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Abstract
The paper is an experimental study of the gasification process of sawdust (SW), sawdust pellet (SWP) and sub-bituminous 
coal (SBCoal) by using downdraft gasifier. The gasification was undertaken in a lab-scale fixed-bed gasifier operating 
under air as an oxidizing agent. The comparison on the raw biomass, treated biomass and coal was assessed in term of 
the product gas and gasification performance at a fixed condition of gasification temperature of 750 °C and equivalence 
ratio of 0.25. The gasification performance was tabulated in the form of calorific value of the syngas  (HHVsyngas), gasifica-
tion efficiency  (XCGE) and carbon conversion efficiency  (XC). It was denoted that SWP produces the highest  H2 and the 
lowest  CO2. Furthermore, SBCoal possesses the highest gasification performance among the three feedstocks. Besides, 
the influence of the temperature between SW, SWP and SBCoal was evaluated at the equivalence ratio of 0.25. The find-
ings demonstrate that rising the temperature,  H2 and CO for SW, SWP and SBCoal are increase. The volume of the  CO2 is 
constant as the temperature increases. In contrast, the  CH4 decreases with increase in the gasification temperature. As 
the gasification temperature increases,  HHVsyngas and  XCGE of SW and SWP are increasing; meanwhile, SBCoal shows the 
opposite results. Simultaneously with rising gasification temperature, the  XC’s of the SW, SWP and SBCoal are increasing.
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1 Introduction

The possible depletion of the conventional fossil fuels in 
the future, as well as environmental pollution, has been 
brought upon due to extreme usage. This phenomenon 
has ignited the countries to search for the promising solu-
tion that is renewable, environmentally friendly, sustain-
able, economically and lessen the current environmental 
issues. In recent years, it has been discovered that bio-
mass have been used widely as renewable energy and 
accounted for about 14% of the total energy consump-
tion [1]. Regards to this, gasification of the biomass and 
coal seems to be attractive technology that produce the 
energy-rich gaseous product that can be used further for 

power generations [2]. The substitution from combus-
tion to gasification is due to the combustion process that 
resulted severe air pollution problems by emitted a vast 
amount of carbon dioxide, particularly in the coal-fired 
power plants. Hence, it is essential to operate it more 
cleanly. Gasification play an important role in the imple-
mentation the clean coal technology by transformed the 
coal into syngas  (H2, CO,  CH4 and  CO2) in an insufficient 
oxygen environment. Sawdust, which is the abundant 
waste resources obtained from the wood industries, have 
been approved its potential on the syngas composition 
and gasification performance [3, 4]. Gasification of coal 
also have been carried out on the several types of coal 
that concluded each different types of coal properties 
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gave influence on the gasification performance [5]. Gener-
ally, biomass has low energy density and is widely spread 
properties resulted in an adverse effect in terms of collec-
tion and transport cost. Tumuluru et al. [6] proposed that 
pre-treated of the feedstock is capable of overcoming the 
biomass limitations and resistance in the biofuels produc-
tion, eventually aids in enhance the physical and chemical 
properties of the feedstock to allow higher percentages of 
feedstock in the fuel application. Furthermore, the authors 
also found out that the torrefaction and densification of 
torrefied feedstock of the biomass for bioenergy utiliza-
tions capable of performing similarly like coal in terms of 
physical, grinding, chemical, and storage properties with 
the higher volatiles content [7].

Gasification of pellet fuel has widely been applied in 
the commercial gasification [8] that produce the syngas 
composition in much more stable condition by maintain-
ing the gasification more steady and efficient. The uniform 
shape and density of the pellet fuels ease during the feed-
ing operation thus provide less of a biomass bridge and 
gasification reactions [9]. The results denoted that pellet 
fuels improve the gasification performance such as higher 
syngas heating value, higher cold gas efficiency and oth-
ers when comparing with its raw biomass. Based on these 
merits, pelletized biomass is frequently applied in gasifica-
tion, especially in fixed-bed gasifiers where, mechanically 
substantial fuel particles of limited size are required for 
successful operation [10]. A handful of studies have been 
carried out on the potential of the fuel pellets on its effect 
towards the syngas composition and gasification perfor-
mance that resulted in different perspectives. Erlich et al. 
[11] highlighted that pelletized biomass generally not 
suitable for gasification than raw materials. The authors 
are taken into account the influence of the equivalence 
ratio and analyse the evolution of the pelletized mate-
rial together with the influence on the gas pressure drop 
across the char bed. Simone et al. [12] also utilized the sev-
eral pelletized biomass in a pilot-scale downdraft gasifier 
to investigate the feasibility and reliability of the gasifica-
tion and provide new process data set on the gasification 
performance. The results denoted that pelletized biomass 
is unfavourable for downdraft gasifiers. This is due to high-
pressure drops, difficult gasifier control and fragmentation 
of the gasification residues. On the contrary, the syngas 
composition and gasification performance were relatively 
good and can be served as complementary feedstock to 
enhance the energy content per unit volume and mini-
mize the moisture content of the biomass. Overtime, Aydin 
et al. [13] demonstrate gasification between pine cone 
particle and wood pellet in a fixed bed downdraft gasi-
fier. It is apparent that the cold gas efficiency of the wood 
pellet possesses 80% higher than pine cone particle, 60%. 
Moreover, the optimal gasification temperature interval for 

