Enhanced production of reducing sugars from paragrass using microwave-assisted alkaline pretreatment

Sasikarn Nuchdang^a, Vipa Thongtus^{b,c}, Maneerat Khemkhao^d, Suchata Kirdponpattara^b, Elvin J. Moore^{e,f}, Herma Dina Binti Setiabudi^{g,h} & Chantaraporn Phalakornkule^{b,c} ^a Research and Development Division, Thailand Institute of Nuclear Technology, Khlong Luang, Phathumtani 12120, Thailand ^b The Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand ^c Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand ^d Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology, Rattanakosin, Nakhon Pathom 73170, Thailand ^e Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand ^fCentre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok, 10400, Thailand ^g Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia ^h Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia

ABSTRACT

The main aims of this study were to examine the effectiveness of pretreatment methods for enhancing the conversion of *Brachiara mutica* (paragrass) lignocellulose into valuable reducing sugars by enzymatic hydrolysis. The pretreatments studied included alkali alone, microwave-assisted alkali, acid alone, and microwave-assisted acid. It was found that the application of microwave irradiation during alkaline pretreatment with an alkali-to-biomass ratio of 5% ($w w^{-1}$) for 30 min at 120 °C markedly increased the total reducing sugar (TRS) yield after enzymatic hydrolysis from 316 mg g⁻¹ dry pretreated paragrass without microwave irradiation to 750 mg g⁻¹ dry pretreated paragrass with microwave irradiation. In particular, the microwave-assisted alkaline pretreatment markedly increased xylose production and enhanced the enzymatic digestibility of cellulose. The concentrations of 5hydroxymethylfurfural (HMF) and furfural after the microwave-assisted pretreatment were well below 1.0 kg m⁻³, the suggested threshold concentration of furfurals where yeast inhibition may begin.

KEYWORDS

Alkali; Brachiara mutica; Microwave; Paragrass; Pretreatment; Reducing sugar

ACKNOWLEDGEMENT

The authors received financial support from the *National Research Council of Thailand* (KMUTNB-NRU-59-05) and *Thailand Research Fund* (RSA5980064).