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Abstract:
The metabolic network is the reconstruction of the metabolic pathway of an organism that is used to repre-
sent the interaction between enzymes and metabolites in genome level. Meanwhile, metabolic engineering is
a process that modifies the metabolic network of a cell to increase the production of metabolites. However,
the metabolic networks are too complex that cause problem in identifying near-optimal knockout genes/re-
actions for maximizing the metabolite’s production. Therefore, through constraint-based modelling, various
metaheuristic algorithms have been improvised to optimize the desired phenotypes. In this paper, PSOMOMA
was compared with CSMOMA and ABCMOMA for maximizing the production of succinic acid in E. coli. Fur-
thermore, the results obtained from PSOMOMA were validated with results from the wet lab experiment.
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1 Introduction

In previous years, petroleum is used as a primary component in transportation, mining, industrial and others.
However, due to the restrained reserve, petroleum is unable to withstand the increased demand for global and
consumer products. Furthermore, the use of fossil fuels rears serious implications to the environment such as
greenhouse effects. Hence, this induced the use of biomass as an alternative source considering it is renewable
and available locally. These biomass resources include agronomic residues such as sugarcane waste, wheat or
rice straw, and paper waste. The bioprocess is known as biomass fermentation. Microorganisms such as E. coli
and Saccharomyces cerevisiae are able to produce succinic acid and ethanol in anaerobic condition. However, the
amount of succinic acid and ethanol produced are still below the threshold.

Metabolic network consists of reactions between enzymes and metabolites occur in an organism that may
help the biologists and researchers to understand the genotypic and phenotypic characteristics of a cell. With
the advancement in genome sequencing, a detail organization of an organism can be deciphered, thus exploit
the organisms for strains optimization. However, metabolic network is too complex, which resulted in high
dimensionality of solution space, thus increasing the computational time exponentially.

Therefore, metabolic engineering has been an important factor for improving the production of various
chemical substances by altering organisms. Recently, metabolic engineering has been improved by incorporat-
ing systems biology known as systems metabolic engineering. Systems biology provides a more conceptual
understanding of metabolic enzymes and pathways, thus accelerate the formation or modification of pathways
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with regard to optimize the production of industrial metabolites [1]. One of the modifications is gene knockout,
whereby a set of genes is removed from the mutant and the phenotypic effect is analyzed. The purpose of gene
knockout is to ensure the flux will go towards the production of desired metabolites [2]. However, it is difficult
to obtain a near-optimal set of genes knockout.

Therefore, the development of constraint-based methods has become a great achievement in metabolic en-
gineering as they help to predict, analyze and interpret all the biological functions in the metabolic networks
[3]. The first constraint-based method is Flux Balance Analysis (FBA) that discovers the behaviors of a metabolic
network using the mathematical computation [4]. Hence, a higher level of abstraction needs new mathematical
approaches to illustrate these biological processes. Eventually, this brings to the development of Minimization
of Metabolic Adjustment (MOMA) and Regulatory On/Off Minimization (ROOM) [5], [6].

Both MOMA and ROOM are used to predict the steady-state of the mutant’s metabolic network after gene
knockouts. However, there is a possibility that the steady-state obtained by ROOM is hardly being found by the
organism. In this research, MOMA is chosen as modeling algorithm considering that FBA assumes the mutant
organism is having the same optimal metabolic state as a wild-type organism [7]. Furthermore, MOMA is more
suitable to predict the suboptimal flux distribution in mutant organisms. Still, MOMA lacks the optimization
algorithm that is used to identify knockout genes that can maximize ethanol production. Hence, MOMA is
hybridized with an optimization algorithm to analyze and predict the effect of genes knockout towards the
overproduction of ethanol.

