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Abstract: In this study, biopolymer composite electrolytes based on chitosan:ammonium
iodide:Zn(II)-complex plasticized with glycerol were successfully prepared using the solution
casting technique. Various electrical and electrochemical parameters of the biopolymer composite
electrolytes’ films were evaluated prior to device application. The highest conducting plasticized
membrane was found to have a conductivity of 1.17 × 10−4 S/cm. It is shown that the number density,
mobility, and diffusion coefficient of cations and anions fractions are increased with the glycerol
amount. Field emission scanning electron microscope and Fourier transform infrared spectroscopy
techniques are used to study the morphology and structure of the films. The non-Debye type
of relaxation process was confirmed from the peak appearance of the dielectric relaxation study.
The obtained transference number of ions (cations and anions) and electrons for the highest conducting
sample were identified to be 0.98 and 0.02, respectively. Linear sweep voltammetry shows that the
electrochemical stability of the highest conducting plasticized system is 1.37 V. The cyclic voltammetry
response displayed no redox reaction peaks over its entire potential range. It was discovered that
the addition of Zn(II)-complex and glycerol plasticizer improved the electric double-layer capacitor
device performances. Numerous crucial parameters of the electric double-layer capacitor device
were obtained from the charge-discharge profile. The prepared electric double-layer capacitor device
showed that the initial values of specific capacitance, equivalence series resistance, energy density,
and power density are 36 F/g, 177 Ω, 4.1 Wh/kg, and 480 W/kg, respectively.
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1. Introduction

Polymer electrolytes with H+ (or proton) as a charge carrier species were used in electrochemical
energy storage device application [1,2]. Polymers offer a wide variety of applications, and their
industry has grown more rapidly compared to other classes of materials. Among their applications,
solid polymer electrolyte (SPE) has been extensively investigated. Essentially, it can be formed through
dissolving inorganic salts in a polymer matrix comprising heteroatoms like O, N, S, and so on [3–5].
Chitosan (CS) has received a great deal of attention by means of a natural polymer due to its noteworthy
advantages, including biodegradability, biocompatibility, safety, electrolytic characteristics, and high
chemical resistance [6]. Also, CS backbone structure possesses multifunctional properties (i.e., OH and
NH2), and the protonated amino group makes it capable of forming a high conductivity of the polymer
electrolyte system [7]. The amine group (NH2) in the structure can act as an electron donor to interact
with the inorganic salts. The nitrogen atom acts as a complexation site for the coordination of cations.
The interaction between the inorganic salts with the CS leads to improvement of the amorphous
structure [8]. The conductivity of ions is the dominant property of a polymer electrolyte and is
improved by enhancing the amorphous nature. Because of these features, CS has the potential to be
used in the application of energy storage devices like a host polymeric material, which in turn reduces
environmental pollutions [9].

Polymer electrolytes offer a wide variety of applications in energy storage devices. The polymer
electrolytes can be used for application in fuel cells. Polymer electrolyte fuel cell is of interest
as a power source in vehicle and portable application owing to its eco-friendly and high energy
efficiency [10]. Supercapacitors (SCs) are also a class of electrochemical energy storage devices
considered as promising energy conversion devices for an extensive variety of applications. SCs are
used in various applications, where the necessity is to store or release large quantities of energy
in a little amount of time. Currently, the SCs are used mainly in electric vehicles, hybrid electric
vehicles, and fuel cell vehicles like trains, passenger cars, and trolleybuses. Another field of SCs’
application are electronic devices such as volatile memory backups and uninterruptible power supplies.
Another field of application are solar arrays or wind turbines, energy harvesting systems, where SCs
have a supplementary role next to traditional batteries [11,12]. SCs are generally classified into
pseudocapacitor (PC) and electrical double-layer capacitor (EDLC), which depends on their charge
storage mechanisms [13,14]. EDLC consists of a couple of polarized porous electrodes and does
not experience Faradaic reactions across the operating range of potential [15]. The EDLC function
depends on the phenomenon involving forming an electrical double-layer at the interfaces between the
electrolyte sample and electrodes [16]. In addition, through using the EDLCs, the device can be charged
and discharged quickly within a few seconds, which is attributed to its storage mechanism [17].

Ali et al. [18] fabricated carbon nanospheres (NSs) using lablab purpureus seeds and they showed
that the carbon NSs materials are useful in SCs electrode applications. The literature shows that various
forms of carbons have been used as electrodes in fabricating of EDLCs owing to its excellent thermal
and chemical stability with its abundance, including graphite, carbon nanotubes, carbon aerogel,
and activated carbon [19–21]. On the other hand, the properties of the activated carbons (ACs) used
as an active material greatly influence the performances of EDLCs, for instance, size and shape of
pores, electrical conductivity, as well as surface functional groups [22,23]. However, the AC has been
widely discovered for commercial EDLCs as a result of providing high values of capacitance due to its
high microporosity [24].