the wood pellet is much lower than the pine cone parti-
cle at 850–900 °C; meanwhile, the pine cone particles is at 
900–950 °C. Even though the pelletized biomass has been 
utilized as a feedstock in gasification or combustion sys-
tem; however, there is no reliable and precise data on the 
utilization of fuel pellet potential with the reason for the 
improvement in the efficiency of the pelletized case gasifi-
cation is not apparent [14]. To the author knowledge, there 
is still a lack of the studies in comparing the gasification 
performance of pelletized biomass with its parent biomass 
[15]. Hence, there is a need to investigate the potential 
of the fuel together with the fuel in the pellet form and 
coal comparatively to strengthen the biomass utilization 
potential besides contributing towards development of 
the sustainable bioenergy network.

In the present study, gasification of the raw biomass 
(sawdust, SW), densification biomass (sawdust pellet, SWP) 
and sub-bituminous coal (SBCoal) were investigated in the 
fixed-bed downdraft gasifier. The syngas composition and 
gasification performance were evaluated. The gasification 
performance that was investigated are the calorific value 
of the syngas  (HHVsyngas), gasification efficiency  (XCGE) and 
carbon conversion efficiency  (XC). Furthermore, the syngas 
composition and gasification performance between SW, 
SWP and SBCoal are compared at different gasification 
temperature at 650 °C, 750 °C and 850 °C.

This paper is structured as follows. Section 2 introduces 
the feedstock involved as well as the experimental setup 
for the evaluation of the gasification process. Section 3 
revealed the characteristics of the feedstock, the syngas 
composition and gasification performance. The influ-
ence of the various gasification temperature on syngas 
composition and gasification performance was covered 
in Sect. 3.3.1 and Sect. 3.3.2, respectively. Finally, Sect. 4 
presents the conclusions.

2  Material and methods

2.1  Feedstock material and characterization

The feedstock used in this study were sawdust (SW) 
obtained from the wood industry located in Penang 
in Malaysia, and sawdust pellet (SWP) were also pro-
duced from the same factory without the addition of 
the binder. The sawdust which is in the powder form, is 
dried and then fed into the extruder pellet machine. The 
pellets then were produced and cooled with an air cool-
ing process before proceeding to manufacture. Mean-
while the sub-bituminous coal (SBCoal) is received from 
the electric utility company in Malaysia through the 
third-party company. Figure 1 shows the photograph 
of the feedstock. The characteristics of the feedstock 
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in terms of the proximate analysis and ultimate analy-
sis was determined according to the ASTME1131 [16] 
and ASTM D3176 [17], respectively. Furthermore, the 
heating value of each feedstock was investigated using 
bomb calorimeter branded IKA C200.

2.2  Gasification experiment

Figure 2 shows the schematic diagram of the gasification 
system used throughout the whole gasification process 
for each feedstock that located at the biomass laboratory, 
under Department of Mechanical Engineering, Universiti 
Teknologi Petronas (UTP), Perak. The gasification system 
was comprised into three main units: the gasifier reactor, 

Fig. 1  The picture of sawdust, sawdust pellets and sub-bituminous coal

Fig. 2  The schematic diagram of the lab-scale downdraft fixed bed gasification system
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the gas cleaning and cooling machine and gas analyzer. 
The total height of the gasifier reactor is 500 mm with 
the internal diameter of 80 mm. The air was introduced 
into the gasifier reactor as an oxidizing agent by the com-
pressed air from the top side of the gasifier reactor. Fur-
thermore, the rotameter was attached beside the gasifier 
reactor functioning to measure and control the airflow 
rate. An electric furnace was enclosed around the gasifier 
reactor to generate heat to the reactor. The remaining sol-
ids of the feedstock that falls to the lower part of the grate 
was collected at the opening bottom together with the 
gas discharge hole that located in the low end part of the 
gasifier reactor.