Metaheuristic algorithms have been proposed to improve the production of ethanol in E. coli [8]. Different
metaheuristic algorithms have been applied to identify near-optimal genes knockout as metaheuristic algo-
rithms are computationally less expensive. The first method that applies the metaheuristic algorithm is Opt-
Gene. OptGene applies Genetic Algorithm (GA) for searching and identifying a set of genes knockout that
is evaluated by FBA [9]. Furthermore, OptGene introduced a new fitness function, which is Biomass-Product
Couple Yield (BPCY). Following that, Simulated annealing (SA) and Set-based Evolutionary Algorithm (SEA)
have been proposed to identify a set of genetic manipulations that resulted in increased desired phenotypes
[10]. However, these methods produce over-optimistic solutions, solutions trapped in local optima and high
computation time [9], [11], [12].

Several major advances in in silico metabolic engineering take different approaches. One of the develop-
ment is multiobjective optimization that produces a set of non-dominated solutions between two competing
objectives such as production rate and growth rate [13], [14], [15], [16]. Several methods have been developed to
solve the issues of competing objectives, including Linear Physical Programming based Flux Balance Analysis
(LPPFBA), Noninferior Set Estimation (NISE) with FBA, Genetic Design through Multi-objective Optimisation
(GDMO) and others [17], [18], [19]. The advantages of these methods are the decision-makers, which are in-
dustrialists or biologists, may have various solutions instead of one single solution. Furthermore, the suggested
knockout genes may produce mutant with higher growth rate as well as higher production rate.

In this paper, a comparative study of PSOMOMA, ABCMOMA and CSMOMA are shown in terms of pro-
duction rate and growth rate of succinic in mutant E. coli. These algorithms were improved with MOMA as
fitness function evaluation. The paper is organized as follows: Section 2 describes the metaheuristic algorithms,
Section 3 provides the results and discussion and lastly is the conclusion of the paper.

2 Swarm Intelligence

Swarm intelligence was inspired by the foraging behavior of animals such as bees, ants, birds and fishes. The
discipline focuses on the behaviors of animal interaction with one another and with the environment under a
decentralized control system. At a high level, a swarm can be viewed as a group of agents cooperating to achieve
some purposeful behavior and achieve the same goal [20]. Foraging behaviors describe the movement of ani-
mals around their food resources or movement when finding their nest and mates. Besides, swarm intelligence
provides a global optimization method that helps to solve complex problems in real life.

2.1 Particle Swarm Optimization (PSO)

PSO is an algorithm used to solve discrete and continuous optimization problems in a population. Traditional
PSO was inspired by the social-psychology, such as bird flocking and fish schooling which is introduced by
[21]. PSO involves the use of simple concepts and mathematical operators. Besides, PSO is similar to the genetic
algorithm (GA), whereby the algorithm is initialized randomly. The only difference between GA and PSO is
that PSO has particles, which is agents that move across the problem space. The population in PSO is known
as “swarm”. Each particle has its own velocity and position at a certain instance. The different location of the
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particle in the problem space indicates different possible solutions for a given optimization problem. Every
particle will look for the best location in problem space by changing their velocity towards the best solution.

2.2 Artificial Bee Colony (ABC)

Artificial Bee Colony (ABC) algorithm was inspired by the foraging behavior of honeybee colony [22]. ABC
consists of two modes of behavior, which are recruitment to a nectar source and the abandonment of a source.
It consists of three main components: employed foragers, onlookers and scouts.

1. Employed foragers: are associated with the food sources that are currently exploited. They share the infor-
mation such as distance and direction of the food sources with other bees waiting in the hive.

2. Onlookers: acquire the information from employed foragers and chooses the food source with higher nectar
amounts.

3. Scouts: randomly search for new food sources (solutions) that are abandoned by the employed bees.

2.3 Cuckoo Search (CS)

Cuckoo search is based on the parasitic behavior of cuckoos in nature [23]. It incorporates a Levy flight strategy
in finding the best solution. There are three rules in CS:

a. Only one egg can be laid in a nest at once

b. The nest with higher fitness will survive for the next generations

c. The probability of replacing and discovered by the host is between [0,1].

