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 The tuning of optimal controller parameters in wind plant is crucial in order 

to minimize the effect of wake interaction between turbines. The purpose of 

this paper is to develop an improved grey wolf optimizer (I-GWO) in order 

to tune the controller parameters of the turbines so that the total energy 

production of a wind plant is increased. The updating mechanism of original 

GWO is modified to improve the efficiency of exploration and exploitation 

phase while avoiding trapping in local minima solution. A row of ten 

turbines is considered to evaluate the effectiveness of the I-GWO by 

maximizing the total energy production. The proposed approach is compared 

with original GWO and previously published modified GWO. Finally,  

I-GWO produces the highest total energy production as compared to other 

methods, as shown in statistical performance analysis. 
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1. INTRODUCTION 

Nowadays, wind plant research has the main issue which is a decrease in total energy production 

that leads to an increase in price of electricity. This is because of the wake interactions or turbulence between 

turbines in the wind plant. Thus, it is essential to fine-tune the optimal controller parameters of each turbine 

in the wind plant. The controller parameters for the turbines are the angle of blade and yaw or/and  

torque generator. Usually, to find the controller parameters for a single turbine is much simpler by using  

a model-based controller. Unfortunately, went it comes to an array of turbines, the task in optimizing the 

controller parameters will be more difficult and complicated. This complexity is because of difficulty in 

studying the dynamic behavior of the wake interactions between turbines where the turbulence is always 

happened in chaotic behavior and highly depended on different wind directions and speed magnitude. 

Therefore, the model-based approach is not suitable in finding optimal controller parameters of the  

wind plant. 

Meanwhile, a model-free or data-driven approach, which is well-known with the design of the 

controller without knowing an exact model of the system will be a more attractive method to be implemented 

in the wind plant. A considerable amount of literature has been published on finding the optimal controller 

parameters of an array of turbines based on the data-driven method that only depends on the total energy 

production data of wind plant. Multi-resolution simultaneous perturbation stochastic approximation  

(MR-SPSA) [1], game-theoretic [2-4], gradient-based optimization [5] and optimized relative step size 

https://creativecommons.org/licenses/by-sa/4.0/
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random search (ORSSRS) [6] are the examples of data-driven method that focused on single-agent-based 

optimization. The limitation of single-agent-based optimization is the solution tends to trap in local optima 

solutions. On the other hand, multi-agent-based optimization performs optimization using a set of solutions 

(population). Thus, multi-agent-based generally have better exploration compared to single-agent-based,  

so, better chance to avoid local optima solutions. Recently, a considerable literature has grown up around the 

theme of multi-agent-based optimization for wind plant. This include, spiral dynamics algorithm [7], particle 

swarm optimization [7], Bayesian ascent (BA) [8], sine-cosine algorithm [9] and moth flame optimization [10]. 

Alternatively, a grey wolf optimizer (GWO) [11], which is swarm-based inspired by social behavior 

of groups of animals (grey wolves), has been successfully solved numerous types of real applications. For 

instance, improving wind plant production [12], solving optimal reactive power dispatch problem [13], 

automatic generation control of interconnected power system [14], design for a photovoltaic (PV) [15, 16], 

vehicle engine [17], unmanned aerial vehicle (UAV) [18], facial image [19], image segmentation [20], grid-

connected permanent-magnet synchronous generator [21], satellite image segmentation [22], hybrid 

renewable energy system PV-diesel generator-battery [23], and liquid slosh system identification [24]. GWO 

algorithm is inspired by the social hierarchy of grey wolves that divided into four groups, which are alphas, 

beta, delta and omega. These grey wolves are hunting the prey by following methods: 1) Finding, chasing 

and reaching prey, 2) Surrounding and harassing prey till it becomes standstill and 3) Attacking the prey. 

Unfortunately, based on our preliminary works using a row of ten turbines, a major problem with the original 

GWO is premature convergence which is the solution is not optimum. This problem will lead to low accuracy 

of total energy production. So far, however, there has been little discussion about the modification of original 

GWO algorithm for wind plant application. For that reason, this paper is proposed to improve the original 

GWO algorithm in order to get a better total energy production of a wind plant. 

