

AN ONLINE DENSITY-BASED CLUSTERING

ALGORITHM FOR DATA STREAM BASED ON

LOCAL OPTIMAL RADIUS AND CLUSTER

PRUNING

MD KAMRUL ISLAM

MASTER OF SCIENCE

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MD KAMRUL ISLAM

Date of Birth : 01 JULY 1985

Title : AN ONLINE DENSITY-BASED CLUSTERING ALGORITHM

 FOR DATA STREAM BASED ON LOCAL OPTIMAL RADIUS

 AND CLUSTER PRUNING

Academic Session : SEM 1 2019/2020

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

 BY0934870

New IC/Passport Number

Date:

 (Supervisor’s Signature)

 KAMAL Z. ZAMLI

Name of Supervisor

Date:

MAKLUMAT PANEL PEMERIKSA PEPERIKSAAN LISAN

Tesis ini telah diperiksa dan diakui oleh

This thesis has been checked and verified by

Nama dan Alamat Pemeriksa Dalam : Dr. Tuty Asmawaty Binti Abdul Kadir

Name and Address Internal Examiner Faculty of Computing

 Universiti Malaysia Pahang

 Pahang, Malaysia

Nama dan Alamat Pemeriksa Luar : Assoc. Prof. Dr. Junita Mohamed Saleh

Name and Address External Examiner School of Electrical & Electronic

 Engineering, Universiti Sains Malaysia

 Penang, Malaysia.

Disahkan oleh Timbalan Pendaftar di IPS

Verified by Deputy Registrar IPS

Tandatangan : Tarikh:

Signature Date

Nama :

Name

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Master of Science.

 (Supervisor’s Signature)

Full Name : KAMAL ZUHAIRI ZAMLI

Position : PROFESSOR

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name : MD KAMRUL ISLAM

ID Number : MCC17012

Date :

AN ONLINE DENSITY-BASED CLUSTERING ALGORITHM FOR DATA

STREAM BASED ON LOCAL OPTIMAL RADIUS AND CLUSTERING PRUNING

MD KAMRUL ISLAM

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Master of Science

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

OCTOBER 2019

ii

ACKNOWLEDGEMENTS

I am highly grateful to my supervisor Professor Dr. Kamal Z. Zamli for his emerging

ideas, proper guidance and continuous support in forms of encouragement to carry on

this research on right track. He has always impressed me with his outstanding

professional conduct, his strong conviction for science, and his belief that a master

program is only a start of a life-long learning experience. I appreciate his consistent

support from the first day I applied to graduate program to these concluding moments. I

am truly grateful for his progressive vision about my training in science, his tolerance of

my naive mistakes, and his commitment to my future career. I would like to express

very special thanks to my previous supervisor Dr. Md. Manjur Ahmed for his

suggestions and co-operation throughout the study. I also sincerely thank for the time

spent for proofreading and correcting my many mistakes.

My sincere thanks go to all faculty members of Faculty of Computing, College of

Computing and Applied Sciences who helped me in many ways to make my life easy

and pleasant at Universiti Malaysia Pahang. I am also grateful to all students and staff

from SPINT lab for their inspiration and co-operation during the study.

iii

ABSTRAK

Pengklasteran aliran data memainkan peranan penting dalam perlombongan data aliran

untuk pengekstrakan pengetahuan. Dalam beberapa tahun kebelakangan ini, banyak

penyelidik telah mengkaji teknik clustering berasaskan ketumpatan dalam talian kerana

kemampuannya untuk menghasilkan kluster berbentuk bebas. Teknik ini meringkaskan

aliran data dalam klaster mikro dengan mikro klaster tersebut membentuk kelompok.

Walau bagaimanapun, sebahagian besar kluster ini sama ada tidak sepenuhnya dalam

talian, atau tidak dapat mengendalikan sifat aliran data dengan betul. Selain itu,

algoritma ini memerlukan penetapan awal radius optimum mikro kluster, yang

merupakan tugas yang sukar, dan pilihan yang salah memburukkan kualiti kluster. Di

samping itu, algoritma ini juga mengabaikan kehadiran kluster mikro sementara yang

tidak relevan, walhal mungkin menjadi relevan pada masa akan datang. Hal ini

menyebabkan kemerosotan kualiti kluster dan peningkatan masa pemprosesan kerana

kelompok mikro dihapuskan dan dibuat kerap disebabkan oleh aliran data yang

berubah-ubah. Dalam kajian ini, algoritma klaster berasaskan ketumpatan dalam talian

yang dipanggil Penimbal Pengklasteran Dalam Talian untuk Aliran Data Berubah-ubah

(BOCEDS) dibentangkan. BOCEDS mengelompokkan aliran data dalam satu peringkat.

Algoritma meringkaskan data daripada aliran data dalam cluster mikro. Algoritma ini

mengekalkan radius optimum tempatan mikro kluster optimum tempatan berbanding

radius global dan malar. Selain itu, ia memperkenalkan penimbal untuk menyimpan

kluster mikro yang tidak relevan serta proses pemangkasan sepenuhnya dalam talian

untuk mengeluarkan kluster mikro yang tidak relevan dari penimbal. Proses

pemangkasan ini dapat mengurangkan masa pemprosesan. Di samping itu, BOCEDS

mencadangkan fungsi mengemaskini tenaga mikro-klaster dalam talian berdasarkan

maklumat spatial aliran data. Geraf gumpalan kelompok klaster akan dihasilkan

berdasarkan sambungan antara kluster mikro. Kemudian, klaster dihasilkan daripada

graf gumpalan kelompok kluster tersebut. Untuk menilai prestasi, algoritma, BOCEDS

dilaksanakan pada dua aliran data sintaktik dan satu data praktikal. Hasil eksperimen

menunjukkan BOCEDS dapat menghasilkan kelompok baru dan menghapus kelompok

lapuk dengan waktu seiring dengan perubahan kandungan data. Eksperimen dalam

aliran data yang bising menunjukkan bahawa algoritma BOCEDS dapat mengesan

kebisingan dengan ketepatan kira-kira 100%. Kejituan dan kesucian keseluruhan adalah

lebih daripada 99%. Hasil eksperimen dibandingkan dengan algoritma kluster alternatif

berasaskan ketumpatan hibrid dalam talian / luar talian. Masa pemprosesan purata untuk

titik data dalam aliran data adalah kira-kira 2 milisaat yang jauh lebih rendah daripada

algoritma kluster yang sejajar dalam literatur. Algoritma ini juga lebih berskala untuk

aliran data dimensi yang tinggi daripada algoritma yang sedia ada. Kepekaan parameter

clustering dalam BOCEDS juga diukur. Hasilnya menunjukkan bahawa perubahan nilai

parameter kualiti kluster hanya menyimpang kualiti klaster dengan jumlah yang sangat

kecil (<1%). Hasil ini membuktikan keunggulan algoritma BOCEDS berbanding

algoritma kluster yang sedia ada.

