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Abstract: Friction and wear are the main factors in the failure of the piston in automobile engines.
The objective of this work was to improve the tribological behaviour and lubricant properties using
hybrid Cellulose Nanocrystal (CNC) and Copper (II) oxide nanoparticles blended with SAE 40 as
a base fluid. The two-step method was used in the hybrid nanofluid preparation. Three different
concentrations were prepared in a range of 0.1% to 0.5%. Kinematic viscosity and viscosity index were
also identified. The friction and wear behavior were evaluated using a tribometer based on ASTM
G181. The CNC-CuO nano lubricant shows a significant improvement in term of viscosity index
by 44.3–47.12% while for friction, the coefficient of friction (COF) decreases by 1.5%, respectively,
during high and low-speed loads (boundary regime), and 30.95% during a high-speed, and low load
(mixed regime). The wear morphologies results also show that a smoother surface was obtained after
using CNC-CuO nano lubricant compared to SAE 40.

Keywords: cellulose nanocrystal; copper (II) oxide; friction; wear

1. Introduction

A suitable lubricant is primarily associated with its formulation, which means that the additives
that contain in the lubricants play a vital role in enhancing its performance regarding reducing friction
and wear. The lubricant with a suitable and relevant combination of base oil and additive helps
in reducing energy loss in a mechanical system state by [1]. The use of the solid additive in lubricant
not only reduces the friction coefficient but also increases the load capacity [2].

The applications of nanoparticles as a lubricant additive have steadily increased in recent years,
as many researchers [3] demonstrated a reduction in the friction and wear of nanoparticle-containing
lubricant formulation, which is also known as nano lubricant [4]. Researchers have developed
a variety of additives to overcome and decrease tribological challenges such as wear, friction, oxidation,
corrosion and the scuffing mechanism on the lubricant base stocks and to enhance the lubricant
efficiency [4–8]. The main advantages of using nano lubricants are that they are relatively insensitive
to temperature, and tribochemical reactions are limited compared to the traditional additives [9].
Various types of nanoparticles can be used, such as a polymer, metal, organic and inorganic materials
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like aluminium oxide (Al2O3), titanium oxide (TiO2), copper oxide (CuO), and multi-wall carbon
nanotube (MWCNT). A smaller sized nanoparticle will improve the tribological behaviour and render
its shape nearly spherical, exhibiting superior rolling, lower affinity to the metal surface and decreasing
the contact temperature.

Due to the various advantages of nano lubricant, organic-inorganic, in other words hybrid
nanoparticles, have attracted much interest due to their current and potential applications as they
can combine useful chemical, optical and mechanical characteristics. The hybrid nanoparticle is
a composition of two or more nanoparticles synthesised and dispersed in a base lubricant [10] to
improve the properties of single materials due to its excellent enhancement in rheological properties [11].
In recent years, the dispersion of organic-inorganic nanoparticles such as Multi-Walled Carbon Nanotube
(MWCNT) hybrid with various inorganic nanoparticles such as alumina and silica for tribological
properties has been getting researchers’ and academicians’ attention as they contribute to friction and
wear reduction [12,13]. There are a few research articles on Cellulose Nanocrystal (CNC) hybrid with
another nanoparticle in the oil base liquid. CNC is known as non-toxic and biodegradable as it is plant
based [14–16].

Friction in the mechanical system will not occur with the presence of lubricants, and the main
factors of mechanical system failure are energy loss and lower efficiency. Therefore, lubrication is
one of the most effective ways to reduce friction, lower additional heat, and also to help prevent
energy loss and lower efficiency in industrial components and tools by lowering friction among the
mechanical parts, which is the most critical property [17]. A good lubricant needs to be developed to
reduce the wear and friction. The use of mineral oils as a lubricant has become a growing concern
worldwide, especially to those who are interested in preventing environmental issues. This paper
investigated a new process for the development of a lubricant that can give advantages to people
because it may lower the energy cost (cost saving), reduce waste, and have positive impacts on the
environment. Nanolubricants were selected because they have advantages such as the improvement of
tribological properties and increment in thermal conductivity [18]. The purpose of the nano lubricant
is to improvise natural wear and friction. Nanoparticles’ concentration will affect wear and friction
when added to the base oil. However, a limitation of the concentration needs to be set because some
lubricants already contain some additives.

In order to gain the benefit of additive in lubricant for tribological behaviour, further
research is required, especially on the concentration of additive used and the parameters involved.
The concentration of additive is believed to help friction and wear during the experiment. In the
present research, the hybrid nanocellulose-copper (II) oxide was added into SAE 40 to study the
characterization of hybrid CNC-CuO, the stability of the nanolubricant, viscosity of lubricant and the
tribological behaviour of the nanolubricant.

