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Abstract. The crystallisation parameters effect on the particle size distribution (PSD) of 

carbamazepine-saccharin (CBZ-SAC) co-crystals in batch cooling crystallisation is presented. 

The particle size distribution study of CBZ-SAC co-crystals revealed that the multimodal with 

broad PSD was found for CBZ concentration of 19.14 mg/ml. Meanwhile, the unimodal with 

broad PSD were observed at CBZ concentration of 17.01 mg/ml and 17.96 mg/ Crystal 

characterisation using differential scanning calorimetry (DSC), X-ray powder diffraction 

(XRPD), Fourier transform infrared (FTIR) and optical microscopy confirm the solid formed is 

CBZ-SAC co-crystal Form I with plate-like crystal morphology. 

1.  Introduction 

Drug molecules with limited solubility are the major problems encountered by the pharmaceutical 

industry nowadays.  Carbamazepine (CBZ) is a poorly water soluble drug that exists in different 

crystalline forms with different solubility, dissolution rate, and bioavailability. CBZ has the problems 

of its slow rate of absorption when administered through oral route in which a larger dose of the drug 

is needed in order to be effective to treat patients [1]. The co-crystallisation of CBZ with saccharin 

(SAC) has widely studied to improve the CBZ solubility [2, 3]. 

Crystallisation process is a widely used in pharmaceutical industries. The main challenge in the 

crystallisation process is to produce crystals with desired properties such as a polymorphic form, 

morphology and crystal size distribution [4]. The crystallisation process determines the chemical 

purity and physical properties of the product, as well as its habit, particle size and crystal structure [5]. 

The particle size of a drug substance can influence the final drug product performance such as 

dissolution, bioavailability, content uniformity, compatibility [6] and flowability [7]. The control of 

the PSD in pharmaceutical crystallisation is important since the particle size determine the quality of 

the final product and affect the downstream operations such as filtration and drying [8]. The control of 

crystallisation parameters is necessary in order to achieve the desired particle size distribution. This 
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paper reports on the influence of concentration of CBZ, mol ratio values of SAC/CBZ and cooling 

rates towards the particle size distribution of CBZ-SAC co-crystal using batch cooling crystallisation. 

2.  Materials and Methods 

2.1.  Materials 

Carbamazepine (CBZ) and Saccharin (SAC) were obtained from UHN Shanghai and Sigma Aldrich, 

respectively. Absolute ethanol (EtOH 99.4 %) was used as solvent used for the formation of solid 

crystals. 

2.2.  Polythermal cooling crystallisation method 

A Syrris 250 ml reactor equipped with a stirrer was used in the particle size distribution study of CBZ-

SAC co-crystals. The parameters under studied were CBZ concentrations (17.01 mg/ml, 17.96 mg/ml 

and 19.14 mg/ml), mol ratios of SAC to CBZ (1:1, 1:1.5, 1:2, 1:2.5 and 1:3) and cooling rate (0.1, 

0.25, 0.5, 0.75 and 1.0 °C/min) at a stirring speeds of 250 rpm. 

The mixture of 1.0 SAC/CBZ mol ratio and 17.96 mg/ml of CBZ was heated to 60°C with 250 rpm 

of stirring speed for 1 hour to fully dissolve the solid. The mixture was cooled at a rate of 0.1°C/min. 

The co-crystal formed was filtered using vacuum pump at a room temperature prior to 

characterisation. Similar steps were repeated for the other parameters as stated earlier. 

2.3.   Characterisation of CBZ-SAC co-crystals 

Particle size distribution of the produced co-crystal was measured by a laser diffraction using Malvern 

Instruments Mastersizer 2000 laser particle size analyser (Malvern, UK) combined with Scirocco 2000 

as the dry powder feeder. A dry method was used to determine the particle size distribution with air as 

the dispersion agent. The data was presented in terms of D(0.5) which was defined as the mean crystal 

size. 

The melting point of the produced co-crystal was determined using differential scanning 

calorimetry (DSC). A mortar and pestle was used to grind the crystal in order to get small size of 

sample for a better and more uniform thermal contact with the crucible pan.  2 to 3 mg of sample was 

crimped in aluminium pan and analysed in the DSC from 30 to 300°C, with a flowrate of 50 ml/min of 

nitrogen gas purging at a heating rate of 10°C/min. 

