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Abstract. Composites of functional materials have long been synthesized for achieving 

enhanced physical and chemical properties. In this era of energy intensive electronics and 

electric vehicles, energy storage devices utilising composite materials could offer improved 

performance at a lower cost. Furthermore, if the composite materials are synthesized in one-

dimensional morphology at a nano level, conductivity and thus electrical properties could be 

multiplied. A range of materials with different functionalities have been synthesized by our 

group recently; as a typical example synthesis of a composite nanowire containing NiO and 

CuO for supercapacitive energy storage is detailed in this paper and compared the performance 

of the composite wires with its component binary wires. The materials were synthesized by 

electrospinning technique and characterized for their structure, microstructure, surface 

properties and electrochemical properties. The results shows that a composite wire containing 

materials for similar electrical conductivity would lead to improved charge storage 

performance than their single component counterparts.     

1.  Introduction 

A fast growing market for portable electronic devices and hybrid electric vehicles (HEVs) and hybrid 

electric vehicles has led to intense research in the area of electrical energy storage devices 

characterized by high energy densities (≈ 100-200 WhKg
-1

), power densities (≥5 kWkg
-1

) and a long 

cycle life (≥10
5
 cycles) [1,2]. Supercapacitors are a class of energy storage devices including electric 

double layer capacitors, pseudocapacitors, and hybrid capacitors [3,4]. Electric double layer capacitors 

(EDLCs) store electrical energy via the accumulation of electric charges at an electrical double layer 

formed at the interface between a mesoporous electrode and electrolyte. Carbon structures such as 

activated carbon, carbon nanotubes, and graphene have been chosen to build EDLCs. No electron 

transfer takes place across the electrode-electrolyte interface. Transition metal oxides (TMOs) and 

conducting polymers show high pseudo-capacitance equal to F/ (ΔE × m), where F is the faraday 

constant, m is the molecular weight and ΔE is the redox potential of the material. High electrical 

conductivity (conductivity of RuO2), large surface area (>10 cm
2
/g), ability to undergo reversible 

faradaic electrochemical reactions, an array of oxidation states in the electrode materials to 

accommodate electrons of varying energy, and faster ion diffusivity are properties of TMOs and 

electrolytes required to achieve higher energy and power densities in pseudocapacitors [5,6].  The 

hybrid capacitors combine the properties of EDLC and pseudocapacitors. 
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The 1D morphologies offer a cylindrical distribution of charges and directed charge transport; 

therefore, they have high electrical conductivities [7]. Moreover, increased surface area of low 

diameter nanowires helps in maximum utilisation of active electrode materials [8]. Various chemical 

methods are utilised to synthesize 1D morphologies of supercapacitor electrode material. However, 

compared with other processes adopted, electrospinning is a simple, versatile and cost-effective 

method to produce low diameter 1D nanostructures [7,9–11]. In the electrospinning technique, a 

polymeric solution, usually prepared in an organic solvent, is injected through a syringe needle in the 

presence of an electric field. A polymeric jet is initiated upon injection of the solution that undergoes 

asymmetric bending during the passage between the injector and the collector. This asymmetric 

bending increases the path length of the jet and allows the solvent to evaporate thereby producing solid 

continuous fibres with diameters ranging from nanometres to sub-micrometres on a collector surface. 

If the polymeric solution contains precursors for forming an inorganic solid, then appropriate 

annealing produces its continuous nanofibres [12,13].  

In the recent past, our group has synthesized an array of composite materials as nanowires and 3D 

nanostructures for their application in catalysis [14,15], solar cells [14,16–19], and charge storing 

electrodes [20–25]. In most of the previous works, a highly conducting and a highly capacitive with 

large surface area has been reported. However, a composite with similar electrical conductivity and 

surface properties were not considered before. This paper addresses this gap and describes the 

synthesis and characterization of a composite wire containing two ceramics, viz. NiO and CuO and 

evaluation of their suitability as a supercapacitive charge storing electrode. 

 

2.  Experimental Details 

 

The CuO – NiO hybrids as well as their individual components were synthesized by electrospinning 

technique as reported before [26,27]. For synthesis of CuO – NiO hybrids, the metal precursors were 

in 1:1 molar ratio (no other ratios made a composite). Starting materials used were; cobalt acetate 

tetrahydrate [Cu(CH3COO)2. 4H2O; CuAc; 99%; Sigma Aldrich, USA], nickel acetate tetrahydrate 

[Ni(CH3COO)2.4H2O; NiAc; 99%; Sigma Aldrich, USA] and polyvinyl alcohol (PVA; Mw-145,000, 

Merck). For preparing hybrid, the precursors of cobalt and nickel was taken in a 1:1 molar ratio and 

dissolved in 7 wt% of PVA solution. With slow and continuous stirring for 24h, a clear solution was 

obtained. This clear solution was electrospun using a commercial electrospinning unit (Electroris, 

nanoLab, Malaysia) at 0.6 mL h
-1

 and at ~18 kV. The as-spun fibres are collected on an aluminium foil 

at a distance ~ 15 cm from the spinneret. The relative humidity around spinning unit was maintained at 

~ 30%. The resultant product was calcined at 450 
o
C for 1 h in air to remove the polymer and complete 

nucleation of nanocomposite. 