2. Methodology

2.1. Nanoparticle Preparation and Characterization

The CNC used in this research was extracted from the acetate grade dissolving pulp from the
Western Hemlock plant to be in white to slightly off-white gel form. CNC was purchased from Blue
Goose Biorefineries Inc with a 7.4% of CNC w/w suspension. According to the manufacturer, CNC from
Blue Goose Biorefineries Inc, it does not contain sulfate half ester moiety, which is a bioactive ingredient
that can rust the metal; thus, the CNC was suitable to improve the friction and wear performance
of an engine. Copper (II) Oxide (CuO) was procured from US Research Nanomaterials, Inc. (USA).
Copper oxide nanoparticles appear as a brownish-black powder. The two-step method suggested
by [2,5,9,19,20] was used in the preparation of nano lubricant samples with volume concentrations from
0.1% to 0.5%. There are two processes in this method, which are (i) synthesis of the nanoparticles into
the powder form, and (ii) dispersion of the nanoparticles into the base fluids (SAE 40) to form a stable
and homogeneous solution. Since CNC is in gel form, spray drying was proposed as a technically
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appropriate process to convert it into powder form [21]. For the preparation of CNC in powder form,
the suspensions were spray dried with a mini blower. The moisture in these suspensions is quickly
evaporated upon direct contact with the hot air flow through the orifice of the nozzle on the spray
dryer, resulting in drying-out and stable CNCs flake form. Then, the flakes were pulverized into
powder form. The CNC was then dry-mixed together with CuO. Nano lubricant samples with a solid
volume fraction of 0.1%, 0.3% and 0.5% were prepared by adding CNC and CuO in SAE 40 by using
a magnetic stirrer and an ultrasonic bath.

The characterization of CNC-CuO nanoparticles with suspension was carried out by Field Emission
Scanning Electron Microscopy (FESEM) equipped with Energy Dispersive X-ray (EDX) from Jeol Japan
and model number JSM-7800F was used. This device provides images at the very high magnification
and resolution of 1.3 nm at 30 kV. EDX in this device can detect element identification and element
surface mapping from sodium to Uranium. Transmission Electron Microscopy (TEM) from Jeol Japan
model number JEM-2100 was used to identify the characterization of the CNC-CuO nanoparticle.
The device integrates X-ray spectrometer which chemically characterizes the samples. The resolutions
of the device were designed with 0.34 nm (point) and 0.20 nm (line) and the magnification power
ranging from X 35 to X 750,000. The sample testing was prepared by dropping one drop of nano
lubricant onto the carbon grid, which was cleaned with 100% ethanol beforehand. After the drop
had dried in natural air for 15 min, the solid nanoparticle was obtained and undertaken for the
imaging process.

2.2. Nanolubricant Preparation and Its Stability

Nanolubricant samples with a substantial volume fraction of 0.1%, 0.3% and 0.5% were
prepared by adding CNC and CuO in SAE40 by using a magnetic stirrer and ultrasonic bath.
Nanoparticles in suspension tend to agglomerate due to their high surface area and surface activity [20].
In this work, the evaluation of the stability of the nano lubricants was carried out using the sedimentation
method and a UV-Vis spectrophotometer. The UV-Vis spectrophotometer from Pelkin Elmer with
model number TGA 4000 was used in this experiment. The wavelength range for this UV-Vis
spectrophotometer is 190 to 3300 nm. The device was operated at a constant wavelength of 1200 nm for
each of nano lubricant sample. A transparent macro quartz cuvette with 2 mL volume was used to place
all the concentration samples of the nano lubricant test inside the slots. The UV-Vis spectrophotometer
was used to measure the attenuation beam of light after it passes through a sample or after a reflection
from a sample surface. The absorption and the scattering of light was measured by comparing the
light intensity of CNC-CuO nano lubricant with SAE 40 as the base fluid.

2.3. Kinematic Viscosity and Viscosity Index (VI)

In order to get the kinematic viscosity data, testing was done according to the American Standard
Testing Method (ASTM) D445 coupled with a temperature-controlled bath of Cannon Instrument
Company, United States of America, Model CT-500 Series II using a Cannon-Fenske Routine Model
glass capillary viscometer with a 2 mm inner diameter from Cannon Instrument Company, United States
of America. Thermal oil was used in order to get a stable temperature distribution inside the capillary
tube in the range from 40 ◦C to 100 ◦C at each concentration and they were measured accordingly.

