the fabrication
process of the compact metamaterial antenna. Meanwhile, a slight degradation might be found in both
radiation and total efficiencies [28,29].
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Figure 17. Simulated and measured radiation patterns of the proposed antenna at: (a) 4 GHz, (b) 8
GHz, and (c) 11 GHz.
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6. Conclusions

A compact ultra-wideband (UWB) antenna integrated with an array of metamaterial cells with
SNG and NZRI characteristics is presented in this paper. A unique symmetric split-ring resonator
(SSRR) metamaterial unit cell is proposed. It features a wide bandwidth with a negative refractive
index (NRI), spanning from 9.67 GHz to 12.11 GHz. The proposed unit cell exhibits SNG features
in different bands. Several unit cells are then placed on the backside of the antenna and close to the
antenna’s transmission line. The simulated reflection coefficient (S11) shows a wide bandwidth of
128.3% (from 3.08 to 14.1 GHz).
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