PHYSICOCHEMICAL PROPERTIES CHANGES ON MALAYSIA'S BIOMASS TORREFACTION AND DEVELOPMENT OF TORREFACTION CORRELATION MODEL

NUR HAZIRAH HUDA BINTI MOHD HARUN

Master of Science

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that We have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

(Supervisor's Signature)Full Name: DR. SURIYATI BINTI SALEHPosition: SENIOR LECTURERDate:

(Co-supervisor's Signature)Full Name: DR. NOOR ASMA FAZLI BIN ABDUL SAMADPosition: SENIOR LECTURERDate:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NUR HAZIRAH HUDA BINTI MOHD HARUN ID Number : MKC15017 Date :

PHYSICOCHEMICAL PROPERTIES CHANGES ON MALAYSIA'S BIOMASS TORREFACTION AND DEVELOPMENT OF TORREFACTION CORRELATION MODEL

NUR HAZIRAH HUDA BINTI MOHD HARUN

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Chemical and Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

MAY 2019

ACKNOWLEDGEMENTS

I thank the following people for their contribution to the making of this thesis:

My dear mother, for always believing, supporting me throughout the journey. Each written page is the symbol of your love and du'a.

My father: who keeps on encouraging and inspiring me.

My brothers, for their unconditional love and support.

Dr Suriyati Saleh, my supervisor, for her continuous support, guidance, sharing, advices and effective weekly meeting towards the completion of my masters degree research.

Dr Noor Asma Fazli Abdul Samad, my co–supervisor, for his guidance, advice, valuable knowledge sharing and insight especially on the modeling part.

Noratiqah, a dear friend of mine, who not only help me with discussions, but who keeps motivating me especially towards the end of the journey.

Zakirah, Fakhrur and Bilal, my teammates, for the invaluable ideas, discussions and helps through the research. I have learnt much from you guys!

Nursofia, Nurmaryam Aini, Nurul Amira, Natassha, Addilla, Nurulain Nadhirah, Nurashikin, Noraishah, for their unfailing love and support. Thanks for cheering my postgraduate life at UMP.

ABSTRAK

Pada ketika ini, *torrefaction* merupakan antara teknologi prarawatan yang penting untuk menambah baik ciri-ciri biojisim dalam usaha untuk mempromosi pemanfaatan biojisim bagi penghasilan tenaga lestari. Torrefaction adalah proses termal yang berlaku dalam persekitaran lengai bebas oksigen pada julat suhu 220 – 300°C. Sepanjang proses ini, biojisim akan terurai dan beberapa sifat biojisim akan berubah akibat kemusnahan strukturnya. Secara amnya, biojisim yang terurai mempunyai warna yang lebih gelap, ketumpatan tenaga yang tinggi, nilai pemanasan yang tinggi dan mempunyai ciri hidrofobik yang memudahkan pengisaran. Oleh itu, tujuan penyelidikan ini adalah untuk menjalankan eksperimen untuk mengenalpasti kesan torrefaction kepada sifat fizikalkimia biojisism seterusnya membangunkan satu model matematik untuk penilaian penurunan berat kontang (AWL). Eksperimen untuk torrefaction telah dijalankan di dalam reaktor tiub pada empat suhu yang berbeza (240, 270, 300 and 300°C), di dalam keadaan lengai dengan kehadiran nitrogen pada tiga tempoh masa yang berbeza (15, 30 dan 60 minit). Kesan torrefaction pada tiga jenis sisa kelapa sawit (tandan kosong kelapa sawit, tempurung kelapa sawit dan pelepah kelapa sawit) dan tiga jenis sisa pembalakan (meranti, kulim, cengal) ditaksir dengan melakukan beberapa analisis bersandarkan kepada piawaian prosedur untuk bahan bakar. Analisis yang dilakukan adalah analisis hampiran dan muktamad, analisis nilai kalori (HHV) dan pandangan mikroskopi elektron pengimbasan (SEM). Tambahan itu, berdasarkan ciri- ciri sisa kelapa sawit dan pembalakan, hubungkait antara data ciri-ciri tersebut dengan kehilangan jisim dinilai untuk tujuan Model Regresi Linear. Pada masa yang sama, tiga model kinetik dianalisis dan dibangunkan untuk menunjukkan proses torrefaction sebenar untuk sampel sisa sawit dan pembalakan. Model yang digunakan adalah Model Mudah Global, dua tindak balas dalam siri iaitu Model Di Blasi-Lanzetta dan tiga tindak balas selari iaitu Model Rousset di mana semua parameter kinetik yang mewakili evolusi produk pepejal dan jirim meruap diramalkan dan disimulasikan menggunakan Matlab R2014a. Kemudian, parameter yang diperoleh daripada kerja simulasi diperbaiki untuk memadankan pengurangan jirim dan taburan jirim meruap yang diramalkan dengan data eksperimen. Kesimpulannya, terbukti bahawa torrefaction dapat meningkatkan ciri-ciri bahan bakar biojisim berdasarkan nilai HHV, dan analisis proksimat & muktamad. Dari hasil yang diperoleh, HHV untuk sisa kelapa sawit dan sisa pembalakan adalah di dalam julat 22 - 26 MJkg⁻¹. Nilai ini berada dalam lingkungan HHV untuk arang batu iaitu 24 – 35 MJkg⁻¹. Model korelasi linear telah dibangunkan untuk meramal analisis hampiran dan analisis muktamad dengan menggunakan pengurangan jirim sebagai input. Nilai regrasi yang bagus telah diperoleh menunjukkan bahawa satu model korelasi yang andal telah berjaya dibangunkan. Untuk AWL. Model Di Blasi-Lanzetta dan pemodelan Rousset telah beriava mendemonstrasikan AWL secara tepat untuk biojisim yang berkenaan. Model-model ini dibuktikan dengan data eksperimen oleh itu, boleh digunakan untuk meramalkan AWL pelbagai biojisim. Sebagai kesimpulannya, hasil jisim selepas torrefaction untuk pelbagai jenis biojisim boleh diramalkan menggunakan model yang telah dibangunkan untuk mengoptimumkan proses torrefaction pada skala kecil dan industri.

