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Abstract. The success of microalgae immobilized in gel beads for lipid production heavily relies 

on the characteristics of the matrices employed. This study aims to determine cell density and 

characteristics of immobilized Chlorella vulgaris cells that contributed to the viability of the 

cells within beads. The new combined matrices with volumetric ratios (Matrices:Microalgae) 

namely, (1) mixed matrices, SACMCCA (0.3:1) (2) SACA (0.3:1) (3) SACMC (1:1) were proposed 

in this study and (4) SA (1:1) (sodium alginate, SA; calcium alginate, CA; sodium carboxymethyl 

cellulose, CMC) as a control experiment. The size of the beads, membrane thickness and chemical 

compound of these beads were examined. The cell density demonstrated that SACMCCA beads 

presented the highest value of 1.72 ± 0.5 × 109 cells/mL and lipid yield (30.43 ± 0.30 %) 

compared to SACA (24.29 ± 0.50 %), SACMC (13.00 ± 0.60 %) and SA (6.71 ± 0.50 %). The 

characterization had provided important characteristics for a successful entrapment of Chlorella 

vulgaris. In addition, the combination of single matrices had improved the cell density and lipid 

production for future applications in the biofuel industry. 

1.  Introduction 

During the past few years, microalgae has caught the world’s attention as a potential feedstock for 

biofuel production and other industrial applications [1,2]. Biofuel derived from microalgae biomass has 

triggered significant interest among researchers, primarily attributable to the ability to rapidly grow 

greater lipid content and higher biomass yields, compared to conventional crops [3]. In addition, C. 

vulgaris is able to accumulate lipids which are suitable for biodiesel production and comparable to the 

composition of commercial diesel fuel. Due to its fast growth and ease of cultivation, C. vulgaris has 

attracted many researches as the optimal choice for biodiesel production [4–10]. However, the small 

size of microalgae cells (<50 µm) implies the difficulties in the recovery process when scaling up 

operations are implemented in a bioreactor [9,11–13]. Hence, a harvesting method with less energy 

consumption and applicable to most species are needed to resolve the problem [10,11]. Current 
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technology involving the immobilization of microalgae has been extensively applied in harvesting 

microalgae in order to simplify the separation process. Immobilized microalgae have been used for 

various high-value applications such as production of photopigments, biohydrogen, biosensors, 

wastewater treatment and heavy metal removal [14,15]. However, the operating and production cost of 

the immobilization matrix is an important factor to produce high-value products, and to date, an 

economical process remains in research for a sustainable long term objective [3]. Thus, microalgae 

immobilized within beads should be designed innovatively to cover the costs and at the same time add 

profit, through generating valuable by-products.  

Among the most employed natural matrices are agar, carrageenan and alginate [14,15]. Alginates are 

recognized as the most studied matrices for the immobilization of any living cells, including fungi, yeast, 

enzyme, and algae [16]. They are constituted in a group of linear copolymers that consist of β-D-

mannuronic acid (M-blocks) and α-L-guluronic acid (G-blocks) in different sequences and blocks. 

Sodium carboxymethyl cellulose (CMC) is linear and water-soluble, and has a long chain, anionic 

polysaccharide natural gum that is used in the food and pharmaceutical industries. It appears in a white-

to-cream-color, and is odorless, tasteless, and visible in powder form [17]. Each matrix possesses 

diversity in its gel structure, formation, and cross-linking among polymers, which highly depends on the 

sources of the algal and its topographical location [18]. A matrix used for the immobilization process 

should possess a variety of chemical properties where the entrapment of the microalgae can be achieved 

through ionic or chemical covalent bonding. Additionally, the matrix should have a large capacity of 

forming bonds, a high porosity level, large areas inside the immobilized beads for the microalgae cells 

growth, non-toxic properties and stable for long-term cultivation period [14,15,19–21]. However, the 

immobilization of microalgae cells comprises certain restrictions. The immobilized beads are highly 

exposed to bead disruption, which inevitably led to the loss of the microalgae cells, mass transfer 

limitations of nutrients and CO2 in and out of the inner cell, as well as free space for the microalgae 

movement and growth inside the matrix [12,19,20]. Thus, using alginate as an entrapment gel for C. 

vulgaris is a proper choice based on results from previous work, and the primary novelty to be proposed 

in this research is the mixing of sodium alginate with another natural matrix to yield the highest possible 

lipid production percentage [22]. 