Meanwhile, using the zinc metal complex (Zn(II)-complex) in the preparation of biodegradable
polymer-based electrolytes contributes to improve the amorphous phase, which is promising for the
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ionic conduction mechanism. Asnawi et al. [25] showed that the addition of the Zn(II)-complex into the
CS polymer electrolyte improved the EDLC device performance. The authors showed that the addition
of Zn(II)-complex into the CS-based electrolyte improved an amorphous phase for ion conduction.
Brza et al. [26,27] indicated that the inclusion of Ce(III)-complex into Poly(vinyl alcohol) (PVA) polymer
electrolyte improved the amorphous phase and the performance of the EDLC device. The authors
also indicated that the Ce(III)-complex improved the transport parameters of diffusion coefficient
(D), charge carrier density (n), and mobility (µ) of cations and anions due to the enhancement of the
amorphous phase [26,27].

Due to the presence of multi-hydroxyl groups (OH) in its structure, glycerol was used as an
adequate plasticizer to improve conductivity. Low lattice energy, large size of anion, and small
size of cation have decided the option of the metal salts. It has been established that ammonium
salts possess good thermal stability and high ionic conductivity. Through doping with ammonium
iodide (NH4I), and using glycerol plasticizer, the local viscosity of the polymer electrolyte matrix
is reduced, thus promoting the mobility of ions (i.e., NH4

+), which in turn increases the electrical
conductivity [6,16,28]. In this paper, various electrical and electrochemical performances of CS-based
polymer composite electrolytes (PCEs) have been investigated. The glycerol plasticizer further
improved the amorphous phase and dissociates the extra ions to enhance the electrical conductivity.
Thus, it is reasonable to use the relatively high conductance of the glycerolized CS:NH4I:Zn(II)-metal
complex based-(PCEs) system as the electrode separator for fabricating the EDLC.

2. Materials and Methods

2.1. Materials

In this study, CS with the average molecular weight of 35,000 g/mol has been used as a polymer
material. Other raw materials, including ammonium iodide (NH4I) as a doping salt, acetic acid
(CH3COOH) as a solvent, and glycerol (C3H8O3) as a plasticizer, were used to fabricate plasticized
systems. All the chemicals were supplied by Sigma-Aldrich (Kuala Lumpur, Malaysia) without
being purified.

2.2. Electrolyte Preparation

The preparation of the glycerolized CS:NH4I:Zn(II)-complex system involves the following
procedure. At the beginning, 1 g of CS was dissolved into 50 mL acetic acid (1%) solution for around
3 h. Then, 40 wt.% fixed quantity of the ammonium iodide (NH4I) was added into the above mixture.
The solution was stirred continuously at room temperature with a magnetic stirrer until a homogenous
mixture was formed. After that, a fixed amount of 10 mL of Zn(II)-complex was added into the solution.
The same procedure is used to fabricate Zn(II)-complex as indicated in our previous study, in the
Materials and Methods Section in Reference [29]. Subsequently, glycerol with different concentration
was added to the CS:NH4I:Zn(II)-complex and constantly stirred until a homogenous solution appeared.
The glycerol concentrations were added and changed from 0 to 30 wt.%. The prepared samples were
labeled as CSNZG0, CSNZG1, CSNZG2, and CSNZG3 for CS:NH4I:Zn(II)-complex filled with 0, 10, 20,
and 30 wt.% of glycerol, respectively. Lastly, the solutions were poured into Petri dishes and covered
with filter paper to avoid any contamination. The Petri dishes were left untouched to evaporate the
solvent eventually so as to attain dry films. Table 1 summarizes the composition and designation of
PCE samples.
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Table 1. The composition and designation of glycerolized CS:NH4I: Zn(II)-complex systems.

Sample
Designation

Wt. (g)
CS

Wt. %
NH4I

Zn (II)-Complex
(mL)

Wt.%
Glycerol

CSNZG0 1 40 10 0
CSNZG1 1 40 10 10
CSNZG2 1 40 10 20
CSNZG3 1 40 10 30

2.3. Electrochemical Impedance Spectroscopy (EIS) Analysis

The data processing of impedance measurement was carried out at room temperature using a
LCR meter (HIOKI 3531 Z Hi-tester, Nagano, Japan). The range of frequency was measured between
(50 Hz ≤ f ≤ 5 MHz). The synthesized films were placed between two stainless-steel (SS) electrodes
after the films were cut into circles with diameter of 2 cm under spring pressure. To measure the
real (Z′) and imaginary (Z”) parts of complex impedance spectroscopy (Z*), the cell was connected to a
computer software.

2.4. Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared Spectroscopy
(FTIR) Study

Field emission scanning electron microscopy (FESEM) was performed using a Hitachi SU8220
(Hitachi, Tokyo, Japan) at 500×magnification. The samples’ morphology was studied by the FESEM
images. The films were analyzed using a Fourier Transform Infrared (FTIR) Spectrophotometer
(Thermo Scientific, Nicolet iS10, Ashford, UK) that was fixed in the wavenumber range between 450
and 4000 cm−1 and having 2 cm−1 resolution.

2.5. Transfer Number Measurement (TNM) and Linear Sweep Voltammetry (LSV) Analysis

The V & A instrument DP3003 digital direct current (DC) power supply has been employed to
obtain the cation and anion transference number (tion) and electronic transference number (tel) using
the DC polarization method. The highest conducting composite electrolyte (i.e., CSNZG3) was kept
between a pair of analogous stainless-steel (SS) blocking electrodes. A constant operating potential of
0.2 V was applied, and the cell was polarized at ambient temperature. To observe the highest operating
voltage of the CSNZG3 system, the linear sweep voltammetry (LSV) has been done using a Digi-IVY
DY2300 potentiostat. The LSV was measured at a scan rate of 10 mV/s in the voltage range from 0 to
2.5 V. The cell arrangement was the same as the TNM arrangements.