The crystal structure of each materials were studied by X-ray diffraction (XRD) using a Rigaku 

Miniflex II X-ray diffractometer employing Cu Kα radiation (λ = 1.5406 °A). The morphology and 

microstructure of the materials were studied by scanning electron microscopy (7800F, FESEM, JEOL, 

USA). High resolution lattice images and selected area diffraction patterns were obtained using 

transmission electron microscopy (TEM) operating at 300 kV (FEI, Titan 80–300 kV). X-ray 

photoelectron spectroscopy (XPS) was employed to verify the elemental composition of the 

composite. 

The electrochemical properties of material and asymmetric supercapacitor (ASC) were measured 

using potentiostat-galvanostat (PGSTAT M101, Metrohm Autolab B.V., Netherlands) employing 

NOVA 1.9 software. Cyclic voltammetry (CV), charge-discharge cycles (CDC), electrochemical 

impedance spectroscopy (EIS) measurements were carried out using potentiostat at room temperature. 

A platinum rod and a saturated Ag/AgCl electrode were used as the counter and the reference 

electrodes, respectively. Electrolyte used was 6M KOH because of its high ionic conductivity (626.6 

mScm-1). A normalized mass-loading range from ~2.0-2.5 mgcm-2 of the active material was used for 
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the experiments. The ASCs were fabricated by assembling the NiO – CuO composite electrodes and 

the AC electrodes as anode and cathode separated by a glass microfiber filter (fioroni) in 6 M KOH. 

 

3. RESULTS AND DISCUSSION 

 
Fig. 1 compares the XRD pattern of the NiO+CuO composite wire with those of their single 

component counterparts. Diffraction peaks are seen distinctly at the respective angles for both CuO 

and NiO. All the CuO peaks fit well to a monoclinic unit cell (Space group C12/c1, #15) with lattice 

parameters a = 4.598 Å, b = 3.46 Å, c= 5.135 Å and β = 99.30
o
,
26, 28

 which correspond to reported 

values (PDF Card No: 45-0937) and all the NiO peaks fit well to a cubic structure phase group 

 with lattice constant  a = 4.18 Å[28]. 

 

 
Figure 1. XRD pattern of (a) NiO+CuO composite nanowire (b) composite and its components. 

 

Fig. 2(a) shows SAED pattern corresponding to HRTEM image consists of diffraction spots 

oriented in a typical polycrystalline ring pattern which further confirm the high degree of particle 

orientation in the nanowire and those diffraction rings are indexed to (11-3) with d spacing 0.1511 nm, 

(111) with d spacing 0.2301 nm and (002) with d spacing 0.2519 nm which is consistent with the XRD 

of CuO. The HRTEM image depicted in Fig. 2(b) reveals the lattice spacing of 0.18 nm, the distance 

between two (202) planes, indicating the presence of CuO. The lattice spacing 0.25 nm, corresponding 

the distance between two (002) planes showing the presence of CuO.  

 

 
 

Figure 2. TEM images of CuO+NiO nanowires (a) selected area electron diffraction image, (b) high 

resolution lattice image of a typical particle in the TEM image. 

 

mFm3
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Fig. 3 shows the FESEM images of the calcined NiO+CuO composite nanowires having uniform 

diameter ranging from 90 -120  nm. Lower diameter of the wires was further confirmed by TEM 

measurements (Fig.  3c and d).  

 

 
 

Figure 3. (a-b) FESEM images and (c&d) Bright field TEM images of NiO+CuO  

nanowires with different magnification. 

 

One of the main criteria for a supercapacitor electrode material is its surface structure. The surface 

properties of the ceramic nanowires used in this work were studied by gas adsorption technique. Table 

1 shows the results obtained from the BET analysis of CuO nanowire, NiO nanowire, and CuO+NiO 

composite nanowire. The surface area, pore volume and pore size nearly same for all materials due to 

the similarity of the synthetic procedure. The measured BET surface area of the nanowires was ~14 

m
2
g

-1
 with a pore volume ~0.5 cm

3
g

-1
, which are at lower end for wires of diameter ~30 – 50 nm. The 

observed relatively lower surface area is partly contributed by dense particle packing in the wires that 

reduced porosity despite the lower wire diameter. The Barrett-Joyner-Halenda (BJH) analysis showed 

a mean pore size of ~11.2 – 11.6 nm because the dense particle packing resulted in larger pores.  

