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ABSTRAK 

Pengklasteran aliran data memainkan peranan penting dalam perlombongan data aliran 

untuk pengekstrakan pengetahuan. Dalam beberapa tahun kebelakangan ini, banyak 

penyelidik telah mengkaji teknik clustering berasaskan ketumpatan dalam talian kerana 

kemampuannya untuk menghasilkan kluster berbentuk bebas. Teknik ini meringkaskan 

aliran data dalam klaster mikro dengan mikro klaster tersebut membentuk kelompok. 

Walau bagaimanapun, sebahagian besar kluster ini sama ada tidak sepenuhnya dalam 

talian, atau tidak dapat mengendalikan sifat aliran data dengan betul. Selain itu, 

algoritma ini memerlukan penetapan awal radius optimum mikro kluster, yang 

merupakan tugas yang sukar, dan pilihan yang salah memburukkan kualiti kluster. Di 

samping itu, algoritma ini juga mengabaikan kehadiran kluster mikro sementara yang 

tidak relevan, walhal mungkin menjadi relevan pada masa akan datang. Hal ini 

menyebabkan kemerosotan kualiti kluster dan peningkatan masa pemprosesan kerana 

kelompok mikro dihapuskan dan dibuat kerap disebabkan oleh aliran data yang 

berubah-ubah. Dalam kajian ini, algoritma klaster berasaskan ketumpatan dalam talian 

yang dipanggil Penimbal Pengklasteran Dalam Talian untuk Aliran Data Berubah-ubah 

(BOCEDS) dibentangkan. BOCEDS mengelompokkan aliran data dalam satu peringkat. 

Algoritma meringkaskan data daripada aliran data dalam cluster mikro. Algoritma ini 

mengekalkan radius optimum tempatan mikro kluster optimum tempatan berbanding 

radius global dan malar. Selain itu, ia memperkenalkan penimbal untuk menyimpan 

kluster mikro yang tidak relevan serta proses pemangkasan sepenuhnya dalam talian 

untuk mengeluarkan kluster mikro yang tidak relevan dari penimbal. Proses 

pemangkasan ini dapat mengurangkan masa pemprosesan. Di samping itu, BOCEDS 

mencadangkan fungsi mengemaskini tenaga mikro-klaster dalam talian berdasarkan 

maklumat spatial aliran data. Geraf gumpalan kelompok klaster akan dihasilkan 

berdasarkan sambungan antara kluster mikro. Kemudian, klaster dihasilkan daripada 

graf gumpalan kelompok kluster tersebut. Untuk menilai prestasi, algoritma, BOCEDS 

dilaksanakan pada dua aliran data sintaktik dan satu data praktikal. Hasil eksperimen 

menunjukkan BOCEDS dapat menghasilkan kelompok baru dan menghapus kelompok 

lapuk dengan waktu seiring dengan perubahan kandungan data. Eksperimen dalam 

aliran data yang bising menunjukkan bahawa algoritma BOCEDS dapat mengesan 

kebisingan dengan ketepatan kira-kira 100%. Kejituan dan kesucian keseluruhan adalah 

lebih daripada 99%. Hasil eksperimen dibandingkan dengan algoritma kluster alternatif 

berasaskan ketumpatan hibrid dalam talian / luar talian. Masa pemprosesan purata untuk 

titik data dalam aliran data adalah kira-kira 2 milisaat yang jauh lebih rendah daripada 

algoritma kluster yang sejajar dalam literatur. Algoritma ini juga lebih berskala untuk 

aliran data dimensi yang tinggi daripada algoritma yang sedia ada. Kepekaan parameter 

clustering dalam BOCEDS juga diukur. Hasilnya menunjukkan bahawa perubahan nilai 

parameter kualiti kluster hanya menyimpang kualiti klaster dengan jumlah yang sangat 

kecil (<1%). Hasil ini membuktikan keunggulan algoritma BOCEDS berbanding 

algoritma kluster yang sedia ada. 
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ABSTRACT 

Data stream clustering plays an important role in data stream mining for knowledge 

extraction. In recent years, numerous researchers have studied the online density-based 

clustering technique due to its capability to generate arbitrarily shaped clusters. The 

technique summarizes the data stream in micro-clusters and the micro-clusters form the 

clusters. However, most of the clusters are either not fully online, or cannot handle the 

properties of data stream properly. Moreover, the algorithms require predefining the 

global optimal radius of micro-clusters, which is a difficult task, and an erroneous 

choice deteriorates the cluster quality. In addition, the algorithms ignore the presence of 

temporarily irrelevant micro-clusters, which may be relevant in the future. This 

ignorance causes the degradation of clustering quality and the increase of the processing 

time as micro-clusters are deleted and created frequently due to evolving nature of data 

stream. In this study, a fully online density-based clustering algorithm called Buffer-

based Online Clustering for Evolving Data Stream (BOCEDS) is presented. BOCEDS 

clusters the data stream in a single stage. The algorithm summarizes the data from data 

stream in micro-clusters. This algorithm maintains the local optimal radius of micro-

clusters rather than a global and constant radius. Moreover, it introduces a buffer for 

storing irrelevant micro-clusters and a fully online pruning process for extracting the 

temporarily irrelevant micro-cluster from the buffer. The pruning process improves 

processing time. In addition, BOCEDS proposes an online micro-cluster energy 

updating function based on the spatial information of the data stream. Then, clustering 

graphs are generated based on the connectivity among micro-clusters. The clusters are 

generated from the clustering graphs. To evaluate the performance, BOCEDS algorithm 

is executed on two syntactic and one practical data streams. The experimental result 

shows BOCEDS is able to generate new clusters and remove outdated clusters with time 

as data stream contents change. The experiment on noisy data stream shows that 

BOCEDS algorithm can detect noise with an accuracy of approximately 100%. The 

overall clustering accuracy and purity are more than 99%. Experimental results are 

compared with other alternative online/offline hybrid density-based clustering 

algorithms. The average processing time for data point in the data stream is about 2 

milliseconds which is much lower than the aligned clustering algorithms in literature. 

The algorithm is also more scalable to high dimensional data stream than the existing 

algorithms. The sensitivity of clustering parameters in BOCEDS is also measured. The 

result shows that in case of changing the values of parameters the cluster quality 

deviates by a very small amount (<1%). These results prove the superiority of BOCEDS 

algorithm over the existing clustering algorithms.  The BOCEDS algorithm is then 

applied to real-world weather data streams to demonstrate its capability to detect the 

drifts in the data stream and discover arbitrarily shaped clusters. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction to Big Data and Data Stream 

The fast development of information technology (IT) leads to generation of 

numerous amounts of data-generating applications ranges from machine condition 

monitoring and atmospheric science to social media analysis. Such large numbers of 

application usually generate a massive amount of data sets at every moment, often 

known as “big data” (Esposito et al., 2015). The term ‘Big Data’ was introduced by 

John in a Silicon Graphics (SGI) slide deck with the title “Big Data and the Next Wave 

of InfraStress” in 1988 (Fan & Bifet, 2013). TechAmerica Foundation defines ‘big data’ 

as-  

“Big data is a term that describes large volumes of high 

velocity, complex and variable data that require advanced 

techniques and technologies to enable the capture, 

storage, distribution, management, and analysis of the 

information.” 

 

Unlike traditional data, big data is defined as very large amounts of structured, 

semi-structured or unstructured data (Losee, 2006). Structured data refers to the data 

with high degree of organization, such as in tables and relations; whereas unstructured 

data is essentially the opposite. On the other hand, semi-structured data is interpreted 

with structural information supplied as tags such as name=’Kamrul’, city=’Gambang’, 

gender=’Male’ instead of having regular structures. Big data are daily generated from 

heterogeneous sources at an unprecedented rate. The example of such big data sources 

includes sensor networks, anomaly detection, financial transactions, call records, social 

data, multimedia data, advertising, etc. The amount of data has grown exponentially 
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over the past decade. According to the September 2017 statistics, the customers of Wal-

Mart provided approximately 2.5 petabytes (PB) or 1015 bytes of data per hour (Can & 

Alatas, 2017). The same kinds of trends were seen in case of other IT applications like 

Facebook, Twitter, and YouTube etc. The recent trend of big data growth has been 

analysed recently and the future trends of growth has been assumed (Statista, 2018). 

The trend analysis is shown in Figure 1.1. 

 

Figure 1.1 Growth of big data from 2005 to 2025 

Source: Statista (2018) 

According to the statistics, the world generated 0.1 zetabytes (ZB) or 100000 PB 

data in 2005. With growing the IT-based applications, the volume of data grew 

continuously and reaches to 12 ZB in 2015. It is estimated that by 2025, the data 

volume will be 163 ZB which 1630 time comparing to data volume 2005. The huge and 

unbounded series of data points that arrive continuously is referred to as a data stream 

(Krawczyk et al., 2017). They are enormous, rapid changing, and potentially limitless. 

Comparing to traditional static datasets, data stream poses three additional and special 

constraints (Krawczyk et al., 2017; Oussous et al., 2018; Silva et al., 2013) as in Figure 

1.2. These three special constraints (volume, velocity and variety) are commonly known 

as the 3V properties of data stream. 
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Figure 1.2 Properties of data stream 

The properties are described as follows: 

i. Volume: Volume refers to the size of the data stream. The data points are 

continuously coming from diverse sources. The volume of data stream is large 

and will grow to extremely large in future. This fact makes it impossible to store 

the data stream in memory to analyze.  

ii. Velocity: Velocity is the rate of data generation in the data stream. The arrival 

speed of data in data stream is quite high. To deal with this high-speed data 

stream, fast processing of data points is required to enable real time processing 

of data stream. 

iii. Variety: Variety refers to the structural heterogeneity in a data stream. In other 

words, it is the gradual change of data stream as time progress. The term to 

describe the fact is the evolving data stream. In such a data stream, an old data 

point from the stream may be irrelevant (or even harmful) for the current model. 

The detection of such change of data stream is desired. 

 



4 

1.2 Data Stream Clustering 

Clustering of the data stream is one of the vital techniques in the field of stream 

mining and has a wide range of applications such as gene expression profiling, anomaly 

detection in bank transaction, image segmentation, text clustering, environmental trend 

analysis and so on (Z. Wang et al., 2018). The technique for partitioning the data stream 

into clusters based on the similarity among data points is known as data stream 

clustering (Bryant & Cios, 2018). Traditional data clustering algorithms are best 

equipped to run one-time on the concept of persistent data sets that are stored reliably in 

storage (Garofalakis et al., 2016). However, several modern applications generate data 

stream on a continuous basis. Due to volume characteristics of data stream, it is quite 

impossible and impractical to store the entire data stream in memory for analysis. The 

data points from data stream pass only once and so multiple scans are not feasible. Low 

processing time is another requirement to enable real time processing (Amini et al., 

2014). 

Given the unprecedented amount of data that will be produced, collected and 

stored in the coming years, one of the technology industry's great challenges is how to 

benefit from it  (Al-Jarrah et al., 2015). Data analyst always looks for the technique 

which can extract the hidden knowledge in these data stream. The extracted knowledge 

has been used by researchers to solve social problems towards a comfortable life and a 

better world for humanity. Some examples of such efforts include social unrest 

prediction based on social media data (Ansah et al., 2018), people demand analysis for 

new product development (Zhan et al., 2019),  building groups of genes with related 

expression patterns for genome annotation (Gudenas et al., 2019), analysing patterns of 

antibiotic resistance for new antibiotic development (Mohana et al., 2018), identifying 

areas where there are greater incidences of a specific type of crime (Win et al., 2019), 

finding weather regimes (Hannachi & Trendafilov, 2017). Mining data streams is one of 

the knowledge extraction technique that has attracted the researchers and clustering is a 

significant part of mining data streams (Ackermann et al., 2012). The technique for 

partitioning the data in data stream into clusters is known as data stream clustering 

where the similar data are placed in the same cluster, and dissimilar data are placed in 

different cluster (Nguyen et al., 2015). Increasingly, it has become a useful, ubiquitous 

and essential tool in data stream analysis. 

https://www.sciencedirect.com/topics/computer-science/technology-industry
https://en.wikipedia.org/wiki/Genes


5 

Considering the above constraints, a good data stream clustering algorithm is 

one which tries to achieve the following properties (Han et al., 2011; Kranen et al., 

2011). 

i. The clustering result is generated with minimum time to deal with this high 

speedy property of data stream towards real time processing of data stream. 

ii. The model evolves to detect and learn the changes of concept in data stream 

rapidly. The current model always reflects the recent nature of data stream.  

iii. The number of clusters is not constant and varies with time. The number of total 

cluster in the model completely depends on the data points those are arriving 

continuously from the data stream. 

iv. Noise in the data stream is detected in forms of the outlier and actions are taken 

accordingly. 

v. Be able to process heterogeneous data stream. 

vi. Be able to process high-dimensional data stream as the data stream may contain 

a high number of attributes or dimensions in their nature such as genomics data 

stream. 

The clustering approaches are categorized into five categories and they are 

model-based, partitioning, grid-based, hierarchical, and density-based clustering. This 

categorization can be drawn as Figure 1.3. 

 

 

Figure 1.3 Hierarchy of data stream clustering approaches 
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1.2.1 Model-based Clustering 

The model-based clustering technique aims to find the best fit the data points to 

a cluster based on the mathematical model like EM (Expectation Maximization) 

algorithm (D. Xu & Tian, 2015). K-means algorithm is adapted to design model-based 

clustering. EM maps the data point to an existing cluster based on a weight which 

represents the probability to a spherical-shaped cluster membership. Some popular 

model-based clustering algorithms include GMM (Rasmussen, 2000), RJMCMC 

(Malsiner et al., 2016), CFMM (Kosmidis & Karlis, 2016), ClusMD (McParland & 

Gormley, 2016). The model-based data stream clustering techniques suffer from the 

well-known ‘curse of dimensionality’ problem (Donoho, 2000) where memory space 

and time requirement grow at a faster than linear rate with the growing dimension size. 

Moreover, the model may ignore the clusters which are small but significant. 

1.2.2 Partitioning Based Clustering 

The partitioning based clustering technique divides the data space into some 

partitions and each partition forms a single cluster (Sardar & Ansari, 2018). This 

clustering technique is also designed based on the k-means algorithm to form 

spherically shaped clusters. Most data clustering algorithm from this category maps the 

data point to a partition based on the distance among data points. K-Means (MacQueen, 

1967), K-Medoids (H. S. Park & Jun, 2009), CLARA  (Kaufman & Rousseeuw, 2009), 

CLARANS (Ng & Han, 2002) are example of some popular partitioning based 

clustering algorithms. Though the partitioning based clustering techniques are simple, 

scalable and require low processing time, they are limited to spherically shaped clusters 

only and cannot extract clusters of arbitrary shape. Moreover, the clustering results are 

usually influenced by noise. 

1.2.3 Grid-based Clustering 

A grid-based clustering technique for data stream creates a number of cells 

called grids in data space to form grid structure and then form the clusters from the cells 

in the grid structure (Cheng et al., 2018). Unlike the partitioning technique, the 

partitioning process does not depend on the distribution of data points. This technique 

utilizes a multi-resolution grid structure. The grids which have more density than its 

neighbour grids form the clusters. SGC (N. H. Park & Lee, 2004), GDILC (Zhao & 
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Song, 2001), GCHL (Pilevar & Sukumar, 2005), SGC (W.M. Ma & Chow, 2004) are 

well known algorithms in the field of grid-based clustering of data stream. Since these 

clustering techniques consider the density of grids to form cluster, so they are mostly 

considered as density-based clustering. The advantages of this category of clustering 

technique include low processing time, but they suffer from ‘curse of dimensionality’ 

problem. Moreover, the optimal value of grid size should be predefined by user. 

1.2.4 Hierarchical Based Clustering 

The hierarchical clustering utilizes the concept of CF-tree (Clustering Feature), 

where the summarization of the data stream is represented by a node in a balanced tree 

(Bouguettaya et al., 2015). The nodes are created and balanced based on predefined 

threshold number of data points. The non-leaf node of the tree aggregates the statistics 

in its descendant nodes which are used to generate the clusters. Once an operation is 

finished to merge or split the node, it cannot be reversed. KnA (Bouguettaya et al., 

2015), IVHFAH(Xiaolu Zhang & Xu, 2015), gHHC (Monath et al., 2019) are popular 

hierarchical-based clustering algorithms. Hierarchical clustering is simple and 

appropriate for data stream with well-separated spherical clusters. Moreover, these 

techniques avoid the necessity of defining the number of target clusters in advance. 

However, the technique is expensive in high dimensional spaces due to the curse of 

dimensionality phenomenon. 

1.2.5 Density-based Clustering 

The final category, density-based clustering technique has been developed based 

on the concept of density. The total number of data points in a region referred to as the 

density of the region. The region is defined by a center and a radius which contributes to 

form either cluster or outlier. A cluster is a set of density-connected data points with 

maximum density reachability. Thus, the denser regions in the data space form cluster 

and they are separated by the sparse regions. The data points which do not belong to any 

of the current clusters are considered to be outlier or noise (Han, 2005). Density-based 

clustering has been found as a natural and attractive clustering technique as it has the 

ability to generate arbitrarily shaped clusters, to handle the evolving nature of data 

stream and to detect noises and act accordingly in noisy environment. Therefore, they 

have become the most appropriate clustering method for data stream (Amini et al., 



8 

2014). In recent years a lot of researchers have proposed density-based data stream 

clustering techniques. But most of them are not fully online methods, or unable to 

handle evolving or noisy characteristics of data stream or suffers from low-performance 

problem like high memory requirement, low processing rate, low cluster quality, low 

data coverage or curse of dimensionality (Hyde et al., 2017) 

1.3 Problem Statement 

Data stream clustering is an unsupervised learning technique in the field of data 

stream mining (Reddy & Bindu, 2017). Among the five categories of clustering ( 

Figure 1.3), density-based technique has gained remarkable popularity due to its 

ability to extract arbitrary shaped clusters, to identify noise and avoiding the 

requirement of predefining the number clusters (Amini et al., 2014). There are many 

density-based clustering algorithms exist today. A majority of such algorithms are either 

hybrid online/offline methods, windowed offline methods, or unable to handle evolving 

nature of data stream (Hyde et al., 2017). The windowed offline method requires a 

portion of data to be stored in memory for analysis and hybrid online/offline method 

requires generating clusters by an offline process. However, they are not ideal for data 

stream clustering as the clustering results are not always available and online data 

cannot be stored or postponed due to the unknown size and order of data points (Sharma 

& Sharma, 2017). A few density-based clustering algorithms are fully online. However, 

in the field of online density-based clustering, two major problems still exist:  

1st problem: Density-based micro-clustering algorithms for data stream require setting 

the optimal value of global and constant micro-cluster radius prior to the execution of 

algorithms. 

Description of 1st problem: The performance of the density-based micro-clustering 

algorithm for data stream is highly dependent on setting the optimal value of global and 

constant micro-cluster radius prior to the execution of the algorithm. A global radius is 

used for all micro-clusters and remains constant during the execution of the algorithm. 

However, a unique radius for all micro-clusters may provide inefficient clustering 

result. For illustrating the fact, consider the data distribution in Figure 1.4. 
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Figure 1.4 Micro-cluster formation (a) Micro-clustering by unique radius (b) Micro-

clustering by variable radius. 

Figure 1.4(a) shows the formation of micro-clusters by micro-clustering 

technique with a unique radius for all micro-clusters. This radius is input from user and 

remains constant. Figure 1.4(b) shows the formation of micro-clusters by human with 

eye and hand where every micro-cluster has its own optimal value of clustering radius. 

Micro-clusters are formed in dense regions separated by sparse regions. In Figure 

1.4(a), micro-cluster 2 and micro-cluster-3 formation includes sparse regions with dense 

regions. Moreover, though there is not sparse region between micro-cluster 4 and 

micro-cluster 5, two micro-clusters are formed by violating the rule of separateness 

between micro-clusters. Thus, comparing Figure 1.4(a) and Figure 1.4(b), it can be said 

that Figure 1.4(b) is more efficient clustering than clustering in Figure 1.4(a). 

This problem generates two performance issues. The first issue is that there are 

many IT applications where it is really difficult to set the optimal micro-cluster radius. 

An erroneous choice of the radius degrades the cluster quality remarkably. Secondly, 

the concept of global radius further affects the cluster quality by generating the clusters 

in sparse region.    

2nd problem: The existing density-based micro-clustering algorithms cannot 

identify the temporarily irrelevant from irrelevant clusters.  