2.6. Fabricating EDLC

The creation of the EDLC electrodes comprises four consecutive stages. The first stage involves a
dry mixing procedure, in which 3.25 g of activated carbon (AC) is mixed with 0.25 g of carbon black
(CB) at 500 rpm for about 20 min. Additionally, 0.5 g of polyvinylidene fluoride (PVdF) is added to
the 15 mL N-methyl pyrrolidone (NMP) solvent and mixed for around 60 min. The second stage
was to dissolve AC-CB powder into a PVdF-NMP solution using a binder until a dark black solution
appeared. The third stage is the coating of the produced black thick solution into an aluminum foil
using a doctor blade. In the fourth stage, the coated aluminum foil was then dried in an oven (~60 ◦C)
for several hours. Subsequently, the electrodes were located in a silica gel desiccator to eliminate extra
moisture. Also, the electrodes were cut with an area of 2.01 cm2. The cell arrangement of the EDLC
was performed by placing the highest conducting sample between two activated carbon electrodes.
Then, the CR2022 coin cell was used to pack the electrolyte cell in a case of Teflon. To evaluate the
energy storage mechanism, the preliminary test for the fabricated EDLC was performed at ambient
temperature via cyclic voltammetry (CV). A Digi-IVY DY2300 potentiostat was employed at the
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different sweep rates in the potential range from 0 to 0.9 V. The EDLC charge-discharge profile was
investigated using the Newer battery cycler at a current density of 0.5 mA/cm2.

3. Results and Discussion

3.1. Impedance Spectroscopy

Electrical impedance spectroscopy (EIS) is a familiar approach in electrochemistry for measuring
both bulk transport behavior and electrochemical reactions on its superficial material [30]. It is a
powerful technique to recognize the effect of different layers of polymers, chemicals, and composite
electrodes. Its measurements will cover the key parameters of an electrochemical system, such as
a change in current density, charge transfer resistance, as well as double-layer capacitances.
Furthermore, the surface roughness and porosity of an electrode can also be evaluated using EIS [31].
The impedance spectra (Zi versus Zr) of the CSNZG0, CSNZG1, CSNZG2, and CSNZG3 composite
electrolyte samples at room temperature are shown in Figure 1a–d. The normal finding for the EIS
studies in polymer electrolytes usually involves two distinct regions: namely a spike and a semicircle
at the region of low and high frequency, respectively. The high-frequency semicircle results from
the conduction process in the bulk polymer composite electrolytes and it is represented by a parallel
combination of bulk capacitance and bulk resistance. Whereas, the low-frequency spike characterizes
the electrical double-layer capacitance at the blocking electrodes [32]. The charge accumulation at
the region of the sample/electrode interfaces creates EDLC. One may notice that the impedance plots
display a straight line at the low-frequency region which is due to electrode polarization (EP) [33,34].
One can obtain the bulk resistance of the electrolyte (Rb) values due to the point from the straight line
intercepts on the Zr-axis of impedance plots. Correspondingly, the following formula was used to
calculate the ionic conductivity (σdc) of the composite polymer electrolytes [35]:

σdc =

(
1

Rb

)
×

( t
A

)
(1)

where t is the sample thickness, and A is the area of the electrolyte sample. It is noteworthy that
the Rb value was decreased with increasing of the glycerol concentrations and reached its minimum
values at 30 wt.% of glycerol content (see Figure 1a–d) [36]. Earlier studies on different polymer
electrolytes have shown that the DC conductivity was improved up to two orders using the glycerol
plasticizer [4,16,21,37]. The DC ionic conductivity was determined and presented in Table 2. It was
found that the electrolyte sample incorporated with 30 wt.% of glycerol displayed the highest ionic
conductivity of 1.17 × 10−4 S/cm. Osman et al. [38] have attained the room temperature ionic
conductivity of 4 × 10−5 S/cm using the CS-LiCF3SO3-ethylene carbonate (EC) system. Leones et al. [39]
documented a result for the system of CS-glycerol incorporated with cyano-based ionic liquids.
Ali et al. [40] fabricated porous nanocarbons (NCs) using bio-waste oil palm leaves. The porous carbon
nanoparticles (NPs) showed superior supercapacitance (SPs) properties. Low resistance values were
achieved in their study via fitting the impedance spectra representing the availability of these porous
NCs as a precursor in the SCs electrode fabrication. Ali et al. [41] in another study fabricated porous
carbon NPS with very high SPs value. Impedance spectra showed low resistance values of these
materials, indicating their suitability for application in SCs electrodes.
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Figure 1. EIS plots for (a) CSNZG0, (b) CSNZG1, (c) CSNZG2, and (d) CSNZG3 electrolyte films.

Table 2. DC ionic conductivity (σdc) of the un-plasticized and plasticized CS:NH4I:Zn(II)-complex
system at room temperature.