iv

ABSTRACT

Data stream clustering plays an important role in data stream mining for knowledge

extraction. In recent years, numerous researchers have studied the online density-based

clustering technique due to its capability to generate arbitrarily shaped clusters. The

technique summarizes the data stream in micro-clusters and the micro-clusters form the

clusters. However, most of the clusters are either not fully online, or cannot handle the

properties of data stream properly. Moreover, the algorithms require predefining the

global optimal radius of micro-clusters, which is a difficult task, and an erroneous

choice deteriorates the cluster quality. In addition, the algorithms ignore the presence of

temporarily irrelevant micro-clusters, which may be relevant in the future. This

ignorance causes the degradation of clustering quality and the increase of the processing

time as micro-clusters are deleted and created frequently due to evolving nature of data

stream. In this study, a fully online density-based clustering algorithm called Buffer-

based Online Clustering for Evolving Data Stream (BOCEDS) is presented. BOCEDS

clusters the data stream in a single stage. The algorithm summarizes the data from data

stream in micro-clusters. This algorithm maintains the local optimal radius of micro-

clusters rather than a global and constant radius. Moreover, it introduces a buffer for

storing irrelevant micro-clusters and a fully online pruning process for extracting the

temporarily irrelevant micro-cluster from the buffer. The pruning process improves

processing time. In addition, BOCEDS proposes an online micro-cluster energy

updating function based on the spatial information of the data stream. Then, clustering

graphs are generated based on the connectivity among micro-clusters. The clusters are

generated from the clustering graphs. To evaluate the performance, BOCEDS algorithm

is executed on two syntactic and one practical data streams. The experimental result

shows BOCEDS is able to generate new clusters and remove outdated clusters with time

as data stream contents change. The experiment on noisy data stream shows that

BOCEDS algorithm can detect noise with an accuracy of approximately 100%. The

overall clustering accuracy and purity are more than 99%. Experimental results are

compared with other alternative online/offline hybrid density-based clustering

algorithms. The average processing time for data point in the data stream is about 2

milliseconds which is much lower than the aligned clustering algorithms in literature.

The algorithm is also more scalable to high dimensional data stream than the existing

algorithms. The sensitivity of clustering parameters in BOCEDS is also measured. The

result shows that in case of changing the values of parameters the cluster quality

deviates by a very small amount (<1%). These results prove the superiority of BOCEDS

algorithm over the existing clustering algorithms. The BOCEDS algorithm is then

applied to real-world weather data streams to demonstrate its capability to detect the

drifts in the data stream and discover arbitrarily shaped clusters.

v

TABLE OF CONTENTS

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENTs v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction to Big Data and Data Stream 1

1.2 Data Stream Clustering 4

1.2.1 Model-based Clustering 6

1.2.2 Partitioning Based Clustering 6

1.2.3 Grid-based Clustering 6

1.2.4 Hierarchical Based Clustering 7

1.2.5 Density-based Clustering 7

1.3 Problem Statement 8

1.4 Research Objectives 11

1.5 Research Scopes 11

1.6 Thesis Outlines 12

vi

CHAPTER 2 LITERATURE REVIEW 13

2.1 Overview 13

2.2 Data Stream Mining 14

2.3 Clustering of Data Stream 16

2.3.1 Based on Working Principle 16

2.3.2 Based on Data Stream Processing Method 17

2.4 Density-based Clustering 19

2.4.1 Density Grid-based Algorithms 21

2.4.2 Density Micro-clustering Algorithms 26

2.5 Summary of Literature Review 35

CHAPTER 3 METHODOLOGY 41

3.1 Introduction 41

3.2 Developed Algorithm 42

3.2.1 Data Structures in BOCEDS 42

3.2.2 Description of the Developed BOCEDS Algorithm 47

3.3 Summary 59

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 61

4.1 Introduction 61

4.2 Performance Metrics 61

4.2.1 Cluster Formation and Noise Sensitivity 62

4.2.2 Processing Speed and Dimensionality 63

4.2.3 Cluster Quality 63

4.2.4 Memory Efficiency 64

4.2.5 Parameter Sensitivity 64

vii

4.3 Result Analysis 65

4.3.1 Cluster Formation and Noise Sensitivity 65

4.3.2 Speed and Dimensionality 70

4.3.3 Cluster Quality 74

4.3.4 Parameter Sensitivity 78

4.4 Case Study: Clustering of Weather Data Stream Using BOCEDS 83

4.4.1 Short-term Drift Analysis 84

4.4.2 Medium-term Drift Analysis 85

4.4.3 Long-term Drift Analysis 87

4.5 Summary 88

CHAPTER 5 CONCLUSION 90

5.1 Introduction 90

5.2 Contributions 93

5.3 Limitations of Current Study 94

5.4 Future Research Directions 94

REFERENCES 96

APPENDIX A ACHIEVEMENTS 106

viii

LIST OF TABLES

Table 2.1 Traditional data mining VS data stream mining 15

Table 2.2 Comparison of different clustering approaches 17

Table 2.3 Summary of reviewed density-based algorithms for data stream 37

Table 4.1 Purity of clustering for KDDCUP’99 for different values of

densityTh 79

Table 4.2 Accuracy of clustering the KDDCUP’99 for different values of

densityTh 80

Table 4.3 Clustering accuracy for different settings of],[maxmin RR 82

Table 4.4 Clustering purity for different settings of],[maxmin RR purity 82

ix

LIST OF FIGURES

Figure 1.1 Growth of big data from 2005 to 2025 2

Figure 1.2 Properties of data stream 3

Figure 1.3 Hierarchy of data stream clustering approaches 5

Figure 1.4 Micro-cluster formation (a) Micro-clustering by unique radius (b)

Micro-clustering by variable radius. 9

Figure 1.5 Evolving of micro-clusters (a) Removing micro-cluster, (b)