The success of achieving a high cell concentration of beads does not only depend on the matrix, but 

is also influenced by the species of the microalgae [21]. Therefore, it is crucial to select matrices that 

allow for the diffusion of nutrients and CO2 at rates that are sufficient for the viability and functionality 

of the microalgae cells [23,24]. The majority of prior work regarding immobilization only focused on 

using a single natural matrix. Hence, the emphasis of this study is to determine the most suitable 

combination of natural matrices which can potentially enhance lipid production and its potential for 

biodiesel production. This new method may contribute to the biofuel from renewable resources field in 

the harvesting process of microalgae. The experiment involves the characterization of the immobilized 

beads. This includes particle size, thickness of the membrane, and the chemical bonding within the 

structure, which were determined to further understand the basic constituents of the matrices, as well as 

the influence of these characteristics on cell growth and lipid production. 

2.  Materials and methods 

2.1. Strain, medium and culture conditions  

Microalgae strains (Chlorella vulgaris 211/11B) were purchased from Culture Collection of Algae and 

Protozoa (CCAP), United Kingdom. The microalgae was grown in modified Bold Basal Medium (BBM) 

with 3-fold Nitrogen and Vitamins consisting of :(1) 10 mL per litre BBM (I) consisting of: NaNO3 (75 

g/L), CaCl2.2H2O (2.5 g/L), MgSO4.7H2O (7.5 g/L), K2HPO4.3H2O (7.5 g/L), KH2PO4 (17.5 g/L), NaCl 

(2.5 g/L);  (2) 6 mL per litre of BBM (II) consisting of: Na2EDTA (0.75 g/L), FeCl3.6H2O (0.097 g/L), 

MnCl2.4H20 (0.041 g/L), ZnCl2 (0.005 g/L), CoCl2.6H2O (0.002 g/L), Na2MoO4.2H2O (0.004 g/L); (3) 

1 mL per litre BBM (III) consisting of 1.2 g/L Vitamin B1 (thiaminhydrochloride); and (4) 1 mL per 

litre of 1 g/L BBM (IV) consisting of Vitamin B12 (cyanocobalamin) [25]. The stock culture was 
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prepared in an Erlenmeyer flask containing 250 mL sterile BBM medium. It was aerated at constant 

pressure under the illumination of a fluorescent lamp (Philip TL-D 36W/865, light output 3050 lm) for 

24 hours, and cultured at 25 - 28 °C for 12 days of cultivation.  

2.2. Preparation of immobilized microalgae beads  

Sodium alginate (SA), CA (alginic acid calcium salt from brown algae) and Sodium 

carboxymethylcellulose (CMC) were purchased from Sigma Aldrich Company. 0.06 g of each 

immobilized microalgae beads were prepared with a ratio of; (1) 1:1 for SACA, (2) 1:1 for SACMC (3) 

1:1:2 for mixed matrices and SA solution as a control experiment and mixed with 3 mL of BBM media. 

Next, 10 mL of C. vulgaris stock culture (approximately initial cell concentration of 8 x 108 cells/mL) 

was added at a volumetric ratio of 0.3:1 and 1:1 (Matrices:Microalgae (Mc)) for each combination of 

matrices solution. The mixture was stirred until it dissolved, and was slowly dripped using a 

micropipette (1 mL) into the CaCl2 (2 w/v %) solution. About 130 of the microalgae beads were formed 

and stabilized in the CaCl2 solution for 1 h. Next, the beads were filtered and rinsed twice with sterilized 

distilled water, prior to being used for growth and characterization.   

2.3. Physical characterization 

2.3.1. Chemical content analysis of immobilized beads. The immobilized beads as mentioned in Section 

2.2 were cultivated until 10 days. Subsequently, all the immobilized beads were analyzed using the 

diamond crystal single bounce attenuated total reflectance (ATR) attached at the FTIR (Nicolet 6700, 

USA). The wavelengths of FTIR spectroscopy was conducted from ranging from 400 to 4000 cm-1. Each 

measurement of the sample was repeated independent three times.    

 

2.3.2. Size of the beads and membrane thickness. The size and membrane thickness of each immobilized 

bead of different matrices was measured using a light microscope (Axiostar plus, Germany) and Dino-

Eye AM4023x Eyepiece Camera through Dino Capture 2.0 software, with 5x magnification.   