Sample Code Ionic Conductivity (σdc) (S. cm−1)

CSNZG0 1.56 × 10−6

CSNZG1 3.68 × 10−6

CSNZG2 1.01 × 10−4

CSNZG3 1.17 × 10−4

The electrical equivalent circuit (EEC) model is used in the study of impedance spectroscopy as
the EEC model is quick and provides an entire picture of the systems [26]. The EIS plots are interpreted
in terms of the EEC including Rb for the charge carriers in the samples and two constant phase
elements (CPEs), which are CPE1 and CPE2, as shown in the inset of Figure 1a–d. The high-frequency
region shows the Rb and CPE1 connection in parallel, whereas the low-frequency region shows CPE2,
i.e., the formed double-layer capacitance between the SPE and electrodes. The impedance of CPE
(ZCPE) is expressed as [26]:

ZCPE =
1

Cωp

[
cos

(πp
2

)
− i sin

(πp
2

)]
(2)
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In Equation (2), C is the CPE capacitance, ω is the angular frequency, and P relates to the deviation
of the vertical axis of the impedance plots. The real part (Zr) and imaginary part (Zi) of complex
impedance (Z*) related with the EEC (inset of Figure 1a,b) are expressed as:

Zr =
Rb

2(Z1) + Rb

2Rb(Z1) + Rb
2C1

2ω2p1 + 1
+

Z2
C2ωp2 (3)

where, Z1 = C1ωp1cos
(πp1

2

)
and Z2 = cos

(πp2
2

)
Zi =

Rb
2(Z3)

2Rb(A1) + Rb
2C1

2ω2P1 + 1
+

Z4
C2ωp2 (4)

where, Z3 = C1ωp1sin
(πp1

2

)
and Z4 = sin

(πp2
2

)
All the circuit element parameters that are used for impedance plots’ fitting for all the samples are

shown in Table 3. In the Cole-Cole plots, at higher glycerol concentration (Figure 1c,d), the semicircle
disappeared, indicating that only the resistive component of the electrolyte systems exists [26].
The disappearance of the semicircle in the CSNZG2 and CSNZG3 systems is because most of the
cations and anions in the bulk of the electrolyte move in opposite directions toward the electrodes to
form the double layer. In such case, the Zr and Zi associated to the EEC are expressed as:

Zr = R +
Z2

C2ωp2 (5)

Zi =
Z4

C2ωp2 (6)

Table 3. The EEC fitting parameters for the plasticized systems at room temperature.

Sample K1 (F−1) K2 (F−1) C1 (F) C2 (F)

CSNZG0 4.6 × 108 3.5 × 106 2.17 × 10−9 2.86 × 10−7

CSNZG1 4.5 × 108 1.90 × 106 2.22 × 10−9 5.26 × 10−7

CSNZG2 - 2.7 × 105 - 3.70 × 10−6

CSNZG3 - 1.85 × 105 - 5.41 × 10−6

As the (CSNZG0 and CSNZG1) impedance data consists of a spike/tail and a semicircle,
the transport parameters of diffusion coefficient (D), mobility (µ), and number density (n) of cations
and anions are computed by the equations below [26].

The D of the cations and anions in CSNZG0 and CSNZG1 systems is computed by the relation,

D =

 (K2εoεrA)2

τ2

 (7)

where εr is the dielectric constant, εo is the permittivity in vacuum, and τ2 is the reciprocal of angular
frequency corresponding to the minimum in Zi.

The mobility (µ) of the cations and anions is calculated via the relation below,

µ =

(
eD

KbT

)
(8)

where T is the absolute temperature and kb is the Boltzmann constant.
Since conductivity (σDC) is shown by

σDc = neµ, (9)
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so, the number density of the cations and anions (n) is computed using Equation (10):

n =

 σdcKbTτ2

(eK2εoεrA)2

 (10)

As the impedance data of CSNZG2 and CSNZG3 consists of a spike, the D is calculated
by Equation (11) [26]:

D = D◦exp
{
−0.0297[lnD◦ ]2 − 1.4348lnD◦ − 14.504

}
(11)

where

D◦ =
(

4k2l2

Rb
4ω3min

)
(12)

where l is the electrolyte thickness, andωmin is the angular frequency corresponding to the minimum Zi.
Table 4 shows the cation and anion transport parameters and the ωmin values for the electrolyte system.

Table 4. The ω, D, µ, and n values at room temperature.

Sample ω (rad s−1) D (cm2 s−1) µ (cm2 V−1 s) n (cm−3)

CSNZG0 3.39 × 105 4.13 × 10−8 1.60 × 10−6 6.06 × 1018

CSNZG1 2.01 × 106 7.73 × 10−8 3.01 × 10−6 7.63 × 1018

CSNZG2 6.28 × 104 3.65 × 10−7 1.42 × 10−5 4.43 × 1019

CSNZG3 6.16 × 105 3.89 × 10−7 1.52 × 10−5 4.81 × 1019

Based on Table 4, the value of D is observed to increase as the glycerol concentration increases from
10 to 30 wt.%. A similar trend is shown by µ as indicated in Table 4 where µ increases. The increase of
µ and D is ascribed to the enhancement of chain flexibility with the glycerol existence [26]. When the
glycerol concentration is increased, the values of D, µ, and n are increased, which causes an increase
in conductivity. This is because the more glycerol addition dissociates more salts to free cations and
anions, thus increasing the number density of cations and anions [26].