ABSTRACT

Nowadays, torrefaction has become one of the important pretreatment technologies to upgrade the properties of biomass in order to promote utilization of biomass for sustainable energy production. Torrefaction is a thermal process that occurs in an inert oxygen-free environment at temperature range of $200 - 300^{\circ}$ C. Throughout the process, biomass is decomposed and some properties of biomass changed as a result of structure destruction. In general, torrefied biomass has darker color, high energy density, high heating value and exhibits hydrophobic characteristic that makes it easier for grinding. Therefore, the objectives of this research are to conduct an experimental work in order to identify the effect of torrefaction on the physicochemical properties of biomass and to development of linear correlation model and mathematical model for anhydrous weight loss (AWL) evaluation. Torrefaction experiments were conducted in a tubular reactor at four different temperatures (240, 270, 300 and 330°C), in an inert nitrogen condition at three different residence times (15, 30 and 60 minutes). The effect of torrefaction on three types of oil palm waste (empty fruit bunch, palm kernel shell, oil palm frond) and three types of forestry residue (meranti, kulim, cengal) samples were assessed by conducting several analyses following the standard procedure for fuel. Analyses performed were proximate analysis and ultimate analysis, calorific value analysis (HHV) and scanning electron miscroscopy (SEM). Based on the properties of torrefied oil palm waste and forestry residue, the correlation of the properties data were evaluated with respect to mass loss data for Linear Regression Model purpose. Concurrently, three kinetic models were analysed and developed to briefly demonstrate the real torrefaction process using oil palm waste and forestry residue samples. AWL model used were Simple Global Model, a two reaction in series model namely Di Blasi-Lanzetta model and three parallel reaction namely Rousset Model in which all kinetic parameters that represents the evolution of solid and volatile products are predicted and simulated using Matlab R2014a. Later, parameters obtained from the simulation work were fine-tuned in order to fit the predicted mass loss and volatiles distribution with the experimental data. From the results obtained, mass yield for oil palm waste and forestry residues were reduced about 20 to 40%. Energy yield for oil palm waste decreased for about 20% whereas energy yield for forestry residues increased for about the same. HHV for torrefied oil palm waste and forestry residue are in the range of 22 - 26 MJkg⁻¹. These values are in the range of HHV for coal which is 24 - 35 MJkg⁻¹. In conclusion, it is proven that torrefaction can improve the fuel characteristics of biomass based on the HHV value, proximate analysis and ultimate analysis. Among oil palm waste, palm kernel shell is the most suitable feedstock for torrefaction as recorded HHV is 25.83 MJkg⁻¹@330°C whereas cengal is the most suitable feedstock for forestry residue (25.45 MJkg⁻¹@330°C). Good regression value has been obtained indicating a reliable correlation model has been developed for predicting the proximate and ultimate analysis using mass loss as an input. For AWL modelling, Di Blasi-Lanzetta and Rousset Model have accurately demonstrated the AWL of the respective biomass. The models were validated with the experimental data therefore, can be implemented to predict the AWL of various biomass.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	STRAK	iii
ABS	STRACT	iv
TAB	BLE OF CONTENT	v
LIST	T OF TABLES	X
LIST	T OF FIGURES	xi
LIST	T OF SYMBOLS	xiii
LIST	Γ OF ABBREVIATIONS	xiv
CHA	APTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Motivation	2
1.3	Problem Statement	2
1.4	Objectives	4
1.5	Scopes	4
1.6	Significance of the Study	5
1.7	Thesis Outline	5
CHA	APTER 2 LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Malaysia Energy Demands	8
2.3	Current Energy Supply in Malaysia	9