Description of 2nd problem: In most of the real world IT-applications, the concepts in 

data stream change over time. This property of data stream can invalidate the current 

learned model (Gomes et al., 2017). The micro-clusters in the learned model those do 

not represent the current data stream contents are called irrelevant micro-clusters. Most 

Radius 

                                   (a)                                                                     (b) 
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of the evolving clustering algorithms for data stream use micro-cluster energy to detect 

and remove the irrelevant micro-cluster in handling the evolving nature of the data 

stream. However, they fail to identify the temporary irrelevant but relevant in near 

future cluster. For illustration the problem, consider the change in energy due to data 

point arrival to an evolving micro-clustering environment in Figure 1.5. Figure 1.5(a) 

shows at point ‘a’ a micro-cluster is created. Then, at point ‘b’ the energy of the micro-

cluster begin to fall due to no data point falls into this micro-cluster. Finally, at point ‘c’ 

the energy falls down to zero and at this point the micro-clustering techniques mark this 

micro-cluster as irrelevant to current data stream content and delete from the system. 

Figure 1.5(b) shows the actual situation where micro-clusters are not deleted. 

  

                                   (a)                             (b) 

Figure 1.5 Evolving of micro-clusters (a) Removing micro-cluster, (b) Without 

removing micro-cluster 

Likewise Figure 1.5 (a), at point ‘c’ the micro-cluster energy goes to zero. But at 

point ‘d’ again data point resides in the micro-cluster and the micro-cluster is alive 

again. From point ‘d’ to ‘e’ the micro-cluster receives data points and at ‘f’ again the 

energy to zero and again alive at point ‘f’. Hence, the micro-cluster is said to be 

temporarily irrelevant but relevant at near future. The failure to identify the temporary 

irrelevant micro-clusters let the model to create and delete the micro-clusters frequently. 

This operation increases the computational time.  

In order to mitigate the aforementioned limitations, a new density-based 

clustering strategy needs to be designed which will work in a fully online manner. The 

clustering parameter micro-cluster radius needs to be self-adapted based on data stream 

content to reduce the dependency on user to avoid erroneous setting. Micro-clusters 

have to maintain their own radius independently. The micro-clusters those are 
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temporarily irrelevant but relevant at near future, need to be identified and pruned. The 

pruning operation prevents the memory to grow beyond the limit and also to conform 

that the out-dated clusters are removed from the system.  

1.4 Research Objectives 

The main concern of this research is to design a fully online density-based 

clustering algorithm that handles the challenges of data stream efficiently. To achieve 

the goal, the following four objectives have been set in this research as follows.  

i. To design an online clustering algorithm based on the concept of local optimal 

radius and irrelevant micro-cluster buffering. 

ii. To implement the algorithm by adapting a non-linear procedure for updating the 

micro-cluster energy and pruning the micro-clusters.  

iii. To evaluate the performance of the developed algorithm against selected 

benchmark functions as case studies. 

1.5 Research Scopes 

This research focuses on only density-based clustering among the five categories 

of data stream clustering technique. The research has some scopes but not limited to as 

follows. 

i. The focus of this study is on the development of a new online density-based 

clustering algorithm, called Buffer-based Online Clustering for Data Stream 

(BOCEDS) for evolving data stream. 

ii. The cluster information in BOCEDS algorithm is updated using recursive 

procedure to ensure the fully online behaviour of the algorithm.  

iii. There are different kinds of attribute in the data stream including numerical, 

categorical and uncertain data. The current study considers only numerical 

attribute in the data stream to generate clusters.  

iv. The criteria to evaluate the developed algorithm include visualization of cluster, 

noise sensitivity, accuracy, purity, data processing time, scalability, memory 

efficiency and parameter sensitivity. The performance is measured by executing 



12 

the algorithm on two benchmark syntactical data streams (Mackey-glass and 

helical data stream) and one practical data stream (KDDCUP’99 data stream).  

v. The designed BOCEDS algorithm is implemented in MATLAB programming 

environment. 

1.6 Thesis Outlines 

This chapter briefly introduced the research background and some preliminary 

knowledge regarding density-based clustering algorithms. The problem statement, 

research objectives, and research scopes were included in this chapter. The rest of this 

thesis is organized as follows. 

Chapter 2 introduces the existing algorithms in the field of density-based 

clustering. The algorithms are categorized according to their data processing and 

working principle in Section 2.3. Each algorithm is discussed shortly with their working 

steps in Section 2.4. The advantages and limitations of each algorithm also identified 

and summarized in Section 2.5.  

Chapter 3 describes the methodology of the developed algorithm in the field of 

density-based clustering for data stream namely Buffer-based Online Clustering for 

Evolving Data Stream (BOCEDS). The flowchart and design concept can be found in 

Section 3.2.  The data structures used in the developed algorithm is explained in Section 

3.2.1. The detailed discussions and algorithms of BOCEDS could be found in Section 

3.2.2. Finally, Section 3.3 summarizes the whole methodology.  

Chapter 4 illustrates the evaluation of the characteristics of the developed 

BOCEDS algorithm. In-depth discussions on several characteristics such as cluster 

quality, scalability, memory requirement, noise sensitivity could be found in this 

chapter. The performance of developed algorithm is compared to other popular 

algorithms in literature. The sensitivity of algorithmic parameters is also measured and 

described in details. The developed algorithm is applied to a real time data stream to 

show its effectiveness in real world. 

Finally, Chapter 5 covers the conclusions of this research including the major 

contributions and summary of findings. Also, the future research recommendations 

could be found in this chapter. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Overview 

Modern IT-based applications produce data stream of huge size and high degree 

of complexity. The analysis of such data streams and knowledge mining is becoming 

vital for the success of organizations (Esposito et al., 2015). Researchers introduce 

several data mining techniques for extracting hidden knowledge in the data stream 

(Ramírez et al., 2017). Data stream clustering is a preliminary stage of data stream 

mining where the data stream is partitioned into several partitions called clusters 

(Jacques & Preda, 2014; Nguyen et al., 2015; Puschmann et al., 2017). It is the most 

commonly used and essential unsupervised learning tool in data stream analysis (Lv et 

al., 2016). There is a lot of research on clustering algorithms for static datasets, but they 

cannot be applied on data stream due to three special characteristics (volume, velocity, 

variety) (Chenaghlou et al., 2018)  (discussed in Section 1.1, Chapter 1). Considering 

these three characteristics, the requirements of a good data stream clustering technique 

tries to achieve minimum processing delay, to detect noise and evolving nature of data 

stream without predefining the number of clusters and able to generate arbitrarily 

shaped cluster (discussed in Section 1.2, Chapter 1 ). Over last decade, researchers have 

introduced numerous clustering algorithms for clustering of data stream which is 

broadly categorized into five categories (discussed in Section 1.2, Chapter 1). Among 

the categories of clustering (Figure 1.3, in Chapter 1), density-based clustering has been 

found a natural and attractive clustering technique. It has the ability to generate 

arbitrarily shaped clusters in dense areas, to handle the evolving nature of data stream 

and to detect noises and act accordingly in noisy environment making the most 

appropriate clustering method for data stream (Amini et al., 2014). The derivation of 
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density-based clustering method from mining for data stream is illustrated in the 

following Figure 2.1.  

 

Figure 2.1 Drive towards density-based clustering 

From Figure 2.1, knowledge extraction from the data stream includes various 

tasks like feature transformation, classification, clustering, association, and so on. 

Clustering is one of the vital tasks where data groups are extracted and density-based 

clustering is a popular method of clustering. 

In this chapter, an extensive literature review has been done on density-based 

clustering. The concept of data stream mining has been discussed in Section 2.2. In 

Section 2.3, clustering algorithms are described with their category. The most popular 

algorithms of density-based clustering on data stream have been reviewed. The pros and 

cons of every algorithm have been analysed which are described in the following 

Section 2.4. 

2.2 Data Stream Mining 

Due to the rapid development of IT, big data applications have risen 

tremendously. Numerous such applications are generating huge data collection 
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continuously (known as data stream) and now commonly used tools and techniques fail 

to capture, manage, and process within acceptable processing time. The most 

fundamental task of these data stream processing is to extract useful knowledge for 

further actions (X. Wu et al., 2014). The process of discovering interesting patterns and 

knowledge from data stream is referred to as data stream mining (L. Xu et al., 2014). 

Traditional data mining techniques cannot process the data stream efficiently as data 

stream possess three special properties (discussed in Section 1.1, Chapter 1). It is 

evitable to use special mining technique for knowledge extraction from data stream, 

called data stream mining. Data stream mining faces the challenges of data stream 

accessing and computing process as the data volumes may rise continuously. An 

efficient data stream platform needs to consider large-scale memory for mining 

task.  The comparison between traditional data mining and data stream mining 

technique is illustrated in the following Table 2.1. 

Table 2.1 Traditional data mining VS data stream mining  

Characteristics Traditional data 

mining 

Data stream 

mining 

Memory Unlimited Bounded 

Number of passes Multiple Single 

Time Unlimited Real-time 

Concept Fixed Evolve 

From Table 2.1, Traditional data mining algorithms require the whole data set to 

be loaded into the memory (Fong et al., 2016). The data set can be scanned several 

times to generate an improved result. Unlike them, data stream mining algorithms face 

the technical barrier because of uncertainty in volume of data stream. Thus, storing data 

stream may not be feasible. The data points come and require immediate processing for 

once and removed within short period of time from the system. While traditional data 

mining techniques has much time to generate results from data points, data stream 

mining requires real time processing. Traditional data mining processes within a single 

concept environment where the concept is constant. However, data streams are dynamic 

and the concepts evolve with time leading to produce multiple concepts. For example, 
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in a network monitoring application, the attackers (the person who tries to steal data 

from a network) always try to introduce new attacking methods (e.g. anomaly data 

injection, worms spreading) to breakdown the system by inserting anomaly data in the 

application. In this system, the number of class of network attack may rise over time. 

Data stream mining contains several tasks feature transformation, data summarization, 

classification, clustering, association and trend analysis (Sumathi & Sivanandam, 2006) 

2.3 Clustering of Data Stream 

Clustering of data stream is one of the major techniques in the area of data 

stream mining. Clustering of data stream refers to the task of grouping the data points 

from data stream in such a way that data points in the same group (called a cluster) are 

more similar to each other than to those in other groups (Bryant & Cios, 2018). This 

technique is used in a lot of fields like image analysis, remote sensing, bioinformatics, 

and text analysis. Researchers have done a lot of work in the field of clustering and 

introduced several algorithms for clustering of data stream. The clustering algorithms 

are classified based on their working principle and data point processing technique 

2.3.1 Based on Working Principle 

Based on working principle, the clustering algorithms are broadly classified into 

five categories and they are model-based, partitioning based, grid-based, hierarchical, 

and density-based clustering approach (discussed in Section 1.2, Chapter 1). The 

comparison among the five categories of data stream clustering is given in the following 

Table 2.2. From Table 2.2, data stream partitioning is the simplest clustering approach 

that shows the very good clustering performance in terms of clustering accuracy, purity 

and time complexity. However, it suffers from the requirement of pre-defining the 

number of clusters in the system. Additionally, this clustering approach only generates 

spherical shaped clusters and fails to discover arbitrary shaped clusters. Hierarchical 

clustering produces the clusters from the data stream in a natural way. But the time 

complexity is higher compared to other clustering approaches. Moreover, the clustering 

performance of clustering highly depends on the sequence of data points from the data 

stream. 

In terms of processing time, grid-based clustering is much more efficient that is 

able to find arbitrary shaped clusters and detect outliers (noise clusters) in a noisy 
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environment. The weaknesses of this approach are the clustering result highly depends 

on the grid defining and the approach is not efficient for high-dimensional data stream. 

Model based approach depends on predefining the models based on domain knowledge. 

Table 2.2 Comparison of different clustering approaches  

Approaches Advantages Limitations 

Partitioning Simple and relatively 

efficient 

Need to specify the number of 

clusters and unable to discover 

non-spherical clusters 

Hierarchical Derive more meaningful 

cluster structures 

High complexity and sensitive to 

the order of the data records 

Grid-based Fast and can discover 

arbitrary-shape clusters in 

noisy environment 

The clustering quality depends on 

the grid granularity and unsuitable 

to high-dimensional data 

Model-based Simple and include 

domain knowledge 

Depends strongly on the assumed 

models 

Density-

based 

Find arbitrary shaped 

clusters, robust to noises 

and high cluster quality 

Need many parameters to be 

predefined. 

The final approach is density-based clustering of data stream. It is the most 

popular approach that produces arbitrary shaped clusters and can detect the noises in the 

data stream efficiently with high cluster quality. However, the only downside of 

density-based clustering approach is that it requires defining two clustering parameters 

in advance and they are micro-cluster radius and density threshold. 

2.3.2 Based on Data Stream Processing Method 

In the field of clustering of data stream, the most important challenge is to 

process the continuously generated data points which change over time. There are some 

clustering methods for processing data streams. They are broadly classified into the two 

categories and they are online-offline and online clustering (Nguyen et al., 2015). 

2.3.2.1 Online-offline Clustering 

Online-offline data stream clustering is useful when the system requires to 

investigate the clustering result over different parts of the stream (Amini et al., 2014). 
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Though, different windowing models are available for tracking the evolving 

characteristics of data stream, they do not perform dynamic clustering over all possible 

time horizons. It is two-phase algorithm where the summary information of data stream 

is maintained in the online phase and clusters are formed based on data summaries in 

the offline phase (Mansalis et al., 2018). This type of algorithm contains the online and 

the offline phases as below: 

 Online phase: The online phase faces the data points from the data stream and 

maps the data points to current clustering system. Finally, the summary 

information about data points is produced and maintained. 

 Offline phase: The summary information is used towards generating the clusters 

in offline mode in demand. The shape of clusters can be ellipsoidal, spherical, 

box or arbitrary 

2.3.2.2 Online Clustering 

When a clustering technique generates clusters in a single online phase, then the 

clustering is referred to as online clustering. There are two ways of implementing online 

clustering and they are as follows. 

i. Chunk-based: In many applications, the data streams are generated in a way that 

they seem to be in a packet. For example, 500 data points per minute. These 500 

data points collectively form a chunk. Assuming the data points are coming in 

chunk, clusters are generated in a single pass by scanning the data stream in 

chunk. Every chunk is processed and the clustering result is updated. Different 

density based clustering algorithms like STREAM, DUCstream are designed 

based on this method. 

ii. Evolving:  In the chunk based approach, the clusters are computed in every 

chunk. However, the data points from data streams arrive continuously and the 

concepts change as time progresses. As a result, the clusters evolve over time. In 

the evolving approaches, the data points are processed individually and the 

clustering results are computed at every data points. Clustering algorithms such 

as DEC, CODAS, CEDAS were developed based on this approach. 
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2.4 Density-based Clustering 

Density-based clustering techniques are developed based on the density of data 

points from the data stream.  In density-based algorithms, a cluster is defined as a 

connected dense points and grows in the direction driven by the data density (Lv et al., 

2016). The clusters are built in dense regions of data space which are isolated by the 

sparse regions. The basic principle is to generate a cluster as soon as the density in an 

area above the density threshold. The density threshold confirms that the background 

noisy data points or outliers are detected and filtered out. Density-based clustering of 

data stream is done in two major steps (Amini et al., 2014). At first step, the procedure 

of density estimation is formulated for each data point and applied to identify the data 

points those stays within dense regions (core data points). In the final step, a region 

formation method is defined that detects the group of data points those are reachable 

from core data points. The method should work only in the dense regions and no two 

data points in a low density region should be reachable. Cluster generation using 

density-based clustering method is illustrated in Figure 2.2. 

 

              (a) Data point distribution                                         (b) Clusters 

Figure 2.2 Density based clustering 

Figure 2.2(a) shows the data point distribution in a 2D data space where clearly 

the data point are distributed in three regions. The generated clusters are shown by the 

green colour region in Figure 2.2(b). The figure shows the clusters are formed in dense 

region by core data points which are separated by the non-core data points in sparse 

region. 
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In the field of density-based clustering of data stream, DBSCAN (Ester et al., 1996) is 

considered to be the primitive algorithm that generates arbitrarily shaped clusters in an 

incremental manner. It was developed for large spatial dataset but later adopted by 

various clustering algorithm for data stream. In each iteration, the DBSCAN scans the 

unvisited data points and forms new cluster until all the data points are visited. The 

algorithm has the ability to find arbitrarily shaped clusters and it is robust to outliers. 

But it is not entirely deterministic as any points those are reachable from more than one 

cluster, can be part of either cluster. Moreover, it is not preferable for high dimensional 

data set as it suffers from the so-called "curse of dimensionality" difficulty and it takes 

much memory space for loading the whole dataset in memory. Several researchers have 

proposed clustering algorithms based on the concept derived from DBSCAN. The 

algorithms are categorized in two broad classes called density micro-clustering and 

density grid-based clustering algorithms (Amini et al., 2014). Several algorithms are 

developed in both subcategories. Figure 2.3 shows the taxonomy of literatures. 

 

Figure 2.3 Taxonomy of reviewed density-based clustering algorithms 
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Some of the algorithms work in an online basis where the clustering results are 

available at every moment. On the other hand, some of the algorithm are hybridization 

of online and offline phases. The popular literatures in the field of density-based 

clustering algorithm for data stream have been reviewed. The articles are collected from 

high impact journals. The contributions and applications are identified with their 

advantages and limitations.  

From Figure 2.3, the algorithms are divided into density grid-based and density 

micro-cluster-based clustering algorithms. Each category of algorithms is further 

grouped into online-offline and online clustering group. The algorithms are described 

with basic ideas, their applicability, advantages and limitations. Section 2.4.1 describes 

the algorithms from density grid-based category whereas algorithms from density 

micro-clustering algorithms are explained in Section 2.4.2. 

2.4.1 Density Grid-based Algorithms 

Applying the concept of grid based method on density based clustering method; 

researchers have developed several hybrid clustering algorithms for data streams. They 

are referred to as density grid-based clustering algorithm. The general framework for 

this type of algorithms is illustrated in Figure 2.4. From Figure 2.4 

Figure 2.4, density grid-based clustering algorithms divide the total data space 

into grids and the following data points are mapped to grids in the first step. In the final 

step, the clusters are generated based on the density of grid. Density grid-based 

algorithms are popular for forming arbitrary shape cluster and detecting the noise with 

low processing time.  

 

Figure 2.4 Framework for density grid-based clustering 
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To cope with the evolving nature of data stream, a parameter called ‘density 

coefficient’ is used for every data point from the data stream. This type of algorithm 

maintains the summary information of data points in characteristic vector. For detecting 

the noisy data points, density grid-based algorithms use sporadic grids. 

Researchers have proposed several density grid based clustering algorithms 

which can discover arbitrary shaped clusters in dense areas. The algorithms process the 

data points in either online-offline or online mode. In the following section (Section 

2.4.1.1), the evolution of online-offline density-grid clustering algorithms and online 

density grid algorithms of clustering are described in Section 2.4.1.2. 

2.4.1.1 Online-offline Density Grid-based Clustering 

Density grid-based clustering algorithm is a mixture of density based clustering 

and grid based clustering. The online-offline mode of this category is refers to the fact 

that the algorithms consist of two phase; the online phase and the offline phase. 

Aggarwal et al. (Aggarwal et al., 2003) introduced the online-offline clustering of data 

stream algorithm to enable real time stream processing and to meet the storage 

constraint. The clustering algorithm contains an online phase where the summary 

information of data stream is computed and an offline phase where clusters are 

generated. Based on this concept, researchers have designed many clustering algorithms 

in the following years. In the field of density grid-based clustering of data stream, 

DCUStream (Dynamic Density Based Clustering of Uncertain Data Stream)  (Y. Yang 

et al., 2012) is considered to be an excellent algorithm. The algorithm is specially 

designed for uncertain data stream. It is a two steps algorithm where the grids are 

computed from the whole data space in the first step. The arriving data point is mapped 

to an existing grid based on the uncertain tense weight of data point. The grids are either 

dense grid (density more than the dynamic density threshold) or spares grid (density less 

than the dynamic density threshold). In the final step, DCUStream generate clusters 

using dense grids and outlier using sparse grids. DCUStream improves cluster quality 

and able to handle noise in uncertain evolving data stream. However, it suffers from the 

depth first search time consuming process to find the core dense grids.  

For handling the evolving behaviour of data stream efficiently, three popular 

algorithms are D-Stream (Y. Chen & Tu, 2007), DD-Stream (Jia et al., 2008), and 

DENGRIS-Stream (Amini & Wah, 2012). Based on density decaying function, Chen 
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and Tu proposed an algorithm called D-Stream to detect the evolving nature of data 

stream. In online part, the newly arrived data point is mapped to a density grid based on 

its density coefficients and updates the characteristic vector of the mapped grid only. 