The purpose of this paper is to improve the total energy production of wind plant based on  

the modification of original GWO, named as improved grey wolf optimizer (I-GWO). The original GWO 

uses a linear updated mechanism in the algorithm to balance the exploration and exploitation phase. In our 

modification, we purpose a new nonlinear updated mechanism to provide an optimal portion of exploration 

and exploitation for wind plant problem. Moreover, the efficacy of the I-GWO is evaluated with a single row 

wind plant with ten turbines. Here, the wind plant modelling from Park model [25] is considered to verify  

the effectiveness of the proposed technique. The number of agents and the maximum number of iterations  

is investigated to find the optimum combination in providing high accuracy of the total energy production. 

Since the I-GWO is a multi-agent optimization, there will be a huge number of trials to evaluate  

its consistency in maximizing the total energy production. The performance of the proposed method is 

analyzed statistically in terms of mean, best, worst and standard deviation of the wind plant total energy 

production. Furthermore, the results are compared with the previously published modified GWO [12] and  

the original GWO approaches. 

 

 

2. PROBLEM FRAMEWORK 

In this section, the problem framework of the total energy production of the wind plant is explained. 

The energy production of turbine k can be defined as Ek (h1, h2, ..., hm) (k=1, 2, ..., m), where hk (k=1, 2, ..., m) 

is the controller parameter of each turbine k and m is the total number of turbines in the wind plant. 

Logically, the wind plant received the wind at a different speed and angle of directions with a random 

position of turbines. Therefore, the energy production Ek of turbine k can be influenced by the controller 

parameters of other turbines h1, h2, ..., hk-1, hk+1, ..., hm, which is not included in controller parameter of 

turbine k. This is due to the wake interactions between turbines. Same goes to change of hk that might 

influence the energy productions of other turbines E1, E2, ...., Ek-1, Ek+1, ..., Em. The exact mathematical model 

of function Ek (h1, h2, ..., hm) is difficult to derive due to highly complex turbulence interactions between 

turbines, and thus, in this study, it is negligible. On the other hand, the data on the energy production of each 

turbine is measurable. Therefore, the total measured energy production is stated as follows: 
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Finally, this wind plant data-driven control problem can be stated as: 

Problem 2.1: Find the controller parameter of each turbine hk (k=1, 2, ..., m) such that the total energy 

production )( 21 mh...,,h,hE  
in (1) is maximized without any knowledge on the relation between hk (k=1, 2, ..., 

m) and E . 
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3. WIND PLANT MATHEMATICAL MODEL 

The mathematical model for wind plant in [25] is briefly explained in this section. The energy 

production of each turbine k can be considered as:  
 

kkkkk WhhAE 2)1(2          (2) 

 

In (2) ρ, Ak and Wk are the air density, rotor swept area of turbine k and accumulation wind speed produced by 

the upstream wind turbines, respectively. The equation of Wk is defined as: 
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where U, F, l, Dl, φ, dlk and Aov are the incoming wind speed in front of the first turbine, the number of 

upstream turbine, the index to represent the upstream turbine, the diameter of turbine rotor, the parameter to 

represent the gradient of the wind turbulence between two turbines, the distance between turbine k and 

upstream turbine l and the overlap area of turbulence from the upstream turbine, respectively. 

Remarks: Note that in this research, only the data of total energy production of a wind plant E is needed 

without any knowledge of exact relation between )( 21 mh...,,h,hE  and hk (k=1, 2, ..., m) as stated in (2, 3). 

Hence, the data-driven or model-free-based control is suitable to implement in real wind plant optimization 

problem due to it only depends on the total energy production data. 

 

 

4. IMPROVED GREY WOLF OPTIMIZER  

The proposed I-GWO for finding the optimal controller parameters of wind turbines in a wind plant 

is explained in this section. Firstly, an original grey wolf optimizer (GWO) is introduced. Then,  

the modification in GWO is explained in detail, which can provide better total energy production of the wind plant. 