2.3.3. Membrane Surface and Pore Size. The immobilized beads preparation for analysis was similar 

to Section 2.2. The image of the membrane surface and pore size of the beads were measured using a 

scanning electron microscope (FEI Quanta 450, USA) with 1000x magnification. The beads were 

attached on an aluminium plate, before being scanned [26].    

2.4. Determination of cell density of immobilized microalgae beads  

The cell density was calculated by taking five immobilized microalgae beads every day for a 10 days 

period and dissolved in 2 w/v % of sodium carbonate anhydrous. Then, the cell density of the dissolved 

beads was measured using a UV-VIS spectrophotometer (Varian Cary 50 Probe) at 600 nm [27,28]. The 

same dissolved solution was used to count the microalgae cells using counting chambers (Neubauer-

Improved Haemocytometer Hirschmann®) through Dinoeye 2.0 software (Dino-Eye AM4023x 

Eyepiece Camera). The culture medium absorbance reading was also measured to determine the value 

of the cells lost of the microalgae cells into the medium. The growth curves of the immobilized 

microalgae were constructed from the pre-determined calibration curve of absorbance and cell density 

and cell lost. The experiments were made in triplicates. 

2.5. Lipid extraction of immobilized microalgae  

For lipid extraction purposes, the immobilized microalgae beads on day 10 were solubilized in sodium 

carbonate anhydrous (2 w/v %), and dried in an oven at 80 °C for 24 h. Subsequently, 0.07 g of the dried 

biomass was employed into screw-capped test tubes, and 5.5 mL of distilled water was added to the 

biomass. The test tubes were sonicated (sonicator Fisher brand FB15051) for about 15 min at 40 °C, 

until all the biomass was completely dissolved [29]. The lipid from the biomass was extracted using the 

Bligh and Dyer method, and 12 mL of methanol and chloroform mixture (2:1) was stirred for 24 h at 60 
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– 65 °C [30]. After the extraction process, the solution was centrifuged at 3000 rpm for 10 min, and the 

bottom layer was collected. Nitrogen gas flow was used to evaporate the lipid, and the weight of crude 

lipid was measured simultaneously. Each measurement of the sample was repeated three independent 

times.     

2.6. Transesterification method 

The transesterification method was continued using the highest lipid extracted from section 2.5. The 

process was carried out by using 4.25 mL of methanol, 5 mL of hexane and 215 µL of HCl (37% vol) 

in a screw-capped test tube. The mixture was stirred at 750 rpm at temperature 80 – 85 °C for 2 h. Then, 

the mixture was cooled down before it being centrifuged for 10 min at 3000 rpm [14]. The mixture 

formed two layers where the top layer contained the desired products (fatty acid methyl ester) and the 

bottom layer contained the excess remaining HCl, methanol and glycerol. Three replication of 

transesterification method were made to validate the experimental data. 

3.  Results and discussion 

3.1. The effect of combination of single matrices on the cell density and polymeric film thickness of C. 

vulgaris cells immobilized within beads  

Figure 1 and 2 show the cell density curves of four different immobilized microalgae with volume ratio 

0.3:1 and 1:1, respectively. Figure 1 shows that the immobilized microalgae using SACMCCA:Mc (0.3:1) 

exhibited the highest cell density (1.72 × 109 cells/mL) followed by SACA:Mc (0.3:1) (1.40 × 109 

cells/mL), SACMC:Mc (0.3:1) and SA:Mc (0.3:1) on 10 days of cultivation period. Meanwhile, 

immobilized beads with volumetric ratio (1:1) in Figure 2 shows a contradict results whereby the highest 

cell density was performed by using SACMC:Mc (1:1) matrix (1.36 × 109 cells/mL) and followed by 

SA:Mc (1:1) (1.26 × 109 cells/mL), SACMCCA:Mc (1:1) and SACA:Mc (1:1). As can be seen in Figure 2, 

the immobilized beads using SACMCCA:Mc (1:1) demonstrated a quite similar curve cells growth with 

SACMC:Mc (1:1) in the first 7 days, but started to grow slowly at 8 days of cultivation period. This was 

maybe due to the oversaturated of the microalgae cells within the immobilized beads [27]. Thus, mixed 

matrices SACMCCA:Mc (1:1) was not suitable for a long cultivation period. For that reason, 

characterization focusing on the SACMCCA:Mc (0.3:1), SACA:Mc (0.3:1), SACMC:Mc (1:1) and SA:Mc 

(1:1) immobilized beads were executed to determine the cause of this phenomenon for an efficient 

immobilization method prior lipid production process. 

