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Abstract. Due to their lightweight and ease of manufacturing, fibre-reinforced composites are 

replacing metals in many heat exchanger applications. However, their heat transfer dissipation 

performance is not investigated in detail. This paper aims to study experimentally the heat 

transfer performance of fins made from fibre reinforced composites in compact heat exchangers. 

Thin fins were manufactured from reinforced fibre composites by the hot pressing technique. 

The fins have dimensions of 11.5 cm wide and 11.5 cm long. Five different airflow velocities 

with fixed water flow rates were considered in the analysis. The temperature distribution inside 

the tube was measured at eight different points using a K-type thermocouple.  

The results showed that the water temperature at the outlet section was the highest at the lowest 

airflow velocity. Moreover, the air-side heat transfer coefficient increased along the tube length 

at all airflow velocities. The comparable heat transfer performance results make the fibre 

reinforced fins a good choice in the compact fin-and-tube heat exchanger. 

Keyword: Compact Heat Exchangers; Fiber-Reinforced Composites; Heat Dissipation; Heat 

Transfer Coefficient.     

1. Introduction 

Heat exchangers are considered as one of the most important industrial and processing 

equipment used worldwide. As it is one of the applications of thermal physics 

(thermodynamics) and it is also considered one of the applications of heat transfer science. Heat 

exchangers are widely used in heating, refrigeration, air conditioning, and in power plants, 

chemical and petrochemical plants, in addition to oil refineries and gas processing plants. There 

are many classifications of heat exchangers and they vary depending on the location and the 

system adopted [1]. However, heat exchangers can be classified according to the type of flow 

arrangement. There are three arrangements for the flow of fluids in heat exchangers; the first is 

the parallel flow heat exchangers, the two fluids enter the heat exchanger from one side and 

transfer parallel to the other end of the exchanger. The second type is heat exchangers with a 

counter flow, the two fluids enter from the opposite sides and go in the opposite direction. Third, 

the heat exchangers with the crossflow, the two fluids move in a vertical position so that one of 

the fluids is perpendicular to the other, which this research will focus on. There are many types 

of heat exchangers [1], the most prominent of which is compact heat exchanger, fin and tube 

heat exchangers are characterized by their excellent efficacy in heat dissipation and are 

characterized by lightweight and space-saving, which made them used extensively in most 

applications engineering, for example, car coolers, heat energy conservation, air conditioners, 

and in aircraft and spacecraft.  Heat transfer is carried out in this heat exchanger by conduction. 
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In the last decade, heat exchangers made of the reinforced polymer have spread, and have 

received great interest due to the many properties that the polymer possesses. For example, it 

is light in weight, easy to manufacture, and most importantly, has good corrosion resistance. 

On the contrary, metal heat exchangers have a lot of defects such as heavy weight and ease of 

corrosion, which greatly reduces its life and efficiency. In addition, polymeric heat exchangers 

are distinguished by their ability to insulate electricity, which makes them ideal for use in 

electronic devices. Finally, polymers are more resistant to chemicals than metals, which makes 

them more durable as a material for heat exchangers[2]. 
Many studies have invented the need to develop the metal heat exchangers into exchangers made 

from alternative materials. Therefore, attention was focused on making compact reinforced polymer 

heat exchangers as a first step, due to the ability of the polymer composite material to handle liquids and 

gases, and its resistance to corrosion. More importantly, the polymer composite is inexpensive, light in 

weight, and small in size to save space. All of these advantages give the polymer material a competitive 

advantage over the metal heat exchangers [3]. Polymer matrix composites are among the most common 

advanced composites. These composites consist of a polymer thermoplastic or thermosetting reinforced 

by fibre (natural carbon or boron). A variety of shapes and sizes can be moulded from these materials. 