Without removing micro-cluster 10

Figure 2.1 Drive towards density-based clustering 14

Figure 2.2 Density based clustering 19

Figure 2.3 Taxonomy of reviewed density-based clustering algorithms 20

Figure 2.4 Framework for density grid-based clustering 21

Figure 2.5 Micro-Clusters framework in density-based clustering 26

Figure 3.1 The data structure in BOCEDS algorithm (a) Micro-cluster

structure (b) Insections of micro-cluster (c) The formation of

clustering graph and macro-cluster 43

Figure 3.2 Developed BOCEDS clustering algorithm 49

Figure 4.1 Formation of macro-clusters in a clean Mackey–Glass data stream 67

Figure 4.2 Formation of macro-clusters in Mackey–Glass data stream 68

Figure 4.3 Noise sensitivity over Mackey–Glass data stream 70

Figure 4.4 Processing time on a helical data stream 71

Figure 4.5 Processing speed on a helical data stream 72

Figure 4.6 Processing time for various decay settings in the developed

BOCEDS 73

Figure 4.7 Purity for clustering of KDDCUP’99 data stream 75

Figure 4.8 Accuracy for clustering of KDDCUP’99 data stream 76

Figure 4.9 Memory usage in clustering of KDDCUP’99 data stream 77

Figure 4.10 Accuracy and purity for identical)(maxmin RR  and radius range

)(maxmin RR  in clustering of KDDCUP’99 data stream 81

Figure 4.11 Plots of BOCEDS clustering from September 10, 2011 to October

1, 2011 with 1-week interval for short-term drift visualization 84

Figure 4.12 Plots of BOCEDS clustering from March 31, 2012 to June 30,

2012 with 1-month interval for medium-term drift visualization 86

Figure 4.13 Plots of BOCEDS clustering from March 9, 2012 to August 16,

2013 with 6-month interval showing for long-term drift

visualization 87

x

LIST OF SYMBOLS

oF Fahrenheit

 Union

 Intersection

 Empty set

 Element of a set

 Logical OR

 Logical AND

mbar Millibar

ms Milliseconds

sec Seconds

xi

LIST OF ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

CF Clustering Feature

CFMM Copula-based Finite Mixture Models

ClustMD Clustering for Mixed Data

EHCF Exponential Histogram of Cluster Feature

EM Expectation Maximization

GCHL Grid-Clustering for High-dimensional Large databases

GDILC Grid-based Density Isoline Clustering

gHHC Gradient-based Hyperbolic Hierarchical Clustering

GIS Geographical Information System

GMM Gaussian Mixture Model

IT Information Technology

IVHFAH Interval Valued Hesitant Fuzzy Agglomerative Hierarchical

KnA K-means and Agglomerative

MC Micro-cluster

PB Peta Bytes

SGC Statistical Grid-based Clustering

ZB Zeta Bytes

1

CHAPTER 1

INTRODUCTION

1.1 Introduction to Big Data and Data Stream

The fast development of information technology (IT) leads to generation of

numerous amounts of data-generating applications ranges from machine condition

monitoring and atmospheric science to social media analysis. Such large numbers of

application usually generate a massive amount of data sets at every moment, often

known as “big data” (Esposito et al., 2015). The term ‘Big Data’ was introduced by

John in a Silicon Graphics (SGI) slide deck with the title “Big Data and the Next Wave

of InfraStress” in 1988 (Fan & Bifet, 2013). TechAmerica Foundation defines ‘big data’

as-

“Big data is a term that describes large volumes of high

velocity, complex and variable data that require advanced

techniques and technologies to enable the capture,

storage, distribution, management, and analysis of the

information.”

Unlike traditional data, big data is defined as very large amounts of structured,

semi-structured or unstructured data (Losee, 2006). Structured data refers to the data

with high degree of organization, such as in tables and relations; whereas unstructured

data is essentially the opposite. On the other hand, semi-structured data is interpreted

with structural information supplied as tags such as name=’Kamrul’, city=’Gambang’,

gender=’Male’ instead of having regular structures. Big data are daily generated from

heterogeneous sources at an unprecedented rate. The example of such big data sources

includes sensor networks, anomaly detection, financial transactions, call records, social

data, multimedia data, advertising, etc. The amount of data has grown exponentially

2

over the past decade. According to the September 2017 statistics, the customers of Wal-

Mart provided approximately 2.5 petabytes (PB) or 1015 bytes of data per hour (Can &

Alatas, 2017). The same kinds of trends were seen in case of other IT applications like

Facebook, Twitter, and YouTube etc. The recent trend of big data growth has been

analysed recently and the future trends of growth has been assumed (Statista, 2018).

The trend analysis is shown in Figure 1.1.

Figure 1.1 Growth of big data from 2005 to 2025

Source: Statista (2018)

According to the statistics, the world generated 0.1 zetabytes (ZB) or 100000 PB

data in 2005. With growing the IT-based applications, the volume of data grew

continuously and reaches to 12 ZB in 2015. It is estimated that by 2025, the data

volume will be 163 ZB which 1630 time comparing to data volume 2005. The huge and

unbounded series of data points that arrive continuously is referred to as a data stream

(Krawczyk et al., 2017). They are enormous, rapid changing, and potentially limitless.

Comparing to traditional static datasets, data stream poses three additional and special

constraints (Krawczyk et al., 2017; Oussous et al., 2018; Silva et al., 2013) as in Figure

1.2. These three special constraints (volume, velocity and variety) are commonly known

as the 3V properties of data stream.

0.1 2
12

47

163

0

20

40

60

80

100

120

140

160

180

2005 2010 2015 2020 2025

D
a
ta

 v
o
lu

m
e

in
 Z

B
(1

0
2
1
)

Year

3

Figure 1.2 Properties of data stream

The properties are described as follows:

i. Volume: Volume refers to the size of the data stream. The data points are

continuously coming from diverse sources. The volume of data stream is large

and will grow to extremely large in future. This fact makes it impossible to store

the data stream in memory to analyze.

ii. Velocity: Velocity is the rate of data generation in the data stream. The arrival

speed of data in data stream is quite high. To deal with this high-speed data

stream, fast processing of data points is required to enable real time processing

of data stream.

iii. Variety: Variety refers to the structural heterogeneity in a data stream. In other

words, it is the gradual change of data stream as time progress. The term to

describe the fact is the evolving data stream. In such a data stream, an old data

point from the stream may be irrelevant (or even harmful) for the current model.

The detection of such change of data stream is desired.

4

1.2 Data Stream Clustering

Clustering of the data stream is one of the vital techniques in the field of stream

mining and has a wide range of applications such as gene expression profiling, anomaly

detection in bank transaction, image segmentation, text clustering, environmental trend

analysis and so on (Z. Wang et al., 2018). The technique for partitioning the data stream

into clusters based on the similarity among data points is known as data stream

clustering (Bryant & Cios, 2018). Traditional data clustering algorithms are best

equipped to run one-time on the concept of persistent data sets that are stored reliably in

storage (Garofalakis et al., 2016). However, several modern applications generate data

stream on a continuous basis. Due to volume characteristics of data stream, it is quite

impossible and impractical to store the entire data stream in memory for analysis. The

data points from data stream pass only once and so multiple scans are not feasible. Low

processing time is another requirement to enable real time processing (Amini et al.,

2014).