 

 

Figure 1. The cell density of C. vulgaris cells immobilized within beads using SA, SACA SACMC and 

SACMCCA matrices with volumetric ratio 0.3:1 (Matrices:microalgae) until 10 days of cultivation, 

constant pressure of aeration, 24 hours of photoperiod at room temperature. Data shown as the mean ± 

standard deviations of three replications (n=3). 
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Figure 2. The cell density of C. vulgaris cells immobilized within beads using SA, SACA SACMC and 

SACMCCA matrices with volumetric ratio 1:1 (Matrices:microalgae) until 10 days of cultivation, constant 

pressure of aeration, 24 hours of photoperiod at room temperature. Data shown as the mean ± standard 

deviations of three replications (n = 3).  

 

The thickness of the polymeric film layer plays an important role in influencing the mass transfer of 

nutrients and CO2 within the beads and this depends on the concentration of CaCl2 solution [21,27]. In 

this study, 2 w/v % of CaCl2 concentration was employed, since it was justified in previous studies to 

be the most suitable concentration for the immobilization of microalgae [21]. The polymeric film 

membrane (approximately 0.206 ± 0.124 mm) in Figure 3 (a) formed by SACMCCA:Mc was thinner 

compared with the immobilized beads of SACA:Mc (Figure 3 (b)) which demonstrated a higher 

membrane layer. According to Lam and Lee (2012), a thin layer matrix of polymeric film improved the 

movement of nutrients and CO2 in and out of the immobilized beads and eventually promotes the 

metabolic activity of the microalgae cells. Thus, a thin membrane layer probably will increased the cell 

density as shown in Figure 1 which the highest cell density was obtained by immobilized bead using 

SACMCCA:Mc (0.3:1). However, a vice versa result was shown for microalgae immobilized within beads 

with volume ratio (1:1). Although the immobilized beads using SA:Mc (1:1) shows a thinner membrane 

layer than the bead in Figure 3 (d), the cell density value was lower compared to the immobilized bead 

using SACMC:Mc (1:1). 

This proven that a high cell density of immobilized microalgae was not only influenced by the 

thickness of polymeric film layer but also on the matrices employed. The addition of other matrices with 

SA had formed a different geometry structure that enhanced the microalgae cells growth. In addition, the 

different volumetric ratios (0.3:1 and 1:1) give insignificant impact to the cell density and thickness of 

the polymeric membrane. Among all the immobilized beads, the microalgae immobilized in the 

SACMCCA:Mc (0.3:1) beads was the best since it produced the highest cell density. Hence, this indicates 

that a combination of single matrices created a unique matrix structure which enhanced cell viability 

and provided a suitable space area for the microalgae cells growth compared to the immobilized bead 

using SA matrix alone.    
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Figure 3. Images of the polymeric film thickness of C. vulgaris cells immobilized within (a) Mixed 

matrices (SACMCCA:Mc) (0.3:1) (b) SACA:Mc (0.3:1) (c) SA:Mc (1:1) and (d) SACMC:Mc (1:1) 

Matrices:Microalgae (volume ratio) beads, at 5x magnification through Dino Capture 2.0 software.   

3.2. Chemical content analysis of immobilized beads 

In general, the crosslinking of the matrices is with divalent cations (Ca2+) via carboxyl groups (COOH) 

by primary valences and hydroxyl groups (OH) by secondary valences [16,31,32]. The polymeric chains 

become folded and stacked under the bond interaction, which causes the structure to transform from the 

random coils to the organized ribbon-like structure linked via Ca2+. This bonding of the matrices chains 

contributes to the hydrogel form referred to as the “egg-box” structure [33,34]. 

FTIR spectra were used to identify the chemical bonding in the structure of the immobilized beads. 

Figure 4 presents the FTIR spectra of the immobilized microalgae beads. All the beads with different 

combinations of matrices and volumetric ratios (0.3:1 and 1:1) offer a similar trend of FTIR analysis 

with the same absorption wavenumbers (between 1630 and 3300 cm-1). This demonstrates that all the 

immobilized beads consist of the same chemical bonding which formed between Ca2+ and the matrices. 

The wavenumbers at 3284.09 cm-1 indicate that the bead consists of a polymeric hydroxy (OH) group. 