Based on the decay, a grid turns into dense grid, transitional grid or sparse grid. One 

type of grid can promotes or demotes to another type of grid. Considering the fact, the 

offline part inspects each grid’s density and derives the clusters in each time interval 

gap. D-Stream defines another term sporadic grid which is one kind of sparse grid with 

very few data points and need to remove from memory as outlier. D-Stream finds the 

clusters of arbitrary shapes. It can handle the evolving behavior and detect the outliers 

in data stream. The authors claim the improvement of space and time efficiency.  But 

the technique is not scalable as it relies on emptiness of large majority grids in high-

dimensional data streams. To enhance the quality of generated cluster, D-Stream was 

improved in DD-Stream. The algorithm detects the data points in the border of grids 

using a proposed DCQ-means algorithm.  The online phase is quite similar to the online 

phase of D-Stream. Additionally, the data points are placed on borders based on their 

distances from neighbouring grids and grid density. The offline extracts the boundary 

points from the grids at each inspection period, identify the sparse grid and dense grid 

based on their density and threshold and apply the same density-based methods as in D-

Stream on dense grids to generate the clusters. DD-Stream is scalable to high 

dimensional data stream and generates high quality of the cluster. However, it suffers 

from a time-consuming process namely the border points mapping grids. Moreover, it 

does not describe clearly the removal process of sporadic grids. DENGRIS-Stream is 

another density grid-based clustering algorithm for data stream that works based on 

sliding window concept. The algorithm handles the evolving behaviour of data stream 

efficiently. In the online phase, each data point from data stream is mapped to a grid in 

the model and the grid summarization is updated. The clusters are generated based on 

the grid summary within time window units. The algorithm detects the expired grid 

using time stamp strategy and removes them. The algorithm shows excellent 

performance in terms of memory requirement and data processing time. However, 

DENGRIS-Stream requires the evaluation over various data stream and comparison 

with other state-of-the-art algorithms. 

Based on multiple resolution of grid, Wan et al designed a density grid-based 

algorithm called MR-Stream (Wan et al., 2009) that computes the summarization 

information and computes the time interval to extract the cluster. In addition, the 
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algorithm determines the density threshold based on fading model. It divides the data 

space to create grid in a tree-like structure. In online phase, when a new data point is 

arrived, the related grid cell or node is searched. If there is no such node found, then a 

new node is created, and the information of its parent, grandparent is also updated 

recursively and the updating operation continues up to the root of the tree. A tree 

pruning operation is added to identify the sparse grids that become outlier. The offline 

phase searches the reachable dense grids based on user-defined height and forms 

cluster. MR-Stream is able to detect the high quality arbitrary shaped clusters in 

evolving data streams. However, MR-Stream is not scalable to high-dimensional data 

stream. 

For clustering of heterogeneous data stream, ExCC (Bhatnagar et al., 2014) and 

FGCH (J. Chen et al., 2018) are two excellent density-grid based algorithms. ExCC 

(Exclusive and Complete Clustering) is designed based on the speed of data stream. The 

online phase of ExCC keeps synopsis in the grids and offline phase forms the final 

clusters on demand. The algorithm maps the numerical and categorical attributes of data 

points to the grids and domain sets respectively. ExCC utilizes the wait and watch 

policy to detect noise in the offline phase. The algorithm determines the density 

threshold using granularity of grid and data dimensionality. It generates the clusters 

from the pool of dense and recent grids. The major advantage of ExCC includes the 

capability of handling heterogeneous attributes (numeric and categorical). However, the 

algorithm requires more memory as it uses the hold queue and pool strategy and more 

processing time as every attribute is handled differently. On the other hand, FGCH (Fast 

and Grid based Clustering for Hybrid data stream), a fast data stream clustering that 

uses the non-uniform attenuation model to initialize the grids. The online phase of this 

algorithm computes the grid tuple information based on the attenuation coefficients. In 

offline phase, a distance matrix for data points is computed based on the frequency and 

inter-dimensional correlations. The algorithm shows good clustering accuracy and 

purity with low data processing time. However, the algorithm cannot handle the drifting 

properties of data stream efficiently. 

For clustering of high-dimensional data stream, PKS-Stream is a popular density 

grid-based algorithm that is designed based on an assumption that there exist many 

empty grid-cells for high dimensional data stream. The algorithm maintains the non-

empty grid using PKS-tree and k-cover concept. A grid is said to be k-cover, if it meets 

the density threshold requirement. The online phase of PKS-Stream algorithm maps the 
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data points to a grid cell in the PKS-tree and the offline phase forms the clusters based 

on the dense neighbouring grids in PKS-tree. In each time interval, the sparse grids are 

identified as outliers and deleted from PKS-tree. PKS-Stream shows good performance 

over high dimensional data stream. However, the algorithm suffers from the inefficient 

pruning on the tree after adding a new data point to any of the cells of the tree. 

2.4.1.2 Online Density Grid-based Clustering 

Density grid-based clustering algorithm is a hybridization of density based 

clustering and grid based clustering. A fully online mode of this category is refers to the 

fact that the algorithms completes the clustering task in a single task. A graph-based 

single pass clustering algorithm called DUCstream (Data Stream Clustering Based on 

Dense Units) (Gao et al., 2005) was proposed by Gao et al. for data stream and 

considered as the primitive grid-based clustering algorithm for data stream. DUCstream 

assumes the arrival of data in chunks and generates dense unit with some data points. 

This algorithm also introduces the concept of local dense unit which is a candidate for 

dense unit. Each dense unit is considered as a vertex of a connected graph. The vertices 

of this graph indicate the neighborhood between two dense units. When a new dense 

unit is formed, it is either create a disjoint graph or participate to the existing graph. In 

case of disjoint graph, the dense unit creates a new cluster; otherwise, it is assigned to 

an existing cluster. The clustering statistics are reflected by clustering bit string 

represents the number of dense units where 1 and 0 states for dense and non-dense unit. 

The clustering result is updated by an incremental process. DUCstream takes low 

processing time and the memory space by adapting the bitwise clustering. However, the 

success of this algorithm heavily depends on size of chunks of data which depends on 

the user to determine. 

Recently, another density grid-based clustering algorithm called DGB (Density 

grid-based) is proposed (B. Wu & Wilamowski, 2017). The algorithm automatically 

computes the number of clusters and detects noise. In addition, a new method of finding 

mountain ridges (Vallim et al., 2014) of a cluster is introduced. Instead of simply 

counting the data points, a soft decision strategy is proposed to compute nodes density. 

DGB detects the outliers efficiently and produce arbitrary shaped cluster. In addition, it 

decreases the processing time. However, the algorithm suffers low cluster quality 

(accuracy and purity) as the algorithm cannot handle the case of the non-uniform 

density distribution of data in data space. Thus the cluster quality needs to be improved. 
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2.4.2 Density Micro-clustering Algorithms 

Micro-clustering is a popular clustering approach in the field of data stream to 

summarize the temporal locality of data points. The concept of micro-cluster was first 

introduced in (T. Zhang et al., 1996) for large data base and successfully applied to data 

stream in (Aggarwal et al., 2003).The basic idea of density micro-clustering algorithms 

is to store and update the synopsis information about the data stream in a metadata 

called micro-cluster. Micro-cluster is a method to keep statistical information about the 

data locality. It can adjust well with evolution of the underlying data streams. Such a 

method can be used to filter out noise or outliers and to discover clusters of arbitrary 

shape. Figure 2.5 illustrates the micro-clusters and clusters. Micro-cluster extend the 

concept of cluster feature (CF) (T. Zhang et al., 1996) that maintains the triple vector to 

summarize the clustering information. Researchers have proposed many density micro-

clustering algorithms which can discover arbitrary shaped clusters efficiently. 

 

Figure 2.5 Micro-Clusters framework in density-based clustering 

Some of the algorithms are online-offline and others are online clustering. The 

basic concept of online-offline approach and online approach is explained in details in 

Section 2.3.2.1 and Section 2.3.2.2. In the following section (Section 2.4.2.1), the 

evolution of popular online-offline micro-clustering algorithms and online micro-

clustering algorithms are described in Section 2.4.2.2. 
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2.4.2.1 Online-offline Density Micro-clustering 

Micro-clustering is a popular method in clustering of data stream to summarize 

the data stream effectively and to maintain the temporal locality of data points. Micro-

clusters is the temporal extension of cluster feature (CF) (T. Zhang et al., 1996) for data 

stream. In the field of density micro-clustering, DBSCAN (Ester et al., 1996) is 

considered to be a primitive algorithm which was developed for large spatial dataset but 

also adopted for data stream. The clustering algorithm creates micro-clusters and then 

clusters in high-density regions based on density neighborhood in a two-phase process. 

A micro-cluster represents the summarization of data points in it. In online phase, 

DBSCAN recursively selects a data point randomly and create micro-clusters by 

searching its neighborhood. In offline phase, the micro-clusters are used to generate 

final clusters. DBSCAN has the ability to find arbitrarily shaped clusters and it is robust 

to outliers. However, the algorithm is not entirely deterministic as any points those are 

reachable from more than one cluster, can be part of either cluster. Moreover, it is not 

preferable for high dimensional data set as it suffers from the so-called "curse of 

dimensionality" difficulty and it takes much memory space for loading the whole 

dataset in memory. The performance of DBSCAN is improved in G-DBSCAN (Kumar 

& Reddy, 2016) based on a graph theory (Zahn, 1970). The algorithm utilizes a graph-

based index structure of groups to decrease the neighbour searching time. Rather than 

searching the entire patterns of data, G-DBSCAN uses the group method of searching 

pattern where patterns are grouped using graph-based structure. Similar to DBSCAN, 

the algorithm runs in two phases; the online and the offline phase. G-DBSCAN 

improved the processing time and can detect the outliers efficiently. However, G-

DBSCAN is not evolving and not scalable to high-dimensional data stream. 

Based on DBSCAN, several online-offline clustering algorithms are introduced 

in the literature. DenStream(Density Based Data Stream Clustering) (Cao et al., 2006) 

and CluStream (Aggarwal et al., 2003) are two most popular among them. They work as 

the basic algorithm for many new micro-clustering algorithms. DenStream is able to 

discover arbitrary shaped clusters for evolving data stream with noise. The clusters are 

then created based on these micro-clusters. DenStream defines three types of micro-

clusters and they are core micro-cluster, potential micro-cluster, and outlier micro-

cluster. The core micro-clusters are used to create the clusters with arbitrary shape. Any 
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potential micro-cluster with weight above the threshold weight is considered as the core 

micro-cluster whereas the micro-cluster which has the weight less than the threshold 

weight is defined as the outlier micro-cluster. To handle the evolving nature, the weight 

of each micro-cluster is reduced exponentially with time using a fading function. It is a 

hybridization of online and offline framework. In online phase, it uses the DBSCAN 

algorithm to build the initial potential micro-clusters based on neighbourhood of data 

points. In the offline phase, DenStream adopts DBSCAN to find the final cluster from 

the current potential micro-clusters. It also uses a pruning to identify the real outlier-

micro-cluster in outlier buffer based on the weight of the outlier micro-cluster. The 

algorithm also defines a density threshold function where the density threshold is 

measured. Any micro-cluster with density below the density threshold is considered to 

be the real outlier micro-cluster and removed from the outlier buffer. Though 

DenStream has the ability to handle the evolving data stream effectively but it does not 

release any memory space by either removing or merging micro-clusters until the 

pruning phase. Furthermore, the pruning of outlier micro-cluster is a time-consuming 

task.  On the other hand, CluStream uses k-means algorithm for clustering evolving data 

streams. The algorithm starts by an offline process where the initial micro-clusters are 

created using a standard k-means algorithm from a predefined number of data points 

from data stream. In the online phase, these initial micro-clusters are used to cluster the 

later data stream. When a data point arrives, it is mapped to a micro-cluster based on the 

distance from data point to micro-cluster center. The data point lies in the closest micro-

cluster and the micro-cluster information is updated. CluStream frees up the memory 

space by either merging two micro-clusters or deleting an old micro-cluster as outlier.  

The offline phase generates the macro-cluster or simply cluster from the current micro-

clusters in memory to summarize the statistics of the micro-clusters. CluStream is 

effective for both evolving and core streams. It shows high data point processing rate 

and linear scalability with data dimensionality. The major downside of this algorithm is 

that it is unable to generate cluster of arbitrary shape as the k-means focuses more on 

detecting spherical clusters even. Moreover, it is inefficient to apply on high-

dimensional data stream.  

The performance of DenStream is further improved in C-DenStream (Ruiz et al., 

2009) and rDenStream (Liu et al., 2009).  C-DenStream (DenStream with Constraints) 

creates arbitrary shape clusters with constraint. The algorithm extends the instance-level 
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constraints from static data to data stream. The constraints consist of domain-related 

knowledge. In C-DenStream, the constraint instructs the data or instances towards the 

clustering i.e. whether the data belong to the same micro-cluster (Must-Link constraints) 

or to a different micro-cluster (Cannot-Link constraints). Finally, based on the generated 

micro-cluster, the clusters are formed using C-DBSCAN algorithm (Ruiz et al., 2007). 

The algorithm takes advantage when the domain expert has prior knowledge about the 

group membership and thus it is very useful for those applications. However, C-

DenStream cannot handle high dimensional data stream, requires an expert of the 

application to define the constraints and cannot solve the limited memory space issue. 

On the other hand, rDenStream was developed specially for very noisy data stream 

applications. rDenStream executes in three steps micro-clustering, macro-clustering and 

retrospect learning. In the first step, potential micro-clusters and outlier micro-clusters 

are formed in online mode using the same approach as in DenStream. Only the potential 

micro-clusters are forwarded as input to the next step, while outlier micro-clusters are 

placed in historical outlier buffer. The next step uses DBSCAN approach where all the 

generated potential micro-clusters are used to produce macro-clusters or simply clusters 

based on the density threshold. The final step is called the retrospect step. In this step, 

the misinterpreted outlier micro-clusters are learned again to increase the robustness of 

the clustering. The clusters form a classifier which is used to re-learn the outlier micro-

cluster in the historical outlier buffer. rDenStream extracts knowledge pattern from the 

initially arriving data stream and improves the clustering accuracy through a re-learning 

process. The downside of this algorithm is that it requires high processing time in re-

learn step and extra memory space to store outlier micro-clusters.  

For clustering of heterogeneous data stream, the two popular online-offline 

algorithms are HDenStream(Density based Clustering over Heterogeneous Data 

Stream) (Lin & Lin, 2009) and Str-FSFDP (J. Y. Chen & He, 2016). In HDenStream, 

the data points are defined by two kinds of attributes continuous attributes and 

categorical attributes which may be important in distinguishing the clusters. Beside 

deriving the concept of core micro-cluster, potential micro-cluster, outlier micro-cluster 

from DenStream, the separate distance measures between data point to data point, data 

point to micro-cluster or micro-cluster to micro-cluster are adopted from HCluStream 

(C. Yang & Zhou, 2006). This algorithm maintains a two-dimensional (2D) array to 

store the frequency of categorical attributes.  This algorithm is quite similar to 
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DenStream with online and offline phases and the pruning phase. Like DenStream, 

HDenStream also can identify arbitrary shaped clusters and provides high cluster 

quality. But this algorithm does not describe the idea to store the categorical attributes 

in an efficient way. On the other hand, Str-FSFDP computes the cluster centers 

automatically. A new micro-cluster vector is introduced for storing and updating the 

summarization information of mixed data dynamically. A new micro-cluster decay 

function and deletion mechanism has been introduced to handle the evolving behaviour 

of data stream. In the offline stage, Str-FSFDP determines the micro-cluster centres 

based on field intensity, linear regression and residuals analysis. In the online stage, the 

data points are mapped to the micro-cluster based on its field intensity and micro-cluster 

centers. The micro-cluster decay function and micro-cluster removing strategy are 

executed on the micro-clusters to detect the drift in data stream. Str-FSFDP generates 

arbitrary shaped clusters and can detect outliers efficiently for heterogeneous data 

stream. However, the algorithm needs further effort to improve the cluster quality.  

Two sliding window based clustering algorithms called SDStream (Density-

based Clustering over Sliding Windows) (Ren & Ma, 2009) and CC_TRS (Riyadh et 

al., 2017) were proposed. SDStream (Density-based Clustering over Sliding Windows) 

was proposed based on the idea of analyzing the most recent data stream and the data 

points are removed those are not in current window. In the online part, the new data 

points are added to the either any potential micro-cluster or to an outlier micro-cluster in 

main memory. The micro-clusters are stored in the form of Exponential Histogram of 

Cluster Feature (EHCF) in main memory. A set of data points with time stamp form a 

temporal cluster features (TCF) and a set of ordered TCF form an EHCF. The memory 

is freed up by merging micro-clusters or deleting an outdated outlier micro-cluster 

based on timestamp. In the offline part, DBSCAN algorithm is executed on the potential 

micro-cluster in memory to generate the clusters of arbitrary shape. SDStream is 

concerned about the user’s interest in the distribution of most recent data stream. 

Processes the most recent data and summarizes the old data by using sliding window 

model. It can handle noisy environment and evolving nature of data stream. But 

SDStream cannot handle high dimensional data stream. Moreover, it does not explain 

properly the main usage of exponential histogram. On the other hand, CC_TRS 

(Continuous Clustering of Trajectory Stream) was specially designed for clustering of 

trajectory data streams based on micro-cluster life. The online phase summarizes the 
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spatiotemporal data stream into temporal micro clusters and the offline phase generates 

clusters based on micro-clusters in a response to user request. Similar temporal micro-

clusters are merged when the size of occupied memory exceeds a given memory space. 

CC_TRS provides high quality clusters with low data processing time. However, the 

algorithm takes high memory space the data structure of temporal micro cluster has 

extra temporal fields. 

By combining the advantages of density clustering and affinity propagation 

clustering (Frey & Dueck, 2007), two online-offline micro-clustering algorithms called 

APDenStream (Affinity Propagation and Density Based Clustering ) (J. P. Zhang et al., 

2013)and ADStream(Adaptive Density Based Clustering) (Ding et al., 2016). 

APDenStream uses the decay density to handle the evolving features of data stream. To 

generate and maintain micro-cluster information, it uses the online dynamic delete 

mechanism. The algorithm also adapts the WAP (Xiangliang Zhang et al., 2009) 

algorithm to detect new class patterns which is absorbed in the clustering model. The 

online phase finds the micro-cluster for a newly arrived data point or passes it to the 

Reservoir memory and updates the micro-cluster metadata. The offline phase is invoked 

by the user to generate clusters in the reservoir and merge this result with the model 

result within every time stamp. APDenStream generates good quality clusters, 

particularly in noisy environment. The downside of this algorithm is that it takes high 

memory space to define the Reservoir and not applicable for high dimensional data 

stream. On the other hand, ADStream detects the initial cluster automatically by passing 

messages to data points in data stream. The online-phase generates the micro-clusters by 

analyzing the dynamic data stream in a sliding window and applying affinity 

propagation method. The offline phase forms macro-cluster using the micro-clusters at 

different time granularities. ADStream shows impressive performance in detecting 

clusters in complex hybrid data streams. But this algorithm suffers from the negative 

effect of noise on performance in complex data streams.  

For clustering of high-dimensional data stream, DenStream is extended in 

HDDStream(Clustering over High Dimensional Data Stream) (Ntoutsi et al., 2012) and 

PreDeConStream (Hassani et al., 2012). While the data points and dimensions are 

summarize in form of micro-cluster in the online phase, the offline phase use 

PreDeCon(Bohm et al., 2004), a projected clustering algorithm, to produce the final 
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clusters. HDDStream introduces the concept of prefer vector to maintain micro-clusters. 

The prefer vector is computed based on variance where data points are denser along this 

dimension in a cluster. A micro-cluster with prefer vector is refer to as projected micro-

cluster. Initially, an initial set of potential projected micro-clusters are created by 

applying PreDeCon on the predefined amount of data points from the data stream. In the 

online phase, the data points are assigned to a potential projected micro-cluster by 

updating the prefer vector; then finding the closest potential projected micro-cluster to 

the data points and finalizing the operation without affecting the natural boundary. In 

offline phase, from the generated potential projected micro-cluster, the final clusters are 

generated. HDDStream is able to able to handle high-dimensional data stream and 

create cluster with high quality. The major disadvantage of this algorithm is that it 

cannot handle the evolving nature of data stream properly as it does not check the prefer 

vector during pruning. Similar to HDDStream, PreDeConStream also uses the concept 

of prefer vectors for subspace using the variance of micro-clusters and their neighbours. 