To operate the gasification system, the air compressor 
was flushed with the desired amount of volume for 10 min 
before the experiment to achieve a stable state. Conse-
quently, the gasifier reactor was heated to desire gasifi-
cation temperature. When the gasifier reactor achieved a 
stable state with the desired gasification airflow rate and 
temperature, approximately 100 g of feedstock was loaded 
at the top of the gasifier reactor by applying drop-chute 
method. In order to make the equivalence ratio, ER fixed 
at 0.25; different airflow rate was introduced for each feed-
stock. The airflow rate fixed for SW, SWP and SBCoal was 
at 2.8055 L/min, 2.7178 L/min and 3.5230 L/min, respec-
tively. ER is defined as the ratio between the amounts of air 
introduced into the gasifier reactor with the stoichiometric 
oxygen needed for complete combustion of the feedstock. 
The syngas produced was flowed through the gas cleaning 
and cooling system that associated with the gas analyzer. 
Generated syngas compositions for about 15 mins were 
collected in the data logger for further analysis. After the 
end of the gasification process, the electric furnace and 
air compressed was switched off, and the gasifier was left 
to cool until it reaches the ambient temperature or safe to 
be handled for the next experiment. Furthermore, the col-
lected remaining residue was weighed using a precision 
weight balance once it reached the room temperature.

The gasification among the sawdust (SW), pelletized 
sawdust (SWP) and sub-bituminous coal (SBCoal) were 
investigated on the syngas composition  (H2, CO,  CH4 
and  CO2) and gasification performance. The gasification 
performance in term of the calorific value of the syngas 
 (HHVsyngas), gasification efficiency  (XCGE) and carbon con-
version efficiency  (XC) were calculated and tabulated. The 
calorific value of the syngas  (HHVsyngas) was calculated as 
it is an essential parameter that defines the quality of syn-
gas produced from gasification in terms of energy content 
per unit volume or mass. The calorific value of the syngas 
 (HHVsyngas) was calculated by taking into account the vol-
ume percentage of combustible gas components in the 
syngas (CO,  H2 and  CH4) produce from the co-gasification 
experiment with their specific calorific value according the 

US National Renewable Energy Laboratory (NREL) in the 
unit of MJ/Nm3 as per standard value, expressed in the 
following Eq. (1) [18].

where V is defined as the volumetric percentage for each 
of CO,  CH4 and  H2 obtained from online gas analyzer meas-
urements. In addition, the gasification efficiency  (XCGE) is 
defined as the ratio between chemical energy leaving the 
system associated with the cold and tar-free syngas and 
the chemical energy entering the system related to the 
biomass in the unit of percentage [19]. Generally, the  XCGE 
was calculated by considering the specific gas production 
and the energy content of the biomass by following the 
Eq. (2).

where  HHVsyngas is the calorific value of the syngas in the 
unit of MJ/Nm3 divided by the  HHVfeed calorific value of 
the feedstock in the unit of MJ/kg. Meanwhile, the carbon 
conversion efficiency  (XC) was calculated to measure the 
amount of carbon in the feedstock that converted into 
gaseous [20]. The  XC was calculated as following Eq. (3) 
[21].

where A is the total number of moles of carbon-bearing 
components taken into account in the production of the 
syngas which are CO,  CH4 and  CO2;  mfeed is the mass of 
feedstock introduced to the reactor and  xc is the mass frac-
tion of carbon in the ultimate analysis of each feedstock.

