Thermo-catalytic conversion of greenhouse gases (CO₂ and CH₄) to CO-rich hydrogen by CeO₂ modified calcium iron oxide supported nickel catalyst

Mohammed Anwar Hossain^a, Bamidele V. Ayodele^{b,c}, Huei R. Ong^d, Siti I. Mustapa^c, Chin K. Cheng^{a,b}, Maksudur R. Khan^{a,b}

^a Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang Kuantan, Pahang, Malaysia

- ^b Center of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Gambang, Malaysia
- ^c Institute of Energy Policy and Research, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN Kajang, Selangor, Malaysia

^d Faculty of Engineering and Technology, DRB-HICOM University of Automotive Malaysia, Pekan, Malaysia

ABSTRACT

In this study, the thermo-catalytic conversion of two principal greenhouse gases (methane and carbon dioxide) to carbon monoxide (CO)-rich hydrogen (H₂) is investigated over cerium oxide (CeO₂) promoted calcium ferrite supported nickel (Ni/CaFe₂O₄) catalyst. The CeO_2 promoted Ni/CaFe₂O₄ catalyst was prepared using wet-impregnation technique. To ascertain the physicochemical properties, the as-prepared catalyst was characterized using various instrument techniques. The characterization of the catalysts reveals that CeO2-Ni/CaFe₂O₄ possesses suitable physicochemical properties for the conversion of methane (CH_4) and carbon dioxide (CO_2) to CO-rich H₂. The thermo-catalytic reaction revealed that the CeO₂ promoted Ni/CaFe₂O₄ catalyst displayed a higher CH₄ and CO₂ conversions of 90.04% and 91.2%, respectively, at a temperature of 1073 K compared to the unpromoted catalyst. The highest H₂ and CO yields of 78% and 76%, respectively, were obtained over the CeO₂-Ni/CaFe₂O₄ at 1073 K and CH₄/CO₂ ratio of 1. The CeO₂ promoted Ni/CaFe₂O₄ catalyst remained stable throughout the 30 hours time on stream (TOS) while that of the unpromoted Ni/CaFe₂O₄ catalyst sharply decreased after 22 hours TOS. The characterization of the used catalysts confirms the evidence of carbon depositions on the unpromoted Ni/CaFe₂O₄ which is solely responsible for its deactivation. Whereas, there was a slightly gasifiable carbon deposited on the CeO₂ promoted Ni/CaFe₂O₄ catalyst which could be ascribed to the interaction effect of the CeO₂ promoter on the Ni/CaFe₂O₄ catalyst.

KEYWORDS

Calcium iron oxide; Ceria promoter; hydrogen; Methane dry reforming; Syngas

REFERENCES

- Gedzelman, S.D. Is global warming good, or was Arrhenius erroneous? (2017) Weatherwise, 70, pp. 30-39.
- Vicente-Serrano, S.M., Quiring, S.M., Peña-Gallardo, M., Yuan, S., Domínguez-Castro, F. A review of environmental droughts: Increased risk under global warming? (2020) *Earth-Science Reviews*, 201, art. no. 102953.
- Skytt, T., Nielsen, S.N., Jonsson, B.-G. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability – A case study of Jämtland, Sweden (2020) *Ecological Indicators*, 110, art. no. 105831.
- Kaur-Sidhu, M., Ravindra, K., Mor, S., John, S. Emission factors and global warming potential of various solid biomass fuel-cook stove combinations (2020) Atmospheric Pollution Research, 11 (2), pp. 252-260.
- Ayodele, B.V., Khan, M.R., Cheng, C.K. Greenhouse gases mitigation by CO₂ reforming of methane to hydrogen-rich syngas using praseodymium oxide supported cobalt catalyst (2017) *Clean Technologies and Environmental Policy*, 19 (3), pp. 795-807.