A weight of data points is used to recognize changes in the data stream quickly which is 

calculated using a fading function. Three types micro-cluster are maintained in this 

algorithm and they are core micro-cluster, potential micro-cluster and outlier micro-

cluster.  The improvement is done in the pruning time where the pruning is done both 

on newly added or deleted potential micro-cluster. The neighbours of these both types 

of micro-clusters are checked for updating the subspace prefer vectors and are kept in a 

separate list called affected micro-clusters. This generated list is used to expand the 

clusters. Though PreDeConStream improves the efficiency but the pruning phase 

suffers from the time penalty for searching the affected neighbouring clusters. 

2.4.2.2 Online Density Micro-clustering 

Density micro-clustering technique has drawn remarkable attention of researcher 

due to its exceptional performance over data stream. However, most of the algorithms 

are online-offline clustering and the field has the scarcity of online algorithms. In the 

field of density micro-clustering, SOStream (Isaksson et al., 2012) is an excellent online 

algorithm that adapts the density threshold to form the clusters. SOStream (Self-

organizing Density-based Clustering) uses the online competitive learning concept 

(Kohonen, 1982) where the winner cluster influences its neighbour micro-clusters. The 

cluster creation, merging and deleting processes are online in SOStream. When a data 
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point appears, it is mapped to a micro-cluster based on the distance between the data 

point and all existing clusters. The micro-cluster with minimum distance is said to be 

winner cluster and the data point belongs to the winner cluster. The micro-cluster 

information and the density threshold is recursively updated. The neighbourhood of 

micro-clusters is defined and they are merged if neighbourhood distance is less than the 

merge-threshold distance.  SOStream achieves better clustering quality with occupying 

less memory. Though SOStream can adapt the threshold but the competitive learning 

part suffers from time penalty which makes SOStream unsuitable for data stream 

clustering. Moreover, the algorithm is not fully evolving. 

ELM (Baruah & Angelov, 2012) and DEC (Baruah & Angelov, 2014) are two 

online evolving clustering techniques. ELM(Evolving Local Means)  is designed based 

on the mean-shift algorithm for data stream. In this algorithm, clusters are summary of 

data points in data stream which consists of two elements; a cluster centre and a 

distance parameter. When a data point from the data stream arrives, ELM learns from 

either the scratch or existing clusters. The cluster information is updated recursively by 

shifting the mean and distance parameter. After shifting the mean, if the cluster overlaps 

with another cluster then they are merged based on the neighbourhood distance. ELM is 

an online algorithm of stream clustering which provides high cluster purity but does not 

describe the strategy to remove outdated cluster which is required for evolving 

clustering. On the other hand, DEC (Dynamically Evolving Clustering) was designed 

based on concept from computational geometry. DEC defines the cluster as a group of 

data points which are bounded by a hypersphere with a centre and a radius. The cluster 

summarizes the data points in forms of with a feature vector where the weight of a 

cluster decreases with time. DEC defines a threshold of weight to distinguish the core 

cluster (weight above the threshold) and noncore cluster (weight below the threshold). 

When a data point from data stream arrives, the nearest existing core cluster is searched. 

The weight of every cluster is updated at every timestamp called the inspection time. 

After every timestamp, the core and non-core clusters are checked to change their 

status. To distinguish the outlier from non-core cluster, DEC also defines a lower limit 

of weight threshold. Any non-core cluster, having the weight below this limit, is 

identified as outlier and deleted from memory. The evolving nature of cluster in DEC 

algorithm save the memory space and improve the processing time. But the technique 

raised an issue to select the optimal value of cluster radius and adaption. 
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Inspired from bio-nature, two well-known density micro-clustering algorithms namely  

FlockStream (Forestiero et al., 2013) and ACSC (Fahy et al., 2018) was introduced. 

FlockStream was intrucued based on flocking model (Eberhart et al., 2001) that defines 

agent in form of new data point and two types of micro-cluster (potential micro-cluster 

and outlier-micro-cluster). When a new data point arrives, FlockStream search for 

similar micro-cluster by checking whether the sub-space of other micro-cluster overlaps 

with the visibility distance of the data point. The micro-clusters can shift in the virtual 

space up to a predefined threshold for a specific time according to some rules such as 

cohesion, separation, and alignment (Forestiero et al., 2013). The overlapping micro-

clusters form the micro-cluster representative (simply cluster). Though the data point 

processing rate of FlockStream is high and forms outlier micro-cluster to handle noise, 

it does not clarify when and how to remove the outliers micro-cluster from memory. 

Based on ant colony optimization (ACO) (Dorigo et al., 1996), ACSC(Ant Colony 

Stream Clustering) is proposed. It offers a single pass tumbling window model(Li et al., 

2005) to form clusters incrementally. Like other micro-cluster based clustering, it also 

summarizes the clustering using micro-clusters. A stochastic method was introduced to 

find the rough clusters and they are refined by a method which was designed based on 

the observed sorting behavior of ants. ACSC is scalable, robust to noise and generate 

high quality cluster. It requires less computational time. But the algorithm is not able to 

find the clusters of similar density only. 

Based on representing the micro-cluster with graph, two recent micro-clustering 

techniques are CODAS (Hyde & Angelov, 2015) and CEDAS(Hyde et al., 2017). 

CODAS (Clustering Online Data-streams into Arbitrary Shape) is a data-driven 

algorithm which generates the micro-cluster to summarize the data points in it. The 

micro-cluster consists of a centre, radius, and density. The micro-cluster consists of core 

region covered by inner half of the radius and non-core region covered by outer half.  

When a data point from data stream arrives, it falls into either empty region or a micro-

cluster region. In case of empty region, the data point creates a new micro-cluster itself. 

Otherwise, the data point is assigned to the micro-cluster and it’s information is updated 

recursively. The micro-clusters are presented using the clustering graph and the clusters 

are generated from the graph.  A micro-cluster with local density below the threshold is 

referred to as outlier. CODAS generates high cluster quality and it is scalable to multi-

dimensional data stream. However, the generated cluster does not evolve. CODAS is 
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improved in CEDAS (Clustering of Evolving Data-streams into Arbitrary Shapes) for 

detecting the evolving behaviour by introducing a simple aging process. The micro-

clusters also include the energy. The energy of micro-cluster is maintained by a simple 

aging process. The aging process confirms the removal of old micro-cluster. Similar to 

CODAS, the clusters are mapped, updated and presented using the clustering graph. In 

addition, the energy of all other micro-cluster is decreased by an amount depending on 

decay of application. Micro-cluster with local density below density threshold and 

negative energy is marked as outlier and removed from the memory. Also, micro-

clusters with negative energy but local density above the density threshold are 

considered as old micro-cluster and removed from the clustering graph and from 

memory. Every time a micro-cluster is modified, the clustering graph is updated and 

clusters are re-generated.  This task confirms the immediate access to clustering result. 

CEDAS is a fully online clustering algorithm for evolving data stream. But the 

algorithm suffers from two major problems. It is difficult and erroneous task to select 

the optimal value of cluster radius. The linear aging process and immediate removal of 

micro-cluster affects the clustering quality as some deleted micro-clusters are 

significant. 

2.5 Summary of Literature Review 

The above discussed density based clustering algorithm are summarized and 

compared in Table 2.3. The major features for comparing the algorithms are the 

clustering summarization method, data processing method and generated cluster shape, 

the ability of handling the evolving nature and the noisy behaviour of data stream and 

whether the technique is applicable for high dimensional data stream. The techniques 

are also compared in terms of its advantages and disadvantages. The advantages and 

disadvantages are analyzed with respect to cluster quality, memory requirement and 

completeness of the technique. 

According to the Table 2.3, the density based clustering algorithms are either 

density grid based or density micro-clustering types. The clustering algorithms only 

maintain the summary of data points instead of storing all data points from the data 

stream. The density grid clustering algorithms store the synopsis information in the 

grids whereas density micro-clustering algorithms store the data stream summary 

information in micro-clusters. It is desired that a clustering algorithm is able to 
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generated arbitrary shaped clusters. Most of the density based clustering algorithms 

generate arbitrary shaped clusters except CluStream, HDDStream, ELM, DEC and 

PKS-Stream. They generate either spherical or hyper-ellipsoidal shaped clusters. It is 

desired to have fully online method for clustering of data stream. However, major 

algorithms in Table 2.3, are hybridization of online and offline phases in their 

execution. The micro-cluster mapping is done in an online manner. However, the 

clustering results are generated in an offline phase using the generated micro-clusters. 

Some algorithms like rDenStream, FlockStream, ELM, DEC, CODAS and CEDAS are 

online density based clustering algorithms. They generate cluster in an online manner 

where the clustering results are immediately available. Evolving is one of the vital 

properties which indicate that the current content of data stream may not be relevant 

always and this property should be handled carefully.  

In Table 2.3, in most of the density based clustering algorithms handle this 

property where the generated micro-clusters evolve with time. This evolving is provided 

either by maintaining energy of micro-clusters or by maintaining a timestamp.  After 

expiring the timestamp or energy, the micro-clusters are marked as unusable and 

immediately removed from the result. However, two algorithms namely DenStream and 

CODAS are not evolving in nature. The generated micro-clusters are not removed from 

these algorithms. An ideal clustering algorithm should be should be scalable. This 

property describes that the algorithm is applicable to low to high dimensional data 

streams. About 50% of the discussed algorithms like CEDAS, DD-Stream, DCU-stream 

etc. are scalable and half of them are not. The non-scalable algorithms cannot be applied 

on high dimensional data stream applications like genetic data stream, satellite data 

stream.  Most of the natural data streams are not cleaned and noisy samples are present 

in the stream. Thus the clustering algorithms should consider the presence of noise in 

data stream. Most of algorithms can detect the noisy data points except DEC. The noisy 

samples are removed and they don’t participate in cluster summarization updating. This 

property keeps the cluster summary accurate and free from noise. 
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Table 2.3 Summary of reviewed density-based algorithms for data stream 

Clustering 

Algorithms 

Working 

Principle 

Cluster 

Shape 

Data 

Processing 
Evolving Scalable 

Noise 

detection 
Major Advantage Major Limitations 

ACSC  

(Fahy et al., 2018) 
Micro-clustering Arbitrary Online √ √ √ Less computational time. 

Limited to find the clusters of similar 

density only. 

ADStream 

(Ding et al., 2016) 
Micro-clustering Arbitrary Online-offline √ √ √ 

Process complex hybrid data 

streams. 

Negative impact of noise on 

performance. 

APDenStream 

(J. P. Zhang et al., 2013) 
Micro-clustering Arbitrary Online-offline √ × √ 

Good performance in noisy 

environment 

Takes high memory space to define the 

reservoir. 

CC_TRS 

(Riyadh et al., 2017) 
Micro-clustering Arbitrary Online-offline √ × × 

Very effective for trajectory 

data stream. 
Requires high memory space. 

C-DenStream 

(Ruiz et al., 2009) Micro-clustering Arbitrary Online-offline √ × √ 

Very useful in the applications 

with knowledge on the group 

membership. 

Needs an expert to define its 

constraints. 

CEDAS 

(Hyde et al., 2017) 
Micro-clustering Arbitrary Online √ √ √ Efficient draft handling. 

Heavily depends on the user-defined 

parameter. 

CluStream 

(Aggarwal et al., 2003) 
Micro-clustering Spherical Online-offline √ × √ High data processing rate. 

Inefficient to apply on high-

dimensional data stream. 

CODAS 

(Hyde & Angelov, 2015) 
Micro-clustering Arbitrary Online × √ √ High cluster quality. 

The unused old micro-clusters are not 

removed. 

D-Stream 

(Y. Chen & Tu, 2007) Density Grid Arbitrary Online-offline √ × √ 

Low time complexity and high 

cluster quality. 

 

 

Inefficient way to define time gap. 

DCUStream 

(Y. Yang et al., 2012) 
Density Grid Arbitrary Online-offline √ √ √ Clustering uncertain data High time complexity 
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Table 2.3   Continued 

Clustering 

Algorithms 

Working 

Principle 

Cluster 

Shape 

Data 

Processing 
Evolving Scalable 

Noise 

detection Major Advantage Major Limitations 

DD-Stream 

(Jia et al., 2008) 
Density Grid Arbitrary Online-offline √ √ √ High cluster quality. High time complexity 

DEC 

(Baruah & Angelov, 

2014) 

Micro-clustering 
Hyper-

ellipsoidal 
Online √ √ × 

Require low the memory space 

and processing delay 

Heavily depends on the user-defined 

parameter. 

DENGRIS-Stream 

(Amini & Wah, 2012) Density Grid Arbitrary Online-offline √ × √ 

First density clustering 

algorithm for evolving data 

streams over sliding window 

model. 

No evaluation to show the algorithm 

effectiveness compared. 

DenStream 

(Cao et al., 2006) 
Micro-clustering Arbitrary Online-offline √ × √ High cluster accuracy 

Suffers from the time-consuming 

pruning operation. 

DGB  

(B. Wu & Wilamowski, 

2017) 

Density-Grid Arbitrary online × √ √ Low time complexity. Not effective for high density clusters. 

DUCStream 

(Gao et al., 2005) 
Density Grid Arbitrary Online √ × √ 

Low time and space 

complexity. 

 

Heavily depends on the user-defined 

parameter. 

ELM 

(Baruah & Angelov, 

2012) 

Micro-clustering 
Hyper-

ellipsoidal 
Online √ √ √ High cluster purity 

Does not describe the strategy to 

remove outdated cluster 

ExCC 

(Bhatnagar et al., 2014) 
Density Grid Arbitrary Online-offline √ × √ Clustering heterogeneous 

data streams 

The hold queue strategy needs more 

memory and processing time. 

FGCH 

(J. Chen et al., 2018) Density Grid Arbitrary Online-offline √ √ √ 
High quality cluster and high 

processing speed. 

Require initial density from user and 

data points are feed with fixed speed 
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Table 2.3   Continued 

Clustering 

Algorithms 

Working 

Principle 

Cluster 

Shape 

Data 

Processing 
Evolving Scalable 

Noise 

detection 
Major Advantage Major Limitations 

FlockStream 

(Forestiero et al., 2013) 
Micro-clustering Arbitrary Online √ × √ High processing speed. No clear strategy to remove the outliers. 

G-DBSCAN 

(Kumar & Reddy, 2016) 
Micro-clustering Arbitrary Online-offline √ × √ Effective in noisy data stream. Cluster quality is not high. 

HDDStream 

(Ntoutsi et al., 2012) 
Micro-clustering Spherical Online-offline √ √ √ High cluster accuracy. 

Inefficient pruning and It cannot handle 

the data in a limited time. 

HDenStream 

(Lin & Lin, 2009) 
Micro-clustering Arbitrary Online-offline √ × √ 

Ability to work on 

heterogeneous data stream. 

Lack of details about saving categorical 

features in an efficient way. 

MR-Stream 

(Wan et al., 2009) 
Density Grid Arbitrary Online-offline √ × √ High cluster quality. Not effective in highly noisy stream. 

PKS-Stream 

(Ren et al., 2011) 
Density Grid 

Hyper-

ellipsoidal 
Online-offline √ √ √ Low time and space 

complexity. 

Does not have any pruning on the tree 

after adding a new data point. 

PreDeConStream 

(Hassani et al., 2012) 
Micro-clustering Arbitrary Online-offline √ √ √ It improves the efficiency of 

the HDDStream. 

Suffer from a time-consuming process 

for searching the affected clusters. 

rDenStream 

(Liu et al., 2009) 
Micro-clustering Arbitrary Online √ × √ High accuracy. 

Memory usage and the time complexity 

are high. 

SDStream 

(Ren & Ma, 2009) Micro-clustering Arbitrary Online-offline √ × √ 
High accuracy in noisy 

environment 

Lack of clarification about the purpose 

of using exponential histogram to store 

micro-clusters. 

SOStream 

(Isaksson et al., 2012) 
Micro-clustering Arbitrary Online √ × √ 

Good clustering quality 

occupying less memory. 

Suffers from the time-consuming 

method, SOM (Self Organizing Maps). 

Str-FSFDP (J. Y. Chen 

& He, 2016) 
Micro-clustering Arbitrary Online-offline √ × √ 

Process mixed data with lower 

time complexity. 
Lower clustering quality. 
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It can be seen from the Table 2.3, ACSC, HDDStream, FGCH, CODAS, 

SDStream, APDenStream, and ExCC show excellent performance in terms of cluster 

purity. The purities of these algorithms are more than 96%. Some algorithms like 

CEDAS, PreDeConStream, SOStream, DenStream, FlockStream, G-DBSCAN, MR-

Stream, rDenStream are able to generate good clusters with 91-95% cluster purity. On 

the other hand, the rest clustering algorithms in Table 2.3 provide moderate quality 

clusters. The purities of these clusters are less than or equal 90% like the purity of 

ADStream, DStream, DCUStream, ELM,  H-DenStream, Str-FSFDP are 88%, 90%, 

81%, 87%, 90% and 89% respectively. The accuracy measures for some of these 

algorithms are available. The accuracies of these algorithms are close to the purity 

values of these algorithms. Like the accuracies of ACSC, CODAS, CEDAS, ADStream, 

APDenStream, DCUStream and DDStream are 98%, 98.9%, 96.5%, 86%, 98.5%, 82% 

and 93.5% respectively. CC_TRS, FSFDP, ADStream, SOStream, DD-Stream take 

very less processing time per data, whereas PreDeConStream, CODAS, SDStream, 

HDDStream, FGCH, MR-Stream, rDenStream is slow algorithms. The rest algorithms 

like ELM, DEC, CEDAS, D-Stream, C-DenStream, ExCC require moderate data 

processing time to complete the clustering task. The scalability results show that 

CEDAS, DenStream, CC_TRS, DStream, ELM, H-DenStream and MR-Stream is 

scalable to high dimensional data stream.  

To summarize, every algorithm has its own advantages and limitations. Most of these 

algorithms are not fully online algorithm and suffers from the consuming excessive 

memory space. Few algorithms like ELM, DEC, CODAS, CEDAS are the fully online 

algorithm in Table 2.3. However, some of them take more processing time or excess 

memory or unable to generate arbitrary shaped clusters. All of the density-based 

clustering algorithms maintain the global and constant value of micro-cluster radius. 

This fact contributes to leave some sparse regions in the micro-cluster and the cluster 

quality is degraded as a result. Moreover, the micro-clusters are created and deleted 

frequently that increases the processing time of clustering. The issues have been 

described in details (Section 1.3, Chapter 1). Adapting the concept of local optimal 

radius and preventing the frequent creation and removal of micro-clusters can solve 

these issues. Thus it is still an open research issue to provide a fully online clustering 

algorithm makes a trade-off among clustering quality, processing time and memory 

requirement.
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

Extracting the knowledge or information from data stream is becoming more 

and more useful in real time applications. Clustering is a method of extracting summary 

information of data stream that helps the companies towards real-time decision-making 

(Yu et al., 2013). For illustration, clustering trajectory data stream helps the drivers to 

know the congestion on road at any time in traffic management system. Continuous 

clustering of patient movements can help the doctors to predict the condition of patient 

in hospital. In Chapter 2, already several density based data stream clustering 

algorithms have been discussed with their basic working principle. The flaws of each of 

them are also identified and discussed. Most of the density-based clustering algorithms 

are not fully online. Though, few algorithms are online but they suffer from several 

problems which are tabulated in Table 2.3, Chapter 2.  In the field of density-based 

clustering, the research gaps are discussed in details in Section 1.3, Chapter 1. Several 

objectives are set in Section 1.4, Chapter 1 to mitigate the problems.  

In this chapter, the developed BOCEDS algorithm is described in details. The 

data structure of the developed BOCEDS algorithm is visualized and explained in 

Section 3.2.1. The flowchart of the algorithm has been drawn as Figure 3.2 in Section 

3.2.2. The steps of the algorithm are also described in details by formulating the 

solution and providing the algorithmic presentation. Finally, Section 3.3 concludes the 

chapter by summarizing the algorithm, the way of mitigating the problems by the 

algorithm.   
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3.2 Developed Algorithm 

The goal of the developed BOCEDS is to provide high cluster quality and low 

memory requirement and processing delay and detect the noise and evolving 

characteristics of data points in a data stream. BOCEDS is a single phase clustering 

algorithm that generates clusters from data stream in a fully online manner. The 

algorithm stores the data summary information in a data structure called micro-clusters. 

In case, a data doesn’t fall into any micro-clusters in the current model, it creates a new 

micro-cluster itself. The data structures are updated every time a data arrives from the 

data stream in a fully online manner. Along with summary information, the micro-

clusters also maintain an energy level to bear the timing information about the last 

change. The energy of a micro-cluster is increased every time it receives a new data and 

otherwise decreased. The micro-cluster with non-positive energy is considered as 

irrelevant micro-cluster and move from main memory to a special memory, called 

buffer. This operation confirms the correct functionality of BOCEDS to evolving data 

stream. In case, a new data maps to a micro-cluster in buffer then it is marked as 

relevant micro-cluster and move to main memory again. The micro-clusters in memory 

generate micro-clustering graphs based on their connectivity. A single graph forms a 

cluster.  