	2.3.1	Oil	9
	2.3.2	Coal	9
	2.3.3	Hydropower	10
2.4	Potent	tial Renewable Energy in Malaysia	10
2.5	Bioma	ass Constituents	11
	2.5.1	Lignin	12
	2.5.2	Cellulose	13
	2.5.3	Hemicellulose	13
2.6	Oil Pa	alm Waste	14
	2.6.1	Current Utilization of Oil Palm Waste	17
2.7	Forest	try Residue	18
	2.7.1	Meranti Tree	19
	2.7.2	Kulim Tree	19
	2.7.3	Cengal Tree	20
2.8	Torrefaction Process		20
2.9	Torref	faction Product Distribution	21
	2.9.1	Solid Torrefied Biomass	21
	2.9.2	Condensable Gases	22
	2.9.3	Non Condensable Gases	23
2.10	Proper	rties of Torrefied Biomass	23
	2.10.1	Moisture Content	23
	2.10.2	Proximate and Ultimate Analysis	24
	2.10.3	Mass and Energy Yields	25
	2.10.4	Grindability	26
2.11	Torref	faction of Oil Palm Waste in Malaysia	26
2.12	Torref	faction of Forestry Residue in Malaysia	27
2.13	Mathematical Modelling		28

	2.13.1	Linear Correlation Model	29	
	2.13.2	Anhydrous Weight Loss Model	30	
CHA	PTER 3	3 METHODOLOGY	33	
3.1	Overv	iew	33	
3.2	Mater	ials	33	
3.3	Exper	Experimental Setup 3		
3.4	Exper	imental Work	35	
	3.4.1	Sample Preparation	35	
	3.4.2	Torrefaction Experiment (Batch Reactor)	36	
	3.4.3	Torrefaction in Thermogravimetric Analyser (TGA) for kinetic		
		parameter estimation	36	
3.5	Produ	ct Analysis	37	
	3.5.1	Proximate Analysis	37	
	3.5.2	Ultimate Analysis	38	
	3.5.3	Calorific Value (HHV)	38	
	3.5.4	Scanning Electron Microscopy (SEM) view	39	
3.6	Mathematical Modelling		40	
3.7	Linear Correlation Model		41	
	3.7.1	Regression Analysis	41	
	3.7.2	Model Validation	41	
3.8	Anhyo	drous Weight Loss Model	41	
	3.8.1	Torrefaction Mathematical Modelling	42	
	3.8.2	Di Blasi – Lanzetta Model	43	
	3.8.3	Rousset Model	46	
	3.8.4	Kinetic Parameter Estimation	47	
	3.8.5	Model Validation	48	

CHA	CHAPTER 4 RESULTS AND DISCUSSIONS	
4.1	Overview	49
4.2	Properties of Raw Biomass	49
4.3	Mass Yield	51
4.4	Energy Yield	55
4.5	Proximate Analysis	59
4.6	Ultimate Analysis	62
4.7	O/C and H/C Ratios	62
4.8	Moisture Content	67
4.9	Higher Heating Value (HHV)	68
4.10	Physical Appearances	71
4.11	Scanning Electron Microscopy (SEM) image	73
CHA: MOD	PTER 5 LINEAR CORRRELATION MODEL AND KINETIC DELLING OF TORREFIED OIL PALM WASTE AND FORESTRY	
RESI	DUE	75
5.1	Overview	75
5.2	Linear Correlation Model	75
5.3	Thermogravimetric Analysis (TGA)	81
		_

5.2	Linear Correlation Model	75
5.3	Thermogravimetric Analysis (TGA)	81
5.4	Differential Thermogravimetry (DTG)	82
5.5	Anhydrous Weight Loss Modelling	87
5.6	Di Blasi Lanzetta Kinetic Parameter Analysis and Model Verification	88
5.7	Rousset Kinetic Parameter Analysis and Model Verification	92