Given the unprecedented amount of data that will be produced, collected and

stored in the coming years, one of the technology industry's great challenges is how to

benefit from it (Al-Jarrah et al., 2015). Data analyst always looks for the technique

which can extract the hidden knowledge in these data stream. The extracted knowledge

has been used by researchers to solve social problems towards a comfortable life and a

better world for humanity. Some examples of such efforts include social unrest

prediction based on social media data (Ansah et al., 2018), people demand analysis for

new product development (Zhan et al., 2019), building groups of genes with related

expression patterns for genome annotation (Gudenas et al., 2019), analysing patterns of

antibiotic resistance for new antibiotic development (Mohana et al., 2018), identifying

areas where there are greater incidences of a specific type of crime (Win et al., 2019),

finding weather regimes (Hannachi & Trendafilov, 2017). Mining data streams is one of

the knowledge extraction technique that has attracted the researchers and clustering is a

significant part of mining data streams (Ackermann et al., 2012). The technique for

partitioning the data in data stream into clusters is known as data stream clustering

where the similar data are placed in the same cluster, and dissimilar data are placed in

different cluster (Nguyen et al., 2015). Increasingly, it has become a useful, ubiquitous

and essential tool in data stream analysis.

https://www.sciencedirect.com/topics/computer-science/technology-industry
https://en.wikipedia.org/wiki/Genes

5

Considering the above constraints, a good data stream clustering algorithm is

one which tries to achieve the following properties (Han et al., 2011; Kranen et al.,

2011).

i. The clustering result is generated with minimum time to deal with this high

speedy property of data stream towards real time processing of data stream.

ii. The model evolves to detect and learn the changes of concept in data stream

rapidly. The current model always reflects the recent nature of data stream.

iii. The number of clusters is not constant and varies with time. The number of total

cluster in the model completely depends on the data points those are arriving

continuously from the data stream.

iv. Noise in the data stream is detected in forms of the outlier and actions are taken

accordingly.

v. Be able to process heterogeneous data stream.

vi. Be able to process high-dimensional data stream as the data stream may contain

a high number of attributes or dimensions in their nature such as genomics data

stream.

The clustering approaches are categorized into five categories and they are

model-based, partitioning, grid-based, hierarchical, and density-based clustering. This

categorization can be drawn as Figure 1.3.

Figure 1.3 Hierarchy of data stream clustering approaches

6

1.2.1 Model-based Clustering

The model-based clustering technique aims to find the best fit the data points to

a cluster based on the mathematical model like EM (Expectation Maximization)

algorithm (D. Xu & Tian, 2015). K-means algorithm is adapted to design model-based

clustering. EM maps the data point to an existing cluster based on a weight which

represents the probability to a spherical-shaped cluster membership. Some popular

model-based clustering algorithms include GMM (Rasmussen, 2000), RJMCMC

(Malsiner et al., 2016), CFMM (Kosmidis & Karlis, 2016), ClusMD (McParland &

Gormley, 2016). The model-based data stream clustering techniques suffer from the

well-known ‘curse of dimensionality’ problem (Donoho, 2000) where memory space

and time requirement grow at a faster than linear rate with the growing dimension size.

Moreover, the model may ignore the clusters which are small but significant.

1.2.2 Partitioning Based Clustering

The partitioning based clustering technique divides the data space into some

partitions and each partition forms a single cluster (Sardar & Ansari, 2018). This

clustering technique is also designed based on the k-means algorithm to form

spherically shaped clusters. Most data clustering algorithm from this category maps the

data point to a partition based on the distance among data points. K-Means (MacQueen,

1967), K-Medoids (H. S. Park & Jun, 2009), CLARA (Kaufman & Rousseeuw, 2009),

CLARANS (Ng & Han, 2002) are example of some popular partitioning based

clustering algorithms. Though the partitioning based clustering techniques are simple,

scalable and require low processing time, they are limited to spherically shaped clusters

only and cannot extract clusters of arbitrary shape. Moreover, the clustering results are

usually influenced by noise.

1.2.3 Grid-based Clustering

A grid-based clustering technique for data stream creates a number of cells

called grids in data space to form grid structure and then form the clusters from the cells

in the grid structure (Cheng et al., 2018). Unlike the partitioning technique, the

partitioning process does not depend on the distribution of data points. This technique

utilizes a multi-resolution grid structure. The grids which have more density than its

neighbour grids form the clusters. SGC (N. H. Park & Lee, 2004), GDILC (Zhao &

7

Song, 2001), GCHL (Pilevar & Sukumar, 2005), SGC (W.M. Ma & Chow, 2004) are

well known algorithms in the field of grid-based clustering of data stream. Since these

clustering techniques consider the density of grids to form cluster, so they are mostly

considered as density-based clustering. The advantages of this category of clustering

technique include low processing time, but they suffer from ‘curse of dimensionality’

problem. Moreover, the optimal value of grid size should be predefined by user.

1.2.4 Hierarchical Based Clustering

The hierarchical clustering utilizes the concept of CF-tree (Clustering Feature),

where the summarization of the data stream is represented by a node in a balanced tree

(Bouguettaya et al., 2015). The nodes are created and balanced based on predefined

threshold number of data points. The non-leaf node of the tree aggregates the statistics

in its descendant nodes which are used to generate the clusters. Once an operation is

finished to merge or split the node, it cannot be reversed. KnA (Bouguettaya et al.,

2015), IVHFAH(Xiaolu Zhang & Xu, 2015), gHHC (Monath et al., 2019) are popular

hierarchical-based clustering algorithms. Hierarchical clustering is simple and

appropriate for data stream with well-separated spherical clusters. Moreover, these

techniques avoid the necessity of defining the number of target clusters in advance.

However, the technique is expensive in high dimensional spaces due to the curse of

dimensionality phenomenon.

1.2.5 Density-based Clustering

The final category, density-based clustering technique has been developed based

on the concept of density. The total number of data points in a region referred to as the

density of the region. The region is defined by a center and a radius which contributes to

form either cluster or outlier. A cluster is a set of density-connected data points with

maximum density reachability. Thus, the denser regions in the data space form cluster

and they are separated by the sparse regions. The data points which do not belong to any

of the current clusters are considered to be outlier or noise (Han, 2005). Density-based

clustering has been found as a natural and attractive clustering technique as it has the

ability to generate arbitrarily shaped clusters, to handle the evolving nature of data

stream and to detect noises and act accordingly in noisy environment. Therefore, they

have become the most appropriate clustering method for data stream (Amini et al.,

8

2014). In recent years a lot of researchers have proposed density-based data stream

clustering techniques. But most of them are not fully online methods, or unable to

handle evolving or noisy characteristics of data stream or suffers from low-performance

problem like high memory requirement, low processing rate, low cluster quality, low

data coverage or curse of dimensionality (Hyde et al., 2017)

1.3 Problem Statement

Data stream clustering is an unsupervised learning technique in the field of data

stream mining (Reddy & Bindu, 2017). Among the five categories of clustering (

Figure 1.3), density-based technique has gained remarkable popularity due to its

ability to extract arbitrary shaped clusters, to identify noise and avoiding the

requirement of predefining the number clusters (Amini et al., 2014). There are many

density-based clustering algorithms exist today. A majority of such algorithms are either

hybrid online/offline methods, windowed offline methods, or unable to handle evolving

nature of data stream (Hyde et al., 2017). The windowed offline method requires a

portion of data to be stored in memory for analysis and hybrid online/offline method

requires generating clusters by an offline process. However, they are not ideal for data

stream clustering as the clustering results are not always available and online data

cannot be stored or postponed due to the unknown size and order of data points (Sharma

& Sharma, 2017). A few density-based clustering algorithms are fully online. However,

in the field of online density-based clustering, two major problems still exist:

1st problem: Density-based micro-clustering algorithms for data stream require setting

the optimal value of global and constant micro-cluster radius prior to the execution of

algorithms.