Section 3.2.1 describes the data structures used in the developed BOCEDS 

algorithm in details. The algorithmic parameters and the steps are discussed in Section 

3.2.2. The sub-algorithms are also presented in this section. 

3.2.1 Data Structures in BOCEDS 

The developed BOCEDS is an online micro-clustering density-based clustering 

algorithm. Similar to other micro-clustering density techniques, it summarizes the 

clustering information in the form of micro-clusters. The macro-clusters are generated 

based on membership among the micro-clusters in a clustering graph. Two connected 

micro-clusters belong to the same macro-cluster. BOCEDS defines the “decay” 

parameter to detect the evolving property of data and the “minimum density threshold” 

to differentiate the outliers from the micro-clusters. Decay is defined as the total data 

points from the data stream that arrive in a period at a specific sampling rate or the 

number of data points that arrive per unit time (Hyde et al., 2017). The minimum 
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number of data points required to form a micro-cluster is known as the minimum 

density threshold ( )densityTh . A micro-cluster with a local density less than the threshold 

is an outlier micro-cluster. Figure 3.1(a) and Figure 3.1(b) show the structure of a 

micro-cluster and the neighbourhood of micro-clusters, respectively. In Figure 3.1(b), a 

total of 8 micro-clusters are denoted by V1,V2,V3,V4,V5,V6,V7,V8. Figure 3.1 (c) derives 

the clustering graph from the micro-clusters intersections (Figure 3.1 (b)). In Figure 3.1 

(c), the macro-clusters or simply clusters are denoted by M1, M2 and M3. 

 

(a)   

 

(b)                         

 

(c)  

 

Figure 3.1 The data structure in BOCEDS algorithm (a) Micro-cluster structure (b) 

Insections of micro-cluster (c) The formation of clustering graph and macro-cluster 
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A micro-cluster (MC) is defined as the tuple ),,,,,,( MELERCNNMC  , where 

i. Center (C) is the center of the micro-cluster that defines the location of the micro-

cluster in the data space. It is computed as the mean of the data points in the 

micro-cluster (Figure 3.1(a)); 

ii. Radius (R) is the radius of the micro-cluster that describes the spread of the 

micro-cluster from the center. The inner region covered by half of the radius is 

known as the kernel region (the grey region in Figure 3.1(a)), whereas the outer 

half part is called the shell region (the greenish region in Figure 3.1(a)). 

iii. Local density (N) is the local density of a micro-cluster that describes the number 

of data points within the micro-cluster radius. N   is defined as the number of data 

points in the shell region of the micro-cluster. 

iv. Energy (E) is the energy of a micro-cluster that is defined as the potential of the 

micro-cluster. It is used to determine the length of time since a micro-cluster 

receives last data. The energy of every micro-cluster is updated (the details of 

which is in Section 3.2.2.3) after clustering every data point. A micro-cluster dies 

or lives on the basis of energy. A micro-cluster with zero or negative energy 

)0( E  is killed and does not participate in the clustering graph. 

v. Edge list (EL) in each micro-cluster shows the connected or edged micro-clusters. 

Two micro-clusters with radius R1 and R2 are considered intersected if the 

distance ( d ) between their centers is less than the intersecting distance

)
2

( 2
1

R
Rd  . In other words, two micro-clusters are considered edged if the 

kernel region of a micro-cluster intersects with the shell or kernel region of 

another micro-cluster. The intersecting micro-clusters collectively form the edge 

list of a micro-cluster. In Figure 3.1(b), the edge list of V1 micro-cluster comprises 

V2 and V3 micro-clusters. Meanwhile, the edge list of V7 micro-cluster consists 

only of V8 micro-cluster. As the shell region,V8 intersects with the shell region of 

V4 micro-cluster; thus, they do not belong to the same macro-cluster. 

vi. Macro-cluster (M): Intersecting micro-clusters form a single macro-cluster. A 

micro-cluster with local density more than the threshold but with no intersecting 
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micro-cluster forms a macro-cluster. Figure 3.1(c) illustrates the formation of 

three macro-clusters (i.e., M1, M2, and M3).  

Each time a new data point emerges; it either contributes to form a new micro-

cluster or falls into an existing micro-cluster. BOCEDS maintains four types of micro-

clusters, namely, core, potential, weak, and outlier micro-clusters. The developed 

algorithm defines the density threshold ( densityTh ; Section 3.2.1) and the micro-cluster 

energy to distinguish among different types of micro-clusters. The micro-clusters are 

defined as the following Definitions 1 to 4. 

Definition 1 (Core Micro-cluster). A core micro-cluster at time t, where

),,,,,,( tttttttcore MELERCNNMC   is defined as the group of close points

tNXXX ..,........., 21  in a high-density area where  

i. the local density( tN ) is equal or exceeds the density threshold, densityt ThN 

where densityTh  is an application-dependent and user-defined parameter; 

ii. the number of data points in the shell region ( tN  ) is less than or equal to the 

local density, tt NN  ; 

iii. the radius ( tR ) holds maxmin RRR t  , where minR to maxR is the range of the 

micro-cluster radius defined by the user; 

iv. the living energy is positive, 0tE ; 

v. the center (
t

N

t

k

t

k

tDk
N

X

C

t









1, )  is calculated as the mean of tX D-dimensional 

data points in the shell region of the micro-cluster )( tN  ; 

vi. the edge list is },......,,{ 21 Pt MCMCMCEL  , where the micro-cluster is 

intersected with other P core micro-clusters; and 
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vii. the macro-cluster id
tM  is a unique integer assigned to each intersected micro-

cluster from edge list tEL . 

Definition 2 (Weak Micro-cluster). A weak micro-cluster,

),,,,,,( tttttttweak MELERCNNMC  , in the buffer is defined as the group of close data 

points 
tNXXX ,....,, 21  in the high-density area at time t, with the local density( tN ) 

equal or more than the density threshold( densityTh ), the number of data points in the shell 

region ( tN  ) is less than or equal to local density( tN ),  positive energy( 0tE ), empty 

edge list( tEL ), and no macro-cluster id ( 0tM ). The center( tC ) and radius( tR ) 

are calculated similar to Definition 1. 

Definition 3 (Potential Micro-cluster). A potential micro-cluster 

),,,,,,( tttttttpotential MELERCNNMC  is defined as the group of one or more close 

points 
tNXXX ,....,, 21  

at time t, with the local density( tN ) below the density threshold 

(
densityTh ), the number of data points in the shell region ( tN  ) is less than or equal to 

local density( tN ),  positive energy( 0tE ), radius( tR ) equal to minimum radius( minR

), empty edge list( tEL ), and zero macro-cluster id( 0tM ). The center( tC ) is 

calculated similar to Definition 1. 

Definition 4 (Outlier Micro-cluster). An outlier micro-cluster 

),,,,,,( tttttttoutlier MELERCNNMC   is defined as the group of one or more data points 

tNXXX ..,........., 21  in a low-density area at time t, with the local density ( tN ) below the 

density threshold ( densityTh ), the number of data points in the shell region( tN  ) is less 

than or equal to local density( tN ), non-positive energy( 0tE ), radius( tR ) equal to 

minimum radius( minR ), empty edge list( tEL ), and zero macro-cluster id( 0tM ). 

The center( tC ) is calculated similar to Definition 1.

 

The algorithm requires a user defined parameter, namely density threshold to 

define the types of micro-cluster (Section 3.2.2). The parameter denotes the number of 

minimum data points to differentiate a micro-cluster from the background noise of data 

stream. A micro-cluster with the local density below the density threshold is considered 
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as noise or outlier micro-cluster. A density threshold equal to one defines that the data 

stream contains no noise.  On the basis of the four definitions, a micro-cluster needs the 

local density to be above the user-defined density threshold to be a core (Definition 1) 

or weak (Definition 2) micro-cluster, whereas the condition is reversed for potential 

(Definition 3) and outlier (Definition 4) micro-clusters. The micro-cluster center is 

calculated as the mean of the data points in the shell region only because they prevent 

the micro-cluster from following the drift of the data stream endlessly by limiting its 

movement (Hyde et al., 2017). Although core and weak micro-clusters have a positive 

energy, a core micro-cluster is stored in the primary memory, whereas a weak micro-

cluster is stored in a special buffer memory. The core micro-cluster actively participates 

in cluster graph and has a positive macro-cluster id, whereas a weak micro-cluster does 

not participate in the cluster graph and no macro-cluster id is assigned to it. Similar to 

weak micro-clusters, potential and outlier micro-clusters do not participate in the cluster 

graph and do not have a macro-cluster identification number. Outlier micro-clusters are 

identified as noise and removed immediately after identification. 

3.2.2 Description of the Developed BOCEDS Algorithm 

Prior to the execution of the developed BOCEDS algorithm, few application-

dependent parameters are defined on the basis of the expert knowledge of the 

application similar to other micro-cluster density-based clustering techniques, such as 

DenStream, CluStream, DEC, CODAS, and CEDAS. The developed BOCEDS 

algorithm defines the following clustering parameters. 

i. Decay )(Decay : Decay is the number of data points from the data stream that 

arrive per unit time. It is the data rate. A decay of 1000 implies that 1000 data 

points are sequentially coming on an average per unit time (e.g., second, minute) 

from the data stream. It is used to update the energy of micro-clusters. This 

value is set based on expert knowledge about the application. 

ii. Maximum )( maxR and Minimum )( minR Radii: The maximum and minimum radii 

of micro-clusters are set based on expert knowledge about the application. The 

maximum radius confirms the separation and smoothness of micro-clusters, 

whereas the minimum radius confirms the formation of micro-clusters with 
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sufficient data points. Recently, the authors in (Albertini & Mello, 2018) 

described an adaptive method for estimating clustering parameters. 

iii. Minimum Threshold )( densityTh : The minimum threshold is the minimum number 

of data points required to form a core micro-cluster. This value separates the 

micro-clusters from the background noise.  

After setting the application parameters, the developed BOCEDS algorithm is executed 

on data stream ,......},,,{ 3210 XXXXX  by the following six distinct steps. 

i. Initialize the micro-cluster (Section 3.2.2.1) 

ii. Search the target micro-cluster (Section 3.2.2.2) 

iii. Update the micro-clusters (Section 3.2.2.3) 

iv. Move the weak micro-cluster to the buffer (Section 3.2.2.4) 

v. Kill the weak micro-cluster in the buffer (Section 3.2.2.5) 

vi. Update the cluster graph (Section 3.2.2.6) 

Figure 3.2 shows the developed BOCEDS clustering procedure. The procedure 

begins by reading the application-dependent clustering parameters

),,( maxmin, DecayRRThdensity . The clustering procedure then waits for the data points 

)( iX from the data stream )(X . 

As show in Figure 3.2, when a data point )( iX arrives, it searches for the target 

micro-cluster (T), where iX  resides based on the Euclidean distance between the data 

point and the hyper-spherical micro-clusters. BOCEDS emphasizes on maintaining a 

hyper-spherical micro-cluster because of its favourable computational characteristics 

over hyper-ellipsoidal or hyper-box-shaped micro-clusters in terms of dimensional 

stability and processing time (Hyde et al., 2017). The searching operation is executed 

on the core )( coreMC , weak )( weakMC , and potential )( potentialMC micro-cluster sets 

(Section 3.2.2.2).  
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Figure 3.2 Developed BOCEDS clustering algorithm 

If the data resides in a weak micro-cluster, the micro-cluster is immediately 

turns into core micro-cluster. If the data reside in a potential micro-cluster, then the 

micro-cluster is checked for core micro-cluster set membership and added to the set. 

Figure 3.2 indicates that in the case of successful searching, the information of the 

target micro-cluster (T) is extracted and updated (Section 3.2.2.3). Otherwise, a new 

potential micro-cluster is created (Section 3.2.2.1). The energy of every micro-cluster in 

the system is updated to find the weak micro-cluster candidate in the core micro-cluster 

set (Section 3.2.2.4), the outlier micro-cluster in the potential micro-cluster set, and the 

dying micro-clusters in the weak micro-cluster set (Section 3.2.2.5). Energy (E) 

represents the energy of micro-clusters (i.e., potential, core, and weak micro-clusters). 

E≤0 of a core micro-cluster indicates that the micro-cluster is weak (temporarily 

irrelevant) and is thus stored in the buffer. Meanwhile, E≤0 of a weak micro-cluster 

indicates that the micro-cluster is dying (entirely irrelevant) and is thus removed 
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completely from the buffer. Finally, E≤0 of a potential micro-cluster indicates that the 

micro-cluster is dying (outlier). The core micro-cluster with non-positive energy 

becomes a weak micro-cluster, and the micro-cluster is moved to the buffer memory. 

Spherical micro-clusters are then represented using the clustering graph, which is 

finally updated by updating the core micro-cluster set (Section 3.2.2.6). Arbitrarily 

macro-clusters (or simply clusters) of arbitrary shape are formed using the graph. Thus, 

although the micro-clusters are spherical, they generate arbitrarily shaped clusters. 

Sections 3.2.2.1 to 3.2.2.6 describe the procedures of the developed BOCEDS 

clustering algorithm. 

3.2.2.1 Initialize the Micro-cluster 

In this step, new micro-cluster )( newMC  is created in case the data point does not 

fall in any micro-cluster. The micro-cluster creation begins by initializing the micro-

cluster feature vector. The data point is set as the center of the micro-cluster )( iXC  , 

and the initial radius is set to the minimum radius )( minRR  . The local density and 

number of data points in the shell region are set to 1 )1(  NN  because the micro-

cluster contains only one data point. The edge list is an empty set of intersecting micro-

clusters )( EL . The initial energy is set to 1 )1( E  to ensure that a micro-cluster is 

just created with full energy level. The newly created micro-cluster )( newMC has a local 

density )1( N  less than the density threshold )( densityThN   and has a positive energy

)1( E . Thus, on the basis of Definition 3, newMC  is a potential micro-cluster and is 

thus added to the potential micro-cluster set )( potentialMC  using the union operation in 

Eq. 3.1. 

newpotentialpotential MCMCMC                                                             3.1 

 

However, the setting of the density threshold to 1 )1( densityTh implies that the 

new micro-cluster immediately turns into a core micro-cluster )( coreMC  and practically 

no potential micro-clusters exists. Potential micro-clusters do not participate in the 

clustering graph; thus, they do not have macro-cluster ids )0( M . 
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3.2.2.2 Search the Target Micro-cluster 

Each time a new data point arrives from the data stream, the developed 

BOCEDS attempts to map it to an existing micro-cluster based on the Euclidean 

distance )(d between the micro-cluster center and the data point. A data point )( iX  

belongs to a micro-cluster, ),,,,,,( MELERCNNQ  , if the distance value )(d  is less 

than the radius of the micro-cluster and is expressed by Eq. 3.2. 

RCXd i ),(
                                                                                          3.2 

The mapped micro-cluster may be one of the following micro-cluster sets: 

a. A weak micro-cluster from the core micro-cluster set )( weakMC  in the buffer; 

b. A potential micro-cluster from the potential micro-cluster set )( potentialMC ; or 

c. A core micro-cluster from the core micro-cluster set )( coreMC . 

To find the target micro-cluster for the newly arrived data point )( iX , the 

developed BOCEDS uses a three-step search operation, as illustrated in Algorithm 1. 

The first search operation is executed on a weak micro-cluster set in the buffer using 

Eq. 3.2. This search operation is a type of pruning operation that aims to find the 

relevant micro-cluster from the temporary irrelevant micro-clusters.  

Algorithm 1: Micro-cluster Searching 

Input: Data point iX , core micro-cluster set coreMC , potential micro-cluster set

potentialMC , weak micro-cluster set weakMC . 

Output: Micro-cluster, T that contains iX . 

Step 1: Initialize a target micro-cluster, nullT   

Step 2: Find a weak micro-cluster,Q  )..( weakMCQei  that satisfies Eq. 3.2. 

Step 3: If nullQ  , then 

Set QT   and go to Step 8. 

[End If]  

Step 4: Find a potential micro-cluster,
 
Q    )..( potentialMCQei  that satisfies Eq. 3.2. 
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Step 5: If nullQ  , then 

Set QT   and go to Step 8. 

 [End If]  

Step 6: Find a core micro-cluster,
 
Q   )..( coreMCQei  that satisfies Eq. 3.2. 

Step 7: If nullQ  , then 

Set, QT   

 [End If]  

Step 8: Return T.  

If no such weak micro-cluster is found, then the algorithm searches the potential 

micro-cluster set to find the target micro-cluster in a similar manner as the first search 

operation. In case these two search operations fail, a final search is executed on the core 

micro-cluster set to find the mapped core micro-cluster. In case two or more micro-

clusters satisfy Eq. 3.2, the algorithm randomly selects the target micro-cluster. 

3.2.2.3 Update the Micro-clusters 

If any micro-cluster receives a new data point, then the metadata will be updated 

recursively. If at the 
tht  time instant, micro-cluster ),,,,,,( ttttttt MELERCNNT  exists 

and a new data point ( 1tX ) has been mapped to that micro-cluster, then its summary 

information or metadata at
tht )1(  time is updated online, as discussed in Algorithm 2. 

The local density )( 1tN  is simply incremented by Eq. 3.3. In the case where T is a 

weak micro-cluster )( weakMCT   or a potential micro-cluster )( potentialMCT   with a 

local density greater than the density threshold )( densityt ThN  , T is added to the core 

micro-cluster set )( coreMC . If T is already a core micro-cluster )( coreMCT   or a newly 

added core micro-cluster, then its radius )( 1tR  is recursively updated by utilizing the 

forgetting mechanism (Khamassi et al., 2018; W. Wang & Vrbanek, 2008). The micro-

cluster radius is updated if the data point stays in the shell region of the micro-cluster 

because the data points in kernel region have minimal impact on increasing the radius 

and the current radius is sufficiently large. The radius updating equation is formulated 

based on the statement that the farther away the data point expands, the more intensive 

the micro-cluster radius is than in the case of a closer data point. The closeness of the 
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data point to the outer edge of the micro-cluster is defined as ]1}/),(2[{ 1  RCXd tt , and 

the radius is increased by a forgetting factor of )/1( Decay per unit closeness. Thus, the 

micro-cluster radius is updated using Eq. 3.4. 

Local density, 11  tt NN                                                                    3.3 
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The micro-cluster radius never exceeds the maximum radius )( maxR .The micro-

cluster center )( 1tC  is updated only if the data point lies in the shell regions (d stays in 

the range of ],5.0[ 11  tt RR ). The motivation of this operation is that the participating 

points for center updating remain in the shell region because they prevent the micro-

cluster from following the drifting of the data stream endlessly by limiting its 

movement (Hyde et al., 2017). If data point 1tX  resides in the shell region, then the 

number of data points in the shell region )( 1

tN  and the micro-cluster center )( 1tC are 

updated using Eq. 3.5 and Eq. 3.6, respectively. 
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for k=1,2,3,…,D, where D is the dimension size of data point 

To update the energy )( 1tE  of the micro-cluster, a new energy updating 

function is designed based on the Newton’s law of gravitation(Newton, 1729), where 

the amount of energy gained by the micro-cluster is inversely proportional to the 

distance between the cluster center and the data point. Thus, the energy )( 1tE  of the 

newly mapped core micro-cluster is updated using Eq. 3.7. 
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Algorithm 2: Micro-cluster Update 

Input: Data point iX , micro-cluster ),,,,,,( ttttttt MELERCNNT  , and distance 

),( ti CXd  

Step 1: Update the local density )( tN  of T using Eq. 3.1. 

Step 2: If   )()()( 1 weakdensitytpotential MCTThNMCT  
, then 

Add the micro-cluster )(T  to core micro-cluster set,

TMCMC corecore   

Update the radius )( 1tR  of micro-cluster )(T using Eq. 3.4. 

Set 11 tE  

Else If coreMCT  , then 

Update the radius )( 1tR  of micro-cluster )(T using Eq. 3.4 

Update the energy )( 1tE  of micro-cluster )(T using Eq. 3.7. 

[End If] 

Step 4: If 
1

1

2


  t

t Rd
R

, then 

Update the number of data points in shell region )( 1

tN  of micro-

cluster )(T  using Eq. 3.5. 

Update the center )( 1tC  of micro-cluster )(T using Eq. 3.6. 

[End If]  

Step 4: Exit 

From Algorithm 2, if the newly mapped micro-cluster is a weak one, then its 

energy )( 1tE  is simply reset to 1. In case of potential micro-cluster, the energy )( 1tE  is 

set to 1 if the density )( 1tN  is equal or above the density threshold )( densityTh . 

