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Abstract

This article proposes a symmetrical hybrid multilevel converter topology with

a constant DC source and a fuel cell source (FCS) for enhancing the voltage

levels and minimization of total harmonic distortions (THD). The proposed

topology is employed using a modified phase shifted pulse width modulation

(PS-PWM) in order to control the power electronic switches. In this hybrid

topology, the first converter operated through low voltage with high frequency

and the second converter through high voltage with fundamental frequency

for improving the voltage levels. The THD for the hybrid multilevel converter

with respect to current and voltage is 1.97% and 15.10%, respectively. The

results show that the proposed topology performs better with a constant DC

source compared to the fuel cell source. Furthermore, the less component

count of the proposed topology is compared with the existing topologies. Com-

parisons are made to validate the results of the proposed topology with differ-

ent sources and the existing topologies.

Highlights
• A symmetrical hybrid multilevel converter for different sources is proposed.

• Enhanced voltage levels with less component count are proposed.

• The minimization of THD with constant DC source is proposed.

• A modified PS-PWM controller for effective voltage balancing is discussed.
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1 | INTRODUCTION

Multilevel converters have received significant attentions
in recent years to achieve high power with enhancing
voltage levels.1-4 Among all classical multilevel topolo-
gies, three converters play a key role, namely the cas-
caded multilevel H-bridge (CHB), the flying capacitor
(FC), and the neutral-point clamped (NPC)5-8 in aca-
demic research as well as industrial sectors. Rodriguez

et al6 proposed a three-level NPC converters applicable to
high voltage drives over 6 kV. The major drawback of this
topology is the restricted voltage blocking for the power
electronic switches. Hatti et al9 proposed a five-level NPC
converter in order to overcome the above limitation.
However, it endures voltage imbalance of dc-link
capacitors.

Following this, for high power applications,
Meynard et al7 proposed a FC multilevel converter that
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depends on the balancing of the capacitor voltages.10-14

Nevertheless, in this converter, the amount of clamping
capacitors rises quickly with the voltage level, which
improves the complication of the scheme tremendously.
Malinowski et al8 proposed a CHB converter, has been
gaining more popularity in greater voltage applications
more than 8 kV, is another commercialized multilevel
topology. However, these topologies have drawbacks of
high cost and component stress. The combination of
various multilevel converters leads to novel topologies,
known as hybrid multilevel converters, that enhance
the voltage levels and reduce the dc sources and number
of clamping devices.

One of the primitive multilevel hybrid topologies dis-
cussed elsewhere15,16 is the stacked multicell converter
where two multilevel FC converters stacked jointly.
Barbosa and Wang et al17-19 suggested a five-level active
NPC (5L-ANPC) hybrid topology. Besides, Chen et al20

proposed a 3L-ANPC topology. Nevertheless, the main
drawbacks of the two topologies are the necessity of two
series-connected switches ensures the same voltage
stress, which decrease the efficiency of the converters.
To overcome the intrinsic disadvantages of above topol-
ogies, Tian et al21 proposed a 4 L (four-level) nested
NPC converter and Wang et al22,23 proposed a 4 L
hybrid-clamped topology. However, these various con-
verters are designed by combining the NPC and FC
topologies. Nonetheless, the limitation of these combi-
nations is difficult to attain voltage levels not more
than five.

Different topologies were proposed with the combina-
tion of CHB converters, namely asymmetrical topolo-
gies24-27 and symmetrical topologies.28-31 Rech et al have
conducted various literatures on these hybrid multilevel
converters.25 However, the improper power demands and
loss of modularity are the major problems of these con-
verters. Su28 and Zheng et al29 have suggested various
multilevel hybrid converters to increase the output volt-
age levels. Nevertheless, these converters have major lim-
itation of excess number of isolated dc-sources. Sandeep
et al32,33 proposed a various multilevel topologies based
on switched capacitors. Nevertheless, these topologies
have a major limitation of high THD, more dc sources
and components.

This article proposes a hybrid multilevel converter
topology for different sources such as constant DC and
fuel cell sources for enhancing voltage levels. The topol-
ogy is integrated with modified phase shifted pulse width
modulation technique (PS-PWM) in order to analyze the
component count and THD for different sources, and
comparisons are made accordingly. Furthermore, the
voltage balancing of FC and DC link capacitors is also
investigated.

2 | PROPOSED TOPOLOGY

Figure 1 shows the proposed configuration of the sym-
metrical hybrid multilevel converter consisting of two
stages or cells, where the first stage reflects dc/dc con-
verter operating through high-frequency with low voltage
and the second stage used for fundamental frequency
with high voltage. The entire system is examined with
constant DC source and fuel cell source (FCS).