The amorphous nature of polymer electrolyte is enhanced by adding salts into the polymer.
The ionic conductivity and enhancement of amorphousity is associated to the greater mobility of ions
and ions’ diffusivity in the amorphous nature owing to the limited energy barrier. It was indicated in
the earlier study [42] that the enhancement of the amorphous phase is valuable in local chain segmental
movements, which will promote the movement of ions and thus, improve the conductivity of ions.
It was also indicated in another study [43] that when the polymer film amorphous structure improves,
there is an improvement in mobility of ions as larger free volume is provided in the polymer structure.
This brings about an improvement in polymer chains’ segmental motions owing to the increase in the
flexibility of the polymer chains. Thus, there is an increase in the polymer electrolyte conductivity.
The increase of DC conductivity with glycerol amount is rationalized by the presence of a percolating
system for high plasticizer contents [5]. Figure 2 indicates the effect of plasticizer on the percolative
behavior of the transport of ions.
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Figure 2. Percolative network of disordered regions produces rapid ion transport pathways for the
mobile ions [5].

3.2. Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared
Spectroscopy (FTIR)

Field emission scanning electron microscopy (FESEM) images were taken at 500×magnification for
the films to support the EIS results. The FESEM for the films are indicated in Figure 3a–d. When there
is incorporation of 10 and 20 wt.% glycerol into the electrolyte system, salts were protruded within the
samples’ surface, as indicated in Figure 3a,b. It is evident from the FESEM images that the protrude
salts in the CSNZG3 system are not clearly observed as the concentration of glycerol increased to
30 wt.% in comparison with the other systems. The highest plasticized electrolyte system exhibits
smooth and uniform surface morphology without any phase separation. The FESEM images are in
good agreement with the EIS results. It is documented that the smooth morphology appearance is
related to the improvement of the amorphous phase of the electrolyte system [44]. The smooth surface
electrolytes will assist conducting ions to transfer easily, and therefore decrease the bulk resistance and
increase the conductivity of ions [44].

The FTIR spectra for the plasticized electrolyte systems are shown in Figure 4a,b. From the
outcomes achieved in this study, a strong peak was concentrated at about 2890 cm−1, which is associated
to the CH stretching mode [45]. Though, it is seen that that the intensity of the peak is decreased with
increasing glycerol amount. Another remark from the literature is that polymer chains comprising
electronegative atoms (N or O) in the repeating units can serve as solvents for the salts [46]. This is
indicated by the attractive reaction happening among the chains and the cations. Furthermore, it was
indicated that chitosan is featured by a pair of hydroxyl groups (OH) and a single amino group (NH2)
in each repeating units [47]. In a previous study [45], appearances of a wide peak at about 3359 cm–1

are ascribed to –OH stretching mode. The peak at about 1013–1060 cm−1 is related to C–O–C stretching
modes [45]. As evidence, both peak shifting and change in intensity produce robust evidence about the
complex creation among the dopant and the polymer. Each film is characterized by the key features of
absorption peaks, such as change of O=C–NHR, NH2, and OH groups of CS [45]. From Figure 4, it is
obvious that shifts happen in the direction of the lower wave numbers in the bands of O=C–NHR, NH2,
and OH groups. This creates more understanding into the complex formation among the electrolyte
components and the polymer.
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3.3. Dielectric Properties

3.3.1. Study of Dielectric Constant and Dielectric Loss

To investigate the conductivity behavior of polymer electrolytes, the study of dielectric analysis is
important [48]. Its measurement plays a vital role in elucidating the molecular relaxation behavior
associated with its ionic conductive features upon frequency [49]. Based on the plots of dielectric
constant (ε′) and dielectric loss (ε”), the dielectric properties of the composite samples were determined
using the equations in References [1,2].

Figures 5 and 6 show the frequency dependence of dielectric constant (ε′), and dielectric
loss (ε”) at room temperature for the CSNZG1, CSNZG2, and CSNZG3 composite electrolyte
films, respectively [50–52]. Both figures of dielectric constant and dielectric loss have the same
behavior. The plots show the reduction in the dielectric constant and dielectric loss with increasing
frequency, while at low-frequency, both dielectric parameters are quite high. This phenomenon
indicates the occurrences of space charge effects and electrode polarization at the boundary
between the electrodes and electrolyte. Therefore, the periodic reversal of the electric field at
high frequency happens more rapidly, which reflects no dispersion of excess ions in the field
direction. Consequently, polarization reduces due to charge aggregation, resulting in the observed
decrease in dielectric permittivity [53–56]. It is interesting to conclude that further increase of the
concentration of glycerol in the system leads to raising the values of ε′ and ε” at lower frequency
regions. Also, the CSNZG3 composite electrolyte film designates the higher ionic conductor due to its
sharp rise in the ε′ value [57,58].Membranes 2020, 10, x 12 of 28 
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composite electrolyte samples at room temperature.
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3.3.2. Electric Modulus Study

It is of a great opportunity to investigate relaxation processes of polymeric systems using dielectric
spectroscopy. The complex dielectric function (ε*) comprises dielectric constant and loss, which are
very sensitive for the applied frequency and structure of the materials [59–61]. At high frequency,
both real (M′) and imaginary (M”) parts of complex modulus are relatively high, owing to the electrode
polarization (EP) effect [62,63]. Macedo et al. have established a formalism of electric modulus to
minimize the impact of EP [64]. Interestingly, the ion movement in solid polymer electrolytes can
perturb the surrounding electric potential. This ion behavior under applied electric potential condition
lead to non-exponential decay and distribution of relaxation time [65]. The reciprocal of the permittivity
in the complex form is equal to complex electric modulus (M*) [66], and can be determined using the
equations in References [1,2].