Furthermore, in Algorithm 2, if the mapped micro-cluster )(T  is a potential 

micro-cluster and its local density )( 1tN only meets the density threshold )( densityTh , then 

the micro-cluster )(T  is converted to core micro-cluster and added to the core micro-

cluster set )( coreMC . Meanwhile, a weak micro-cluster (a special type of core micro-

cluster in buffer with no energy) has lost its energy to be live due to the evolving 

characteristic of data stream. The weak micro-cluster already meets its density 
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threshold. Thus, if the mapped micro-cluster is a weak one, then it is relevant to the 

current data stream contents and is immediately converted to core micro-cluster and 

added to the core micro-cluster set )( coreMC . 

3.2.2.4 Move the Weak Micro-cluster to Buffer 

After clustering each data point, the energy of each core micro-cluster is 

decreased to reflect the evolving nature of the data stream. Any core micro-cluster with 

the energy below zero is marked as a weak micro-cluster. In this step, the irrelevant 

micro-cluster is stored in a special storage called buffer. The purpose of this operation 

is to give chance to an irrelevant micro-cluster to be alive again in case data comes to 

this micro-cluster in near future. The case has been illustrated in Section 1.3, Chapter 1. 

This operation prevents the frequent creation and deletion of micro-cluster to reduce the 

processing time. Algorithm 3 describes the weak micro-cluster identification process 

and the moving of weak micro-clusters in a special buffer. 

Algorithm 3: Moving Weak Micro-clusters to Buffer 

Input: Core micro-cluster set ( coreMC ), weak micro-cluster set ( weakMC ) in buffer, 

Decay  

Step 1: Reduce the energy of 
Decay

1
from all core micro-clusters in coreMC . 

Step 2: For each micro-cluster coreMCMELERCNNT  ),,,,,,( , do 

If 0E , then 

Remove all edges from T , EL  

Remove the edge )(),( TELTTEdge  from any core micro-

cluster 

coreMCT  ,  ),( TTEdge  

Reset the number of macro-clusters of T , 0M  

Remove T from the core micro-cluster set,

TMCMC corecore 
 

Set the new dying energy 5.0E  

Add the micro-clusterT to the weak micro-cluster set in buffer, 

TMCMC weakweak  . 
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 [End If]  

 [End For] 

Step 4: Exit. 

0E of a core micro-cluster (T) indicates that the micro-cluster has become 

weak (temporarily irrelevant).The identified weak micro-clusters are moved to the 

buffer memory with setting a new dying energy half of the initial energy (i.e. 5.0E ). 

The purpose of storing the weak micro-cluster in the buffer is to serve as reference to 

weak micro-clusters in the future. They do not participate in the cluster graph and are 

disconnected from the graph by the removal of the intersecting edges 

3.2.2.5 Kill the Weak Micro-cluster in Buffer 

Along with the reduction of the energy of the core micro-cluster (Section 3.2.4), 

the energy of each weak micro-cluster in the buffer is also reduced by
Decay

1
. The 

purpose of this operation is to identify the dying micro-clusters that are unrelated to the 

recent data stream contents for a long time. A weak micro-cluster with a zero or 

negative energy )0( E  is identified as a dying micro-cluster and is killed permanently 

from the memory. A dying micro-cluster is a totally irrelevant micro-cluster with 

respect to the current data stream content. The size of buffer is small and to 

accommodate the temporary irrelevant micro-cluster, the totally irrelevant or dying 

micro-cluster needs to be removed. The purpose of this operation is to delete the dying 

micro-cluster from memory to prevent the buffer from growing beyond its limit of size. 

The procedure for identifying and killing dying micro-clusters is presented in 

Algorithm 4. 

Algorithm 4: Micro-cluster Removal 

Input: Weak micro-cluster set ( weakMC ), potential micro-cluster set ( potentialMC ), 

Decay  

Step 1: Reduce an amount of 
Decay

1
energy from all weak micro-clusters in weakMC . 

Step 2: For each weak micro-cluster ( weakMCMELERCNNW  ),,,,,,( ), do 

If 0E , then  
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Remove T from the weak micro-cluster set in the buffer,

WMCMC weakweak  .
 

[End If]  

 [End For] 

Step 3: Reduce an amount of 
Decay

1
 energy from all potential micro-clusters in

potentialMC . 

Step 4: For each potential micro-cluster ( potentialMCMELERCNNP  ),,,,,,( ), do 

If 0E , then  

Remove P from the potential micro-cluster set,

PMCMC potentialpotential  . 

[End If]  

 [End For] 

Step 5: Exit. 

Furthermore, from Algorithm 4, the weak micro-clusters with a non-positive 

energy )0( E  are identified as candidates for dying micro-clusters and are completely 

removed from the buffer. The energy of each potential micro-cluster is also decreased, 

and the micro-cluster with a zero or negative energy )0( E  is marked as an outlier. 

Similar to a weak micro-cluster, outliers are also removed from the memory 

permanently. 

3.2.2.6 Update the Cluster Graph 

Similar to other density-based clustering techniques, such as CODAS, CEDAS, 

BOCEDS maintains a clustering graph to generate a macro-cluster online. The 

clustering graph must be updated in four cases. 

Case 1. A potential micro-cluster satisfies the minimum density threshold to be 

the core micro-cluster. 

Case 2. A weak micro-cluster becomes a core micro-cluster because it contains 

the current data point. 

Case 3. The center of a core micro-cluster is shifted. 
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Case 4. A core micro-cluster is moved to the buffer and changes to a weak 

micro-cluster. 

In the above cases, the edge list of the micro-clusters may be changed; thus, the 

number of macro-clusters must be updated accordingly. 

Algorithm 5: Update Cluster Graph(G) 

Input: A core micro-cluster ),,,,,,( MELERCNNT  that has been generated or 

modified, core micro-cluster set ( coreMC ), clustering graph G 

Step 1: For each core micro-cluster ( coreMCMELERCNNT  ),,,,,,( ), do 

Set d =Euclidean distance between centers of micro-clusters T andT   

Set d =intersecting distance between T and T   from Eq. 3.8 

If dd  , then 

Add the edge ),( TTEdge  to the edge list of T  ,

),(.. TTEdgeELTELT   

Add the edge ),( TTEdge  to the edge list of T ,

),(.. TTEdgeELTELT  . 

[End If] 

[End For] 

Step 2: If any micro-cluster edge list has changed, then  

Set a new number of macro-clusters throughout the graph. 

[End If]  

Step 3: Exit. 

The first two cases introduce a new vertex in the clustering graph. For Cases 1–

3, the intersecting micro-clusters are calculated, and the edge lists are updated. If two c-

micro-clusters T and T with radii R and R , respectively, exist, then the intersecting 

distance ( d  ) is the distance between the centers of the two c-micro-clusters and is 

calculated using Eq. 3.8. 
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If the edge list is changed, then the number of macro-clusters is updated on the 

basis of the edge list. In Cases 4 and 5, one vertex is removed from the graph. Any edge 

that connects the removed vertex and a vertex in the graph is removed from the graph. 

The number of macro-clusters is reassigned in the graph. 

3.3 Summary 

This chapter explains the developed online clustering algorithm called BOCEDS 

in details to overcome the identified research problems. BOCEDS is a single stage 

algorithm that generates the clusters from the data stream in a single online stage. The 

algorithm uses the concept of micro-cluster to summarize the data from data stream. 

BOCEDS defines four types of micro-cluster and they are core, potential, weak and 

outlier micro-clusters. Outlier micro-clusters are the background noise and core micro-

clusters are the final micro-clusters those participate in cluster generation. On the other 

hand, potential micro-clusters are converted to either core or outlier micro-cluster. The 

rest weak micro-cluster is temporary irrelevant micro-clusters those are identified as 

totally irrelevant of core micro-cluster in later period of time. Euclidean distance 

measure has been used to compute the distance between micro-clusters and also the 

distance between data and micro-clusters. 

Before execution of the algorithm, the application parameters (minimum and 

maximum radius, density threshold, decay) are set by the application expert. The 

algorithm executes in five distinct steps. In the first step, a micro-cluster is created in 

case the data does not fall into any micro-clusters in the current model. The micro-

cluster searching operation is executed in the second step. The searching domains are 

weak, potential and core micro-cluster set. A data may falls into a region of a micro-

cluster.  In such a case, the information of the micro-cluster is updated in a fully online 

manner in the third step. The forgetting mechanism is utilized to design the radius 

updating procedure and Newton’s gravity law is adapted to design the micro-cluster 

energy updating procedure. The energy of every micro-clusters including core, potential 

and weak micro-cluster are updated in every time, a data is clustered. In the fourth step, 

based on the current energy, some core micro-clusters become weak (temporary 

irrelevant) micro-clusters and stored in a special stage called buffer. On the other hand, 

some weak micro-clusters become dying (totally irrelevant) micro-cluster and are 

removed from buffer completely. In the final step, clustering graphs are generated based 
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on the connectivity among core micro-clusters. Each disjoint graph represents a single 

macro-cluster or simply cluster.  

To summarize, BOCEDS uses the concept of maintaining the local optimal 

radius rather than global radius concept of other algorithms to effectively reduce the 

sparse regions in a micro-cluster by maintain the local optimal radius. This fact also 

helps to handle noise effectively. The algorithm has the ability to handle evolving data 

stream by considering an energy that which decreases over time. Another prominent 

feature of BOCEDS can keep track of the temporary irrelevant micro-clusters by storing 

them in buffer those are ignored by other density-based algorithms. The pruning of 

these micro-clusters prevents the frequent creation and removal of micro-clusters. The 

operation improves the processing time significantly. The whole steps works 

recursively those in turns provide a fully online behaviour of BOCEDS. 
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CHAPTER 4 

 

 

EXPERIMENTAL RESULTS AND DISCUSSION  

4.1 Introduction 

In the previous chapter (Chapter 3), the developed BOCEDS algorithm has been 

discussed in details. The input parameters have also been defined. The developed 

clustering algorithm called BOCEDS is implemented using MATLAB R2014a and run 

on a Core i7 processor with 2GB primary memory environment. The algorithm is 

executed in Microsoft Windows 10 operating system environment. This chapter 

describes the correct functionality of BOCEDS algorithm in Section 4.2.1 to form 

clusters in dense regions, to detect noises in data stream, to detect the drift in data 

stream. The scalability and processing speed properties of the algorithm is discussed in 

Section 4.2.2. The cluster quality and memory requirement is measured and explained 

in Section 4.2.3 to evaluate the performance of BOCEDS. Some parameters are used in 

the algorithm, which are set based on expert knowledge on domain. The sensitivity of 

those parameters are measured and described in Section 4.2.4.  To evaluate the 

applicability of developed algorithm to real-world data stream, a case study that 

describes the clustering of real-world weather data stream is discussed in Section 4.3.  

4.2 Performance Metrics 

Evaluating the performance of clustering algorithm is one of the important 

issues to validate the goodness of the clustering result (Maulik & Bandyopadhyay, 

2002). The performance of clustering algorithm is defined in terms of five metrics by 

most of the clustering algorithms for data stream (Amini et al., 2014; Hyde & Angelov, 

2015; Reddy & Bindu, 2017). The metrics are described in the following Section 4.2.1 

to Section 4.2.5. 
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4.2.1 Cluster Formation and Noise Sensitivity 

To validate the correct functionality of a clustering algorithm, it is necessary to 

test the formation of micro-clusters as well as clusters as new data arrives from a data 

stream. Cluster formation metric describes the fact that how the algorithm forms adds, 

merges and separates macro-clusters in a continuously evolving environment (Hyde et 

al., 2017). It is also important to visualize the creation and removal of micro-clusters 

over time. The cluster formation metric is evaluated on both of clean and noisy data 

stream to ensure the proper functionality of the algorithm. The generated micro-clusters 

and clusters visualized with different colour to differentiate them.  

The visualization of cluster formation on noisy data stream alone cannot 

describe the functionality of the algorithm. It is necessary to define a numerical metric. 

The solution is to measure the noise sensitivity of the clustering algorithm. Noise 

sensitivity describes the behavior of a clustering algorithm in a noisy data stream 

environment. This characteristic is calculated by comparing the percentage of data point 

assignment (Hyde & Angelov, 2015) before and after adding the noise to the data 

stream. The percentage of data point assigned to a cluster has been redefined as the data 

coverage. If tN  data points from data stream generate C core micro-clusters at time t, 

then data coverage is the ratio of the cumulative local densities to the total data points 

that appeared ( tN ), as shown as follows: 

Data coverage,
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Where, in  is the local density of the micro-cluster I at time t. 

If cleanDC  is the data coverage over clean data stream (before adding noisy data) 

and noisyDC  is the data coverage over noisy data stream (after adding noisy data), then 

the noise sensitivity or identified noise is measured by 

Noise sensitivity, noisyclean DCDCNoise [%]                                           4.2 

The noise sensitivity defines the percentage of noise in the data stream. An ideal 

clustering algorithm detects all the noises in the data stream.   
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4.2.2 Processing Speed and Dimensionality 

Processing time is a very important metric to evaluate any algorithm. The data 

point processing speed is measured as the average time needed to complete the 

clustering of a data point from the data stream (Aggarwal et al., 2003). The processing 

time usually measured in a window basis way over the whole data stream and expressed 

in seconds, milliseconds or micro-seconds. On the other hand, the dimensionality metric 

describes the scalability behaviour of the clustering algorithm for low to high 

dimensional data stream. Usually, dimensionality property is defined in terms of 

scalability. Scalability is measured as the change in processing time from low- to high-

dimensional data stream. 

4.2.3 Cluster Quality 

Cluster quality describes the quality of generated clusters by the clustering 

algorithm. The metric is defined in terms of two parameters, namely, cluster accuracy, 

and purity (Amini et al., 2014; Hyde & Angelov, 2015). These two parameters are 

measured with respect to the true cluster (class) labels that are known for the data 

stream. 

  Purity is defined as the number of data points that belong to a dominant cluster. 

The higher percentage of the dominant class labels in each cluster, the higher the cluster 

purity. If in samples exist in a cluster and among them, d

in samples lie in the dominant 

cluster, then for N clusters, the mean purity is measured as 
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Purity                                                                              4.3 

The presence of a high number of clusters with few data points may provide 

high purity despite most of the data points clustered incorrectly. Cluster accuracy solves 

this limitation; it is defined as the amount of data points in a cluster that truly belong to 

the cluster(Hyde & Angelov, 2015). If in samples exist in a cluster and among them, d

in

samples lie in the dominant cluster, then for N clusters, the accuracy is measured as 



64 

%100

1

1 









N

i

i

N

i

d

i

n

n

Accuracy                                                                        4.4 

An ideal clustering algorithm shows a balanced accuracy and purity for any data 

stream. It is also expected the accuracy and purity equal or close to 100% in all time 

periods. 

4.2.4 Memory Efficiency 

Due to the volume property of data stream, data comes continuously from the 

data stream and the amount of data grows exponentially. However, low memory 

requirement is desired for any algorithm to reduce the maintenance cost. So, evaluating 

the memory efficiency is an important metric to define the performance of the 

clustering algorithm. Memory efficiency is measured as the storage required when 

clustering the data stream. However, the storage requirement is proportional to the 

micro-clusters in the model for online clustering algorithm as the data points are 

removed immediately after clustering (Baruah & Angelov, 2014; Hyde et al., 2017). 

Low memory requirement is desired for an online clustering algorithm for data stream. 

4.2.5 Parameter Sensitivity 

The operation of almost all the algorithms depends strongly on the initialization 

of its parameters. The sensitivity analysis evaluates the algorithms based on the analysis 

of these parameters (Baruah & Angelov, 2014; Riyadh et al., 2017). It shows how the 

algorithm’s parameters affect the clustering quality and the best setting for the 

algorithm’s parameters (Dong et al., 2018; Guha et al., 2001; Shao et al., 2018). The 

parameter sensitivity is defined in terms of three parameters and they are density 

threshold, decay and micro-cluster radius. The first step in this analysis of performance 

is the investigation of the sensitivity of the algorithms for varying parameters. The 

investigation of the sensitivity of density threshold and micro-cluster radius is evaluated 

by measuring the cluster quality based on Eq. 4.3 and Eq. 4.4. On the other hand, the 

sensitivity of decay is measured by computing the computational time for different 

decay setting.  



65 

4.3 Result Analysis 

A series of experiments has been executed on two syntactic and one practical 

data stream to measure the performance of the developed BOCEDS algorithm and 

compare it with existing density-based clustering algorithms. The performance of the 

developed BOCEDS algorithm measured over three benchmark data stream in the field 

of online clustering and they are Mackey–Glass, helical, and KDDCUP’99 data stream.  

Before execution of the BOCEDS algorithm on a data stream, four application 

dependent parameters are set by the user and they are minimum radius (Rmin), maximum 

radius (Rmax), decay (Decay) and density threshold(Thdensity). The optimal values of two 

parameters (Decay and Thdensity) are directly derived from literature as the data streams 

in this experiment are well studied by several algorithms. As the concept of other two 

parameters is new, the optimal values of them (Rmin and Rmax) are set by the 

experiments. The popular trial and error method is used to find the optimal values of 

these two parameters. In this method, initially the values of Rmin and Rmax are set to be 

identical as the optimal value of radius exists in literature.  The value of Rmin is 

decreased by a small amount of 0.01 and the value of Rmax is increased by a small 

amount of 0.01 till the cluster quality remains same or increases. In the case the cluster 

quality is found highest, the values of Rmin and Rmax are set to be used for the rest of 

experiments.  

The performance of BOCEDS algorithm is defined in terms of cluster formation 

(Section 4.3.1.1), noise sensitivity (Section 4.3.1.2), data point processing speed 

(Section 4.3.2.1), scalability (Section 4.3.2.2), response to variable decay (Section 

4.3.2.3), cluster purity (Section 4.3.3.1), cluster accuracy (Section 4.3.3.2), memory 

efficiency (Section 4.3.3.3), and parameter sensitivity (Section 4.3.4). 

4.3.1 Cluster Formation and Noise Sensitivity 

Mackey–Glass time series is a benchmark dataset that has been used to study the 

behaviour of dynamic changes in many evolving clustering algorithms (Blazic & 

Skrjanc, 2019; Kakkar et al., 2017; Makul & Ekinci, 2017). Although Mackey–Glass 

time series is a stationary dataset, the developed algorithm clusters data points online, 

wherein the data points are removed immediately after clustering. This dataset is used 

to show the manner in which micro-clusters are formed in the clean data stream with 
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local optimal radius. Adding some noisy data to this data stream, make the Mackey-

Glass data stream as a noisy data stream environment. This noisy data stream is used to 

define the behaviour of BOCEDS algorithm in a noisy environment.  

The dataset is a syntactic three-dimensional data stream that is composed of two 

Mackey–Glass time series (Glass & Mackey, 2010) generated by the following 

nonlinear time delay differential equation: 
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This equation is solved using the fourth-order Runge–Kutta numerical method 

with different values for a and b, and the data stream is generated. The 10th data of data 

stream has been replaced with a noisy data to generate a noisy Mackey–Glass data 

stream, which contains 10% noisy data. The noisy data are those data those are not in 

the normal range of data. In case of Mackey-glass time series data, the data are 

normalized to the range from 0.0 to 1.0. The noisy data are chosen from the data 

beyond this range. The developed BOCEDS algorithm is applied on a clean Mackey–

Glass data stream to understand the cluster formation in dense areas separated by sparse 

areas. BOCEDS is executed on the noisy Mackey–Glass data stream to validate the 

correct functionality in a noisy environment. The clustering parameters for clean and 

noisy Mackey–Glass data streams are set as 1000Decay data points, 15densityTh  data 

points, 03.0min R , and 07.0max R . 

4.3.1.1 Cluster Formation 

BOCEDS algorithm generates the macro-clusters or simple clusters in the highly dense 

areas separated by low dense areas of data stream. When this algorithm is executed on 

the clean Mackey–Glass data stream, the clustering results after four time periods are 

shown in Figure 4.1(a)–3(d). For one-fourth time period (first 10000 data points), the 

clustering result in Figure 4.1(a) confirms that micro-clusters and clusters are formed as 

data points that arrive in new dense areas. The generated micro-clusters have a nearly 

equal radius.  





68 

arrival. The data are shown in Figure 4.2(a) and Figure 4.2(b) for clean and noisy 

Mackey–Glass data streams, respectively, where the change in the number of macro-

clusters is reflected by the change in data path color. 