A broad distribution of absorption between 3200 and 3550 cm-1 shows that the OH stretching vibration 

region is rich and forms a strong dimeric stable structure in the immobilized bead [26,35]. This hydroxy 

group comprises the bonding between the alginate molecules (intramolecular hydrogen bonding) and 

alginate-water molecules (intermolecular hydrogen bonding) [36]. The bonding of alginate-water 

molecules (>95%) inside the structure provides an aqueous environment for the bioactivity of the 

entrapped microorganisms [37]. This chemical bonding is an important indicator for a successful 

entrapment and growth of microalgae cells within the crosslink polymer. 

The peak of 1635.88 cm-1 signifies the symmetric stretching vibration of carboxylate ester (COO-), 

and primary and secondary organic amide (C-N or N-H) group [35,38]. This result is in line with that 

by Chabane et al. (2017), who reported that the same absorption band also appeared around 3420 and 

1636 cm-1 for SA and other beads using aluminum-pillared montmorillonite (Al-PILMt), polyvinyl 

alcohol (PVA) and CaCO3 [34]. Since the alginate was derived from various natural sources, many 

impurities such as proteins, carbohydrates, heavy metals and polyphenolic compounds were present 

within the chemical structure [20]. These results indicated that all the beads have suitable chemical 

(b) (a) 

(c) (d) 
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characteristics for the growth of microalgae cells which are entrapped between the crosslinking of the 

polymer and no significant difference of the chemical structure based on the FTIR result. 

 

 
 

Figure 4. FTIR analysis ranging from 400 to 4000 cm-1 of C. vulgaris cells immobilized within (a) 

Mixed matrices (SACMCCA:Mc) (0.3:1) (b) SACA:Mc (0.3:1) (c) SA:Mc (1:1) and (d) SACMC:Mc (1:1) 

Matrices:Microalgae (volume ratio) beads. The analysis were replicated three times (n=3).  

3.3.  Size of the immobilized beads 

The size of immobilized beads can be influenced by several factors such as the chemical properties, rate 

of agitation, species of microalgae, and technique of preparation [16,39]. Figure 5 shows the range of 

beads size of various matrices. The immobilized beads using SACMC:Mc (1:1) (Figure 5d) displayed the 

largest diameter. Most of these beads have a diameter of 3.2-3.4 mm. This result is in line with that 

produced by Joo et al. (1999), who obtained approximately 3.51 mm in diameter using CMC as an 

encapsulation material [21]. About 50% of the immobilized beads of SA and SACMCCA (Figure 5a and 

5c) have a size of 2.6 – 2.8 ± 0.05 mm and 2.2 – 2.4 ± 0.08 mm respectively. Among the immobilized 

beads, the size of the SACA beads (Figure 5b) was the smallest, with most beads ranging from 1.6 mm 

to 1.8 mm ± 0.04.   
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Figure 5. Size of the immobilized beads with matrices:Mc (volume ratio) using (a) Mixed matrices 

(SACMCCA:Mc) (0.3:1) (b) SACA:Mc (0.3:1) (c) SA:Mc (1:1) and (d) SACMC:Mc (1:1). Data shown as the 

mean ± standard deviations of three replications (n=3).  

 

Based on this trend, the size of the immobilized beads is larger for the volume ratio of 1:1 compared 

to 0.3:1. In this case, the size of the beads likely depends on the volumetric ratios of the matrix to 

microalgae, as well as the type of matrix used to mix with SA. The advantage of a larger inner-size of 

beads or capsules is that it provides a wider space for the growth of microorganisms, and might in turn 

increase the accumulation of cells [40]. However, Nussinovitch (2010) claims that the bead size has no 

significant effect on the final concentration of cells [16]. This statement can be related to Figure 1 and 

2, in which the highest cell density was attained by immobilized beads of SACMCCA:MC with a volume 

ratio 0.3:1, whereas the beads of SA:MC with a volume ratio 1:1 exhibited the lowest cell density. Hence, 

choosing a suitable matrix for the immobilization of microorganisms is vital, since it supports the growth 

of the cells rather than focus on the size of beads, which has less influence on the growth of the cells.  