The rules above are used in searching operations of CS where the selection process is operated by Levy flight
while the exploitation process is operated by applying the probability of p∝ ∈ [0,1]. The advantage of CS is the
incorporation of Levy flight, which allows the new solutions to be generated far from the current best solution
[23]. Due to this, there are fewer chances of solutions trapped in local optima. Therefore, a fraction of probability
is imposed on the cuckoo egg. These metaheuristic algorithms have been compared and the advantages and
disadvantages are represented in Table 1.

Table 1: Comparisons of metaheuristic algorithms.

Algorithm Advantages Disadvantages Ref.

PSO – Easy implement
– No overlapping mutation
calculation

– Easily suffers from the
partial optimism

[24], [25], [26], [27]

ABC – Strong robustness
– Fast convergence
– High flexibility

– Premature convergence
in the later search period
– Accuracy of the optimal
value may not meet the
requirements

[7], [28], [29]

CS – Dynamic applicable
(adapt to changes)
– Easy to implement

– Easily trapped in local
optima
– Levy flight affects the
convergence rate

[22], [30], [31]

To improve metabolite production, the problem can be described as follows: MOMA is similar to FBA. Thus,
metabolic network is represented in a stoichiometric matrix S of a size m × n, whereby m is the metabolites and
n is the reactions. The matrix, S shows the relationship between reactions v of length n and concentrations x of
length m. FBA is used to evaluate the fitness, which is fluxes as shown in the equation below:

Flux vector, 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛)𝑇
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Metabolites vector, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚)

The fluxes are evaluated to time,

Mass balance equation, 𝑑𝑥
𝑑𝑡 = 𝑆 × 𝑣

where T means transposed. FBA is used to calculate the flux distribution of wild-type and mutant, while MOMA
is used to minimize the Euclidean distance between wild-type fluxes and mutant fluxes. Therefore, using linear
programming, the objective of FBA is optimized as follows:

max 𝑍 = 𝑐𝑇𝑥
Subject to 𝑆 × 𝑣

where v is flux vector and c is a vector weight of coefficient reactions to be optimized. After FBA computation,
by using quadratic programming, MOMA is used to minimize the distance between wild-type and mutant.
The objective of MOMA is shown as follows:

min ∥𝑣𝑤𝑡 − 𝑣𝑚𝑡
2∥

min
1
2

𝑣𝑇
𝑚𝑡𝐼𝑣𝑚𝑡 + (−𝑣𝑤𝑡) ⋅ 𝑣𝑚𝑡

where vwt and vmt are flux distribution of wild-type and mutant, respectively. I is the identity matrix of size n
× n with length vmt.

3 Materials and Methods

In this paper, PSOMOMA, ABCMOMA and CSMOMA have been validated with E. coli for maximizing the
production of succinic acid. The glucose is used as the sole carbon and its uptake rate is set to 10 mmol gDW−1

h−1. MATLAB R2013b is used to implement these algorithms. Meanwhile, Constraints Based Reconstruction
Analysis (COBRA) toolbox is used to model and analyse the metabolic model by MOMA. SBML Toolbox is used
to read the file in SBML format. Table 2 shows the model used.

Table 2: Numbers of reactions and metabolites involved before and after the model pre-processing.

Model Number of reactions Number of metabolites

Raw model 2583 1805
Pre-processed model 2342 1585

4 Results and Discussion

The experimental result obtained from the hybrid of PSOMOMA algorithm is compared with the previous
algorithms in enhancing the succinic production and the growth rate of E. coli. This section compares the growth
rate and succinic production of E. coli from PSOMOMA with the previous results obtained for CSMOMA,
ABCMOMA and also results from the wet laboratory [7], [11].

Table 3 below shows the result obtained for PSOMOMA, CSMOMA and ABCMOMA. The results showed
that PSOMOMA achieves the highest growth rate compared to ABCMOMA and CSMOMA. Meanwhile,
CSMOMA is able to found a mutant with the highest production rate of succinic acid. PSOMOMA able to
found the highest production rate with 4 suggested genes knockout, CSMOMA with 5 genes knockout and
ABCMOMA with 2 genes knockout.
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Table 3: Result comparison on succinate production for PSOMOMA, CSMOMA and ABCMOMA.