 

(a) Without noise 

 

(b) With noise 

 

Figure 4.2 Formation of macro-clusters in Mackey–Glass data stream 
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A comparison of Figure 4.2(a) and Figure 4.2(b) indicates that the formation of 

macro-clusters in noisy data stream is slightly delayed compared with that in clean data 

stream. The potential micro-clusters take more time to meet the density threshold than 

clean data stream due to the presence of noisy data points in noisy data stream. This fact 

is the cause of initial delay for forming the macro-clusters in case of noisy Mackey–

Glass data stream. In Figure 4.2(a) and Figure 4.2(b), a single macro-cluster contains all 

the data points, except the noisy data points until point A. The trend of varying the 

number of macro-clusters is relatively similar in clean and noisy data streams. At Point 

A, the data stream is separated into two distinct macro-clusters, and the change is 

denoted by the color blue. The short duration of macro-cluster existence is illustrated in 

Points C–D, G–H, H–I, I–J, and J–K. The data stream ends at Point N. 

From Figure 4.2(a) it can be seen that BOCEDS maintains the local radius 

during clustering the data stream that is updated towards its optimal value. Moreover, 

some micro-clusters are created and deleted over time that confirms the correct 

functionality of BOCEDS to handle evolving data stream. From Figure 4.2(b), it can be 

concluded that BOCEDS is able to generate clusters in both of clean and noisy 

environments. 

4.3.1.2 Noise Sensitivity 

The measured noise (using Eq. 4.2) of existing CEDAS and developed 

BOCEDS techniques over clean and noisy (10% noise) Mackey–Glass data streams is 

shown in Figure 4.3. From the figure, the initial identified noise by existing CEDAS 

algorithm is more than the original noise (10%) by a considerable amount. By contrast, 

the identified noise is more in the developed BOCEDS algorithm as the micro-cluster 

radius is less than its optimal value in these time periods and more some micro-clusters 

do not get enough data to be core micro-cluster. From Figure 4.3, it is also seen that the 

percentage of detected noise becomes up and down periodically due to the addition of 

noisy data in the noisy data stream. As time progresses, the identified noise by 

BOCEDS algorithm oscillates the original amount of noise (10%). In these time 

periods, the micro-clusters recursively update their radius toward their optimal radius, 

and the deviation in noise percentage from the original noise amount (10%) decreases. 
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Figure 4.3 Noise sensitivity over Mackey–Glass data stream 

Finally, the identified noise remains close to the original percentage of noise in 

the developed BOCEDS algorithm. Conversely, the amount of identified noise by 

CEDAS remains approximately at 7%. Thus, BOCEDS identifies nearly all the noisy 

data points, whereas CEDAS fails to identify some noise in the Mackey–Glass data 

stream. The developed BOCEDS also shows a superior performance in identification of 

noisy data points in comparison with the existing CEDAS. 

4.3.2 Speed and Dimensionality 

The helical data stream contains a set of helixes (Steinhaus, 1999). The original 

helical data stream consists of three helical data series of a circular helix, as shown as 

follows: 

ctZZtrYtrX  );cos();sin(
                  4.6 

where r is the radius of the helix, and c is the pitch parameter (pitch=2c). 

In the equation, as the value of t increases, points X, Y, and Z produce a right-

handed helix around the z-axis in a right-handed coordinate system. The helical data 

stream is generated using the above time series equation for different values of t and a 
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constant value of c. The data series is then moved into a higher-dimensional data space 

by adding additional data coordinates. The developed BOCEDS is executed on a high-

dimensional data stream to measure the data point processing speed and response to 

high dimensionality. The clustering parameters are set as 1000Decay  data points, 

4densityTh  data points, 04.0min R , and 06.0max R . 

4.3.2.1 Processing Speed 

It is desired for any clustering algorithm to show high processing speed to 

enable real time processing of data stream. Figure 4.4 shows the change in processing 

delay with time for clustering of a three-dimensional helical data stream using the 

developed BOCEDS algorithm and compares it with other two density-based online 

clustering techniques, namely, CEDAS and CODAS. 

 

Figure 4.4 Processing time on a helical data stream 

As shown in Figure 4.4, the processing time of CODAS is considerably higher 

than those of CEDAS and BOCEDS. This result is due to the fact that the micro-

clusters in CODAS do not evolve, whereas those in CEDAS and BOCEDS are evolving 

in nature. In the developed BOCEDS algorithm, the initial micro-cluster radius is below 

its optimal, and the number of initial micro-clusters is more in BOCEDS than that in 
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CEDAS. Accordingly, the initial processing time is more in BOCEDS than in CEDAS. 

However, the radius is updated toward its optimal because increased data points reach a 

micro-cluster. Although a time penalty is incurred for pruning operation, BOCEDS 

recovers some micro-clusters rather than creating new micro-clusters by a time-

consuming process, thereby reducing the processing time. Similarly, rather than 

updating the edges of micro-clusters in the clustering graph at every data point, the 

developed algorithm only rechecks the edges if the center of the core micro-cluster is 

shifted or a new core micro-cluster is added to the graph. Figure 4.4 depicts that as time 

progresses; the processing time becomes close by half of the data point arrival time. 

The processing time of BOCEDS finally goes below the processing time of CEDAS, 

and the trend continues because most of the micro-clusters either reach their optimal or 

maximum radius. 

4.3.2.2 Scalability 

A good clustering algorithm requires low processing time and low delay penalty 

for extending it to a higher-dimensional data space. Figure 4.5 compares the sample or 

data point processing speed of the developed BOCEDS clustering algorithm with those 

of CEDAS, CODAS, CluStream, and DenStream on a helical data stream.  

 

Figure 4.5 Processing speed on a helical data stream 
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The maximum limit of allowable number of micro-clusters in CluStream is 100 

micro-clusters. All techniques form arbitrarily shaped macro-clusters similar to 

BOCEDS. Figure 4.5 illustrates that the data point processing time linearly increases in 

all mentioned techniques. The processing time of BOCEDS is considerably less than 

those of CluStream, CODAS, and DenStream. The processing speed of BOCEDS is 

less than that of CEDAS by a small amount. Although a time penalty is incurred for the 

pruning operation, the processing time is greatly reduced by adopting the 

spatiotemporal similarity concept in the developed BOCEDS. Thus, the time penalty 

factor of BOCEDS for increasing the dimension size is less than those of the online or 

hybrid clustering algorithms. 

4.3.2.3 Response to Variable Decay 

Decay defines the amount of data arrives per unit time from a data stream. A 

clustering algorithm shows the linear relationship between the decay and data 

processing time. The mean processing time is recorded for different decay periods for 

low- to high-dimensional helical data stream to measure the behaviour of the developed 

BOCEDS in variable decay. The plotted result of these records is shown in Figure 4.6.  

 

Figure 4.6 Processing time for various decay settings in the developed BOCEDS 
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The decay is increased from an initial value 500 to 1500 with an interval of 250. 

Eq. 3.7 states that the energy-reducing factor for each micro-cluster reduces with 

increasing decay for an evolving data stream. Thus, the decay time is also proportional 

to the number of micro-clusters due to the continuous drift in helical data stream. This 

relationship between the decay and the number of micro-clusters implies that the mean 

data point processing time increases with the decay. Figure 4.6 clearly reflects the 

relationship, in which the mean data point processing time increases with the decay. 

Moreover, the processing time also increases with increasing the number of dimensions. 

The reasons for this behaviour of BOCEDS algorithm has been discussed in Section 

4.3.2.2. This characteristic shows that BOCEDS algorithm is efficient in handling the 

velocity property of data stream.  

4.3.3 Cluster Quality 

A well-known practical data stream called KDDCUP’99 (Bay et al., 2000) has 

been used for measuring cluster quality and memory. The data stream contains 

approximately 4900000 network traffics. The data stream is reduced to 10% to simulate 

the network intrusion attacks using the developed algorithm. Each data point of the 

stream is characterized with 41 features and an additional attribute for defining the 

attack. The database contains 21 types of network attack along with normal network 

traffic. The developed BOCEDS algorithm is applied on KDDCUP’99 data stream to 

identify the network traffic clusters. The clustering parameters are set as 1000Decay  

data points, 3densityTh  data points, 06.0min R , and 12.0max R . The cluster analysis is 

performed for 500time intervals spaced at 10K data points. The data points are 

immediately removed after clustering. The performance parameters (i.e., accuracy, 

purity, and memory) are measured in every window. 

4.3.3.1 Cluster Purity 

The purity of clustering KDDCUP’99 using the developed BOCEDS is 

measured using Eq. 4.3 at several time periods. The purity of another two recent highly 

pure density-based clustering, namely, CODAS and CEDAS, is also measured on the 

same data stream. Moreover, the mean cluster purity of DStream and MRStream is 

taken from the results presented by Wan et al. (Wan et al., 2009). The cluster purity is 
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calculated for 500 time intervals spaced at 10K data points. Figure 4.7 compares the 

purity of BOCEDS with those of DStream, MRStream, CODAS, and CEDAS.  

 

Figure 4.7 Purity for clustering of KDDCUP’99 data stream 

As shown in Figure 4.7, CODAS exhibits the highest clustering purity for the 

experimental time period among the clustering techniques. Nevertheless, CODAS is a 

non-evolving clustering algorithm. The remaining algorithms are evolving clustering 

methods. The developed BOCEDS shows the maximum purity at most of the time 

period, whereas DStream shows the worst performance in terms of purity due to the 

appearance of outlier data that are made from errors. The contributing factor behind this 

success in BOCEDS is the online updating of the micro-cluster radius toward its local 

optimal in contrast to a unique and global radius of micro-clusters in CEDAS. The 

purity performance of BOCEDS is above 90% at all time periods, except for the time 

period of 150 (Figure 4.7). The purity of BOCEDS is also higher than that of CEDAS at 

nearly all time periods. Although the purity of MRStream is good, BOCEDS is still 

superior at most of the time periods. Figure 4.7 emphasizes the improvement in purity 

of BOCEDS. 
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4.3.3.2 Cluster Accuracy 

The accuracy of clustering KDDCUP’99 using the developed BOCEDS is 

measured using Eq. 4.4 and recorded for different time periods. The clustering accuracy 

of another two recent highly accurate density-based clustering, namely, CODAS and 

CEDAS, is also measured on the same data stream. The cluster accuracy is measured 

for 500 time intervals spaced at 10K data points. Figure 4.8 plots the recorded accuracy 

and compares BOCEDS with CODAS and CEDAS.  

 

Figure 4.8 Accuracy for clustering of KDDCUP’99 data stream 

Among BOCEDS, CEDAS, and CODAS, CODAS shows the highest clustering 

accuracy; however, the micro-clusters in CODAS do not evolve. Between the other 

evolving two clustering methods, the developed BOCEDS shows higher accuracy than 

CEDAS due to the same reason of improving cluster purity (Section 4.3.3.1). In Figure 

4.8, the minimum accuracy in CEDAS is nearly 77%, which is found at approximately 

150 time periods; meanwhile, the minimum accuracy is improved by more than 5% in 

the developed BOCEDS. In CEDAS, numerous downward spikes are found, which 

imply that the accuracy falls below 90% in considerable time period. On the contrary, 

only a single spike goes below 90% in BOCEDS accuracy. This result indicates that the 
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data points are more correct in BOCEDS than in CEDAS. Thus, the improvement in 

accuracy of BOCEDS is considerable (Figure 4.8). 

4.3.3.3 Memory Efficiency 

Hence, the number of micro-clusters in the developed BOCEDS is compared 

with the number of micro-clusters in CODAS, DenStream, and CEDAS when 

clustering the KDDCUP’99 data stream to demonstrate the memory efficiency. The 

result is plotted in Figure 4.9.  

 

Figure 4.9 Memory usage in clustering of KDDCUP’99 data stream 

According to Figure 4.9, the number of generated micro-cluster in CODAS 

shows an increasing trend because it is not an evolving clustering algorithm. The 

number of micro-cluster in DenStream is taken from the results presented by Wan et al. 

(Wan et al., 2009). Among the other evolving clustering methods, DenStream is the 

worst clustering algorithm in terms of memory efficiency as it stores the all of the 

outliers for future reference. The number of micro-clusters in CEDAS and BOCEDS is 

close to each other. However, the number of micro-clusters is more in BOCEDS than 

that in CEDAS. Although BOCEDS generates a lower number of core micro-cluster 

than CEDAS does, the number of micro-clusters is further increased by the weak micro-
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cluster in BOCEDS. Moreover, the total micro-cluster is more in BOCEDS than in 

CEDAS. Thus, in comparison with CEDAS, BOCEDS shows a small amount of 

memory space penalty. 

4.3.4 Parameter Sensitivity 

Sensitivity analysis is an important metric to evaluate an algorithm, especially in 

the case when the algorithm takes some parameters from the user. Sensitivity analysis is 

an efficient and robust ways to realize the effect on the output of the algorithm due to 

the changes in input parameters (Tøndel et al., 2013). This evaluation metric has been 

well studied by many clustering algorithms like kDDBSCAN (Jungan et al., 2018), k-

mean-sharp (Olukanmi & Twala, 2017), FDCA (Jinyin et al., 2017). In this subsection, 

the sensitivity of the developed BOCEDS has been analysed with respect to the density 

threshold of the clustering parameters and the micro-cluster radii in a similar manner as 

those in (Dong et al., 2018; Guha et al., 2001; Shao et al., 2018). The popular 

KDDCUP’99 (Bay et al., 2000) data stream has been used to measure the accuracy and 

purity for different parameter settings in our experiment. 

4.3.4.1 Density Threshold )( densityTh  

densityTh  is varied from 1 to 6 to study the behaviour of BOCEDS for different 

settings of density threshold. The clustering parameter Decay  is set to 1000, 
minR  is set 

to 0.06, and
maxR  is set to 0.12 (similar to the third experiment in Section 4.2.3. The 

clustering purity and accuracy have been measured using Eq. 4.3 and Eq. 4.4). Table 

4.1shows the measured purity for different time periods. 

In Table 4.1, the bold font values represent the maximum purity at different time 

periods for different values of density threshold. From the table, the measured purities 

are close to one another in most of the time periods. For example, in the time period of 

50, the purities stay between 99.630 and 99.638. The maximum purity of 99.638 is 

found for 6,5,4densityTh , which is larger than the other density threshold with a 

negligible amount. In some time periods (i.e., 100, 200, 250, 300, 450), the purities are 

100% for all density threshold settings. 
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Table 4.1 Purity of clustering for KDDCUP’99 for different values of densityTh  

 

 

1densityTh

 

2densityTh

 

3densityTh

 

4densityTh

 

5densityTh

 

6densityTh

 
T

im
e 

(m
s)

 

50 99.63 99.635 99.6375 99.638 99.638 99.638 

100 100 100 100 100 100 100 

150 80.708 81.565 82.49752 82.321 82.134 82.122 

200 100 100 100 100 100 100 

250 100 100 100 100 100 100 

300 100 100 100 100 100 100 

350 98.229 97.663 97.88945 97.765 97.967 98.028 

400 90.053 90.922 91.06759 90.068 90.871 90.801 

450 100 100 100 100 100 100 

500 91.971 97.887 97.88734 95.189 93.95 92.636 

In these time periods, the change in data stream is relatively low. On the 

contrary, purity is considerably lower for two time periods (i.e., 150 and 400) for all 

density threshold settings due to the frequent change in the content of data stream. The 

lowest purity is found in the time period of 150. In most of the time periods (i.e., 100, 

150, 200, 250, 300,400, 450, and 500), the purity is highest for 3densityTh  setting. For 

the other two time periods, the purity of clustering KDDCUP’99 data stream is near the 

highest purity. Thus, the best purity result is found for 3densityTh  setting. 

Table 4.2 shows the clustering accuracy for different time periods. The bold 

values represent the maximum accuracy at different time periods for different values of 

density threshold. Similar to purities, the accuracy values are close to one another for all 

threshold densities )6,5,34,2,1( densityTh .  

In all times periods, the accuracies for all densityTh  are close to 100%. Similar to 

purity values, the accuracies are 100% for some time periods (i.e., 100, 200, 250, 300, 

and 450) for all values of densityTh . The lowest purity is found in the time period of 150 

for all density threshold settings due to the same reason for dropping the clustering 

purity. Moreover, 80% of time periods show the highest accuracy for 3densityTh . 
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Table 4.2 Accuracy of clustering the KDDCUP’99 for different values of densityTh  

 

 

1densityTh  2densityTh  3densityTh  4densityTh  5densityTh  6densityTh  
T

im
e
 (

m
s)

 

50 99.985 99.985 99.98547 99.985 99.985 99.985 

100 100 100 100 100 100 100 

150 80.708 81.848 81.99446 81.848 81.771 81.815 

200 100 100 100 100 100 100 

250 100 100 100 100 100 100 

300 100 100 100 100 100 100 

350 98.943 96.216 99.10307 99.103 99.165 99.165 

400 98.275 98.585 97.36508 97.365 98.081 98.081 

450 100 100 100 100 100 100 

500 92.266 98.765 98.76543 97.705 94.863 93.202 

A density threshold setting less than the optimal value creates false clusters, 

which are originally outliers. By contrast, a density threshold more than the optimal, 

identifies some true clusters as outliers. The effect is reflected in Table 4.2, where an 

increasing trend in accuracy occurs in most of the time periods as the density threshold

)( densityTh increases until it reaches 3, and the accuracy then decreases with increase in 

threshold value in most of time periods. Thus, the best accuracy is found for 3densityTh  

setting. 

4.3.4.2 Maximum and Minimum Radii 

The clustering accuracies and purities are measured using Eq. 4.3 and Eq. 4.4 

and for various radius settings to study the sensitivity of maximum )( maxR  and minimum 

)( minR radii. The clustering parameter Decay  is set as 1000, and densityTh  is set to 3 

(similar to the third experiment in Section 4.2.3).  

The first study towards sensitivity analysis is to investigate the improvement in 

clustering accuracy and purity as a result of using the concept of local radius rather than 

global radius. For this purpose, the radius is varied from 0.06 to 0.12 with an increment 

of 0.01, and the result is compared with the range of radius setting. For the first seven 

cases, the minimum and the maximum radius of micro-cluster set to an identical value. 

This setting confirms that the algorithm uses a unique global radius. The last case uses 

the proposed range of radius where the minimum radius must be lower than the 
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maximum radius. For each case, the accuracy and purity is calculated in a window of 

10000 data (using Eq. 4.3 and Eq. 4.4) and recorded. The mean accuracy and purity is 

computed from the recorded accuracy and purity values respectively. Figure 4.10 

illustrates the improvement in cluster quality in terms of accuracy and purity when a 

range micro-cluster radius is used instead of a global optimal radius in clustering the 

KDDCUP’99 data stream.     

 

Figure 4.10 Accuracy and purity for identical )( maxmin RR   and radius range 

)( maxmin RR   in clustering of KDDCUP’99 data stream 

From Figure 4.10, the accuracies and purities are consistently below 97% for all 

cases of global optimal radius setting, except for the setting of 07.0maxmin  RR , 

where accuracy is approximately 97% and purity is 97.7%. On the contrary, the 

proposed local optimal radius concept shows a clear improvement in cluster quality, in 

which accuracy and purity are found as 98.995% and 98.107%, respectively. It is stated 

every micro-cluster sets its radius to local optimal value independently rather than using 

a predefined global radius for all micro-clusters (Section 3.2.2.3). This fact contributes 

to improve the cluster quality (accuracy and purity) in the last case where less sparse 

regions are presented than the first seven cases.  
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The experiment is extended to study the sensitivity of radius range ),( maxmin RR

setting in KDDCUP’99 data stream. minR varies from 0.03 to 0.08 with an increment 

value of 0.01, and maxR  varies from 0.06 to 0.15 with an increment value of 0.01. For 

this experiment, the accuracy and purity are measured for every 10000 data points. The 

average accuracy and purity values are recorded in Table 4.3.  

Table 4.3 Clustering accuracy for different settings of ],[ maxmin RR  

Accuracy Rmax 

 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 

R
m

in
 

0.03 97.616 97.618 97.618 97.618 97.618 97.618 97.618 97.128 97.128 97.128 

0.04 97.682 97.942 97.174 97.313 97.164 97.174 97.784 97.775 97.772 97.772 

0.05 97.525 97.623 97.646 97.753 97.753 97.753 97.744 97.892 97.892 97.892 

0.06 96.682 97.939 97.971 97.918 97.918 97.918 98.125 97.979 97.996 97.996 

0.07 - 96.984 97.779 97.01 97.884 97.844 96.982 97.541 97.54 97.54 

0.08 - - 96.275 97.116 97.51 97.459 97.458 97.448 97.448 97.448 

For example, with 06.0,03.0 maxmin  RR  setting, the average accuracy is 

97.616%, and the purity is 97.734%. In Table 4.3, the maximum clustering accuracy 

and purity are found for )12.0,06.0( maxmin  RR  setting. The accuracies and purities 

degrade by a small amount when the minimum radius is decreased from 0.06 to 0.03. 