Figures 7 and 8 reveal the frequency dependence of M′ and M” of all the composite electrolyte
films. At the low-frequency region, both M′ and M” are small, indicating the absence of electrode
polarization contribution in the electric modulus study [67,68]. It is interesting to notice that M′ reaches
to a maximum value at the high-frequency region. This is due to decreasing the dielectric constant to a
minimum value at the high-frequency region, as shown in Figure 5, and thus M′ reaches its maximum
value (M∞ = 1/ε∞) [69]. Figure 8 shows the frequency dependence of M” at different concentrations of
plasticizer. At the high-frequency region in the imaginary part of modulus (M”) spectra, a distinct
relaxation peak is observed as a result of conductivity processes, while no peak is seen in the dielectric
loss spectra, as shown in Figure 6. This confirms the contribution of both ionic and polymer segment
motions in the conduction process [70–72]. As a consequence, the conduction process in the polymer
electrolytes involves charge transport via ion migration alongside segmental motion.
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3.4. TNM Analysis

In the composite SPEs, the determination of dominant cation and anion ions can be characterized
based on the transference number measurement (TNM). The current was measured through the
circuit until it reached a saturation state. The curve of polarization current versus time for the highest
conducting system (i.e., CSNZG3) at the working voltage of 0.2 V is shown in Figure 9. It has been
reported that the polymer electrolyte system is governed by cations and anions when the ionic TNM
is close to the ideal value of unity [73,74]. In the fabrication of EDLC, it is crucial to confirm which
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species is the main charge carrier to the overall value of conductivity. The following equations are
used to calculate the transference number of cations and anions (tion) and electrons (tel):

tion =
Ii − Iss

Ii
(13)

tel = 1− tion (14)

where tion is the transference number of cations and anions, tel is the electron transference number,
Ii is the initial current holds electrons and cations and anions, and Iss stands for the steady-state
current due to electrons only [75,76]. From the graph, an extreme drop in the initial current (31 µA) is
observed and reduced as a function of time. The large value of current at the beginning is because the
electrons, cations, and anions are involved. Cell polarization happens when it reaches the steady state,
whereas transfer of the rest of the current is only due to electrons. This is because the stainless-steel
electrodes make a barrier for the cations and anions, however they permit the electrons to move
through [26]. The current decrement versus time is mainly due to the reduction of cation-carrier and
anion-carrier as well as increase the electronic movement in the composite electrolyte system [77].
As a consequence, in the completely depleted charge carriers, the cell becomes constant. Based on the
Equations (13) and (14), the measured tion and tel for the sample incorporated with 30 wt.% glycerol were
found to be 0.98 and 0.02, respectively [78]. The result reveals that the highest conducting sample of the
glycerolized CS:NH4I:Zn-metal complex system is predominantly due to ions [79]. The TNM finding
in this study is similar to the system of chitosan-NH4Br-glycerol as documented by Shukur et al. [80].Membranes 2020, 10, x 15 of 28 
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Figure 9. Current versus time for the CSNZG3 electrolyte sample.

3.5. LSV Analysis

The use of the linear sweep voltammetry (LSV) technique is to determine the electrochemical
stability of the CSNZG3 sample. The EDLC of polymer electrolytes is supposed to be stable and display
no peak degradation over the applied potential range [81]. Figure 10 represents the electrochemical
stability window of the CSNZG3 electrolyte film at room temperature. A working voltage was
measured in the range between 0 and 2.5 V at the scan rate of 10 mV/s. The LSV plot shows no obvious
current in the range from 0 to 1.2 V. As the potential reached 1.3 V, the current was observed to rise
steadily. This is indicating the sample decomposition at the surface of the inert electrode [82]. It was
reported that the required value of the standard stability window of SPEs in the application of protonic
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devices is ~1 V [83]. Thus, the prepared CSNZG3 sample possesses adequate anode stability to be
applied in electrochemical devices. The breakdown voltage for the starch-chitosan-NH4I-glycerol
system was 1.9 V, as investigated by Yusof et al. [84]. In our previous study, a high breakdown voltage
(Vb) for the glycerolized CS:NH4F:Zn(II)-complex system was observed [25]. There may be some
possible interpretation for the different values of Vb obtained in the present work compared to our
reported one. It could be due to the ionic radius of F− being smaller compared to I−, which makes it
possible for better intercalation into the layered cathode structure. Thereby, a weak interaction between
NH4

+ with I− is observed relative to NH4
+ with F− [85,86]. The lattice energy of NH4I is lower than

NH4F [87], and thus systems impregnated with NH4I may possess lower Vb.Membranes 2020, 10, x 16 of 28 
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Figure 10. Linear sweep voltammogram (LSV) plot for the highest conducting CSNZG3
electrolyte sample.