Method Gene knockouts Succinic production
(mmol gDW−1 h−1)

Growth rate (h−1)

PSOMOMA ackA, pta, ghrA*, dctA* 15.27 0.7967
CSMOMA [7] asnA, ghrA*, pykA, putP,

dctA*
16.58 0.50898

ABCMOMA [11] fum, zwf 6.69 0.44

The suggested genes knockout by PSOMOMA are: [ackA, pta, fum and lpd]. The inactivation of pta-ackA genes
has been proved to improve the production of succinic acid [32]. According to the authors, the removal of these
genes affects the fluxes towards ethanol formation. The inactivation of these genes indirectly will affect the
production of ethanol, which is encoded by adhE gene. Therefore, the mutant strain will increase the produc-
tion of succinate and D-lactate. The inactivation of ghrA responsible for glycoxylate reductase will affect the
metabolism of glycine and serine [33]. Meanwhile, dctA gene is required for transport of dicarboxylate [34]. The
removal of these genes will reduce the competition for carbon sources, which is glucose. Moreover, PSOMOMA
can find 2 similar gene knockout as CSMOMA.

Although CSMOMA found the highest production rate, however, it involves knocking out five genes com-
pared to PSOMOMA and ABCMOMA, which only knocked out four and two genes, respectively. Furthermore,
the suggested knockout genes obtained by PSOMOMA generates viable mutant with the highest growth rate.
Nevertheless, the suggested knockout genes obtained by these algorithms are restricted to the computer simu-
lation. In a wet-lab experiment, various other factors need to identify and considered, as it is difficult to apply
and identify a single gene. Overall, PSOMOMA can find a set of genes knockout with the highest growth rate
in E. coli compared to the other methods.

5 Wet Laboratory

In this section, the production of ethanol in E. coli obtained by PSOMOMA is compared with results from
the wet laboratory. The results of ethanol production by PSOMOMA has been published in [35]. According to
[36], three mutant strains of E. coli were created for maximizing the ethanol production, which are SY03, SY04
and MG1655. The results of iJO1366 are compared with MG1655 mutant strains considering that iJO1366 was
constructed from this strain. Table 4 shows the ethanol production obtained from both PSOMOMA algorithm
and wet laboratory test.

Table 4: Result comparison on ethanol production for PSOMOMA and Wet Laboratory Test.

Method Knockouts/environment
condition

Gene knockouts Ethanol Production (mmol
gDW−1 h−1)

PSOMOMA
2 ACKr, PPS 17.2029
3 pflA,frdB,ldhA 17.2270
4 ACKr, ldhA, FUMt2_2,

fdhF
16.4891

5 ACKr, fumB, PPS, GND,
GLUDy

16.4501

Wet Laboratory [36] pH 7.5 MG1655 (pZSBlank) 7.8400
pH 7.5 MG1655 (pZSKLMgldA) 8.7000
pH 6.3 MG1655 (pZSKLMgldA) 11.1400

As shown in Table 4 below, all different numbers of genes knockout in PSOMOMA result in higher ethanol
production than the wet laboratory test. The highest ethanol by mutant MG1655 in wet laboratory is only 11.14
mmol gDW−1 h−1 whereas the highest production by PSOMOMA is 17.227 mmol gDW−1 h−1, which is a signifi-
cant difference of 6.087 mmol gDW−1 h−1. Although PSOMOMA provides an overly optimistic result of ethanol
production, however, the suggested knockout genes obtained are restricted to the computational simulation. It
is advisable, thus, to test the suggested knockout genes by PSOMOMA in wet-lab experiments.
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6 Conclusion

This paper focuses on a comparison of metaheuristic algorithms to solve the identification of near-optimal genes
knockout to optimize the production of succinic acid. Of the three tested algorithms, PSO performs better in
terms of growth rates while CS performs better in finding mutant with a higher production rate. Although
CSMOMA produces the highest production rate for 5 suggested genes knockout, however, the growth rate is
lesser than PSOMOMA. In future works, multiobjective optimization can be included for optimization of two
competing objectives.
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