Similarly, accuracies and purities increase when the maximum radius is decreased from 

0.12 to 0.06. 

Table 4.4 Clustering purity for different settings of ],[ maxmin RR  purity 

 Rmax 

Purity 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 

R
m

in
 

0.03 97.734 97.657 97.657 97.657 97.657 97.657 97.657 95.941 95.941 95.941 

0.04 97.643 97.731 97.79 97.817 97.817 97.817 97.817 96.084 96.084 96.084 

0.05 97.063 97.38 97.356 97.43 97.43 97.43 97.421 95.771 95.771 95.771 

0.06 96.906 97.205 97.532 97.361 97.02 97.717 98.107 97.064 95.957 95.957 

0.07 - 97.716 96.589 96.581 96.662 96.588 96.657 96.54 96.553 96.553 

0.08 - - 96.224 96.568 96.423 96.338 96.366 96.421 96.414 96.414 

This degradation is due to the fact that each cluster does not contain sufficient 

data points for being a cluster, and they are falsely identified as outliers. A minimum 

radius greater than 0.06 also results in lowering the accuracy and purity; in these cases, 
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a negative separation exists between clusters and outliers, and many outliers are falsely 

considered main clusters. The same trend is found when the maximum radius is greater 

than 0.12. )12.0,06.0( maxmin  RR
 
is a good range of radius, which dampens the 

effects of outliers. However, Table 2 indicates that when a deviation exists in setting the 

radius parameters from their optimal value, accuracy and purity degrade by a small 

amount because the micro-cluster radius is recursively updated to its local optimal. 

Therefore, accuracy and purity remain high despite a deviation in selecting the radius 

parameters. 

4.4 Case Study: Clustering of Weather Data Stream Using BOCEDS 

Changes in clusters are detected and tracked as time progresses to investigate 

the evolving behaviour of data stream (Shao et al., 2018). The developed BOCEDS 

algorithm has been applied to atmospheric data stream of San Paulo, Brazil City. The 

data stream is downloaded from Kaggle dataset repository(Jose, 2018). In our clustering 

process, only two dimensions (i.e., air pressure and temperature) are used to visualize 

the clusters in a two-dimensional environment. The data stream is captured at a 1-min 

interval for a time period of 1 year, 11 months, and 6 days from September 10 to 

August 16. The data stream contains a total of 1048576 data points. The data points 

appear in the BOCEDS sequentially in air pressure–temperature pairs to mimic an 

online data stream. This data stream is used to examine the capability of BOCEDS to 

detect the temporal drift in real data stream similarly to (Hyde et al., 2017).For the 

clustering task, the data points are normalized to a range of 0 to 1. The air pressure has 

an actual value range of 905.00mbar to 929.50mbar and the air temperature of 31.64 oF 

to 99.50 oF. It is demonstrated how BOCEDS handles the three types of drifting (i.e., 

short, medium, and long terms) in the data stream. The short-term is defined as 1 week, 

medium-term is defined as 1 month, and long-term is defined as 6 months. The 

clustering parameter densityTh  is set to 1 to observe the entire data space that contains the 

data points. The radius parameter
minR is set to 0.02, whereas 

maxR  is set to 0.04. Similar 

to (Hyde et al., 2017), these values are estimated by considering historical data points at 

the distances from the main clusters to data points that are considered as an outlier. 
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4.4.1 Short-term Drift Analysis 

The variation in data stream from September 10, 2011 to October 1, 2011 is 

plotted to visualize the short-term drift. The plots with clusters are drawn for 1-week (7 

days) interval. The micro-clusters with identical colors belong to the same clusters. 

Figure 4.11(a)–Figure 4.11(d) show the cluster at four distinct dates for short-term drift 

analysis. The clustering plot in Figure 4.11(b) (September 10, 2011) is remarkably 

different from that in Figure 4.11(b) (September 17, 2011).  

  
(a) Clustering result on Sep 10, 2011           (b) Clustering result on Sep 17, 2011 

  
(c) Clustering result on Sep 24, 2011              (d) Clustering result on Oct 01, 2011 

Figure 4.11 Plots of BOCEDS clustering from September 10, 2011 to October 1, 

2011 with 1-week interval for short-term drift visualization 
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On September 10, only one cluster is generated. After 7 days, on September 17, 

two clusters are generated. The green-colored cluster has multiple micro-clusters. By 

contrast, the red-colored micro-cluster creates a single cluster. In Figure 4.11(c), 

although the number of total micro-clusters increases, the number of clusters remains 

two on September 24, 2011. Some micro-clusters are dying out due to their evolving 

nature, and some micro-clusters are generated. On October 1, 2011 the total number of 

generated clusters is 3, where one cluster contains a single micro-cluster, another cluster 

contains two micro-clusters, and the third cluster contains more than two micro-

clusters. Thus, the first cluster is circular, the second cluster is ellipsoidal, and the third 

one is arbitrarily shaped. Despite the first 2 weeks showing a noticeable difference in 

terms of short-term drifting, the spread of data points in data space is consistent for the 

preceding two weeks and shows a less noticeable difference. This phenomenon 

demonstrates that the weather data stream changes over short time periods and how the 

developed BOCEDS algorithm follows these changes to detect the short-term drift in a 

fully online approach. 

4.4.2 Medium-term Drift Analysis 

The weather data stream from March 31, 2012 to June 30, 2012 with 1-month 

interval is considered to present the medium-term drift. The clustering results are 

plotted at four consecutive months for medium-term drift analysis, as shown in Figure 

4.12(a)–(d). Figure 4.12 depicts that the clustering results are clearly distinguishable 

from one another.  

From the figures, five clusters exist on March 31, 2012. In the next month, some 

micro-clusters are newly generated, whereas some are removed due to the evolving 

nature of the experimental data stream. Some micro-clusters in Figure 4.12 (a) are also 

present in Figure 4.12(b) because they receive data points in the interval. On April 30, 

2012, four clusters are present. In the next two months, a considerable change in the 

data stream is observed. In the two months, frequent changes in the data stream occur, 

and BOCEDS follows these changes to handle the drift. To illustrate, only three clusters 

are present in Figure 4.12(c) that illustrates that the weather in the month of May is less 

bumping. However, comparing to the weather of May, the weather in June is more 

changing. 
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(a) Clustering result on March 31, 2012 (b) Clustering result on April 30, 2012 

  

(c) Clustering result on May 30, 2012 (d) Clustering result on June 30, 2012 

Figure 4.12 Plots of BOCEDS clustering from March 31, 2012 to June 30, 2012 with 

1-month interval for medium-term drift visualization 

From the figures, it can be seen that that weather of San Paulo city changes 

remarkably from one month to next month. The changes in weather are well visualized 

in the cluster analysis by the developed BOCEDS algorithm. Thus, Figure 4.12 

demonstrates the capability of the algorithm to identify the medium-term (1 month) 

drift. 
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4.4.3 Long-term Drift Analysis 

To present the long-term drift, the BOCEDS clustering result is plotted of the 

weather data stream from March 31, 2012 to June 30, 2012 with 6-month interval. The 

plots are shown in Figure 4.13(a)– Figure 4.13(d) for long-term drift analysis.  

 

(a) Clustering Result on March 9, 2012       (b) Clustering Result on September 9, 2012 

 

(c) Clustering result onMarch9, 2013                (d) Clustering result on August 16, 2013 

Figure 4.13 Plots of BOCEDS clustering from March 9, 2012 to August 16, 2013 

with 6-month interval showing for long-term drift visualization 

The clustering results in Figure 4.13(a)–Figure 4.13(d) show that the micro-

clusters are generating and fading away from the first half of the year to the second half 

of the year. The most noticeable point in Figure 4.13 is that a similarity occurs between 
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Figure 4.13(a) and Figure 4.13(c) and between Figure 4.13(b) and Figure 4.13(d) to 

some level. This trend illustrates that the weather is repeated in a yearly basis. Thus, 

Figure 4.13 demonstrates how the developed BOCEDS clustering algorithm follows the 

long-term drift in weather data stream. 

4.5 Summary 

In this chapter, the characteristics of the developed BOCEDS algorithm have 

been described based on some synthetic and practical data stream. Seven well-known 

evaluation metrics including cluster formation, noise sentivity, processing speed, 

scalability, cluster accuracy, cluster purity, memory efficiency are selected to show the 

high quality of the developed algorithm. The metrics are calculated on selected time 

units, stream speeds and horizons. Both of syntactic and real word data stream are used 

for the evaluation of BOCEDS. The real and synthetic data stream are chosen from the 

reviewed literature which are most used. They have variety in size, number of clusters, 

and differences in their densities. A wide spectrum of experiments has been conducted 

in this section as well. 

The ability of the developed algorithm to generate clusters with varying the 

micro-cluster radius has been evaluated for both of clean and noisy Mackey-Glass data 

streams (Section 4.3.1.1). The evaluation includes the evolution of clusters and cluster 

change as time progresses. The result shows that BOCEDS is able to generate clusters 

in both clean and noisy data stream environment. The noise sensitivity is also measured 

by numerical analysis that shows an improvement in noise detection by developed 

algorithm when compared to the existing algorithm To evaluate the processing time 

characteristics, BOCEDS has been applied on helical data stream (Section 4.2.2). The 

processing time has been described by measuring and analysing the mean data 

processing time by the algorithm. The experiment also evaluates the behaviour of 

BOCEDS over low to high dimensional helical data stream. This evaluation describes 

the scalability properties. BOCEDS shows linear scalability on both the number of 

clusters and the number of data dimensions. BOCEDS is faster and more scalable than 

the other aligned clustering algorithms in the literature. To measure the cluster quality, 

BOCEDS is applied on practical KDDCUP’99 network data stream (Section 4.2.3). The 

cluster quality is described in terms of cluster accuracy and purity. The results show 

that the developed algorithm provides more pure and accurate cluster than the existing 
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CEDAS, CODAS, DStream and MRStream algorithms. The sensitivity of algorithmic 

parameters is also measured by varying important parameters of BOCEDS with 

numerical analysis and described in details. The sensitivity analysis determines the best 

range for prominent parameters of the algorithm. Finally, BOCEDS has been executed 

on real word weather data stream to show the capability of algorithm to detect the drift 

in data stream for handling the evolving characteristics (Section 4.3).  

Summing up, BOCEDS algorithm clearly shows the best performance in terms 

of cluster accuracy and cluster purity among the aligned clustering algorithms due to 

maintaining the local optimal radius of micro-cluster in an online manner and buffering 

the micro-cluster. Moreover, the algorithm provides better processing speed and 

scalability comparing to other exiting algorithms by formulating non-linear energy 

function and pruning the irrelevant cluster. Thus, it is proved from the experimental 

result that BOCEDS is an effective and efficient density-based algorithm for clustering 

of evolving data stream. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Introduction 

Analysis of data stream is beneficial for several IT-based applications such as 

traffic management, anomaly detection and weather forecasting. Data from data stream 

arrives continuously over time with high speed. The size of a stream grows rapidly and 

become unbounded. Clustering of data stream helps the data mining scientist to extract 

the pattern from data stream. Density-based clustering is one kind of clustering 

technique that has gained the remarkable popularity among all clustering techniques 

due to its excellent clustering performance over data stream. The aim of the current 

study is to design a new density-based clustering algorithm to handle the challenges of 

evolving data stream clustering efficiently. The objectives of this research study were as 

follows: 

i. To design an online clustering algorithm based on the concept of local optimal 

radius and irrelevant micro-cluster buffering. 

ii. To implement the algorithm by adapting a non-linear procedure for updating the 

micro-cluster energy and pruning the micro-clusters. 

iii. To evaluate the performance of the developed algorithm against selected 

benchmark functions as case studies. 

Addressing the first objective, a new density-based fully online clustering 

algorithm called BOCEDS in order to achieve the first objective. The algorithm 

introduces the concept of local radius where each micro-cluster maintains its own value 

of radius independently. This fact confirms that the micro-clusters as well as clusters 
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have less or no sparse region. Based BOCEDS identifies the irrelevant micro-clusters 

based on its energy and stores them into special buffer storage. The algorithm works in 

two distinct stages. In the first stage, the data points map to a micro-clusters in the 

current model or creates a new micro-clusters in case the data point lies in the data 

space outside all micro-clusters. The information of newly mapped micro-cluster is 

updated recursively to enable an online process (Section 3.2.2.3). The radius of newly 

mapped micro-cluster is updated towards its optimal that is local to the micro-cluster. 

The forgetting mechanism is adapted to formulate the micro-cluster updating procedure. 

This operation reduces the dependency on user to set the optimal value of micro-cluster 

radius prior to the execution of algorithms. The micro-cluster with zero or negative 

energy is identified as irrelevant micro-cluster and stored in a special storage called 

buffer. In the second stage, the micro-clusters except irrelevant micro-clusters generate 

micro-clustering graph based on their connectivity to compute the clusters. The 

connected micro-clusters form an arbitrary shaped cluster which is maintained in an 

online manner. The second stage confirms that the algorithm has the updated clustering 

result at all the time period. Both of the stages of BOCEDS algorithm are online which 

ensures that BOCEDS is an online clustering algorithm. 

Every time a micro-cluster receives a new data, its energy is updated based on 

positional information of the data in the data space. The energy updating procedure is 

described by a non-linear formula. The formula is designed by adapting the gravity law 

of Newton. The recursive nature of this non-linear formula again supports the online 

process of BOCEDS algorithm. The energies of micro-clusters, except the newly 

mapped micro-cluster are reduced by a specific amount. The micro-clusters with zero or 

negative energy are identified as irrelevant micro-clusters and stored in buffer with new 

energy. Moreover, a pruning operation is introduced to identify the micro-clusters with 

zero or negative energy in buffer and considered as totally irrelevant. The totally 

irrelevant micro-clusters are pruned out from buffer to ensure no out-dated micro-

cluster is stored to represent the current data stream. On the other, a micro-cluster is 

called temporary irrelevant if a data mapped to that micro-clusters in buffer. In this 

case, this micro-cluster is considered for cluster generation and move to primary 

memory from buffer. This operation prevents the frequent creation and removal of 

micro-cluster. This two operations help to achieve the second objective successfully.   
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To achieve the final objective, the BOCEDS algorithm is evaluated against the standard 

performance metrics in the field of density-based clustering. The algorithm executed on 

both of syntactic and practical data stream to evaluate the effectiveness and efficiency. 

From the experiment, it is visualized that BOCEDS is able to form the micro-clusters as 

well as clusters at the dense regions in clean and noisy data stream successfully (Section 

4.3.1.1). It is also confirmed that new micro-clusters are created and old micro-clusters 

are removed from the system to prove the correct functionality of the algorithm over 

evolving data stream. The experiment for measuring noise sensitivity found that 

BOCEDS is able to identify about 100% noise where the existing algorithm detects 

about 70% noise (Section 4.3.1.2). The data processing time of the developed algorithm 

is lower than other popular online density-based algorithms (Section 4.3.2.1). To test 

the scalability of BOCEDS algorithm, the change in processing time is tracked for low 

to high dimensional data stream and compared with other density-based clustering 

algorithms like CODAS, CEDAS, CluStream, DenStream (Section 4.3.2.2). It is shown 

that BOCEDS shows the best performance in terms of scalability. BOCEDS 

demonstrates its capability to generate high-quality clusters in practical network attacks 

in KDDCUP’99 data stream. The result shows that the clusters generated in BOCEDS 

are purer and more accurate with a lower variance than those of similar existing 

clustering algorithms (Sections 4.3.3.1-4.3.3.2). Nevertheless, the memory requirement 

of the developed algorithm is relatively more than that of the fully online density-based 

CEDAS due to storing the temporarily irrelevant micro-clusters in a special buffer. The 

memory requirement, however, remains considerably lower than those of other 

clustering algorithms (Section 4.3.3.3). The parameter sensitivity experiment illustrates 

that BOCEDS still generates high-quality clusters in a small deviated optimal radius, 

density threshold, and decay setting (Sections 4.3.2.3, 4.3.4.1 and 4.3.4.2). From the 

experiment, it is stated that BOCEDS is less sensitive to its parameters. The execution 

of BOCEDS on a real-world weather data stream demonstrates the capability of the 

developed algorithm to generate and evolve clusters in a non-stationary dynamic 

environment (Section 4.4).  

To summarize, the developed BOCEDS algorithm is a fully online algorithm for 

clustering the noisy evolving data stream into arbitrarily shaped.  This algorithm 

outperforms the existing algorithms for density-based clustering in terms of noise 

sensitivity, cluster quality, processing speed and scalability. BOCEDS is also proved to 
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be less sensitive to its parameters. Therefore, the developed BOCEDS algorithm shows 

the effectiveness of the operational framework to generate clusters in evolving data 

stream. 

5.2 Contributions 

There are a number of density-based clustering algorithms for data stream. 

However, a majority of them are offline clustering algorithm those are designed for 

static data set; not for data stream. Some of them online-offline clustering those suffers 

from storage problem and not ideal for data stream. Yet only a few algorithms are fully 

online. However, they suffer from low cluster quality and low noise sensitivity problem 

due to pre-setting of algorithmic parameter like micro-cluster radius. Moreover, they 

have high computation time and low scalability as the micro-clusters are created and 

deleted frequently to handle the evolving nature of data stream. Therefore, a new 

density-based clustering was presented in this thesis to overcome the aforementioned 

problems. Furthermore, according to data stream properties, the challenges in clustering 

data streams had to be considered in the developed algorithm. The specific 

contributions of this study include 

• a new density-based clustering algorithm for data streams that generate arbitrary 

clusters in a fully online manner. 

• a new online procedure for adapting the micro-cluster radius based on the 

forgetting mechanism to improve the cluster quality and noise sensitivity. 

• a new non-linear procedure for computing the micro-cluster energy based on the 

Newton’s gravity law to handle the evolving property efficiently.  

• a new mechanism for micro-cluster buffering and pruning to improve the 

processing time. 

• a new method for numerical analysis of noise sensitivity of algorithm 

• an extensive evaluation 
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5.3 Limitations of Current Study 

This study presents a fully online clustering algorithm that shows better 

performance when comparing to other algorithms in literature. However, the study has 

some limitations as follows: 

i. It is observed that, the developed BOCEDS requires more memory by a small 

amount comparing to other density-based clustering algorithm. This fact makes 

the algorithm less memory efficient. This issue need to be solved in future to 

handle the data stream efficiently. 

ii. The algorithm uses two radius parameters (maximum and minimum radius). 

Though, the algorithm improves cluster quality, noise sensitivity and processing 

speed, the number of algorithm parameter increased. However, an ideal should 

minimize the number of user dependent parameter. 

iii. In this study, Euclidean distance is used for mapping the newly arrived data into 

micro-cluster. However, more analysis is required to determine if other kinds of 

distances such as Minkowski distance, Manhattan distance, Chebyshev distance, 

Cosine distance can increase the quality. 

5.4 Future Research Directions 

Data stream clustering is an unsupervised learning technique in the field of data 

stream mining. Density based clustering algorithm requires some parameters to be set 

and the performance of clustering heavily depends on the optimality of these 

parameters. This fact generates the scarcity of designing an appropriate algorithm that 

can automatically update its parameters towards their optimal value. Also some 

temporarily irrelevant clusters need to be identified to enhance the clustering 

performance in an evolving application environment. These issues are solved in this 

research. However, this research opens some research issues in the future: 

i. This research takes the constant value of density threshold from application user. 

A deviation of this parameter from its optimal value affects the noise detection 

result and clustering result remarkably. Therefore, density-based clustering 

algorithm is still desired that can adapt all of its parameters in an online basis. 



95 

ii. It is desired for any algorithm to process all types of attributes as many IT-based 

applications produce data stream that contains textual, categorical or mixed 

attributes. However, BOCEDS is able to generate clusters from the data stream 

that contains only numerical attributes. To make attribute type independent, the 

current BOCEDS algorithm needs extension. The current research can be 

extended in future to process all types of data stream. 

iii. Low data processing time and low memory space are two vital requirements of 

data stream clustering algorithms. The current research shows good performance 

in terms of these two criteria. The future research can target to increase the 

processing speed and reduce the required memory further. 

iv. The developed algorithm has been applied on real world weather data stream 

that shows an excellent performance in terms of drift detection. The future work 

would integrate the algorithm towards designing several intelligent systems in 

real time decision making like anomaly detection in financial transactions, 

attack identification on security system, tracking malicious activities on social 

networks, pattern detection on biomedical images, and so on. 
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