The produced crystal also being identified using x-ray powder diffraction (XRPD) using RIGAKU 

(Miniflex II) diffractometer with Cu Kα radiation. The system was run at 30 kV and 15 mA with the 

2θ (angle) from 3° to 40°. The step size and step time were 0.01° and 1 second/step, respectively. 

Fourier transforms infrared (FTIR) was used to determine the existence of functional groups in a 

molecule. The analysis for each sample was carried out using FTIR with 50 series model attached with 

the diamond detector at the wave number from 4000-600 cm-1 using 32 scans per spectrum with a 

resolution of 4 cm-1.  

The morphology of the crystals was observed using a Dino-eye microscope eyepiece and Carl Zeiss 

Model optical microscopy with 5x magnification. 

3.  Results and Discussion 

3.1.  Effect of crystallisation parameters on particle size distribution (PSD) of CBZ-SAC co-crystals 

The particle size distribution (PSD) reported in terms of mean crystal size, D(0,5) of CBZ-SAC co-

crystal obtained from the cooling crystallisation. The PSD decrease as the cooling rate increase from 

0.1 to 1.0 °C/min. The trend is similar for all the CBZ concentrations and the SAC to CBZ ratio. The 

highest PSD (618.25 m) has been obtained at the lowest cooling rate i.e 0.1 °C/min probably due to 

low supersaturation achieved at low cooling rate which result in the decreasing of nucleation and large 

mean crystal size [9]. 
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The PSD of CBZ-SAC co-crystals for the cooling crystallisation reveals that the multimodal and 

broad PSD (Refer figure 1 and 2) were found at concentration of 19.14 mg/ml of CBZ at a cooling rate 

of 0.5 °C/min and above. The finding was applicable to all mol ratio of SAC to CBZ under studied 

with the exception to cooling rate 1.0 °C/min at 1.5 ratio of SAC to CBZ as the unimodal and broad 

PSD was obtained. 

 

 

 

 

Figure 1. Multimodal and broad PSD curve for 

19.14mg/ml of CBZ concentration, 1:2 mol ratio 

of SAC to CBZ and 0.75 ºC/min cooling rate. 

 Figure 2. Multimodal and broad PSD curve for 

19.14mg/ml of CBZ concentration, 1:3 mol ratio 

of SAC to CBZ and 0.75 ºC/min cooling rate. 

 

 This finding suggested that higher solute concentrations, results in supersaturation increase as the 

number of nuclei formed increases with the increasing of nucleation rate [10] thus, the precipitation of 

the solute occurs earlier as compared to lesser concentration. Higher solution concentration also means 

more molecules were present in the solution and results in higher probability of molecular collision 

[11]. This situation may increase the interaction between particles formed and resulted in the 

agglomeration of the crystal particles and lead to broadened of the PSD [12].   

The unimodal and broad PSD (Refer figure 3 and figure 4) were observed at lower concentration of 

CBZ (17.01 and 17.96 mg/ml) applicable to all cooling rate and mol ratio of SAC to CBZ under 

studied except at concentration 17.01 mg/ml of CBZ at cooling rates of 0.5 and 1.0 °C/min for SAC to 

CBZ ratio of 2.5 where multimodal and broad PSD were observed. At lower solute concentrations, the 

crystal growth rate is slower and formed small crystals [13]. This could be the factor of the unimodal 

and broad PSD. 

 

 

 

 

Figure 3. Unimodal and broad PSD curve for 

17.01 mg/ml of CBZ concentration, 1:2 mol 

ratio of SAC to CBZ and 0.75ºC/min cooling 

rate. 

 Figure 4. Unimodal and broad PSD curve for 

17.96 mg/ml of CBZ concentration, 1:2 mol 

ratio of SAC to CBZ and 0.75ºC/min cooling 

rate. 

3.2.   Solid state characterisation of CBZ-SAC co-crystal 
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Figure 5 indicates the melting point of the CBZ, SAC and CBZ-SAC co-crystal. The DSC profile 

shows small and sharp peak for CBZ. The small peak at 172°C indicates the transformation of CBZ 

Form III to Form I where 191°C represent melting point of CBZ Form I [14]. The endothermic peak at 

227°C reveals the melting point of SAC [15]. It also can be seen that there is a peak profile 177°C. 

This peak indicates the melting point of the CBZ-SAC co-crystal. The measured melting point of 

CBZ-SAC has the similar value with reported literature [16, 17]. This finding indicates the formation 

of CBZ-SAC co-crystals Form I. 