Description of 1st problem: The performance of the density-based micro-clustering

algorithm for data stream is highly dependent on setting the optimal value of global and

constant micro-cluster radius prior to the execution of the algorithm. A global radius is

used for all micro-clusters and remains constant during the execution of the algorithm.

However, a unique radius for all micro-clusters may provide inefficient clustering

result. For illustrating the fact, consider the data distribution in Figure 1.4.

9

0.8

0.85

0.9

0.95

0.5 0.6 0.7 0.8

Y
 D

a
ta

X Data

Micro-Cluster 4

0.8

0.85

0.9

0.95

0.5 0.6 0.7 0.8

Y
 D

a
ta

X Data

Micro-Cluster 4

Micro-Cluster 5

Figure 1.4 Micro-cluster formation (a) Micro-clustering by unique radius (b) Micro-

clustering by variable radius.

Figure 1.4(a) shows the formation of micro-clusters by micro-clustering

technique with a unique radius for all micro-clusters. This radius is input from user and

remains constant. Figure 1.4(b) shows the formation of micro-clusters by human with

eye and hand where every micro-cluster has its own optimal value of clustering radius.

Micro-clusters are formed in dense regions separated by sparse regions. In Figure

1.4(a), micro-cluster 2 and micro-cluster-3 formation includes sparse regions with dense

regions. Moreover, though there is not sparse region between micro-cluster 4 and

micro-cluster 5, two micro-clusters are formed by violating the rule of separateness

between micro-clusters. Thus, comparing Figure 1.4(a) and Figure 1.4(b), it can be said

that Figure 1.4(b) is more efficient clustering than clustering in Figure 1.4(a).

This problem generates two performance issues. The first issue is that there are

many IT applications where it is really difficult to set the optimal micro-cluster radius.

An erroneous choice of the radius degrades the cluster quality remarkably. Secondly,

the concept of global radius further affects the cluster quality by generating the clusters

in sparse region.

2nd problem: The existing density-based micro-clustering algorithms cannot

identify the temporarily irrelevant from irrelevant clusters.

Description of 2nd problem: In most of the real world IT-applications, the concepts in

data stream change over time. This property of data stream can invalidate the current

learned model (Gomes et al., 2017). The micro-clusters in the learned model those do

not represent the current data stream contents are called irrelevant micro-clusters. Most

Radius

 (a) (b)

10

of the evolving clustering algorithms for data stream use micro-cluster energy to detect

and remove the irrelevant micro-cluster in handling the evolving nature of the data

stream. However, they fail to identify the temporary irrelevant but relevant in near

future cluster. For illustration the problem, consider the change in energy due to data

point arrival to an evolving micro-clustering environment in Figure 1.5. Figure 1.5(a)

shows at point ‘a’ a micro-cluster is created. Then, at point ‘b’ the energy of the micro-

cluster begin to fall due to no data point falls into this micro-cluster. Finally, at point ‘c’

the energy falls down to zero and at this point the micro-clustering techniques mark this

micro-cluster as irrelevant to current data stream content and delete from the system.

Figure 1.5(b) shows the actual situation where micro-clusters are not deleted.

 (a) (b)

Figure 1.5 Evolving of micro-clusters (a) Removing micro-cluster, (b) Without

removing micro-cluster

Likewise Figure 1.5 (a), at point ‘c’ the micro-cluster energy goes to zero. But at

point ‘d’ again data point resides in the micro-cluster and the micro-cluster is alive

again. From point ‘d’ to ‘e’ the micro-cluster receives data points and at ‘f’ again the

energy to zero and again alive at point ‘f’. Hence, the micro-cluster is said to be

temporarily irrelevant but relevant at near future. The failure to identify the temporary

irrelevant micro-clusters let the model to create and delete the micro-clusters frequently.

This operation increases the computational time.

In order to mitigate the aforementioned limitations, a new density-based

clustering strategy needs to be designed which will work in a fully online manner. The

clustering parameter micro-cluster radius needs to be self-adapted based on data stream

content to reduce the dependency on user to avoid erroneous setting. Micro-clusters

have to maintain their own radius independently. The micro-clusters those are

0

1

1
5

1
1

0
1

1
5
1

2
0
1

2
5
1

3
0
1

3
5
1

4
0
1

4
5
1

5
0
1

5
5
1

6
0
1

6
5
1

7
0
1

7
5
1

8
0
1

8
5
1

9
0
1

9
5
1

M
ic

ro
-c

lu
st

er
 E

n
er

g
y

Time

Change in energy
a b

c 0

1

1
5

1
1

0
1

1
5
1

2
0
1

2
5
1

3
0
1

3
5
1

4
0
1

4
5
1

5
0
1

5
5
1

6
0
1

6
5
1

7
0
1

7
5
1

8
0
1

8
5
1

9
0
1

9
5
1

M
ic

ro
-c

lu
st

er
 E

n
eg

ry

Time

Change in energy
a

c

eb

f hd

11

temporarily irrelevant but relevant at near future, need to be identified and pruned. The

pruning operation prevents the memory to grow beyond the limit and also to conform

that the out-dated clusters are removed from the system.

1.4 Research Objectives

The main concern of this research is to design a fully online density-based

clustering algorithm that handles the challenges of data stream efficiently. To achieve

the goal, the following four objectives have been set in this research as follows.

i. To design an online clustering algorithm based on the concept of local optimal

radius and irrelevant micro-cluster buffering.

ii. To implement the algorithm by adapting a non-linear procedure for updating the

micro-cluster energy and pruning the micro-clusters.

iii. To evaluate the performance of the developed algorithm against selected

benchmark functions as case studies.

1.5 Research Scopes

This research focuses on only density-based clustering among the five categories

of data stream clustering technique. The research has some scopes but not limited to as

follows.

i. The focus of this study is on the development of a new online density-based

clustering algorithm, called Buffer-based Online Clustering for Data Stream

(BOCEDS) for evolving data stream.

ii. The cluster information in BOCEDS algorithm is updated using recursive

procedure to ensure the fully online behaviour of the algorithm.

iii. There are different kinds of attribute in the data stream including numerical,

categorical and uncertain data. The current study considers only numerical

attribute in the data stream to generate clusters.

iv. The criteria to evaluate the developed algorithm include visualization of cluster,

noise sensitivity, accuracy, purity, data processing time, scalability, memory

efficiency and parameter sensitivity. The performance is measured by executing

12

the algorithm on two benchmark syntactical data streams (Mackey-glass and

helical data stream) and one practical data stream (KDDCUP’99 data stream).

v. The designed BOCEDS algorithm is implemented in MATLAB programming

environment.

1.6 Thesis Outlines

This chapter briefly introduced the research background and some preliminary

knowledge regarding density-based clustering algorithms. The problem statement,

research objectives, and research scopes were included in this chapter. The rest of this

thesis is organized as follows.

Chapter 2 introduces the existing algorithms in the field of density-based

clustering. The algorithms are categorized according to their data processing and

working principle in Section 2.3. Each algorithm is discussed shortly with their working

steps in Section 2.4. The advantages and limitations of each algorithm also identified

and summarized in Section 2.5.