3  Result and discussion

3.1  Feedstock characteristics

Table 1 presents the proximate, ultimate, and heating 
value analysis of each feedstock. It has been discovered 
that the value of the proximate analysis for each gasifica-
tion feedstock are in the range of data recorded by other 
researchers [22–24]. As expected, the moisture content in 
SWP (9.19%) reduced from 11.80% (SW) due to thermal 
pre-treatment process in densification that is subjected 
to mechanical force during the manufacturing process 
[6]. The volatile matter of the biomass (SW and SWP) are 
marked almost twice of the SBcoal as reported by Long 
and Wang [25] and Thengane et al. [26]. SBCoal possesses 
the highest ash content that explained it partly attributed 

(1)
HHVsyngas =

(

VCO × 12.63
)

+

(

VCH4
× 39.82

)

+

(

VH2
× 12.74

)

(2)XCGE =
HHVsyngas

HHVfeed + Q
× 100

(3)XC =
12 × A

mfeed × xc
× 100



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1543 | https://doi.org/10.1007/s42452-020-03358-x Research Article

to the multiple catalytic components in the ash that pro-
mote char gasification within the gasification process [27]. 
Meanwhile, the carbon content in SBCoal is much high-
est at 52.58% compared to SW and SWP with 44.11% and 
44.28% respectively. This was expected due to the nature 
properties of the SBCoal that formed about 300 million 
years ago at the right heat and pressure by extracting out 
the oxygen and hydrogen and eventually produced car-
bon-rich combustible mineral. Furthermore, SWP denoted 
much lower N and S content than SW and SBCoal. Signifi-
cantly, the highest sulfur content in feedstock is unfavora-
ble as it might cause corrosion on the metallic parts of the 
gasification installation and produce syngas that adverse 
for methanol synthesis. It can be seen that decreasing 
order of HHV from SBCoal ˃  SWP ˃  SW with the amount of 
HHV for each CL, SD and WP are also in the range with 
other researchers [28, 29]. Furthermore, SWP recorded 
the large sizes at 10–50 mm due to its pelletized form fol-
lowed by the SBCoal (0.00747 mm) and SW (0.00362 mm) 
in which existed in the powder form.

3.2  Syngas composition

Figure 3 displays the profile for each fuel sample (a-b) as 
well as the average volume percentage of  H2, CO,  CH4 and 
 CO2 in syngas composition calculated for 15 min from the 
three fuels (d) under the operating condition of the gasifier 
where gasification temperature at 750 °C and ER at 0.25. 
Generally, for all the syngas composition for each feed-
stock are in the decreasing order from  CO2 ˃  H2 ˃  CO ˃  CH4. 
For the SW, the volume of the  H2 is deficient than SWP 
and SBCoal might be due to most of the atomic hydro-
gen in the raw biomass is converted to  H2O [30]. When 

gasified the pelletized sawdust, the  H2 is raised signifi-
cantly at 11% whereas the CO formation is close to that 
of the SBCoal’s value. This results clearly marked that 
densification is capable of facilitating syngas formation 
from biomass gasification, and this phenomenon is quali-
tatively in-line with the results obtained from Aydin et al. 
[13]. Moreover, this is due to the fact that the pelletization 
process of the SWP reduce the moisture content of the 
SW making the biomass structure regularly and enhance 
the gasification process much more stable as compared 
to the powdered SW and SBCoal [31]. The irregular shape 
and powdered SW and SBCoal are difficult to handle as it 
is easier to disperse to the atmosphere especially during 
the loading stage. This resulted solely small amount of the 
SW and SWP in contact with the oxidizing agent. For the 
coal gasification, the  H2 formation is found at 8%. Both the 
SWP and SBCoal shows significantly high  CO2 as most of 
the CO is transformed to  CO2 during the water–gas shift 
reactions within the gasification process.  CH4 for SW, SWP 
and SBCoal marked the lowest percentage averagely 5% 
for the syngas composition.

3.3  Gasification performance

The gasification performance in terms of the  HHVsyngas, 
 XCGE and  XC between the SW, SWP and SBCoal is exhib-
ited in Fig.  4. The increasing order of the  XCGE is from 
SW < SWP < SBCoal with the highest  XCGE is calculated at 
24%. In contrast, the  XCGE for the SW and SWP are close to 
each other approximately 20%. It can be seen that the dif-
ference between biomass and coal is around 5%. The value 
of the  XC possesses the same order as  XCGE. The  XC of the 
SW is boost by a factor 0.90 after undergoes pelletization. 

