IMPROVEMENT AND OPTIMIZATION OF TIRE NUT REMOVAL WITH 114 PCD

AZIZUL RAHMAN B ABD AZIZ

UNIVERSITI MALAYSIA PAHANG

IMPROVEMENT AND OPTIMIZATION OF TIRE NUT REMOVAL WITH 114 PCD

AZIZUL RAHMAN B ABD AZIZ

A report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

> Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

> > OCTOBER 2008

ŝ

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	iii
STUDENT'S DECLARATION	iv
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

1.1	Overview Of The Project	1
1.3	Problem Statement	2
1.3	Objective	2
1.4	Scope of Project	3
1.5	Justification	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	4
2.2	Type of Tire Nuts Car	4
2.3	Tire Nut Removal Steps	5
2.4	Type of Tools Needed to Remove Nuts	6
2.5	Basic Gear Theory	9

2.6	Spur Gear Terminology	10
2.7	Standard Gear Calculation	13
2.8	Standard Spur Gear Teeth	14
2.9	The First Project Of Tire Nut Removal	15
2.10	Tire Nut Removal Calculation	16
2.11	Material Specification	18
2.12	Conclusion	21

CHAPTER 3 DURABILITY ASSESSMENT METHODS

3.1	Introduction	
3.2	Methodology of Flow Chart	22
3.3	Define The Problem	24
3.4	Data Collecting	25
	3.4.1 Pitch circle Diameter3.4.2 Material Selection3.4.3 Force to Open a Nut	25 25 26
3.5	New Gear Design	27
	3.5.1 Spur Gear System3.5.2 Plate Housing	27 29
3.6	Maching	
	3.6.1 CNC Milling Machine3.6.2 Mastercam Software3.6.3 Gear Hobbing	30 31 32

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Torque of the Power Window Motor	33
4.2	New Spur Gear Calculation	33
	4.2.1 Force, Torque and Radius Consideration4.2.2 Optimize Gear Ratio	34 35
4.3	New Force and Stress Calculation	36
	4.3.1 Camnetics Gear Trex 2003	36
	4.3.2 Spur Gear Module and Parameters	37
	4.3.3 Face Width Designing	38

4.4	Stress Analysis Calculation with "Lewis Theorem"	
4.5 4.6		
4.7	Fabrication Result	50
	4.7.1 New Gearing System4.7.2 New Housing Design	50 51
4.8	Product	52

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	53
5.2	Recommendation	54
REFERENCES		55

APPENDICES 56

Page

APPENDIX A12 SAMPLE OF LIST OF TABLES

LIST OF TABLES $1 \times \text{ENTER} (1.5 \text{ line spacing})$

2.1 Typical free piston engine configurations 17 Page no. should be Left (1line spacing) 5.1 List of component of the free piston engine 96 6.1 Mechanical properties of three materials 119 6.2 List of the components and their material properties 120 6.3 Components maximum principal and equivalent von Mises 121 stresses 6.5 Monotonic and cyclic properties of the MANTEN and RQC100 130 materials 135 6.6 Experimental actual life (Tucker & Bussa 1977) and predicted fatigue life using the stress-life approach 6.7 Experimental actual life and predicted fatigue life using the crack 136 initiation approach 6.8 Summary of the mechanical properties and their comparative 140 ratios (forged steel is taken as the base for ratio calculations) 6.9 Predicted fatigue life at critical location with mean stress effect 160 6.10 Comparisons between the Material S-N and Component S-N 161 approaches for the SAETRN loading conditions 6.15 Predicted fatigue life at critical location (node 132171) using the 172 crack initiation approach for the various loading conditions 6.17 The results of the modal analysis 177 6.18 Predicted fatigue life in seconds between two approaches at 182 critical location (node 49360)

Table No.