Chapter 3 describes the methodology of the developed algorithm in the field of

density-based clustering for data stream namely Buffer-based Online Clustering for

Evolving Data Stream (BOCEDS). The flowchart and design concept can be found in

Section 3.2. The data structures used in the developed algorithm is explained in Section

3.2.1. The detailed discussions and algorithms of BOCEDS could be found in Section

3.2.2. Finally, Section 3.3 summarizes the whole methodology.

Chapter 4 illustrates the evaluation of the characteristics of the developed

BOCEDS algorithm. In-depth discussions on several characteristics such as cluster

quality, scalability, memory requirement, noise sensitivity could be found in this

chapter. The performance of developed algorithm is compared to other popular

algorithms in literature. The sensitivity of algorithmic parameters is also measured and

described in details. The developed algorithm is applied to a real time data stream to

show its effectiveness in real world.

Finally, Chapter 5 covers the conclusions of this research including the major

contributions and summary of findings. Also, the future research recommendations

could be found in this chapter.

13

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Modern IT-based applications produce data stream of huge size and high degree

of complexity. The analysis of such data streams and knowledge mining is becoming

vital for the success of organizations (Esposito et al., 2015). Researchers introduce

several data mining techniques for extracting hidden knowledge in the data stream

(Ramírez et al., 2017). Data stream clustering is a preliminary stage of data stream

mining where the data stream is partitioned into several partitions called clusters

(Jacques & Preda, 2014; Nguyen et al., 2015; Puschmann et al., 2017). It is the most

commonly used and essential unsupervised learning tool in data stream analysis (Lv et

al., 2016). There is a lot of research on clustering algorithms for static datasets, but they

cannot be applied on data stream due to three special characteristics (volume, velocity,

variety) (Chenaghlou et al., 2018) (discussed in Section 1.1, Chapter 1). Considering

these three characteristics, the requirements of a good data stream clustering technique

tries to achieve minimum processing delay, to detect noise and evolving nature of data

stream without predefining the number of clusters and able to generate arbitrarily

shaped cluster (discussed in Section 1.2, Chapter 1). Over last decade, researchers have

introduced numerous clustering algorithms for clustering of data stream which is

broadly categorized into five categories (discussed in Section 1.2, Chapter 1). Among

the categories of clustering (Figure 1.3, in Chapter 1), density-based clustering has been

found a natural and attractive clustering technique. It has the ability to generate

arbitrarily shaped clusters in dense areas, to handle the evolving nature of data stream

and to detect noises and act accordingly in noisy environment making the most

appropriate clustering method for data stream (Amini et al., 2014). The derivation of

14

density-based clustering method from mining for data stream is illustrated in the

following Figure 2.1.

Figure 2.1 Drive towards density-based clustering

From Figure 2.1, knowledge extraction from the data stream includes various

tasks like feature transformation, classification, clustering, association, and so on.

Clustering is one of the vital tasks where data groups are extracted and density-based

clustering is a popular method of clustering.

In this chapter, an extensive literature review has been done on density-based

clustering. The concept of data stream mining has been discussed in Section 2.2. In

Section 2.3, clustering algorithms are described with their category. The most popular

algorithms of density-based clustering on data stream have been reviewed. The pros and

cons of every algorithm have been analysed which are described in the following

Section 2.4.

2.2 Data Stream Mining

Due to the rapid development of IT, big data applications have risen

tremendously. Numerous such applications are generating huge data collection

15

continuously (known as data stream) and now commonly used tools and techniques fail

to capture, manage, and process within acceptable processing time. The most

fundamental task of these data stream processing is to extract useful knowledge for

further actions (X. Wu et al., 2014). The process of discovering interesting patterns and

knowledge from data stream is referred to as data stream mining (L. Xu et al., 2014).

Traditional data mining techniques cannot process the data stream efficiently as data

stream possess three special properties (discussed in Section 1.1, Chapter 1). It is

evitable to use special mining technique for knowledge extraction from data stream,

called data stream mining. Data stream mining faces the challenges of data stream

accessing and computing process as the data volumes may rise continuously. An

efficient data stream platform needs to consider large-scale memory for mining

task. The comparison between traditional data mining and data stream mining

technique is illustrated in the following Table 2.1.

Table 2.1 Traditional data mining VS data stream mining

Characteristics Traditional data

mining

Data stream

mining

Memory Unlimited Bounded

Number of passes Multiple Single

Time Unlimited Real-time

Concept Fixed Evolve

From Table 2.1, Traditional data mining algorithms require the whole data set to

be loaded into the memory (Fong et al., 2016). The data set can be scanned several

times to generate an improved result. Unlike them, data stream mining algorithms face

the technical barrier because of uncertainty in volume of data stream. Thus, storing data

stream may not be feasible. The data points come and require immediate processing for

once and removed within short period of time from the system. While traditional data

mining techniques has much time to generate results from data points, data stream

mining requires real time processing. Traditional data mining processes within a single

concept environment where the concept is constant. However, data streams are dynamic

and the concepts evolve with time leading to produce multiple concepts. For example,

16

in a network monitoring application, the attackers (the person who tries to steal data

from a network) always try to introduce new attacking methods (e.g. anomaly data

injection, worms spreading) to breakdown the system by inserting anomaly data in the

application. In this system, the number of class of network attack may rise over time.

Data stream mining contains several tasks feature transformation, data summarization,

classification, clustering, association and trend analysis (Sumathi & Sivanandam, 2006)

2.3 Clustering of Data Stream

Clustering of data stream is one of the major techniques in the area of data

stream mining. Clustering of data stream refers to the task of grouping the data points

from data stream in such a way that data points in the same group (called a cluster) are

more similar to each other than to those in other groups (Bryant & Cios, 2018). This

technique is used in a lot of fields like image analysis, remote sensing, bioinformatics,

and text analysis. Researchers have done a lot of work in the field of clustering and

introduced several algorithms for clustering of data stream. The clustering algorithms

are classified based on their working principle and data point processing technique

2.3.1 Based on Working Principle

Based on working principle, the clustering algorithms are broadly classified into

five categories and they are model-based, partitioning based, grid-based, hierarchical,

and density-based clustering approach (discussed in Section 1.2, Chapter 1). The

comparison among the five categories of data stream clustering is given in the following

Table 2.2. From Table 2.2, data stream partitioning is the simplest clustering approach

that shows the very good clustering performance in terms of clustering accuracy, purity

and time complexity. However, it suffers from the requirement of pre-defining the

number of clusters in the system. Additionally, this clustering approach only generates

spherical shaped clusters and fails to discover arbitrary shaped clusters. Hierarchical

clustering produces the clusters from the data stream in a natural way. But the time

complexity is higher compared to other clustering approaches. Moreover, the clustering

performance of clustering highly depends on the sequence of data points from the data

stream.

In terms of processing time, grid-based clustering is much more efficient that is

able to find arbitrary shaped clusters and detect outliers (noise clusters) in a noisy

17

environment. The weaknesses of this approach are the clustering result highly depends

on the grid defining and the approach is not efficient for high-dimensional data stream.