3.4 .  Surface Images and Pore Size of Immobilized Microalgae 

Figure 6 shows the SEM surface images of beads from four different matrices. A rough and wave-like 

surface image was observed in Figure 6 (a) with a large pore size, ranging between 10.8 ± 0.05 and 

32.78 ± 0.05 µm. These pores increase the molecular diffusion of nutrients and CO2 in and out of the 

cell, thereby increasing the growth of the microalgae cells [41]. Referring to the micrograph of sodium 

alginate in Figure 6 (c), the membrane surface of the immobilized beads was distributed by many pores 

in the range of 8.74 ± 0.05 to 29.01 ± 0.05 µm. While in Figure 6 (b) and (d), there were only a few 

pores visible on the surface of the beads. These types of surface image are similar to that observed in 

the work of Fan et al. (2017) for the immobilization of enzymes and yeast. The authors reported that a 

tight structure with a few pores on the surface may protect the cells inside the beads from the 

contamination of the culture medium, thus enabling the molecular diffusion of nutrients and CO2 in and 
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out of the cells [23]. However, the result of the cell density (Figure 1 and 2) of immobilized beads using 

SA deviated from the previous statement by Fan et al. (2017). This revealed that, to some extent, the 

membrane surface with too many pores is inconvenient for the growth of the cells inside the beads, due 

to the easy movement of the cells out of the matrix layer. Apart from that, the different volumetric ratios 

(0.3:1 and 1:1) of beads had no effect to the surface of the beads as can be observed on the SEM figures.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. SEM membrane surface and pore images of immobilized microalgae at 1000 x magnification 
with matrices:Mc (volume ratio) (a) Mixed matrices (SACMCCA:Mc) (0.3:1) (b) SACA:Mc (0.3:1) (c) 
SA:Mc (1:1) and (d) SACMC:Mc (1:1).  

 

Figure 6 (b) and (d) display a rough and inhomogeneous structure surface with fewer pores of smaller 

sizes (6.75 ± 0.05 to 27.48 ± 0.05 µm). The inhomogeneous distribution of the polymer concentration 

on the surface towards the inner gel might probably result from the irreversible gelling reaction 

mechanism by the crosslinking ions. This irreversible gelling mechanism was controlled by the diffusion 

rate of Ca2+ ions and the polymer molecules to form gelling zone [41]. It can be observed in Figure 6 (a) 

that the combination of the three natural matrices changed the inhomogeneous surface to a rough surface, 

with some larger pores on the surface compared to other immobilized beads. These surface 

characteristics of the immobilized bead using SACMCCA offer a successful combination of matrices which 

enhanced the growth of C. vulgaris cells based on the cell density result (Figure 1 and 2). Consequently, 

the efficiency of these immobilized beads was evaluated for lipid production through lipid extraction 

method. 
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3.5. Lipid extraction of immobilized beads and fatty acid methyl ester profile of SACMCCA 

The characterization discussed in Sections 3.1, 3.2, 3.3 and 3.4 demonstrated that the immobilized beads 

using SACMCCA had several supportive characteristics of a good matrix for the immobilization of 

microalgae. Via characterization, these physical and chemical properties show that, in order to influence 

the growth of the microalgae cells in which to obtain a high lipid production, the cell concentration and 

weight of the biomass should be relatively high [6]. This scenario is because the primary concern in the 

commercialization of microalgae as a biofuel feedstock is to enhance the biomass and lipid production. 

The microalgae biomass with volumetric ratio of 0.3:1 performed a higher lipid yield than the 1:1 

volume ratio and the highest lipid percentage (30.43 ± 0.30 %) was obtained from immobilized biomass 

from mixed matrices [22]. This result was expected because of the higher cell density which contributes 

to the higher lipid yield. All the result values were in line with previous literature reported by Chen et 

al. (2011) in which the value of lipid extracted from C. vulgaris biomass cultivated under phototrophic 

condition lies between 5 – 40 % [42]. Moreover, this result was higher compared to Lam and Lee (2012) 

which obtained 12 % of lipid yield using SA as immobilized matrix of C. vulgaris cells [27].  