CHAP	CHAPTER 6 CONCLUSIONS	
6.1	Conclusions	97
6.2	Recommendation and Future Works	98

REFERENCES	100
APPENDIX A LIST OF PUBLICATIONS	112
APPENDIX B MATLAB CODING FOR DI BLASI-LANZETTA MODEL	113
APPENDIX C MATLAB CODING FOR ROUSSET MODEL	114

LIST OF TABLES

Table 2.1	Current utilization of oil palm waste at oil palm mills	17
Table 2.2	Previous studies on oil palm waste torrefaction	27
Table 2.3	Previous studies on woody biomass torrefaction	28
Table 2.4	Correlation equations from literature	30
Table 3.1	Kinetic model for Di Blasi – Lanzetta Model	43
Table 3.2	Kinetic model for Rousset Model	46
Table 4.1	Proximate and ultimate analysis for coal and raw biomass	50
Table 4.2	Proximate and ultimate analysis of oil palm waste	60
Table 4.3	Proximate and ultimate analysis of forestry residue	60
Table 4.4	Changes of physical appearances in accordance to torrefaction seve for oil palm waste	erity 71
Table 4.5	Changes of physical appearances in accordance to torrefaction seve for forestry residue	erity 72
Table 5.1	Linear correlation model for oil palm waste and forestry residue	81
Table 5.2	Kinetic parameter for oil palm waste	88
Table 5.3	Kinetic parameters for forestry residue	88
Table 5.4	Kinetic parameter for oil palm waste	92
Table 5.5	Kinetic parameter for forestry residue	94

LIST OF FIGURES

Figure 2.1	Main monomers for lignin (Du et al., 2013)	13
Figure 2.2	Basic structure of cellulose (Sarvaramini, 2014)	13
Figure 2.3	Structure of hemicellulose (Sarvaramini, 2014)	14
Figure 2.4	General Oil palm tree structure	15
Figure 2.5	Cross section of oil palm fresh fruit bunch (FFB)	15
Figure 2.6	Oil Palm waste generation and its application in Malaysia (Hosseir Wahid, 2014)	ni & 16
Figure 2.7	Generation of foresty residues waste in 2015 (mil m ³)	18
Figure 2.8	Biomass torrefaction product composition (Bergman & Kiel, 2005)) 21
Figure 2.9	Degradation profile of biomass hemicellulose, cellulose and lignin (adapted from Stefanidis et al. (2014))	22
Figure 3.1	Overall workflow for the study	33
Figure 3.2	Experimental setup for torrefaction using batch reactor	34
Figure 3.3	Workflow for experimental work	35
Figure 3.4	Detailed workflow for the Linear Regression Model and Anhydrou Weight Loss Model	us 40
Figure 3.5	Detailed workflow for kinetic parameter estimation	47
Figure 4.1	Effect of torrefaction temperature and residence time on mass yield (a) EFB, (b) PKS and (c) OPF	l of 53
Figure 4.2	Effect of torrefaction temperature and residence time on mass yield a) Meranti, b) Cengal and c) Kulim	l of 54
Figure 4.3	Effect of torrefaction temperature and residence time on energy yie a) EFB, b) PKS and c) OPF	eld of 56
Figure 4.4	Effect of torrefaction temperature and residence time on energy yie a) Meranti, b) Cengal and c) Kulim	eld of 57
Figure 4.5	Effect of torrefaction temperature on mass and energy yields of EF PKS and OPF at 30 minutes	Ъ, 59
Figure 4.6	Effect of torrefaction temperature on mass and energy yields of Meranti, Cengal and Kulim at 30 minutes	59
Figure 4.7	O/C and H/C ratios for a) oil palm waste and b) forestry residue	64
Figure 4.8	Distribution of mass yield, moisture content and proximate analysi for oil palm waste	s 65
Figure 4.9	Distribution of mass yield, moisture content and proximate analysi for forestry residue	s 66
Figure 4.10	Relationship between mass loss and moisture content for a) oil palwaste and b) forestry residue	m 68