 

   Table 1. The specific surface area, total pore volume and mean pore size of all materials. 

Materials Surface area (m
2
g

-1
) Pore volume 

(cm
3
g

-1
) 

Mean pore size 

(nm) 

CuO 14.5 0.5 11.5 

NiO 13.7 0.5 10.6 

NiO+CuO 14.1 0.5 11.6 

 

Fig. 4 shows the CV of NiO+CuO composite nanowire electrode in the potential window -0.2 – 0.5 

V. The peak current of the NiO+CuO composite are much higher than single components, indicating 

that the composite nanowire shows higher electrochemical performance. There are two oxidation 

peaks (A1&A2) observed in the anodic scan and one broad reduction peak C in the cathodic scan. From 

cathodic peak potentials of CuO (C1&C2) and NiO (C1&C2) it justified that the cathodic peak C of 

NiO+CuO composite (Fig. 4(d)) is the integrated cathodic peaks of CuO and NiO. The anodic peaks of 
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NiO+CuO composite correspond to anodic peaks of CuO (A1&A2) and anodic peak of NiO (A). 

Therefore, all of the peaks from both CuO and NiO are present in the CV of NiO+CuO composite 

nanowire and the electrochemical redox reaction is ascribed to the following processes [26,27]. 

                                      

                                              
NiO + OH-    ↔ NiOOH + NiO + e-                                      

 
Figure 4. Cyclic Voltammograms at 2 mVs

-1
;  (a) CuO,  (b) NiO, (c) NiO+CuO. A’s and C’s indicate 

oxidation and reduction events. 

The CS (Fg
-1

) of the samples was estimated from the cathode or anodic part of the CV data using 

   
 

            
(∫       

  

  
), where E1 and E2 are the cut-off potentials in the CV curves and i(E) is 

the current at each potential, E2 – E1 is the potential window, m is the mass of the active material, and 

v is the scan rate. The CV measurements have been performed at various scan rates to evaluate the rate 

dependent pseudo capacitive performance of the samples and shown in Fig. 5. The CV profiles show 

oxidation (anodic) and reduction (cathode) events at all scan rate, which are characteristics of 

pseudocapacitors. The anodic peak in the CV profile shifted towards positive potentials with increase 

in the scan rate and the cathodic peak to the negative potential on account of the polarization in the 

electrode material. The asymmetric and scan rate dependent shape of the CV profiles show that the 

origin of the capacitance is by fast and reversible Faradic reaction. Slower scan rates enable higher 

diffusion of hydroxyl ions into the nanowire electrodes thereby accessing a major fraction of the active 

site in the material and show high CS. 
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  Figure 5. Cyclic Voltammograms of samples at various scan rate (a) CuO, (b) NiO, (c) NiO+CuO. 

 

 
Figure 6. Variation of specific capacitance as a function of scan rate.  

Data from Ref. [22] is also added for comparison. 

The super capacitive performance of the ceramic oxide nanowire electrodes was evaluated from the 

galvanostatic CDC curves. Fig. 7(a-c) show the first three charge discharge curves of the samples at a 

galvanostatic current density 1 Ag
-1

 in 6M KOH. The maximum attainable potential is ~0.4 V in the 

KOH. For a given material system maximum attainable potential window depends on the dissociation 

energy of the electrolyte. Organic electrolyte and ionic electrolyte would provide wide potential 

window up to about ~3.5 V. The discharge curve is observed to be a combination of three processes, 

viz. (i) a fast initial potential drop followed by (ii) a slow potential decay, and (iii) a faster voltage 

drop corresponding to EDLC. The first two sections are assigned to reduction of samples as observed 
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from the CVs. The clear non-linear shape of the discharge curves (Fig. 7) reveal that the major 

contribution of CS of the samples from Faradic reactions. 

 
Figure 7. First three charge discharge curves; (a) CuO, (b) NiO, (c) NiO+CuO 

The CS was calculated from the discharge curve using   
  

   
, where I, t, m and ΔV are applied 

current, discharge time, active mass, and potential window respectively. The CS Calculated from the 

discharge curve at a current density 1 Ag
-1

 for all samples is given in Table 2. 

 

Table 2 Summary of internal resistance and CS calculated from 

charge /discharge curves. 