Table 1  The proximate, 
ultimate, heating value and the 
dimensions of SW, SWP and 
SBCoal

a By difference

Sawdust (SW) Sawdust pellet (SWP) Sub-bitumi-
nous coal 
(SBCoal)

Proximate analysis (wt%)
 Moisture content 11.8 9.19 8.18
 Volatile matter 68.05 79.00 39.79
 Fixed  carbona 19.05 10.16 33.81
 Ash content 1.10 1.65 18.22

Ultimate analysis (wt%)
 Carbon 44.11 44.28 52.58
 Hydrogen 5.53 6.09 5.90
 Nitrogen 2.14 1.05 1.49
 Oxygena 45.52 48.62 38.90
 Sulfur 2.70 0.28 1.14

Heating value (MJ/kg) 17.17 ± 0.089 17.46 ± 0.085 20.19 ± 0.082
Dimensions (mm) 0.00362 10–50 0.00747
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The lowest  XCGE and  XC of the raw sawdust are due to the 
highest formation of  CO2 as well as to the lowest produc-
tion of the  H2 and CO in the syngas composition. Mean-
while, the difference in the  XC between SW and SBCoal 
is around 30%. However, it should be pointed out that a 
high  XC value does not account certainly resulted in bet-
ter gasification performance. Despite that,  XC of the SW 
is increased by 20% from the pelletization process that 
removes the moisture content from the mechanical force 
eventually forms the highest  H2 in syngas composition. 
These results agree well with the findings of Yoon et al. 
[9]. Nevertheless, the  HHVsyngas are also possessed the 
same order as both  XCGE and  XC. The  HHVsyngas of the SW 
is amplified by 15% when undergoes pelletization. Both 
of the  HHVsyngas for SWP and SBCoal are almost the same 
calculated at 4.2152 MJ/Nm3 and 4.2423 MJ/Nm, respec-
tively. Despite the high  H2 yield from the SWP gasification, 
the  HHVsyngas of the SBCoal recorded slightly highest than 

SWP probably due to the slightly higher of the CO and  CH4 
calculated from the average syngas components from the 
SBcoal gasification.

3.3.1  Syngas composition at various gasification 
temperature

The influence of the gasification temperature on the three 
feedstock with the syngas composition is presented in 
Fig. 5. Obviously, the rise of the gasification temperature 
resulted in the increasing of the  H2 and CO for SWP and 
SBCoal. The  H2 and CO are in the range of 5–12% and 
6–11%, respectively. Both of the highest  H2 and CO are 
produced from the gasification of SWP. Meanwhile,  CO2 
generates a constant value as the temperature increase. 
It is apparent that by increasing the gasification tempera-
ture, the  CO2 was dissipated through the Boudouard reac-
tion, thereby increasing the production of CO gasification 

Fig. 3  The syngas composition for a SW, b SWP, c SBCoal against time with the d average volume percentage for 15 min of  H2, CO,  CH4 and 
 CO2 in syngas composition at gasification temperature and ER fixed at 750 °C and 0.25, respectively
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[32]. However, for the SWP, it can be found that at 750 °C, 
the  CO2 show a little dropped down and rise back as the 
temperature increase. This might be some reaction error 
that occurs during the experimental process within the 
gasifier reactor. Despite the adverse, throughout the 
experiment, the syngas production from SWP showed 
higher stability over time without critical variation. This 
is because the SWP enhanced the energy density per unit 
volume, uniformity and defined form of fuels. In contrast, 
 CH4 is decreased as the gasification temperature increased.

3.3.2  Gasification performance at various gasification 
temperature

Figure 6 displays the gasification performance against 
the various temperature. The  HHVsyngas was ranged from 
3.3029 to 4.6523 MJ/Nm3, and these values agreed well 
with that reported in the literature [33–35]. It can be 
seen that as the temperature raised, the  HHVsyngas of the 
biomass is increased with the highest  HHVsyngas achieved 
by SWP at 850 °C. On the other hand, the  HHVsyngas of 
the SBCoal marked down with the increasing of the tem-
perature. This is strongly associated with the fuel prop-
erties, particularly due to the high ash content together 
with the lowest volatile content of the SBCoal [22]. Thus, 
it results in the low calorific value and syngas produc-
tions at temperature of 850 °C. Similarly, Adeyemi et al. 
[36] stated that the increase of the  HHVsyngas is related 
to the higher gasification temperature due to the endo-
thermic gasification reactions. As a consequence, more 
heat losses to the system and enhanced the syngas 