Figure 4.11	Relationship between carbon content and HHV for a) oil palm wa and b) forestry residue	ste 70
Figure 4.12	SEM view for EFB (oil palm waste) and MS (forestry residue)	74
Figure 5.1	Experimental and modelled data for EFB showing the linear relationship between mass yield and temperature	76
Figure 5.2	Linear correlation of a) Carbon, b) Hydrogen and c) Oxygen elem as a function of mass loss	ents 78
Figure 5.3	Linear correlation model for a) HHV, b) volatile matter, c) ash and fixed carbon	d d) 80
Figure 5.4	TGA graph for a) EFB, b) PKS and c) OPF	83
Figure 5.5	TGA graph for a) MS, b) KS and c) CS	84
Figure 5.6	DTG graph for a) EFB, b) PKS and c) OPF	85
Figure 5.7	DTG graph for a) MS, b) KS and c) CS	86
Figure 5.8	Anyhdrous weight loss profile with respect to temperature and residence time for Meranti sawdust	87
Figure 5.9	Residual mass for a) EFB, b) PKS and OPF at 30 minutes residentime	ce 90
Figure 5.10	Residual mass for a) Meranti, b) Kulim and c) Cengal at 30 minut residence time	es 91
Figure 5.11	Residual mass for a) EFB, b) PKS and OPF at 30 minutes resident time	ce 95
Figure 5.12	Residual mass for a) Meranti, b) Kulim and Cengal at 30 minutes residence time	96

LIST OF SYMBOLS

m_i	Initial mass
\mathcal{m}_{torr}	Torrefied mass
Y _{energy}	Energy yield
Y _{mass}	Mass yield
HHV_{i}	Initial HHV
HHV torr	Torrefied HHV
[A]	Solid A
$[A_0]$	Initial solid A
[B]	Solid B
$[B_0]$	Initial Solid B
[C]	Solid C
$[C_0]$	Initial solid C
k_B	Kinetic constant for intermediate compound (B)
k_{C}	Kinetic constant for char
k_{V1}	Kinetic constant for volatile 1
k_{V2}	Kinetic constant for volatile 2
k_L	Kinetic constant for lignin
k_T	Kinetic constant for tar
k _{CL}	Kinetic constant for cellulose
<i>k</i> _{<i>V</i>3}	Kinetic constant for volatile 3
$k_{_{HB}}$	Kinetic constant for hemicellulose
k _{CI}	Kinetic constant for char 1
k_{V4}	Kinetic constant for volatile 4
k_{C2}	Kinetic constant for char 2

LIST OF ABBREVIATIONS

ASTM	American Standard for Testing Method
AWL	Anhydrous Weight Loss
СРО	Crude Palm Oil
СРКО	Crude Palm Kernel Oil
CS	Cengal Sawdust
DTG	Differential Thermogravimetry
EFB	Empty Fruit Bunch
EY	Energy Yield
FC	Fixed Carbon
FELDA	Federal Land Development Authority
FFB	Fresh Fruit Bunch
GCV	Gross Calorific Value
GHG	Green House Gas
HDPE	High Density Polyethylene
HHV	High Heating Value
KS	Kulim Sawdust
KTOE	Kilotonne of Oil Equivalent
MC	Moisture Content
MF	Mesocarp Fibre
ML	Mass Loss
MS	Meranti Sawdust
MY	Mass Yield
PKS	Palm Kernel Shell
POME	Palm Oil Mild Effluent
OPF	Oil Palm Frond
OPT	Oil Palm Trunk
SCORE	Sarawak Corridor of Renewable Energy
SEDA	Sustainable Energy Development Authority
SEM	Scanning Electron Microscopy
SREP	Small Renewable Energy Power
SSR	Sum of Square Residuals
TDT	Thermal Degradation Temperature
TGA	Thermogravimetric Analysis
VM	Volatile Matter