 

 

Figure 5. DSC profile showing the melting point of CBZ, SAC and 

CBZ-SAC co-crystal. 

 

The PXRD pattern of CBZ, SAC and CBZ-SAC co-crystals is shown in figure 6. The peak occurs 

at 2Ɵ = 15.3, 19.4 and 24.9 indicates that this sample is a pure component of CBZ which was 

corresponds well with the polymorph of CBZ Form III reported [15]. The XRPD pattern also shows 

the pure component of SAC profile peaks occur at 2Ɵ = 6.1, 19.2 and 25.1 and is in agreement with 

reported literature [18,19]. The diffraction pattern at 2θ = 7.04, 14.1 and 20.1 is identical to the pattern 

reported previously which confirms the peak corresponds to the pattern profile of Form I CBZ-SAC 

co-crystal [17, 20, 21]. 

The FTIR spectra corresponding to the CBZ Form III is observed at 3466 cm-1 (N-H stretch) that 

correlate with the free anti N-H and hydrogen bonded syn-NH respectively [22]. A peak at 1676 cm-1 

(C=O stretch) is also observed which is corresponding to the carbonyl stretch [23]. The CBZ Form III 

spectrum obtained agreed with previous study [23, 24, 25]. The peak shifted in the carbonyl, amide 

and SO2 regions in the CBZ-SAC co-crystals spectrum, which correlate with hydrogen bond 

interactions in the crystal structure.  The spectrum of pure SAC shows peak at 1722 cm-1 (C=O 

stretch) and 1334 cm-1 (-SO2 stretch). The peaks matched to free carbonyl of SAC and hydrogen 

bonded carbonyl of CBZ are identified at 1730 cm-1 and 1,647 cm-1, respectively in the CBZ-SAC co-

crystals spectrum. There is also a peak shift corresponding to NH stretch of the amide from 3466 cm-1 

for CBZ to 3502 cm-1 for the CBZ-SAC co-crystals. Comparison of the spectrum of SAC and CBZ-

SAC co-crystals reveals a peak shift correlate to the asymmetric stretch of -SO2 from 1,334 cm-1 in the 

spectrum of SAC to 1328 cm-1 in the spectrum of the CBZ-SAC co-crystals. The results are in 

agreement with other researchers [20, 23]. 
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Figure 6. XRPD patterns profile of CBZ, SAC and CBZ-SAC co-crystals. 

 

Morphological characterisation was used to observe the product crystals obtained from batch 

cooling crystallisation using optical microscopy with 5x magnifications. The morphology of the co-

crystals obtained is shown in table 1. The result reveals that the CBZ-SAC co-crystals have the 

morphology of plate-like crystal for fast cooling crystallisation, and the same crystal morphologies 

were produced for all tested concentrations and cooling rates [2, 26]. The result also shown that the 

size of the crystal is mostly affected by the cooling rate. The bigger size of co-crystal is obtained at 

lower cooling rate (0.1 °C/min). 

 

Table 1. Morphology of CBZ-SAC Co-Crystal with 5x magnifications. 

Concentration 

(mg/ml) 

Cooling rate (°C/min) 

0.1 0.25 0.5 0.75 1.0 

17.01 

 

 

 
 

 

17.96 

 
 

 

 

 

19.14 

 

 

 

  

 

4.  Conclusions 

The study on effects of crystallisation parameters on the particle size distribution (PSD) of 

carbamazepine-saccharin (CBZ-SAC) co-crystals was successfully carried out by cooling 

crystallisation with three different CBZ concentration, five different mol ratio of SAC to CBZ and five 

different cooling rate at 250 rpm. The PSD was found to be strongly affected by the solution 

concentration. The PSD study revealed that the multimodal and broad PSD was found at higher 

concentration of CBZ (19.14 mg/ml) whereas, unimodal and broad PSD were observed at lower 

concentration of CBZ (17.01 and 17.96 mg/ml). The characterisation analysis of CBZ-SAC co-crystals 

1mm 

1mm 1mm 1mm 1mm 1mm 

1mm 1mm 1mm 1mm 1mm 

1mm 1mm 1mm 1mm 
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through DSC, XRPD and FTIR has shown that the CBZ- SAC co-crystal Form I has formed with the 

morphology of plate-like crystal. 
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