Along with resistance to corrosion, they provide great strength and stiffness. The reason why these are 

most prevalent is their low cost, high strength and simple production principles.  The fibre reinforced 

polymer does not sufficiently dissipate heat, thus accumulating heat stress. However, its many 

distinctive properties such as lightweight, rust resistance and ease of manufacture, which make it a 

suitable choice for designing a high-efficiency heat exchanger. Eunbi Lee mentioned that some additions 

and improvements can be made to the reinforced polymer to increase the thermal conductivity, through-

thickness using a layer-by-layer covering of inorganic crystals.  Three types of inorganic crystal fillers 

consisting of aluminium, magnesium, and copper were used to prepare the highly thermally conductive 

CFRP composites through the layer-by-layer coating process. The vertical thermal conductivity of pure 

CFRP at a very low content of 0.01 wt percent was increased by up to 87 percent while using magnesium 

filler. It was also confirmed that the higher the thermal conductivity enhancement was, the better were 

the mechanical properties. In order to increase the thermal conductivity of composites, many different 

materials with high thermal conductivity have been used as fillers, such as carbon nanotubes (CNTs), 

boron nitride (BN), aluminium oxide, diamond, and graphene. Graphene has received more interest due 

to its unique structure and some of its exciting properties, such as its high thermal conductivity (Li et 

al., 2017). 

Teweldebrhan et al. stated that the thermal conductivity measurement of suspended single-layer 

graphene was one of the highest thermal conductivities of currently known materials, about 

5000 𝑊𝑚−1𝐾−1 [4]. A promising method of advancing the thermal conductivity of composites has 

been considered to be the alignment of hBN using an electric field. This allows small quantities of 

hexagonal boron hBN filler to be used to achieve high thermal conductivity. In addition, it was suggested 

that by adding electric field alumina, the thermal conductivity value of hBN / polymer composites can 

be increased by 15 times for 15 vol % plate-like alumina [5]. Experimental research was conducted by 

[6] to study the performance effect of fin types for compact finned flat-tubing of HEs. Three shape types 

of fins connected to three out of three flat tube bank arrays are smooth, wavy and rectangular grooved 

fins were used in that research. Compared to the wavy and plain fin, the rectangular fin was found to 

have the highest heat transfer performance where the wavy fin is greater than plain perfect. The impact 

of fin spacing on the fin temperature and the heat transfer coefficient of plain fin-and-tube HEs was 

studied by Chen and Hsu [7]. They found that the greater the distance between the fins, the higher the 

heat transfer coefficient. In contrast, the temperature decreased along the length of the fin. [8] performed 

two-dimensional numerical simulations to assess the efficiency of circular and elliptical tubes with one 

and two rows of tubes at the lower number of Reynolds. Their findings reveal that, under equal operating 

conditions, the heat exchanger with the elliptical tube provides greater overall efficiency than the heat 

exchanger with the circular tube. The fine thickness and tube diameter were explored by Lu et al. [9]. 
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From his work, it is found that the heat transfer is improved by decreasing tube diameter with a set 

frontal inlet velocity. Thus, the purpose of this research are to investigate the heat transfer performance 

of compact fine-and-tube heat exchangers (CFTHE) made from reinforced polymer composites and to 

optimize the geometrical and process parameters for enhanced heat dissipation of fibre reinforced plate. 

The air of this study is to investigate the heat transfer performance of carbon fibre reinforced polymer 

composite fins and copper tube compact heat exchangers at various airflow velocities. The fluid medium 

flowing inside the tubes is water at one fixed temperature inlet value.   

 

2. Methodology 

 

2.1. Material  

The materials used to make a rectangular mold for the manufacturing of flat fins, a mild still was used. 

The drawing for the machining was done using Solidworks 2016 software. The finalized dimension of 

the mold is 23.5cm x 23.5cm with 2mm. After the CAD drawing, the drawing has been transferred to 

Mastercam software to create detailed instructions (G-code) and to automate the manufacturing process 

of the mold using a Computer Numerical Control (CNC) machine. After creating detailed instructions 

(G-code) from Mastercam software, the mold was fabricated from the mild steel plate using the CNC 

machine. 

2.2 Fin preparation 

The fins were prepared using VORAFUSE method. It is a technique that has been developed by Dow 

Automotive Systems. It is the combination of epoxy resin with carbon fibre for prepreg (combination 

of fibres and uncured resin) applications in order to improve the handling of materials and the cycle 

time during the molding of composite structures. The hand lay-up process is the most commonly used 

manufacturing process. The fibre preforms are initially placed in a mold where an anti-adhesive coat 

(thin layer) is used to easily remove them. The resin material is then poured for reinforcement. The 

roller is used to enhance the interaction between the reinforcement and matrix materials ' successive 

layers. Previously, no analysis was carried out on the material form of the final shape; the parameters 

were therefore set at 12 cm x 12 cm and 1 mm with inline setup. With constant fin spacing, a total of 

13 woven carbon fibre fins were fabricated. Similar work documented by [10]. 