Figure 7 shows the fatty acid methyl ester (FAME) profile of oil extracted from microalgae cells 

immobilized within SACMCCA:Mc (0.3:1) bead. The oil was mainly consisted of C16:0 (palmitic acid 

methyl ester), C18:0 (stearic acid methyl ester), C18:1 (oleic acid methyl ester) and C18:2 (linoleic acid 

methyl ester). From the Figure 7, C18:0 performed the highest percentage with 35.59 ± 0.27 % of the 

whole composition and was followed by C16:0 (32.2 ± 0.12 %), C18:1 (6.78 ± 0.31 %) and C18:2 (25.42 

± 0.14 %). These fatty acid methyl esters are presence naturally in oil crops, such as sunflower, soybean, 

palm oil and cottonseed which had potential for biodiesel production [27]. The data shows that the 

extracted oil contained 67.8 ± 0.22 % of saturated fatty acid (SFA) and 32.2 ± 0.21 % of unsaturated 

fatty acids (UFA). The result was comparable with Lam and Lee (2012) in which the extracted oil from 

microalgae biomass immobilized using SA consists a higher SFA (60.1 %) than UFA (38 %) [27]. The 

highly UFA leads to unstable of biodiesel as it will oxidize more rapid than commercial diesel, whereas 

a highly SFA in biodiesel resulted in poor cold flow properties [29,43]. Previous study by Gopinath et 

al. (2010) reported that biodiesel with high SFA had higher thermal efficiency and emits lower oxides 

of nitrogen compared to biodiesel with high UFA [44]. Thus, the oil extracted from microalgae biomass 

via immobilization technique has properties that suitable for biodiesel production. 

   

 
Figure 7. Fatty acid methyl ester profile of microalgae cells immobilized within SACMCCA:Mc (0.3:1) 

bead (C16:0 - palmitic acid methyl ester, C18:0 - stearic acid methyl ester, C18:1 - oleic acid methyl 

ester and C18:2 - linoleic acid methyl ester).  

 

4.  Conclusion 

Based on these characterizations, it can be concluded that a high lipid production was significantly 

influenced by a thin layer of membrane thickness, a smaller of matrix:Mc volume ratio, as well as the 

type of matrix used. The size of immobilized beads had less influenced on the cell density and lipid 

production of immobilized microalgae. The combination of natural matrices revealed changes on the 
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membrane bead size and chemical content of the structure, which essentially influenced the growth of 

the microalgae cells. This observation was further verified through the result of cell density, where the 

mixed matrices exhibited the highest cell density of 1.72 × 109 cells/mL and 30.43v± 0.30 % of lipid 

yield, compared to SACA (24.29 ± 0.50 %), SACMC (13.00 ± 0.60 %) and SA (6.71 ± 0.50 %). The results 

reveal the potential of mixed matrices (SACMCCA) as an appropriate choice for the immobilization of C. 

vulgaris, which is also sufficient for cell viability to produce lipids for larger-scale operations.  

 

Acknowledgements 

This work was supported by the Universiti Malaysia Pahang (UMP) internal grants (RDU180352), 

Faculty of Chemical and Process Engineering, UMP and MyBrain15 scholarship. 

References 

[1]  Taparia T, Mvss M, Mehrotra R, Shukla P and Mehrotra S 2015 Biotechnol. Appl. Biochem. 63 

715–26 

[2]  Razon L F and Raymond R T 2011 Appl. Energy 88 3507–14 

[3]  Chisti Y 2013 J. Biotechnol. 167 201–14 

[4]  Concas A, Pisu M and Cao G 2013 Chem. Eng. Trans. 32 1021–6 

[5]  Concas A, Pisu M and Cao G 2015 Chem. Eng. J. 263 392–401 

[6]  Hamedi S, Mahdavi M A and Gheshlaghi R 2016 Biofuel Res. J. 3 410–6 

[7]  Álvarez-Díaz P D, Ruiz J, Arbib Z, Barragán J, Garrido-Pérez M C and Perales J A 2017 Algal 

Res. 24 477–85 

[8]  Al-Iwayzy S H, Yusaf T and Al-Juboori R A 2014 Energies 7 1829–51 

[9]  Rajanren J R and Ismail H M 2017 Biofuels 8 37–47 

[10]  Mohammad Mirzaie M A, Kalbasi M, Mousavi S M and Ghobadian B 2016 Prep. Biochem. 