production from the pyrolysis, steam reforming, gasifica-
tion and cracking reactions that occur inside the gasifier 
reactor. This emphasized that SWP can be substitute with 
SBCoal at highest gasification temperature. It also can 
be seen that  XCGE follows the same patterns as  HHVsyngas. 
Increasing the gasification temperature resulted in the 
increasing of the SW and SWP instead for SBCoal con-
ditions. As the  XCGE related to the ratio between the 
calorific value of the syngas production and biomass, 
the lowest  HHVsyngas of the SBCoal at 850 °C leads to the 
lowest value of the  XCGE. The  XCGE was ranged from 17 
to 28% with the highest and lowest  XCGE were achieved 
by SWP and SW, respectively. The values are in-line with 
the study conducted by Simone et al. [12] on the vari-
ous biomass pellet by the factor of 1.5 as the authors 
perform the gasification in the pilot-scale. In the view of 
the  XC, all the feedstock possesses the same pattern in 
which increasing of the gasification temperature leads 
to the increased of the  XC. The  XC was ranged from 20 
to 50% in which the SBCoal achieved the highest. This 
might be due to the vast production of  CO2 at 850 °C 
and its nature properties. In additional, Taba et al. [37] 
highlighted that  XC increase with increasing of the tem-
perature due to the oxidation and gasification reactions 
that resulted in the highest yield of gases from the fuels. 
It can be noted that the value of the  XC that consider 
the amount of carbon-mole production in the syngas 
composition of the SW and SWP are almost the same. 
The amount of CO,  CO2 and  CH4 production in the syngas 
composition for both SW and SWP are in the ranged of 
7–11%, 15–19% and 4–6%, respectively.

Fig. 4  HHVsyngas,  XCGE and  XC 
for SW, SWP and SBCoal with 
the gasification temperature 
and ER fixed at 750 °C and 0.25, 
respectively
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Fig. 5  Variations of syngas composition from the gasification a SW, 
b SWP, and c SBCoal versus gasification temperatures

Fig. 6  Distribution of the a  HHVsyngas, b  XCGE and c  XC at various gas-
ification temperature with ER fixed at 0.25
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4  Conclusions

The syngas composition and gasification performance of 
three different fuels, including sawdust (SW), pelletized 
sawdust (SWP), and sub-bituminous coal (SBCoal) in the 
fixed bed downdraft gasifier are investigated. The syngas 
composition and gasification performance at the fixed 
gasification temperature and ER of 750 °C and 0.25 were 
determined. SWP resulted in the highest syngas produc-
tion of  H2 and CO at 11% and 9%, respectively. Mean-
while, SW recorded the lowest  H2 and CO at 6% and 8%, 
respectively. In term of the gasification performance, 
SBCoal calculated the highest  HHVsyngas,  XCGE and  XC at 
4.2423 MJ/Nm3, 24% and 48%, respectively. Meanwhile, 
the second-order highest is achieved by SWP at  HHVsyngas, 
 XCGE and  XC calculated at 4.2152 MJ/Nm3, 24% and 37%, 
respectively. To sum up, SWP has the potential to acts as 
a complementary fuel for coal. The syngas composition 
and gasification performance of the SW, SWP and SBCoal 
at various gasification temperature from 650 to 850 °C 
with ER fixed at 0.25 was also evaluated. In view of the 
syngas composition,  H2 and CO for all feedstock show 
the increasing volume percentage as the temperature 
increased. The CO shows constant value with the rising of 
gasification temperature. Meanwhile rising the gasification 
temperature, the  HHVsyngas and  XCGE of the biomass are 
increasing, in contrast to the SBCoal. SBCoal calculated the 
lowest  HHVsyngas and  XCGE at 850 °C at 4.0568 MJ/Nm3 and 
24%, respectively. The  HHVsyngas and  XCGE of the SW were 
increased by 15% and 19%, respectively as it pre-treated 
to pellet fuel. Conversely, increasing the gasification tem-
perature, the SW, SWP and SBCoal indicated the increase of 
the  XC. SBCoal recorded the highest  XC at 850 °C with 50%. 
Meanwhile, the  XC of the SW increased averagely by 6% as 
it pre-treated to SWP. Looking ahead, several parameters 
such as moisture content gasifier types, etc. need to be 
addressed to emphasize the potential of the pellet fuel 
with the fossil fuels for generating energy. Meanwhile, the 
major challenges emerging from the current work, which 
must receive significant attention, are the adaptation of 
the continuous mode for the gasification process to inves-
tigate the efficiency of the selected material for a period 
of time to simulate the actual principle in a power plant.
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