2.3 Experimental setup and procedure 

The full experimental setup with the measurement instruments used in the experiment and the position 

of the temperature sensors in the inline fin is shown in Figure 1. Air is used as the working fluid, and in 

order to obtain the thermal-hydraulic performance of the fin and tube heat exchangers, the experiments 

were performed in an open wind tunnel. The system of the experiment consists of an inlet section, a test 

section, and measuring tools for air temperature and water, pressure drop, velocity of air, and controller 

device for water temperature. The system starts up by operating the suction fan so that air flows into the 

test section over the fin and tube. By using the coil heater, the water is heated between 40 to 50 ℃ in a 

basin, then pumped through the tube to the inlet of HE by using hot water pump (with power 22W and 

water flow 800L/h), and then this water returns to the basin and heated again and continues in a circular 

motion at the same temperature. 
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Figure 1. Experimental setup with measuring. 

 

The wind tunnel is square in shape, each side is 26 cm. A straightener device has been placed at the 

inlet to avoid the velocity of the air flows any distortion. The test section is 1.2 meters away from the 

straightening device, in order to filter the air before it reaches the test section. Two holes were made for 

the bottom wall of the wind tunnel one before the test section and the other after it, for fixing the pitot 

tubes of the digital manometer. The back side of the wind tunnel has also been drilled, where a 

thermometer device could be installed to measure the velocity and temperature of the airflow before 

entering the test section. After that, air flows through the finned-and-tube HEs and then discharged to 

the adjacent places. The wind tunnel is also installed 50 cm high on a steel stand to reduce noise and 

vibration during system operation. 

The exhaust fan was operated with a 50 W AC current, by means of a frequency converter the fan 

speed was controlled to five different speeds as shown in Table 1. Since the frequency converter is not 

accurate to control the desired air velocity, a Digital Anemometer was used where the frequency 

converter is tuned Moreover, the Digital Anemometer can also measure the temperature, so the 

temperature of the air entering the test section is measured by it. Then the Testo 110 Digital 

Thermometer was used to measure the air temperature after it left the test section. The REX C-100 was 

also used to keep the temperature constant on the surface of the circular tube. TESTO 510 is a model of 

digital differential pressure manometer, and it was used to measure the pressure of air at the inlet and 

the outlet of the test section. Figure 2 shown the test section made of 13 reinforced polymer fins with 2 

cm distance between each other and a copper tube by 5mm diameter. Eight locations were selected on 

the test section and connected to the K-type sensor, so that six points were distributed on the test section 

inside the wind tunnel (point 2, 3, 4, 5, 6, and7) and two points outside the wind tunnel, one of them in 

the inlet (point 1) and the other at the outlet (point 8). Then by using OM-DAQPRO-5300 data logger, 

the temperature was measured for the eight points for each second during two minutes, then this process 

was repeated for the five different velocities of the airflow, Figure 2 shows the location of the sensors 

in the test section.  
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Figure 2. Test section and the 8 positions of K-type. 

2.4 Data reduction  

In this section, the data reduction is identified as a primary purpose for evaluating the heat transfer 

performance of heat exchangers by finding the heat transfer coefficient.  The heat transfer rate 

transferred from the hot water to the tube is calculated using water properties and temperature 

differences. 

 

𝑄. = 𝑐𝑝 �̇�∙ (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) (1) 

 

Where, Cp, �̇�∙ , Tin and Tout are the specific heat capacity of water, the water mass flow rate, hot water 

inlet temperature and water outlet temperature, respectively. The heat transfer coefficient was calculated 

using Equation (2) 

 

ℎ =
𝑄

𝐴 ∆𝑇
 

 

∆𝑇 =
(𝑇𝑖 − 𝑡𝑜) − (𝑇𝑜 − 𝑡𝑖)

ln [
(𝑇𝑖 − 𝑡𝑜)
(𝑇𝑜 − 𝑡𝑖)

]
 

(2) 

 

 

 

(3) 

 
∆𝑇 = 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑚𝑒𝑎𝑛 (5) 

 

𝑇𝑚𝑒𝑎𝑛 =
𝑇𝑎𝑖𝑟 𝑖𝑛𝑙𝑒𝑡 + 𝑇𝑎𝑖𝑟 𝑜𝑢𝑡𝑙𝑒𝑡

2
 

              (6)  
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Where ∆T can be calculated from the log mean temperature difference or the change between the wall 

temperatures and meat temperature, h is the heat transfer coefficient, and A is the surface area of the 

circular tube and the fin surfaces. 