Model based approach depends on predefining the models based on domain knowledge.

Table 2.2 Comparison of different clustering approaches

Approaches Advantages Limitations

Partitioning Simple and relatively

efficient

Need to specify the number of

clusters and unable to discover

non-spherical clusters

Hierarchical Derive more meaningful

cluster structures

High complexity and sensitive to

the order of the data records

Grid-based Fast and can discover

arbitrary-shape clusters in

noisy environment

The clustering quality depends on

the grid granularity and unsuitable

to high-dimensional data

Model-based Simple and include

domain knowledge

Depends strongly on the assumed

models

Density-

based

Find arbitrary shaped

clusters, robust to noises

and high cluster quality

Need many parameters to be

predefined.

The final approach is density-based clustering of data stream. It is the most

popular approach that produces arbitrary shaped clusters and can detect the noises in the

data stream efficiently with high cluster quality. However, the only downside of

density-based clustering approach is that it requires defining two clustering parameters

in advance and they are micro-cluster radius and density threshold.

2.3.2 Based on Data Stream Processing Method

In the field of clustering of data stream, the most important challenge is to

process the continuously generated data points which change over time. There are some

clustering methods for processing data streams. They are broadly classified into the two

categories and they are online-offline and online clustering (Nguyen et al., 2015).

2.3.2.1 Online-offline Clustering

Online-offline data stream clustering is useful when the system requires to

investigate the clustering result over different parts of the stream (Amini et al., 2014).

18

Though, different windowing models are available for tracking the evolving

characteristics of data stream, they do not perform dynamic clustering over all possible

time horizons. It is two-phase algorithm where the summary information of data stream

is maintained in the online phase and clusters are formed based on data summaries in

the offline phase (Mansalis et al., 2018). This type of algorithm contains the online and

the offline phases as below:

 Online phase: The online phase faces the data points from the data stream and

maps the data points to current clustering system. Finally, the summary

information about data points is produced and maintained.

 Offline phase: The summary information is used towards generating the clusters

in offline mode in demand. The shape of clusters can be ellipsoidal, spherical,

box or arbitrary

2.3.2.2 Online Clustering

When a clustering technique generates clusters in a single online phase, then the

clustering is referred to as online clustering. There are two ways of implementing online

clustering and they are as follows.

i. Chunk-based: In many applications, the data streams are generated in a way that

they seem to be in a packet. For example, 500 data points per minute. These 500

data points collectively form a chunk. Assuming the data points are coming in

chunk, clusters are generated in a single pass by scanning the data stream in

chunk. Every chunk is processed and the clustering result is updated. Different

density based clustering algorithms like STREAM, DUCstream are designed

based on this method.

ii. Evolving: In the chunk based approach, the clusters are computed in every

chunk. However, the data points from data streams arrive continuously and the

concepts change as time progresses. As a result, the clusters evolve over time. In

the evolving approaches, the data points are processed individually and the

clustering results are computed at every data points. Clustering algorithms such

as DEC, CODAS, CEDAS were developed based on this approach.

19

2.4 Density-based Clustering

Density-based clustering techniques are developed based on the density of data

points from the data stream. In density-based algorithms, a cluster is defined as a

connected dense points and grows in the direction driven by the data density (Lv et al.,

2016). The clusters are built in dense regions of data space which are isolated by the

sparse regions. The basic principle is to generate a cluster as soon as the density in an

area above the density threshold. The density threshold confirms that the background

noisy data points or outliers are detected and filtered out. Density-based clustering of

data stream is done in two major steps (Amini et al., 2014). At first step, the procedure

of density estimation is formulated for each data point and applied to identify the data

points those stays within dense regions (core data points). In the final step, a region

formation method is defined that detects the group of data points those are reachable

from core data points. The method should work only in the dense regions and no two

data points in a low density region should be reachable. Cluster generation using

density-based clustering method is illustrated in Figure 2.2.

 (a) Data point distribution (b) Clusters

Figure 2.2 Density based clustering

Figure 2.2(a) shows the data point distribution in a 2D data space where clearly

the data point are distributed in three regions. The generated clusters are shown by the

green colour region in Figure 2.2(b). The figure shows the clusters are formed in dense

region by core data points which are separated by the non-core data points in sparse

region.

20

In the field of density-based clustering of data stream, DBSCAN (Ester et al., 1996) is

considered to be the primitive algorithm that generates arbitrarily shaped clusters in an

incremental manner. It was developed for large spatial dataset but later adopted by

various clustering algorithm for data stream. In each iteration, the DBSCAN scans the

unvisited data points and forms new cluster until all the data points are visited. The

algorithm has the ability to find arbitrarily shaped clusters and it is robust to outliers.

But it is not entirely deterministic as any points those are reachable from more than one

cluster, can be part of either cluster. Moreover, it is not preferable for high dimensional

data set as it suffers from the so-called "curse of dimensionality" difficulty and it takes

much memory space for loading the whole dataset in memory. Several researchers have

proposed clustering algorithms based on the concept derived from DBSCAN. The

algorithms are categorized in two broad classes called density micro-clustering and

density grid-based clustering algorithms (Amini et al., 2014). Several algorithms are

developed in both subcategories. Figure 2.3 shows the taxonomy of literatures.

Figure 2.3 Taxonomy of reviewed density-based clustering algorithms

21

Some of the algorithms work in an online basis where the clustering results are

available at every moment. On the other hand, some of the algorithm are hybridization

of online and offline phases. The popular literatures in the field of density-based

clustering algorithm for data stream have been reviewed. The articles are collected from

high impact journals. The contributions and applications are identified with their

advantages and limitations.

From Figure 2.3, the algorithms are divided into density grid-based and density

micro-cluster-based clustering algorithms. Each category of algorithms is further

grouped into online-offline and online clustering group. The algorithms are described

with basic ideas, their applicability, advantages and limitations. Section 2.4.1 describes

the algorithms from density grid-based category whereas algorithms from density

micro-clustering algorithms are explained in Section 2.4.2.

2.4.1 Density Grid-based Algorithms

Applying the concept of grid based method on density based clustering method;

researchers have developed several hybrid clustering algorithms for data streams. They

are referred to as density grid-based clustering algorithm. The general framework for

this type of algorithms is illustrated in Figure 2.4. From Figure 2.4

Figure 2.4, density grid-based clustering algorithms divide the total data space

into grids and the following data points are mapped to grids in the first step. In the final

step, the clusters are generated based on the density of grid. Density grid-based

algorithms are popular for forming arbitrary shape cluster and detecting the noise with

low processing time.

Figure 2.4 Framework for density grid-based clustering

22

To cope with the evolving nature of data stream, a parameter called ‘density

coefficient’ is used for every data point from the data stream. This type of algorithm

maintains the summary information of data points in characteristic vector. For detecting

the noisy data points, density grid-based algorithms use sporadic grids.