1 line spacing

APPENDIX A13 SAMPLE OF LIST OF FIGURES

LIST OF FIGURES

 $\left.\right\} 1 \times \text{ENTER} (1.5 \text{ line spacing})$

Figure N	0.	Page
1.1	A two-stroke free piston linear generator engine	2
2.1	An illustration of a conventional crankshaft driven IC engine	10
2.2	Ideal Otto cycle	11
2.3	A comparison of piston motion and energy storage device between the free piston and crank engine	19
3.1	The fatigue process: a thin plate under cyclic tensile loading	35
3.2	Typical S-N curve	
3.3	Principle parameters of a variable amplitude load	38
3.4	Sequences which cause problems for the peak-valley and range counting methods	46
3.5	Sequences having the same average value taken as the reference level	47
5.1	Schematic diagram of the fatigue life estimation	88
5.2	The developed finite element based integrated durability analysis	89
6.1	Finite element meshing for (a) TET4 and (b) TET10 using the same global mesh length	114
6.2	Von Mises stresses contours (a)TET4 and (b) TET10 meshes at a high load level	115

APPENDIX A14 SAMPLE OF LIST OF SYMBOLS

LIST OF SYMBOLS

 $\left.\right\} 1 \times \text{ENTER} (1.5 \text{ line spacing})$

ω	Natural frequency
ε	Total strain, Bandwidth parameter
\mathcal{E}_{a}	Strain amplitude
\mathcal{E}_{f}	True fracture ductility
\mathcal{E}_{f}^{\prime}	Fatigue ductility coefficient
σ	True stress, local stress
$\Delta\sigma$	Stress range
$\sigma_{_a}$	Local stress amplitude
$\sigma_{_m}$	Local mean stress
$\sigma_{_{max}}$	Local maximum stress
$\sigma_{_f}$	True tracture strength
S_f	Fatigue strength
S'_f	Fatigue strength coefficient

APPENDIX A15

SAMPLE OF LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS

	$ + 1 \times \text{ENTER} (1.5 \text{ line spacing}) $
AA	Aluminum alloy
A-A	ASTM air to air typical fighter loading
Al	Aluminium
ASTM	American Society for Testing and Materials
CAD	Computer-aided drafting
CAE	Computer-aided engineering
DOF	Degree-of-freedom
DTP	Discretized turning point
FE	Finite element
FFT	Fast Fourier transform
FRF	Frequency response function
IC	Internal combustion
LG	Linear generator
MBD	Multibody dynamics
PDF	Probability density function
PSD	Power spectral density

SAE Society of Automotive Engineers

LIST OF TABLES

Table no.		Page
2.4	Tools Needed to Remove Nuts	7
2.6	Spur Gear Specification	11
2.11	Type of Cast Nylon	20
3.4.2	Properties of Cast Nylon	26
3.5.1	Spur Gears Arrangement between Levels	28
4.2.2	New Arrangement of Gears	35
4.3.2	Spur Gears Parameters	37
4.4	Bending Stress by Lewis Theorem	42
4.6	Error between Manual Calculation and Software	49

LIST OF FIGURE

Figure no.		Page
2.2.1	Proton Waja Tire	5
2.2.2	PCD Distance	5
2.6	Spur Gear Terminology	11
2.9	First Project Gear Mechanism	16
2.10.1	Pitch Circle Diameter	17
2.10.2	Torque Wrench	17
3.2	Flowchart of Final Year	23
3.3	First Tire Nut Removal	24
3.4	Position and PCD Value	25
3.5.1	Drawing New Gear Design	28
3.5.2	Plate 1	29
3.5.2.1	Plate 2	30
3.6.1	CNC Milling Machine	30
3.6.2	Mastercam Software	31
3.6.3	Gear Hobbing Machine	32
4.2.2	New Gears Arrangement	35
4.3.1	Gear Trex 2003 Software	36
4.3.3	Force at Spur Gear Teeth	38
4.4	Lewis Factor.Y Chart	41
4.5	Algor Fempro Software	43
4.5.1/9	Von Misses	44
4.7	New Tire Nut Removal System Design	50
4.7.2	Upper Housing	51
4.7.2.1	Bottom Housing	51
4.8	New Tire Nut Removal	52

LIST OF SYMBOLS

- П Pi (3.142)
- σ Stress
- σ_t Tangential Stress

LIST OF ABBRESIVIATION

- AGMA American Gear Manufacturers Association
- PCD Pitch circle Diameter
- F Force
- M Module
- OD Outside Diameter
- T Torque
- r Pitch Circle Radius
- A Area
- PA Polyamide
- f_w Face Width