 

3. Result and dissection 

Two random airflow velocities are selected and presented here in Figs. 3 and 4 to prove the flow and 

temperature distributions are at steady-state conditions at every point during the experiment. As shown 

in both figures, the temperature values at various thermocouple locations for the airflow velocities of 

2.3 and 3.3 m/s show straight horizontal curves at all times. At the hot water inlet location (T1), there 

are slight temperature variations between 25-30, 50-55 and 100-105 seconds, however, these variations 

are insignificant. This indicates that the temperature distribution is in a stable condition at all locations. 

Moreover, the results indicated that as the flow advances from the inlet to the outlet section (from T1 to 

T8), the temperature of the working fluid decreased as expected. For both velocity cases, the temperature 

variation is significant between T1 & T2 and T7 & T8 while the temperature change is small for the 

other thermocouple locations. The temperature distribution of the working fluid measured at the fixed 

water flow rate of 0.22L/s are shown in Table 1. The temperature variation along the tube length was 

measured at eight positions at different airflow velocities which were 1.8, 2.3, 2.6, 2.8, 3.2 m/s. As can 

be seen from the table, a gradually decreasing trend of temperature from point T1 to T2 for all airflow 

velocities. The temperature drop was around 10℃ from the inlet to the outlet of the test section. This is 

due to the fact that the hot water loses energy to the air flowing over the surface of the tube when it 

advances toward the outlet section. Moreover, at one specific thermocouple location, at the outlet section 

(T8) for instance, the temperature variations with increased airflow velocity are not significant. 

However, the higher the airflow velocity, supposed to be the greater the amount of heat absorbed during 

the passage of the air through the test section as was reported by A. Y. Adam  et al. for the case of fin-

and-flat-tube compact heat exchangers made from aluminium [11]. The discrepancies might be due to 

low flow rate of heated water flowing through the circular tube and usage of heaters by A. Y. Adam et 

al. which made the wall temperatures of the tube constant at all locations.   

 

 
Figure 3. Variation of temperature with time at various thermocouple locations for the air velocity of 

2.3 m/s. 
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Figure 4. Variation of temperature with time at various thermocouple locations for the air velocity of 

3.2 m/s. 

 

Table 1. Temperature for each position during the five different velocity. 

 

Temperature 

position 

Temperature C 

1.8 m/s 2.3 m/s 2.6 m/s 2.8 m/s 3.2 m/s 

T1 41.3 41.8 41.6 40 41.1 

T2 38.5 39.2 39.5 39.2 39 

T3 37.8 38.1 38.3 38.1 35.5 

T4 36 36.2 36.2 36 35.2 

T5 34.3 35.2 35 35 34.3 

T6 33.6 34.3 34.3 33.3 33.6 

T7 33.4 33.6 33.6 34.3 33.4 

T8 30.3 30.5 30.5 30.5 30.5 

 

Figure 5 depicts the effects of airflow velocity on the local air-side heat transfer coefficient (h). This 

figure reveals that the local air-side heat transfer coefficient has increased significantly when the hot 

water travelled from the inlet to the outlet section of the tube at all airflow velocities. In general, the 

effect of airflow velocity on the heat transfer coefficient is negligible. However, However, as the water 

flow advances towards the outlet (x increases), it can be noticed a trend characterized by the increase 

of h with decreasing air flow rate. These different behaviours are associated with the time required by 

the air to absorb more heat from the hot water when travelling at low speed. It is difficult to generalize 

the overall trend as it might change when the waterside mass flux is changing instead of kept constant. 
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Figure 5. Heat Transfer Coefficient Variation of the Air-Side with Thermocouple Positions 

 

4. Conclusion  

From the heat transfer results, it was found that the fins made of the fibre-reinforced composite can be 

used in compact heat exchangers due to the heat dissipation performance is comparable with the 

conventional heat transfer materials. Through the experiment, which was for five different velocities of 

airflow, it was observed an average of 10 oC decrement in the water-side temperature. However, at the 

constant water-side flow rate, increasing the air-side flow rate has an insignificant effect on the average 

air-side heat transfer coefficient at all tube locations. Hence, fibre-reinforced fins can be used as an 

alternative material for heat dissipation in the compact heat exchanger. 
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