2.4. Tribological Testing

The test was conducted using a custom-made friction and wear tester which also replicates the
contact geometry relevant to the tribological phenomena occurring during the piston ring–cylinder liner
contact in an engine. The schematic diagram of the friction pairs is shown in Figure 1. The wear test
involves making linear reciprocates movements similar to a cylinder-piston ring pair operating under
real conditions. A wear morphology that was caused at the surface of specimen and during the linear
reciprocating sliding motion against the outer surface of aluminum 6061 for 30 min at the boundary
lubrication regime (low speed and high load) in the presence of SAE 40 and different concentrations of
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nanoparticle (0.1%, 0.3% and 0.5%) added in SAE 40 was also reported. The temperature was 85 ◦C
which is the regime temperature of the internal combustion engine and the operating time was 30 min
per specimen. The coefficient of friction was recorded automatically using NI-DAQ via the ratio of
friction force to normal load.
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Figure 1. Schematic diagram of tribological testing.

3. Results and Discussion

The main results show the CNC characteristics and the performance evaluation which was
obtained by the analysis. The characterization was done by the thermo-physical observation of
morphology, stability, and viscosity. The performance, meanwhile, was identified from the friction
coefficient and wear mechanisms.

3.1. Nanoparticle Characterization

The dry CNC under FESEM pictures are shown in Figure 2. The CNC images clearly shows
a non-uniform size distribution. The particles are also shown to be spherical in shape and the average
particle size is 82.6 nm, as shown in the histogram in Figure 3. Since the CNC gel water was dried with
a hot air blower, CNC was agglomerated due to formation of irreversible hydrogen bonds between
nanocellulose, which affect the nano scale size of nanocellulose so the independent CNC particles are
not visible [22,23]. Table 1 shows the dimension information of CNC provided by the manufacturer.
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Table 1. Dimensions of CNC.

Parameter Value (nm) Test Method

Crystal length 100–150 TEM

Crystal diameter 9–14 TEM

Hydrodynamic diameter 150 DLS

The CNC picture at first also shows that the particles have the form of agglomerates, and it starts to
separate into a more size-uniform particle after CuO is added, as shown in Figure 4. Agglomerates form
the nanoparticle have to be broken by a magnetic stirrer and ultrasonic agitation to produce a stable
nano lubricant [22,24]. This step was very important to ensure that the CNC-CuO nanoparticle were
evenly distributed through the friction and wear specimen. Figure 5 shows the TEM pictures CNC-CuO
nanoparticle suspension. TEM images also show that the suspension is homogeneously well dispersed,
as shown in Figure 5. Figure 6 shows the EDX results for CNC nanoparticles. The EDX results show
that only two elements were found at CNC, C (carbon) and O (oxygen), with a weight percentage of
55.70% for C and 44.30% for O. Figure 7 shows the EDX results for CNC-CuO and three elements were
found in CNC-CuO, C with a weight percentage of 6.08%, O with a weight percentage of 15.56% and
Cu with the highest weight percentage, 51.08%.
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3.2. Suspension Stability of CNC-CuO in SAE 40

The spectrum pattern at various volume concentrations of CNC-CuO lubricant is shown in Figure 8.
It can be observed that the peak absorbance ranged from 0.1 to 0.5. The peak position was broadened due
to the increase in CNC-CuO hybrids nanoparticle concentration. The absorbance observation was done
after two months. Figure 8 shows the absorbance values at various volume concentrations of CNC-CuO
nanoparticle with SAE 40. It can be observed that the peak absorbance for the 0.1 concentration occurs
at a wavelength of 419 nm while for 0.3 and 0.5, it occurs at a wavelength of 415 nm. The higher
peak of the absorbance level shows that the hybrid lubricant is stable. Figure 9 show the value of the
absorbance peak at every week. It shows that the low concentration of nano lubricants sediment is
faster due to rapid agglomeration [25]. The absorbance ratio indicates the ratio of the final absorbance
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at a specific sedimentation time towards the initial absorbance of the solution. The ideal absorbance
ratio will be one or 100%, which demonstrates the excellent stability during the sedimentation period.
According to Hajjar et al. [26] the closer the ratio is to one with the increase of the sedimentation times
the more stable the sample is. Equation 1 determines the ratio of the final absorbance:

Ar =
A
Ao

(1)

where Ar denotes the absorbance ratio, A denotes the final absorbance while Ao denotes the initial
absorbance. According to Figure 10, 0.1% shows the closest absorbance ratio to one; thus, 0.1%
concentration shows the most stable nano lubricant, followed by 0.5% and the least stable nano
lubricant is a 0.3% concentration. Figure 11 shows the sedimentation observation at the initial and at
the fourth week. After the fourth week, the samples were found to be mixed well with no settlement of
nanoparticles at the bottom of the test tube. Therefore, CNC-CuO nano lubricant was observed to be
in stable condition for up to one month or more.
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3.3. Effect of CNC-CuO on the Lubricant Viscosity

According to Figure 12, SAE 40 shows higher kinematic viscosity values at 40 ◦C compared with
another lubricant that contains CNC-CuO nanoparticles. CNC-CuO nanoparticle with a concentration
of 0.1 shows a slightly higher kinematic viscosity while 0.3 and 0.5 do not show many differences
between them. As the temperature of the viscosity approaches 100 ◦C, the nano lubricant kinematic
viscosity value is close to the base oil SAE 40. Lubricant viscosity is the most important indication
for lubricating testing because the viscosity of a lubricant is closely related to its ability to reduce
friction in substantial body contacts. Generally, the least viscous lubricant is desirable [21]. This is
because the systems oil pump works with less force to move a less viscous liquid. If the lubricant is too
viscous, this will require a significant amount of energy to move while if it is too thin, the surfaces
will come in contact and friction will increase [27]. In order to identify which lubricant exhibits better
properties, the viscosity index (VI) was calculated and graphed, as shown in Figure 13. The lower the
VI, the higher the change of viscosity of the oil with temperature. A higher VI was required to exhibit
a better friction and wear [28]. According to Figure 12, as the concentration of CNC-CuO nanoparticle
increases, the VI is higher, which can prove that CNC-CuO nanoparticle added with engine oil did
improve the lubricity of the base oil regarding its viscosity by 44.3–47.12%.
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3.4. Tribological Performance of CNC-CuO Nano Lubricant

3.4.1. Friction and Wear Behaviour at High Low-Speed Load and High-Speed, Low Load

The coefficient of friction (COF) of base oil SAE 40 and nano lubricant at 0.1, 0.3 and
0.5 concentrations with low speed and high load is presented in Figure 14. At a low speed and
high load, COF is the highest and at this state, the index lubrication value is known as the lambda
value (λ) less than 1, which indicates the boundary lubrication regime at the Stribeck Curve [29].
As shown in Figure 14, SAE 40 clearly shows the highest friction compared to a lubricant that contents
the CNC-CuO nanoparticle. From Figure 13 as well, the graph indicates the same pattern; at minute
2 until minute 8, COF starts to increase and slowly become constant at from minutes 8 to 12 and
starts to drop at minutes 15 upwards. When the tribological tests at low speed and high load, the
temperature of the friction region is 40 ◦C, which results in a decrease in the viscosities of the SAE 40
and CNC-CuO nanolubricants. The average COF result is shown in Figure 15.
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At high speed and low load, the lambda value is always shows 1 until 3 and that indicates the
mixed elastohydrodynamic lubrication, as proved by [29], and sometimes hydrodynamic lubrication,
as proven by [30]. In this case, hydrodynamic lubrication is impossible since the time running
the experiment is 30 min. Figure 16 shows the COF results versus time at high speed and low
load. The result shows that SAE 40 produces the highest friction during sliding contact while as the
concentration of CNC-CuO increases, the COF also increases. In the condition of high speed and low
load, a lower friction makes the temperature of friction region decrease to 31 ◦C which makes the
viscosity increase; thus, the increment of viscosity leads to low COF. Accordingly, the wear quantity of
the sample specimen lubricated by SAE 40 is more significant than the sample specimen lubricated
with 0.5 CNC-CuO. Figure 17 shows the average COF at results for high speed low load and it clearly
shows that the improvement for COF at all concentrations. As shown in Figure 18, the wear track
width lubricated by SAE 40 is 3.20 mm while for CNC-CuO, the nano lubricant is 1.86 mm. As can be
seen in Figures 14 and 16, only the break-in stage and the steady stage takes place since the running
time is 15 min. The coefficient of friction increases during the break-in stage, which usually takes
6–12 min [31].
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3.4.2. Wear Mechanism