REFERENCES

- Abas, R., Kamarudin, M. F., Nordin, A., & Simeh, M. A. (2011). A Study on the Malaysian Oil Palm Biomass Sector – Supply and Perception of Palm Oil Millers. *Oil Palm Industry Economic Journal*, 11(1), 28–41. https://doi.org/10.1016/j.jclepro.2012.04.004
- Abnisa, F., Daud W.M.A. Wan, W. M. A. W., Husin, W. N. W., & Sahu, J. N. (2011). Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. *Biomass and Bioenergy*, 35(5), 1863–1872. https://doi.org/10.1016/j.biombioe.2011.01.033
- Ahmad, Z. S. (2016). Characterization of Meranti wood Sawdust and Removal of Lignin Content using Pre-treatment Process, 598–606.
- Al-Mansour, F., & Zuwala, J. (2010). An evaluation of biomass co-firing in Europe. *Biomass and Bioenergy*, *34*(5), 620–629. https://doi.org/10.1016/j.biombioe.2010.01.004
- Almeida, G., Brito, J. O., & Perré, P. (2010). Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. *Bioresource Technology*, *101*(24), 9778–9784. https://doi.org/10.1016/j.biortech.2010.07.026
- Amin Sarvaramini. (2014). New routes to enhance the efficiency of biomass torrefaction and gasification processes. *Québec University Dortoral Thesis*, 277p.
- Anca-Couce, A., & Scharler, R. (2017). Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes. *Fuel*, 206, 572–579. https://doi.org/10.1016/j.fuel.2017.06.011
- Asadullah, M., Adi, A. M., Suhada, N., Malek, N. H., Saringat, M. I., & Azdarpour, A. (2014). Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. *Energy Conversion* and *Management*, 88, 1086–1093. https://doi.org/10.1016/j.enconman.2014.04.071
- Awalludin, M. F., Sulaiman, O., Hashim, R., & Nadhari, W. N. A. W. (2015). An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. *Renewable and Sustainable Energy Reviews*, 50, 1469–1484. https://doi.org/10.1016/j.rser.2015.05.085
- Aziz, M. A., Uemura, Y., & Sabil, K. M. (2011). Characterization of oil palm biomass as feed for torrefaction process. 2011 National Postgraduate Conference Energy and Sustainability: Exploring the Innovative Minds, NPC 2011, (c), 1–6. https://doi.org/10.1109/NatPC.2011.6136260
- Basu, P. (2013). Economic Issues of Biomass Energy Conversion. Biomass Gasification, Pyrolysis, and Torrefaction. https://doi.org/10.1017/CBO9781107415324.004
- Basu, P., Kulshreshtha, A., & Acharya, B. (2017). An Index for Quantifying the Degree of Torrefaction. *BioResources*, 12(1), 1749–1766. https://doi.org/10.15376/biores.12.1.1749-1766
- Bergman, P. C. a., & Kiel, J. H. a. (2005). Torrefaction for biomass upgrading. *Proc. 14th European Biomass Conference, Paris, France*, (October), 17–21. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Torrefaction+for+biom ass+upgrading#0

- Bousdira, K., Bousdira, D., Bekkouche, S. M. E. A., Nouri, L., & Legrand, J. (2017). Kinetic pyrolysis study and classification of date palm biomass. *Journal of Renewable and Sustainable Energy*, 9(1). https://doi.org/10.1063/1.4974342
- Branca, C., & Di Blasi, C. (2003). Kinetics of the isothermal degradation of wood in the temperature range 528-708 K. *Journal of Analytical and Applied Pyrolysis*, 67(2), 207–219. https://doi.org/10.1016/S0165-2370(02)00062-1
- Chen, H. (2014). Biotechnology of lignocellulose: Theory and practice. Biotechnology of Lignocellulose: Theory and Practice. https://doi.org/10.1007/978-94-007-6898-7
- Chen, W.-H., Wang, C.-W., Kumar, G., Rousset, P., & Hsieh, T.-H. (2018). Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS. *Bioresource Technology*, 259, 469–473. https://doi.org/10.1016/J.BIORTECH.2018.03.033
- Chen, W. H., Cheng, W. Y., Lu, K. M., & Huang, Y. P. (2011). An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. *Applied Energy*, 88(11), 3636–3644. https://doi.org/10.1016/j.apenergy.2011.03.040
- Chen, W. H., Du, S. W., Tsai, C. H., & Wang, Z. Y. (2012). Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces. *Bioresource Technology*, *111*, 433–438. https://doi.org/10.1016/j.biortech.2012.01.163
- Chen, W. H., & Kuo, P. C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. *Energy*, 35(6), 2580– 2586. https://doi.org/10.1016/j.energy.2010.02.054
- Chen, W. H., & Kuo, P. C. (2011a). Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. *Energy*, *36*(11), 6451–6460. https://doi.org/10.1016/j.energy.2011.09.022
- Chen, W. H., & Kuo, P. C. (2011b). Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. *Energy*, 36(2), 803–811. https://doi.org/10.1016/j.energy.2010.12.036
- Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. *Renewable and Sustainable Energy Reviews*, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039
- Chew, J. J., & Doshi, V. (2011). Recent advances in biomass pretreatment Torrefaction fundamentals and technology. *Renewable and Sustainable Energy Reviews*, 15(8), 4212– 4222. https://doi.org/10.1016/j.rser.2011.09.017
- Du, L., Wang, Z., Li, S., Song, W., & Lin, W. (2013). A comparison of monomeric phenols produced from lignin by fast pyrolysis and hydrothermal conversions. *International Journal* of Chemical Reactor Engineering, 11(1), 1–11. https://doi.org/10.1515/ijcre-2012-0085

Fernando, R. (2012). Cofiring high ratios of biomass with coal. IEA Clean Coal Centre.