The voltage response (Vdx) of the first stage is five
level with a voltage rating of all switches as Vdc=4 and the
second stage voltage response (Vox) is nine level with a
voltage rating of all switches as Vdc. This article is a sig-
nificant review.19 If the voltage of dc-link capacitor is
continuous and reaches to 4 V, then the flying capacitors
Cfx1 and Cfx2 rated voltages are V. The following working
rules should be followed for the generation of multilevel
voltage response:
1. It is necessary to operate Switches Sx1 − Sx6 and

S0x1 − S0x6, in the complimentary method.
2. Bipolar modulation is used to operate the H-bridge. In

other words, Sx5 and S0x6 will be controlled synchro-
nously while Sx6 and S0x5 will be operated
synchronously.

By considering the operating regulations, it is possible
to write the total output voltage as

Vox =Vdx: Sfx5−Sfx6
� � ð1Þ

To run Sx5 and Sx6 at the basic frequency, it is possible
to decide Sfx5 as follows:

FIGURE 1 Proposed structure of hybrid multilevel converter
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Sfx5 =
0 uox ≤ 0

1 uox>0

�
ð2Þ

where
uox = voltage of the reference stage output.
The reference modulation voltage urefx will be repre-

sented as follows for the high-frequency cell:

urefx =
uox Sfx5= 1

−uox Sfx5= 0

�
ð3Þ

In addition, Sx1, Sx2, Sx3, and Sx4 switches are inde-
pendent of each other, allowing the use of phase shifted
pulse width modulation (PS-PWM) to regulate the high-
frequency cell. The switching states and their respective
output voltages are shown as follows in Table 1.

TABLE 1 Switching states with

total output voltage
H-bridge cells DC/DC converter cells

Total output
voltage (Vox)Sx6 Sx5 Sx4 Sx3 Sx2 Sx1

OFF ON OFF OFF OFF OFF 0

OFF ON ON OFF OFF OFF +V

OFF ON OFF ON OFF OFF +V

OFF ON OFF OFF ON OFF +V

OFF ON OFF OFF OFF ON +V

OFF ON ON ON OFF OFF +2 V

OFF ON OFF ON ON OFF +2 V

OFF ON OFF OFF ON ON +2 V

OFF ON ON OFF ON OFF +2 V

OFF ON OFF ON OFF ON +2 V

OFF ON ON OFF OFF ON +2 V

OFF ON ON ON ON OFF +3 V

OFF ON ON ON OFF ON +3 V

OFF ON ON OFF ON ON +3 V

OFF ON OFF ON ON ON +3 V

OFF ON ON ON ON ON +4 V

ON OFF OFF OFF OFF OFF 0

ON OFF ON OFF OFF OFF −V

ON OFF OFF ON OFF OFF −V

ON OFF OFF OFF ON 0 −V

ON OFF OFF OFF OFF ON −V

ON OFF ON ON OFF OFF −2 V

ON OFF OFF ON ON OFF −2 V

ON OFF OFF OFF ON ON −2 V

ON OFF ON OFF ON ON −2 V

ON OFF OFF ON OFF ON −2 V

ON OFF ON OFF OFF ON −2 V

ON OFF ON ON ON OFF −3 V

ON OFF ON ON OFF ON −3 V

ON OFF ON OFF ON ON −3 V

ON OFF OFF ON ON ON −3 V

ON OFF ON ON ON ON −4 V
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3 | VOLTAGE BALANCING OF
CAPACITORS

The effective voltage balancing of the proposed converter
is analyzed as follows. Let the instant FC currents (ifx1,
ifx2) be represented for the FCs Cfx1 and Cfx2 are shown in
Equation (4).

ifx1 = Sfx2−Sfx1
� �

:idx
ifx2 = Sfx4−Sfx3

� �
:idx

(
ð4Þ

where idx is the current flowing from the high frequency
cell, showed in Equation (5).

idx = iox : Sfx5−Sfx6
� � ð5Þ

The instant neutral point (NP) currents iNx can be
written for the dc-link capacitors as

iNx = 1−Sfx1
� �

:idx− 1−Sfx3
� �

:idx = Sfx3−Sfx1
� �

:idx ð6Þ

Let, duty ratios of Sfx1 − Sfx4 are dx1 − dx4, respec-
tively, based on (1), during carrier period of low voltage
cell the average output voltage is defined in Equation (7).

udx = dx1 + dx2 + dx3 + dx4ð Þ:V ð7Þ

When frequency of the carrier is high, it is necessary
to note the reference signal as steady. Duty ratios are
then displayed in Equation (8).

dx1 = dx2 = dx3 = dx4 =
urefx
4

ð8Þ

The average carrier period FC currents basing on
Equation (4) as:

�ifx1 = dx2−dx1ð Þ:idx
�ifx2 = dx4−dx3ð Þ:idx

(
ð9Þ

The average carrier period NP currents basing on
Equation (5) as:

�iNx = dx3−dx1ð Þ:idx ð10Þ

The modified PS-PWM corresponding equations are
as follows:

Δdx1 = −
1
4
Δdx21−

1
4
Δdx43 +

1
2
Δdx31

Δdx2 =
3
4
Δdx21−

1
4
Δdx43 +

1
2
Δdx31

Δdx3 = −
1
4
Δdx21−

1
4
Δdx43−

1
2
Δdx31

Δdx4 = −
1
4
Δdx21 +

3
4
Δdx43−

1
2
Δdx31

9>>>>>>>>>=
>>>>>>>>>;

ð11Þ

Where Δdx1,Δdx2, Δdx3, Δdx4 are small change in duty
ratio. The proposed topology specifications are displayed
in Table 2.