 

4.1.  Original GWO 

The original GWO algorithm is introduced by [11] that motivated by the grey wolves hunting  

for prey in nature. Here, a brief explanation of the original GWO is presented. Let RR ng : ,  

vi (i=1, 2, ..., N) and N are the cost function, design variable and the number of agents, respectively. And, let 

vij (j=1, 2, ..., n) is j-th element of the vector vi. Therefore, a maximization problem can be expressed as: 
 

))((maxarg
..),2(),1(

tg ii
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        (4) 

 

for iteration t=1, 2, ... and for each agent i. Then, the design variable vector for each agent is updated 

iteratively as: 
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where: 
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for i=1, 2, ..., N, where the vectors A and C are formulated as follows: 
 

,2 1 araA           (7) 

 

,2 2rC           (8) 

 

where r1 and r2 are pseudorandom numbers in the range [0, 1] and components of a is linearly decreased 

from 2 to 0 over the course of iteration using the following equation: 
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where T is the maximum number of iterations. Note that the random vectors r1 and r2 of A and C in (6),  

are generated independently between v
1
, v

2
 and v

3
. Moreover, the optimal solution is based on the hierarchy 

of the wolves, which is a priority is from v
α
, followed by v

β 
and v

δ
. 

 

4.2.  Improved GWO  

In this section, the modification of the original GWO algorithm is explained. As stated in (9),  

the value of a of original GWO is linearly decreased from 2 to 0 over the course of an iteration. The linearity 

of the original updating mechanism is claimed to provide an exact balance between exploration and 

exploitation phase. However, in (9) there is no parameter to adjust in order to vary the percentage  

of exploration and exploitation. Thus, this setting is only limited to several applications. Therefore,  

a nonlinear equation for updating mechanism a with parameters that can be adjusted seems to be a good 

choice to cater to this problem. A modified updating mechanism of GWO to produce a nonlinear equation  

of updated step size is shown as follows: 
 

  ))(tanh(~ Tta         (10) 

 

In (10), the symbols σ, μ and λ are the positive constant values that are introduced to regulate  

the portion of exploration and exploitation during the tuning process. The proposed nonlinear updating 

mechanism for different values of μ, σ equal to 2 and λ is set to 4 is shown in Figure 1. As a result, it is 

expected that our new updating mechanism can provide more choices of exploration and exploitation 

portions as compared to the linear equation. Furthermore, this modification can cover more real applications 

optimization problems. Finally, the I-GWO will follow the same procedure of GWO by replacing (9) with (10). 
 

 

 
 

Figure 1. Value of a~  for different μ (σ=2, λ=4) 

 

 

4.3.  Applications of I-GWO for improving energy production of wind farm 
The procedure to apply the proposed I-GWO for improving energy production of wind plant  

is shown in this section. By applying the I-GWO in the previous section, the procedure for data-driven 

control of wind plant is given as follows: 

Step 1: Select the values of σ, μ and λ in (10). 

Step 2: Execute the I-GWO by setting igE   and hk (k=1, 2, ..., m)=vij (j=1, 2, ..., n) for each i. 

Step 3: The algorithm stops with the solution hk
*
 (k=1, 2, ..., m)=v

α
j (j=1, 2, ..., n) after T iterations and the 

corresponding total energy production )( 21 *h...,*,h*,hE m  is observed. Note that v
α
j is jth element of the vector v

α
. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Optimal tuning of a wind plant energy production based on… (Mohd Zaidi Mohd Tumari) 

27 

5. NUMERICAL RESULTS 

The evaluation of the proposed method is discussed in this section. The first question in this study 

sought to determine the optimal controller parameters of the turbines so that the total energy production of 

the wind plant is increased. In this study, the effectiveness of the I-GWO is evaluated on a row of 10 turbines 

of wind plant, as shown in Figure 2. The wind plant model is adopted for ten turbines (m=10) with 80 m of 

turbine rotor diameter on each. The location of the wind turbine is positioned in a row with the same 560 m 

distance between each turbine. The values of air density and the turbulence gradient parameters are  

ρ=1.225 kg/m
3
 and φ=0.04, respectively. In order to experience large turbulence effect, it is assumed that the 

wind direction is 90 degrees to the rotor swept area with a fix incoming wind speed at U=8 m/s. The simulation 

works are done with MATLAB 2019a, Microsoft Window 10, 8GB RAM and Intel Core i7-6700  

Processor (3.41GHz). 

 

 

 
 

Figure 2. The location of 10 turbines in wind plant 

 

 

The comparative assessment for I-GWO with original GWO and modified GWO [12] has been done 

by setting the maximum number of iterations, T to be 1000 and number of agents, N to 10 that contributes to 

10,000 number of function evaluations. The coefficients of I-GWO is set as μ=0.0005, λ=4 and σ=2, after 

performed several initial investigations. For a fair comparison, the N and T for original GWO and modified 

GWO are set identical with I-GWO. The initial control parameter of each turbine for I-GWO, original GWO 

and modified GWO are set randomly between ranges of [0, 1/3]. Note that the value of 1/3 is considered as 

the optimum controller parameter of individual turbine produced by the designer before it is placed in  

the wind plant. Here, 100 trials are carried out for executing all approaches in order to observe  

the performance of each method due to the randomization effect. 