Sample VIR 

( mV) 

ID  

(mA) 

Internal 

resistance (Ω) 

CS  

(Fg
-1

) 

CuO 7 5 1.4 657 

NiO 3 2.2 1.4 694 

NiO+CuO  6 5 1.2 716 

 

An electrode material with high life cycle stability is practically preferred for long term use in 

electrochemical supercapacitors. Therefore, the cyclic stability of the samples has been tested for 2000 

cycles at a current density 5 Ag
-1

. Effects of the high crystallinity of the present electrospun samples 

are more evident in the cycling stability of the samples in this study. Fig. 8 summarizes the stability of 

electrochemical cycling of the samples and their Coulombic efficiency.  
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Figure 8. Dependence of the discharge specific capacitance and the Coulombic efficiency as a 

function of charge discharge cycle; (a) CuO, (b) NiO, (c) Co3O4, (d) NiO+CuO, (e) Co3O4+CuO. 

 

Fig. 8(a) shows the stability of electrochemical cycling of the CuO nanowires. The electrode 

showed good cycling behaviour with ~99% CS retention in 6M KOH at the end of 1000 cycles. 

However, a more pronounced loss in CS was observed in the 1001 – 2000 range of cycles. A capacity 

fading of ~8% was observed in this range for the 6M KOH electrolytes. The electrode was physically 

stable; the active material stuck well with nickel foam substrate even at the end of 2000 cycles. 

Nevertheless, capacity fading in the present CuO nanowires is lower than that is reported for most 

CuO nanostructures. To be specific, compared to the ~18% capacity fading in just 500 cycles in the 

electrode reported the highest CS until this work, i.e., in the CuO nanosheets synthesized using the 

template growth method, the capacity fading of ~10% in the present work with superior CS for 2000 

cycles is certainly advantageous. Fig. 8(b) shows the stability of electrochemical cycling of the NiO 

nanowires. 

The electrode showed good cycling behaviour with ~100 % retention in CS at the end of 1000 

cycles thereby sharply contrasting the advantage of the present nanowires compared to previous 

electrospun nanowires obtained using organic solvents  that marked >13% capacitance loss at similar 

conditions. However, a capacity loss of 6% was recorded for the present NiO wires for 2000 cycles 

when cycled at a rate of 5 Ag
-1 

which could be attributed to the partial irreversibility of the current 

material system as observed in the CV curves. Nevertheless, compared to the literature values (Table 

2.4), a loss of 6% in 2000 cycles is a superior performance. The electrode was also physically stable; 

no peeling-off of the electrode material from nickel foam. Initial Coulombic efficiency of the NiO 

electrode was ~98%, which was reduced to ~94 % at the end of 2000 cycles. Fig. 8(c) shows the 

electrochemical stability and Coulombic efficiency of the NiO+CuO composite nanowire at a current 

density 5 Ag
-1

. Apart from their single components, the capacitance of the electrode was 678 Fg
-1

 for 

about first 100 cycles and thereafter it reached 682 Fg
-1

 and remained same until 2000 cycles. 

Coulombic efficiency remained ~ 99 till the end of 2000 cycles. Fig. 5.12(e) shows the 

electrochemical stability and Coulombic efficiency of Co3O4+CuO composite nanowire electrode. The 

capacitance of the electrode remained same after 120 cycles until 2000 cycles; Coulombic efficiency 

remained ~ 100 %. The observed small increase in Cs value of both NiO+CuO samples during the first 

100-150 CDC is usually due to initial surface activation as the electrolyte gradually penetrates into the 

composite structure. 

 

4. Conclusions  

In conclusion, the CuO and NiO showed extremely low diameters ~ 30 – 60 nm; however, the 

composite wires had a diameter ~100 nm. Improved electrical conductivity of the aqueous polymeric 

solution is likely the reason for the lower fiber diameters. The wires have desirable pore diameter and 

BET surface area for efficient electrochemical reaction.  The crystal structures of the materials were 

studied by x-ray and electron diffraction as well as high resolution lattice images. The CuO 

crystallized in the space group C12/c1, #15, with lattice parameters a = 4.598 Å, b = 3.46 Å, c= 5.135 

Å and β = 99.30o; the NiO crystallized in the space group, with lattice parameters a = 4.18 Å. The 
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composite fibers showed no shifting of lattice parameters or additional peaks. Therefore, the present 

method is a method for producing nanocomposites of different materials in the form of nanowires.  

Electrochemical performance of CuO, NiO, and its composites NiO+CuO have been evaluated in 

three electrode configuration using cyclic voltammetry, and galvanostatic charge discharge cycling, 

Cyclic voltammetry revealed that capacitance originated from fast and reversible redox reaction and  

found that the samples achieved CS nearly 30% its theoretical capacitance at low scan rate 2 mVs
-1

; CS  

are as  following  CuO ~627 Fg
-1

,  NiO ~671 Fg
-1

, and NiO+CuO ~710 Fg
-1

. All the electrodes 

maintained high cycling stability. 
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