4 | RESULTS AND DISCUSSIONS

Figure 2 shows a symmetrical hybrid multilevel con-
verter modeling and simulation for enhancing the volt-
age and balancing of the capacitors. The entire system
is connected to the 3; asynchronous motor to observe
the performance. From Figure 3, each phase of this
hybrid converter consists of a dc/dc converter and a H-
bridge converter. A modified phase-shifted PWM is
operated to control the switches of the converters
correspondingly.

Figures 4 and 5 show the voltage responses of the
three-level dc/dc converter and five level H-bridge con-
verter respectively. It is observed that the voltage levels of
the proposed topology with FCS are improved. Further-
more, the effective voltage balancing of the capacitors are
obtained is depicted in Figure 6. It is stated that the volt-
ages of the capacitors Vd1, Vd2, Vfx1, and Vfx2 are 160, 170,
10, and 20 V, respectively.

Figures 7 and 8 display the THD of phase voltage
and current of the proposed topology with FCS is
32.04% and 4.86%, respectively. The proposed topology
component count with fuel cell source is shown in
Table 3.

TABLE 2 Specifications of the proposed topology

Parameters Rating

DC-link capacitor 2820 μF

Flying capacitor Cf = 200 μF

Carrier frequency fc = 5 kHz

Constant DC voltage Vdc = 300 V

FCS voltage 320 V

FCS current 90 A

Total cells 70

Nominal stack efficiency 55%
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Furthermore, the proposed topology is investigated
with a constant DC voltage of 300 V and is shown in
Figure 9. For a constant DC source, a five-level response
of dc/dc converter per phase is depicted in Figure 10 and

it is observed that the voltage levels in steps of 60 V has
been shaped from 0 to 300 V. Meanwhile, Figures 11 and
12 show the nine-level response of the inverter per phase
and 3-; has been shaped from −300 to 300 V.

FIGURE 2 Proposed topology with FCS

FIGURE 3 Simulation of proposed hybrid converter per phase
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Figure 13 shows the per phase voltage balancing of
the flying capacitors and dc-link capacitors. It is
observed that the voltages of Vfx1, Vfx2, Vd1, and Vd2 are
90, 20, 120, and 180 V, respectively. The zoom effect is

given in order to depict the well-balanced states of
capacitors. Nevertheless, the capacitors voltage
balancing can be examined experimentally in the future
articles.

FIGURE 4 DC/DC converter voltage

with FCS

FIGURE 5 H-bridge converter voltage

with FCS

FIGURE 6 Capacitors voltage

balancing with FCS
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Figures 14 and 15 show the total harmonic distor-
tion (THD) for a constant DC source with respect to
voltage and current is 15.10% and 1.97%, respectively.
The component count of the proposed topology is

compared with the existing topologies is illustrated in
Table 3.

Furthermore, the proposed topology THD with
respect to voltage and current is compared to existing

FIGURE 7 THD of phase voltage

with FCS

FIGURE 8 THD of phase current

with FCS
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TABLE 3 Component count of the multilevel converter

Topology
DC
sources

Flying
capacitors

Clamped
diode

Active
switch

Total
components

CHB34 4 0 0 16 20

NPC35 1 8 8 16 33

Active NPC17 1 3 0 12 16

FC36 1 7 0 16 23

Proposed
topology

1 2 0 12 15

FIGURE 9 Proposed

topology with constant DC

source

FIGURE 10 DC/DC converter

voltage with constant DC source
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FIGURE 11 Nine level response per

phase with constant DC source

FIGURE 12 3-Ø nine level voltage

response with constant DC source

FIGURE 13 Voltage balancing of

capacitors with constant DC source
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topologies with a constant DC source and it is perceived
that the among the multilevel converters with constant
DC source the proposed converter has better performance
as shown in Table 4.

The THD of the proposed converter with different
sources is presented in Table 5, and observed that the
proposed topology is appropriate for the constant DC
source as compared to the FCS, so as to improve the

FIGURE 14 THD of phase voltage

with constant DC source

FIGURE 15 THD of phase current

with constant DC source
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voltage and balancing the capacitors even though the
component count is similar during both the sources.

5 | CONCLUSION

In this article, a symmetrical hybrid multilevel converter
topology has been proposed. The proposed topology
enhances the voltage levels of the converter for different
sources by adopting a modified PS-PWM. The proposed
topology is ideal for generating multilevel voltages with a
constant DC source and a fuel cell source. The total har-
monic distortion of the proposed converter with respect to
voltage and current is 15.10% and 1.97%, respectively, shows
better performance compared to the fuel cell source and the
existing topologies with constant DC source. The proposed
topology has small number of component count as related
to existing topologies. Therefore, the proposed topology is
more appropriate for a constant DC voltage application.
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