Morphologies tests were conducted at 100 N load and speed at 250 rev/min. This parameter was
chosen for the observation because the highest friction occurs at low speed and high load [20] and
compliance, as the result shows in Figure 14. Figure 19 compares the SEM results of the specimen
surface with the base lubricant, SAE 40 and with 0.5% CNC-CuO nano lubricant use the same
magnification (1000×magnification). It can be observed that some severe scuffing and exfoliations
phenomenon occurred, as shown in Figure 18a, while light scuffing was found, as shown in Figure 18b.
The extensive scratches happened due to micro-abrasive wear. This wear occurs due to tribofilm losing
on the worn surface and becoming rough during the sliding. These wear results indicate that there is
an improvement of scuffing and micro-abrasive wear while using CNC-CuO nano lubricant. It can also
clearly be observed in Figure 19b that a CNC-CuO tribo-film was formed on the piston ring’s worn
surface, thus, covering the significant scratches found in Figure 19a and leading to a smoother surface.
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This formation can also be confirmed through EDX studies, as shown in Table 1. The formation of
CNC-CuO tribofilm helped to heal the cracks and the scratches of piston ring surface and cylinder liner
including at the top dead centre, as shown in Figure 18a. It also proved the reduction of the average
COF, as shown in Figures 14 and 16. The schematic diagram of how CNC-CuO acts as a tribofilm is
shown in Figure 20. Figure 21 shows the SEM pictures between the sliding and non-sliding areas.
Cu and a higher percentage of O element were found in the sliding area, which indicates that the
adhesive wear was found on the surface of the element, as shown in Table 2 and Figure 22. It also
shows that there was a chemical reaction between the CNC-CuO and the metal surface, as Cu was the
dominant element found in CuO nanoparticle and O element mainly from all organic nanoparticles,
which may have contributed to a surface polishing effect.
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Table 2. Percentage of the element according to EDX spectrum.

Elements
Spectrum 1 (CNC-CuO) Spectrum 2 (Non-Sliding Area)

Weight (%) Atomic (%) Weight (%) Atomic (%)

Carbon 29.827 48.160 41.662 60.978
Oxygen 5.635 6.831 3.215 3.533

Magnesium 0.752 0.600 0.666 0.482
Aluminum 59.997 43.123 52.922 34.481

Silicon 0.421 0.290 0.318 0.199
Argon 0.258 0.125 0.370 0.163
Iron 0.912 0.317 - -

Copper 1.263 0.386 - -
Silver 0.936 0.168 0.691 0.113
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4. Conclusions

Based on the thermo-physical and performance results, the characterization of hybrid CNC-CuO
was achieved, from the stability of the nanolubricant and viscosity of lubricant together with the
tribological behaviour of the nanolubricant. The conclusions from this work can be summarized as
follows:

• The average CNC-CuO nanoparticle size is 82.6 nm. The peak absorbance for 0.1 concentration is
419 while for 0.3 and 0.5, is 415 nm.

• SAE 40 shows higher kinematic viscosity values at 40 ◦C than all another lubricants that contain
CNC-CuO nanoparticles while between the concentration of the CNC-CuO nanoparticle, 0.1 shows



Molecules 2020, 25, 2975 14 of 16

a slightly higher kinematic viscosity while 0.3 and 0.5 do not show many differences. As the
temperature of the viscosity approaches 100 ◦C, the nano lubricant kinematic viscosity value was
close to the base oil (SAE 40). As for VI, as the concentration increases, VI increases.

• At low speed and high load, SAE 40 clearly shows the highest friction compared to a lubricant
that contains CNC-CuO nanoparticle. At the initial stage, 0.1, 0.3 and 0.5 show almost the same
COF while SAE 40 shows the highest friction. At low speed and high load, the temperature of the
friction region is 40 ◦C, which results in a decrease in the viscosities of the SAE 40 and CNC-CuO
nanolubricants. The average COF result also shows that SAE 40 is the highest, while at different
concentrations of CNC-CuO, it did not show many differences. At high speed and low load, the
result clearly shows that SAE 40 produces the highest friction during sliding contact while as the
concentration of CNC-CuO increases, the COF also increases.

• The extensive scratches happened due to micro-abrasive wear. This wear occurs due to tribofilm
losing on the worn surface and becoming rough during the sliding. These wear results indicate
that there is an improvement of scuffing and micro-abrasive wear while using CNC-CuO nano
lubricant. The wear is reduced with nanolubricant.
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Abbreviations

CNC Cellulose Nanocrystal
MWCNT Multi Wall Carbon Nanotube
TEM Transmission Emission Microscope
FESEM Field Emission Scanning Microscope
EDX Energy Dispersive Xray
COF Coefficient of Friction
VI Viscosity Index
AlO2 Aluminum Oxide
TiO2 Titanium Oxide
EG Ethanol Glycol
CuO Copper (II) Oxide
MgO Magnesium Oxide
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