Table 1 provides the summary statistics for total energy production for the 10,000 number of 

function evaluations. It can be seen from the data, I-GWO has surpassed original GWO and modified  

GWO [12] in terms of mean, best, worst and standard deviations of total energy production, after 100 

independent trials. The I-GWO yields the highest best total energy production with the value of 

4.7648415724 MW, same with modified GWO, followed by the original GWO (4.7648412912 MW). 

Interestingly, there was also a similar trend for the worst and mean values of the total energy production.  

The most striking result to emerge from the data is that the standard deviation of I-GWO is lower compared 

to other methods. This indicates that I-GWO is robust to the stochastic effect while consistently improving 

total energy production. As shown in Figure 3, the I-GWO convergence curve reported significantly faster 

compared to the original GWO and modified GWO. Comparing these results, it can be seen that I-GWO has 

able to balance the exploration and exploitation very well to avoid premature convergence. 

On the other hand, based on the obtained optimal controller parameters, the best optimal controller 

parameters of the I-GWO are recorded as hk
*
(k=1, 2, ..., 10)=(0.2061, 0.1611, 0.1648, 0.1651, 0.1698, 

0.1173, 0.2258, 0.1877, 0.1837, 0.3333). It shows that the optimal controller parameter value of the first 

turbine is larger compared to the values of middle turbines, but still less than the 1/3. However, the value in 

the final turbine is maintained as the initial controller parameter, which is 1/3. It shows that the optimum 

values of the controller parameters of the upstream wind turbines are lower than the 1/3 to reduce  

the turbulence effect and increase the accumulation of wind speed to the downstream turbines. In contrast, 

since there is no more downstream turbine for the final turbine, its controller parameter is fixed at the full 

capacity of 1/3. This trend is similar to existing investigation on data-driven control of wind plant, e.g., [4], 

while improving the total energy production.  
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Generally, statistical results over 100 independent runs do not compare each of the runs because it is 

still a possible chance that the superiority happens despite its low probability in 100 runs. Therefore, a non-

parametric statistical test is performed to compare the results of each run and decide whether the better 

algorithms is significant or not. In this study, the Wilcoxon rank-sum test is used to determine the 

significance of the results. Wilcoxon rank sum test stated that the better algorithm should be significant if the 

p-value less than 5%. Table 2 shows the p-values obtained from the test. From the results, it is shown that the 

significant superiority of I-GWO compared to original GWO and modified GWO based on the p-values that 

less than 0.05. In summary, these results show that the proposed I-GWO has good potential in increasing the 

total energy production of the wind plant. 

 

 

 
 

Figure 3. Convergence curve 

 

 

Table 1. Comparative assessment of total energy production between I-GWO, M-GWO and GWO 
Statistical results I-GWO M-GWO [12] GWO [12] 

Mean (MW) 4.7648415724 4.7648415723 4.7648390511 

Best (MW) 4.7648415724 4.7648415724 4.7648412912 
Worst (MW) 4.7648415724 4.7648415720 4.7648339341 

Standard Deviation 1.6407 × 10-9 6.678 × 10-5 1.3615 

 

 

Table 2. Results from Wilcoxon rank sum test 
Algorithm p-value 

I-GWO vs. M-GWO 3.7369e-35 

I-GWO vs. GWO 3.7369e-35 

 

 

6. CONCLUSION 

This study set out to improve the wind plant control parameters for a single row wind plant of 10 

turbines by using a new Improved Grey Wolf Optimizer (I-GWO). This study has shown that the proposed  

I-GWO has produced a slightly higher total energy production compared to the original GWO and previously 

published modified GWO with more consistent results. In general, therefore, it seems that I-GWO has good 

potential for data-driven control of wind plant. This research will serve as a base for future studies  

to investigate the effectiveness of other multi-agent-based optimization for wind plant problem. In terms of 

directions for future research, further work could be done by implementing I-GWO to solve the problems  

for other real plant applications. 
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