3.6. Cyclic Voltammetry (CV) Analysis

Over decades, diverse methods in electroanalytical chemistry have been developed. The extreme
importance was achieved by cyclic voltammetry (CV) from both the physics and chemistry viewpoints.
It is a strong and widespread electrochemical technique to characterize the oxidation-reduction process
of molecular materials. Except for rigorously analytical issues, CV has already succeeded classical
polarography. Its range of applications was extended from the study of basic redox procedures in
organic and inorganic chemistry to the investigation of macromolecular chemistry and biochemistry of
the multi-electron transfer process. However, molecular electrochemistry has become a key research
technique aimed at improving technologies for clean energy sources [87,88]. The electrical capacitor
performances and its charge storage will usually be evaluated with cyclic voltammetry (CV) at specific
interfaces in the cathodic and anodic regions [89]. Hegde et al. [90] synthesized carbon NSs by a
catalyst-free pyrolysis method from bio-waste sago bark. The capacitive behavior of the carbon NSs
was proven by the CV profile at various scan rates which showed nearly rectangular-like shape.
The author showed that the fabricated carbon NSs are suitable in SCs electrode application.

Figure 11 shows the CV responses for the highest conducting sample, where the potential range
was measured from 0 to 0.9 V, at various scan rates of 10–100 mV/s. The CV profile of the constructed
EDLC displays a leaf-like shape at the high scan rates, while its shape turned into an almost rectangular
shape as the scan rate decreased [25,91]. The internal resistance and carbon porosity is the reason for the
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deviation from rectangular shape, thereby producing a current dependence of potential. The specific
capacitance (Cp) value from the CV profile can be determined using the following equation:

Cp =

∫ V2

V1

I(V)dV
2mS(V2 −V1)

(15)

where I(V)dV is the area of the CV plot, which was determined using the Origin 9.0 software via the
function of integration. V1 and V2 are the initial voltage and final voltage, respectively. m stands
for the mass of active material used, and S is the scan rate [92]. It is interesting to note that the CV
plots possess no visible redox reaction peaks over its entire potential range. It is also obvious that the
variation of scan rates influenced the shape of the CV plots and Cp values (see Table 5). At higher scan
rates, the amount of accumulated charges on the surface of the electrodes is decreased, due to the
contribution of little charges for polarization, thus, the Cp value is reduced [93–95]. At a lower scan rate,
the rectangular-like shape of the fabricated EDLC is an indication for the fact that the characteristics of
the EDLC are near to an ideal capacitor behavior. Arof et al. [96] achieved the Cp value of 35 F/g for
the polymer electrolyte system of CS/iota-carrageenan-based EDLC. The Cp value of 32.69 F/g was
obtained for the system of glycerolized PVA:CS:Mg(CF3SO3)2 at 10 mV/s [97].
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Figure 11. CV curve of the EDLC measured for the CSNZG3 sample at different sweep rates in the
potential range of 0 to 0.9 V.

Table 5. Specific capacitance (Cp) value of the CSNZG3 film at the various scan rates of 100, 50, 20,
and 10 mV/s.

Scan Rate (mV/s) Area Mass (g) V2 − V1 Specific Capacitance (F/g)

100 6.70 × 10−3 2.43 × 10−3 0.9 15.32
50 4.22 × 10−3 2.43 × 10−3 0.9 19.29
20 2.20 × 10−3 2.43 × 10−3 0.9 25.14
10 1.38 × 10−3 2.43 × 10−3 0.9 31.55

3.7. Analysis of Charge-Discharge Characteristic

A galvanostatic charge-discharge (GCD) profile of the fabricated EDLC device for the maximum
conducting composite electrolyte containing 30 wt.% of glycerol is illustrated in Figure 12. The applied
current density is 0.5 mA/cm2 over 400 cycles in the potential range between 0 and 0.9 V at room
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temperature [98]. The EDLC charge and discharge curve displays as almost linear, which indicates the
capacitive behavior of the EDLC [99].Membranes 2020, 10, x 18 of 28 
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Figure 12. Galvanostatic charge-discharge performances of the constructed EDLC for the initial cycles.

One may notice the rapid drop in the potential (Vd) of the assembled EDLC before the initiation
of the discharging process. It is obvious that a perfect triangle shape of the charge-discharge curve
cannot be obtained. The deviation from the ideal triangle shape may be related to the influence of
internal resistance, bulk electrolyte, and roughness of activated carbon [100,101].

The capacitance is the ratio between the changes of electrical charge to the change of the potential
within a system. Figure 13a represents the variation of the discharge-specific capacitance (Cs) of
the constructed EDLC up to 400 cycles. The value of the Cs of the EDLC was calculated from the
following equation:

Cs =
i

gm
(16)

where i is the applied potential, g is the discharge part gradient, and m is the active material mass.
Obviously, the Cs value at the first cycle was found to be 36 F/g and followed by a dropped to 19.5 F/g
as the cycle number increased to the 50th cycle. The decrease in the Cs value could be due to not having
very good contact between the electrolyte and electrodes [102–104]. In this work, the average value of
specific capacitance (Cs) was found to be ~19 F/g. The obtained Cs value in this study is of great interest
in comparison with those measured for other proton-based EDLC works. Our previous studies for
CS:MC:NH4I [105], CS:Dextran:NH4F [106], and methylcellulose (MC):CS (CS):NH4I:glycerol systems
displayed Cs values of 1.76, 12, and 10 F/g, respectively [21]. Shuhaimi et al. [15] reported the Cs value
of 1.67 F/g for the system of MC-NH4NO3. It is obvious from Figure 13 that the Cs drops continuously
with increasing the number of cycles. Anion ions from the NH4I salt possess a bigger radius, and it
may begin blocking some of those ions in the electrode pores throughout its charge-discharge process.
In its next charge-discharge step, these blocked ions will create a repulsive force to the same ions.
Consequently, with the number of cycles, it could reduce the cyclic stability of the system [107].
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Figure 13. EDLC parameters of (a) specific capacitance (Cs), (b) equivalence series resistance (ESR),
(c) energy density (Ed), and (d) power density (Pd) versus cycle number.
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The variation of the equivalence series resistance (ESR) of the fabricated EDLC versus cycle
number is shown in Figure 13b. The ESR value of the EDLC was obtained via the equation below:

ESR =
Vd
i

(17)

where Vd denotes the drop potential before the start of the discharging process, and i stands for the
applied current. It is noteworthy that the value of the ESR acquired at the first cycle was found
to be 177 Ω. It is also noticeable that the ESR value increases with the increment of cycle number,
and attained the highest value of 300 Ω at the 350th cycle number, resulting from the maximum value
of Vd. The presence of internal resistance (Res) in the EDLC, which is also known as equivalence series
resistance (ESR), can be related to the current collector, the charge-discharge procedure of electrolytes,
and the distance between the polymer electrolyte and electrodes [3,108]. A low ESR value is promising
for the applications of the EDLC. Besides, it can verify a strong interaction between electrolytes and
electrodes through a low ESR value. The same trend in the ESR was recorded for the system of
CS:MC:NH4I [105]. The system of CS:Starch:NH4I showed a very high ESR value compared to the
current work [109]. Our previous study for the glycerolized PVA:NH4SCN:Cd(II)-complex showed the
average ESR value of 51 Ω [2].

The energy density (Ed) and power density (Pd) are two crucial parameters that should be
characterized to approve the application of the EDLC device. Figure 13c,d provide the Ed and Pd densities
throughout 400 cycles for the highest conducting sample of the glycerolized CS:NH4I:Zn(II)-complex
system. The Ed and Pd have been calculated using the equations in References [110,111].

The Ed value in the first cycle was found to be 4.1 Wh/kg, while it dropped to 2.1 Wh/kg
at the 50th cycle. Beyond the 50th cycle, the Ed values are almost constant until 400th cycle,
with an average of ~2 Wh/kg (see Figure 13c). At this point, ions subject the same energy barrier
as it transports from the polymer electrolyte to the surface of the electrodes [112–114]. The ion
accumulation at the electrode/electrolyte interfaces has a significant effect on the amount of energy
storage in EDLC. Hamsan et al. [110] have stated an Ed value of 2.25 Wh/kg using the potato starch
(PS)-methylcellulose(MC)-NH4NO3-glycerol system. Our previous work for the CS:MC:NH4I:glycerol
system showed an Ed value of 0.77 Wh/kg, which is much lower than that reported in this study [21].
From Figure 13d, it was observed that the Pd value at the first cycle is about 480 W/kg, while it
decreased to 320 W/kg when it reached the 50th cycle as a result of an increase in the ESR and Vd.
Afterward, it was stable up to the 400th cycle, with an average value of ~300 W/kg. The Pd value at the
first cycle for the system of PVA-CS-NH4SCN-glycerol [16] was 399 W/kg, which is comparable with
the result in this study.

4. Conclusions

The glycerolized CS:NH4I:Zn(II)-complex-based polymer composite electrolytes (PCEs) were
prepared via the technique of cast solution. Polymer electrolytes are scientifically imperative in the
fabrication of electrochemical SCs, fuel cells, batteries, and dye-sensitized solar cells. The ionic
conductivity and dielectric properties were observed to be improved with increasing glycerol
concentration. The sample incorporated with 30 wt.% of glycerol exhibited the highest dielectric
constant with the maximum ionic conductivity of 1.17 × 10−4 S/cm. It was shown that when the glycerol
amount increased, the diffusion coefficient (D), mobility (µ), and number density (n) of cations and
anions fractions gradually increased. The Zn(II)-complex improved the EDLC performance because of
the enhancement of the amorphous nature, whereas the high ionic conductivity is associated to the
amorphous structure. It was indicated by the FESEM method that at the highest glycerol amount,
the film has a smooth and homogenous surface morphology. It was indicated by the FTIR spectroscopy
that there was an interaction of NH4I, Zn(II)-complex, and glycerol with the CS polymer by modifying
the FTIR bands. Transference number measurements (TNM) confirmed that the dominant charge
carriers were cations and anions fractions. The value of the cation and anion transference number
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(tion) fraction was found to be 0.98. The electron transference number (te) for the highest conducting
electrolyte was identified to be 0.02. The measures of the LSV displayed that the CSNZG3 sample was
decomposed at 1.37 V, suggesting the electrolyte suitability for the EDLC application. The CV curves
showed no redox reaction peaks throughout its entire potential range. To evaluate the characteristics of
the EDLCs composed of the glycerolized CS-based PCEs, cyclic voltammetry (CV) and the galvanostatic
charge-discharge (GCD) curve were applied over 400 cycles. The fabricated EDLC showed that the
initial value of specific capacitance (Cs), equivalence series resistance (ESR), energy density (Ed),
and power density (Pd) were found to be 36 F/g, 177 Ω, 4.1 Wh/kg, and 480 W/kg, respectively.
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