Biotechnol. 46 150–6 

[11]  Guisan J M 2013 Methods in Molecular Biology vol 1051 (New York: Springer 

Science+Business Media) 

[12]  Gani P, Mohamed Sunar N, Matias-Peralta H, Abdul Latiff A A and Mohamad Fuzi S F Z 2017 

Prep. Biochem. Biotechnol. 14 333–41 

[13]  Liu S, Xu J, Yu H, Zhao C, Chen W and Ma F 2018 J. Environ. Eng. (United States) 144 1–7 

[14]  Ahmad A L, Mat Yasin N H, Derek C J C and Lim J K 2014 Environ. Technol. 35 2244–53 

[15]  Eroglu E, Smith S M and Raston C L 2015 Biomass and Biofuels from Microalgae vol 2, ed 

N.R. Moheimani et al. (Switzerland: Springer International Publishing) pp 19–44 

[16]  Nussinovitch A 2010 Bead Formation, Strengthening, and Modification (Switzerland: Springer 

Science+Business Media) 

[17]  Glicksman M 1986 Food Hydrocolloids (Boca Raton, FL: CRC Press) 

[18]  Moreno-Garrido I 2008 Bioresour. Technol. 99 3949–64 

[19]  Guiseley K B 1989 Enzyme Microb. Technol. 11 706–16 

[20]  Lee K Y and Mooney D J 2012 Prog. Polym. Sci. 37 106–126 

[21]  Joo D S, Cho M G, Lee J S, Park J H, Kwak J K, Han Y H and Bucholz R 2001 J. 

Microencapsul. 18 567–76 

[22]  Abu Sepian N R, Mat Yasin N H, Zainol N, Rushan N H and Ahmad A L 2019 Environ. 

Technol. 40 1110–7 

[23]  Fan Y, Wu Y, Fang P and Ming Z 2017 Water Sci. Technol. 75 75–83 

[24]  Liu X D, Yu W Y, Zhang Y, Xue W M, Yu W T, Xiong Y, Ma X J, Chen Y and Yuan Q 2002 

J. Microencapsul. 19 775–82 

[25]  Culture Collection of Algae and Protozoa 2015 3N­BBM+V (Bold Basal Medium with 3­fold 

Nitrogen and Vitamins; modified) 

[26]  Md Sai’aan N H, Soon C F, Tee K S, Ahmad M K, Youseffi M and Khagani S A 2017 IECBES 

2016 - IEEE-EMBS Conference on Biomedical Engineering and Sciences pp 611–6 

[27]  Lam M K and Lee K T 2012 Chem. Eng. J. 191 263–8 



ICCEIB 2020
IOP Conf. Series: Materials Science and Engineering 991 (2020) 012007

IOP Publishing
doi:10.1088/1757-899X/991/1/012007

12

 

 

 

 

 

 

[28]  Dianursanti and Santoso A 2015 Energy Procedia 65 58–66 

[29]  Ahmad A L, Mat Yasin N H, Derek C J C and Lim J K 2014 Environ. Technol. (United 

Kingdom) 35 891–7 

[30]  Bligh E and Dyer W 1959 Can. J. Biochem. 37 911–7 

[31]  Sugawara S, Imai T and Otagiri M 1994 Pharm. Res. 11 272–7 

[32]  Draget K I, Skjåk Bræk G and Smidsrød O 1994 Carbohydr. Polym. 25 31–8 

[33]  Rees D A 1981 Pure Appl. Chem. 53 1–14 

[34]  Chabane L, Cheknane B, Zermane F, Bouras O and Baudu M 2017 Chem. Eng. Res. Des. 120 

291–302 

[35]  Coates J 2006 Encyclopedia of Analytical Chemistry ed R A Meyers (Chichester, United 

Kingdom: John Wiley & Sons Ltd) pp 1–23 

[36]  Sartori C 1997 The characterisation of alginate systems for biomedical applications (Brunel 

University) 

[37]  Wang W, Liu X, Xie Y, Zhang H, Yu W, Xiong Y, Xie W and Ma X 2006 J. Mater. Chem. 16 

3252 

[38]  Sarmento B, Ferreira D, Veiga F and Ribeiro A 2006 Carbohydr. Polym. 66 1–7 

[39]  Delrieu P E and Ding L 2001  

[40]  Lee B H and Park J K 1996 Korean J. Biotechnol. Bioeng. 11 398–404 

[41]  Smidsrød O and Skjåk-Brӕk G 1990 Tibtech 8 71–8 

[42]  Chen C Y, Yeh K L, Aisyah R, Lee D J and Chang J S 2011 Bioresour. Technol. 102 71–81 

[43]  Nautiyal P, Subramanian K A and Dastidar M G 2014 Fuel 135 228–34 

[44]  Gopinath A, Puhan S and Govindan N 2010 Int. J. Energy Environ. 1 411–30 

 

 

 