Fogarasi, S., & Cormos, C. C. (2017). Assessment of coal and sawdust co-firing power generation under oxy-combustion conditions with carbon capture and storage. *Journal of Cleaner Production*, 142, 3527–3535. https://doi.org/10.1016/j.jclepro.2016.10.115

- Griffin, W. M., Michalek, J., Matthews, H. S., & Hassan, M. N. A. (2014). Availability of biomass residues for co-firing in peninsular Malaysia: Implications for cost and GHG emissions in the electricity sector. *Energies*, 7(2), 804–823. https://doi.org/10.3390/en7020804
- Hamzah, N., Tokimatsu, K., & Yoshikawa, K. (2017). Prospective for power generation of solid fuel from hydrothermal treatment of biomass and waste in Malaysia. *Energy Procedia*, 142, 369–373. https://doi.org/10.1016/j.egypro.2017.12.058
- Hanaffi Mohd Fuad, M. A., Faizal, H. M., Rahman, M. R. A., & Latiff, Z. A. (2018). Torrefaction of densified empty fruit bunches with addition of plastics waste. *Biofuels*, 7269, 1–11. https://doi.org/10.1080/17597269.2018.1457312
- Hansen, U. E., & Nygaard, I. (2014). Sustainable energy transitions in emerging economies: The formation of a palm oil biomass waste-to-energy niche in Malaysia 1990-2011. *Energy Policy*, 66, 666–676. https://doi.org/10.1016/j.enpol.2013.11.028
- Harun, N. H. H. M., Samad, N. A. F. A., & Saleh, S. (2017). Development of Kinetics Model for Torrefaction of Empty Fruit Bunch from Palm Oil Waste. *Energy Procedia*, 105, 744–749. https://doi.org/10.1016/j.egypro.2017.03.385
- Hosseini, S. E., & Wahid, M. A. (2014). Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia. *Renewable and Sustainable Energy Reviews*, 40, 621–632. https://doi.org/10.1016/j.rser.2014.07.214
- International Energy Agency. (2017). World Energy Outlook: Chapter 1 Introduction and Scope, 32. https://doi.org/10.1787/weo-2017-en
- IRENA. (2012). Renewable Energy Technologies: Cost Analysis Series. *Biomass for Power Generation*, 1(1/5), 60. https://doi.org/10.1016/B978-0-08-098330-1.00011-9
- Muslim, M. B., Saleh, S., & Samad, N. A. F. (2017). Effects of purification on the hydrogen production in biomass gasification process. *Chemical Engineering Transactions*, 56, 1495– 1500. https://doi.org/10.3303/CET1756250
- Ninduangdee, P., Kuprianov, V. I., Cha, E. Y., Kaewrath, R., Youngyuen, P., & Atthawethworawuth, W. (2015). *Thermogravimetric Studies of Oil Palm Empty Fruit Bunch and Palm Kernel Shell: TG/DTG Analysis and Modeling. Energy Procedia* (Vol. 79). Elsevier B.V. https://doi.org/10.1016/j.egypro.2015.11.518
- Osman, N., Othman, H. T., Karim, R. A., & Mazlan, M. A. F. (2014). Biomass in Malaysia: Forestry-based residues. *Int J Biomass Renew*, *3*(1), 7–14.
- Pang, S., & Mujumdar, A. S. (2010). Drying of woody biomass for bioenergy: Drying technologies and optimization for an integrated bioenergy plant. *Drying Technology*, 28(5), 690–701. https://doi.org/10.1080/07373931003799236
- Peng, J., Bi, X. T., Lim, J., & Sokhansanj, S. (2012). Development of torrefaction kinetics for British Columbia softwoods. *International Journal of Chemical Reactor Engineering*, 10(1). https://doi.org/10.1515/1542-6580.2878
- Peng, J. H., Bi, H. T., Sokhansanj, S., & Lim, J. C. (2012). A Study of Particle Size E ff ect on Biomass Torrefaction and Densi fi cation.

Peng, J. H., Bi, X. T., Sokhansanj, S., & Lim, C. J. (2013). Torrefaction and densification of different species of softwood residues. *Fuel*, 111, 411–421. https://doi.org/10.1016/j.fuel.2013.04.048

Peninsular Malaysia Electricity Supply Industry Outlook 2016. (2016).

- Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. *Bioresource Technology*, 102(2), 1246–1253. https://doi.org/10.1016/j.biortech.2010.08.028
- Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. *Energy*, *31*(15), 3458–3470. https://doi.org/10.1016/j.energy.2006.03.008
- Repellin, V., Govin, A., Rolland, M., & Guyonnet, R. (2010). Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln. *Biomass and Bioenergy*, 34(5), 602–609. https://doi.org/10.1016/j.biombioe.2010.01.002
- Rousset, P., Turner, I., Donnut, A., & Perre, P. (2006). Choix d'un modèle de pyrolyse ménagée du bois à l'échelle de la microparticule en vue de la modélisation macroscopique. Annals of Forest Science, 63(2), 1–17. https://doi.org/10.1051/forest
- Rozario, M. (2013). National Biomass Strategy 2020: New wealth creation for Malaysia's palm oil industry. Agensi Inovasi, Malaysia, Kuala Lumpur, (June), 1–32. https://doi.org/10.1016/j.ijggc.2012.07.010
- Sabil, K. M., Aziz, M. A., Lal, B., & Uemura, Y. (2013). Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. *Biomass and Bioenergy*, 56, 351–360. https://doi.org/10.1016/j.biombioe.2013.05.015
- Saka, S.Munusamy, M.V. Shibata, M. Tono, Y.Miyafuji, H. (2008). Characterization in Chemical Composition of the Oil Palm (Elaeis guineensis).pdf.
- Soysa, R., Choi, Y. S., Kim, S. J., & Choi, S. K. (2016). Fast pyrolysis characteristics and kinetic study of Ceylon tea waste. *International Journal of Hydrogen Energy*, 41(37), 16436– 16443. https://doi.org/10.1016/j.ijhydene.2016.04.066
- Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A., & Lappas, A. A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. *Journal of Analytical and Applied Pyrolysis*, 105, 143– 150. https://doi.org/10.1016/j.jaap.2013.10.013
- Sukiran, M. A., Abnisa, F., Wan Daud, W. M. A., Abu Bakar, N., & Loh, S. K. (2017). A review of torrefaction of oil palm solid wastes for biofuel production. *Energy Conversion and Management*, 149, 101–120. https://doi.org/10.1016/j.enconman.2017.07.011
- Suruhanjaya Tenaga Energy Commission. (2015). Malaysia Energy Statistics Handbook 2015. Suruhanjaya Tenaga Energy Commission, 84. https://doi.org/ISSN NO. : 2289-6953, ST(P) 09/09/2016
- Tran, K. Q., Luo, X., Seisenbaeva, G., & Jirjis, R. (2013). Stump torrefaction for bioenergy application. *Applied Energy*, *112*(January 2005), 539–546. https://doi.org/10.1016/j.apenergy.2012.12.053

- Tumuluru, J. S., Sokhansanj, S., Wright, C. T., Boardman, R. D., & Hess, J. R. (2011). Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development. ASABE Annual International Meeting, 40. https://doi.org/10.13031/2013.37192
- Uemura, Y., Omar, W. N., Jamaludin, J. I., Yusup, S. B., Tsutsui, T., and Subbarao, D. (2010). Torrefaction of woody biomass in Malaysia, SCEJ 2nd Meeting, Kyoto 2010, page 853
- Uemura, Y., Omar, W. N., Tsutsui, T., & Yusup, S. B. (2011). Torrefaction of oil palm wastes. *Fuel*, *90*(8), 2585–2591. https://doi.org/10.1016/j.fuel.2011.03.021
- Uemura, Y., Saadon, S., Osman, N., Mansor, N., & Tanoue, K. I. (2015). Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide. *Fuel*, 144, 171–179. https://doi.org/10.1016/j.fuel.2014.12.050
- Uemura, Y., Sellappah, V., Trinh, T. H., Hassan, S., & Tanoue, K. ichiro. (2017). Torrefaction of empty fruit bunches under biomass combustion gas atmosphere. *Bioresource Technology*, 243, 107–117. https://doi.org/10.1016/j.biortech.2017.06.057
- van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. *Biomass and Bioenergy*, *35*(9), 3748–3762. https://doi.org/10.1016/j.biombioe.2011.06.023
- Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. *Fuel*, 158, 330–350. https://doi.org/10.1016/j.fuel.2015.05.050
- Volpe, R., Menendez, J. M. B., Reina, T. R., Messineo, A., & Millan, M. (2017). Evolution of chars during slow pyrolysis of citrus waste. *Fuel Processing Technology*, 158, 255–263. https://doi.org/10.1016/j.fuproc.2017.01.015
- Wannapeera, J., Fungtammasan, B., & Worasuwannarak, N. (2011). Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. *Journal of Analytical and Applied Pyrolysis*, 92(1), 99–105. https://doi.org/10.1016/j.jaap.2011.04.010
- Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., & Gu, J. (2017). Effect of the Torrefaction Temperature on the Structural. *BioResources*, *12*(2), 3425–3447