Researchers have proposed several density grid based clustering algorithms

which can discover arbitrary shaped clusters in dense areas. The algorithms process the

data points in either online-offline or online mode. In the following section (Section

2.4.1.1), the evolution of online-offline density-grid clustering algorithms and online

density grid algorithms of clustering are described in Section 2.4.1.2.

2.4.1.1 Online-offline Density Grid-based Clustering

Density grid-based clustering algorithm is a mixture of density based clustering

and grid based clustering. The online-offline mode of this category is refers to the fact

that the algorithms consist of two phase; the online phase and the offline phase.

Aggarwal et al. (Aggarwal et al., 2003) introduced the online-offline clustering of data

stream algorithm to enable real time stream processing and to meet the storage

constraint. The clustering algorithm contains an online phase where the summary

information of data stream is computed and an offline phase where clusters are

generated. Based on this concept, researchers have designed many clustering algorithms

in the following years. In the field of density grid-based clustering of data stream,

DCUStream (Dynamic Density Based Clustering of Uncertain Data Stream) (Y. Yang

et al., 2012) is considered to be an excellent algorithm. The algorithm is specially

designed for uncertain data stream. It is a two steps algorithm where the grids are

computed from the whole data space in the first step. The arriving data point is mapped

to an existing grid based on the uncertain tense weight of data point. The grids are either

dense grid (density more than the dynamic density threshold) or spares grid (density less

than the dynamic density threshold). In the final step, DCUStream generate clusters

using dense grids and outlier using sparse grids. DCUStream improves cluster quality

and able to handle noise in uncertain evolving data stream. However, it suffers from the

depth first search time consuming process to find the core dense grids.

For handling the evolving behaviour of data stream efficiently, three popular

algorithms are D-Stream (Y. Chen & Tu, 2007), DD-Stream (Jia et al., 2008), and

DENGRIS-Stream (Amini & Wah, 2012). Based on density decaying function, Chen

23

and Tu proposed an algorithm called D-Stream to detect the evolving nature of data

stream. In online part, the newly arrived data point is mapped to a density grid based on

its density coefficients and updates the characteristic vector of the mapped grid only.

Based on the decay, a grid turns into dense grid, transitional grid or sparse grid. One

type of grid can promotes or demotes to another type of grid. Considering the fact, the

offline part inspects each grid’s density and derives the clusters in each time interval

gap. D-Stream defines another term sporadic grid which is one kind of sparse grid with

very few data points and need to remove from memory as outlier. D-Stream finds the

clusters of arbitrary shapes. It can handle the evolving behavior and detect the outliers

in data stream. The authors claim the improvement of space and time efficiency. But

the technique is not scalable as it relies on emptiness of large majority grids in high-

dimensional data streams. To enhance the quality of generated cluster, D-Stream was

improved in DD-Stream. The algorithm detects the data points in the border of grids

using a proposed DCQ-means algorithm. The online phase is quite similar to the online

phase of D-Stream. Additionally, the data points are placed on borders based on their

distances from neighbouring grids and grid density. The offline extracts the boundary

points from the grids at each inspection period, identify the sparse grid and dense grid

based on their density and threshold and apply the same density-based methods as in D-

Stream on dense grids to generate the clusters. DD-Stream is scalable to high

dimensional data stream and generates high quality of the cluster. However, it suffers

from a time-consuming process namely the border points mapping grids. Moreover, it

does not describe clearly the removal process of sporadic grids. DENGRIS-Stream is

another density grid-based clustering algorithm for data stream that works based on

sliding window concept. The algorithm handles the evolving behaviour of data stream

efficiently. In the online phase, each data point from data stream is mapped to a grid in

the model and the grid summarization is updated. The clusters are generated based on

the grid summary within time window units. The algorithm detects the expired grid

using time stamp strategy and removes them. The algorithm shows excellent

performance in terms of memory requirement and data processing time. However,

DENGRIS-Stream requires the evaluation over various data stream and comparison

with other state-of-the-art algorithms.

Based on multiple resolution of grid, Wan et al designed a density grid-based

algorithm called MR-Stream (Wan et al., 2009) that computes the summarization

information and computes the time interval to extract the cluster. In addition, the

24

algorithm determines the density threshold based on fading model. It divides the data

space to create grid in a tree-like structure. In online phase, when a new data point is

arrived, the related grid cell or node is searched. If there is no such node found, then a

new node is created, and the information of its parent, grandparent is also updated

recursively and the updating operation continues up to the root of the tree. A tree

pruning operation is added to identify the sparse grids that become outlier. The offline

phase searches the reachable dense grids based on user-defined height and forms

cluster. MR-Stream is able to detect the high quality arbitrary shaped clusters in

evolving data streams. However, MR-Stream is not scalable to high-dimensional data

stream.

For clustering of heterogeneous data stream, ExCC (Bhatnagar et al., 2014) and

FGCH (J. Chen et al., 2018) are two excellent density-grid based algorithms. ExCC

(Exclusive and Complete Clustering) is designed based on the speed of data stream. The

online phase of ExCC keeps synopsis in the grids and offline phase forms the final

clusters on demand. The algorithm maps the numerical and categorical attributes of data

points to the grids and domain sets respectively. ExCC utilizes the wait and watch

policy to detect noise in the offline phase. The algorithm determines the density

threshold using granularity of grid and data dimensionality. It generates the clusters

from the pool of dense and recent grids. The major advantage of ExCC includes the

capability of handling heterogeneous attributes (numeric and categorical). However, the

algorithm requires more memory as it uses the hold queue and pool strategy and more

processing time as every attribute is handled differently. On the other hand, FGCH (Fast

and Grid based Clustering for Hybrid data stream), a fast data stream clustering that

uses the non-uniform attenuation model to initialize the grids. The online phase of this

algorithm computes the grid tuple information based on the attenuation coefficients. In

offline phase, a distance matrix for data points is computed based on the frequency and

inter-dimensional correlations. The algorithm shows good clustering accuracy and

purity with low data processing time. However, the algorithm cannot handle the drifting

properties of data stream efficiently.

For clustering of high-dimensional data stream, PKS-Stream is a popular density

grid-based algorithm that is designed based on an assumption that there exist many

empty grid-cells for high dimensional data stream. The algorithm maintains the non-

empty grid using PKS-tree and k-cover concept. A grid is said to be k-cover, if it meets

the density threshold requirement. The online phase of PKS-Stream algorithm maps the

25

data points to a grid cell in the PKS-tree and the offline phase forms the clusters based

on the dense neighbouring grids in PKS-tree. In each time interval, the sparse grids are

identified as outliers and deleted from PKS-tree. PKS-Stream shows good performance

over high dimensional data stream. However, the algorithm suffers from the inefficient

pruning on the tree after adding a new data point to any of the cells of the tree.

2.4.1.2 Online Density Grid-based Clustering

Density grid-based clustering algorithm is a hybridization of density based

clustering and grid based clustering. A fully online mode of this category is refers to the

fact that the algorithms completes the clustering task in a single task. A graph-based

single pass clustering algorithm called DUCstream (Data Stream Clustering Based on

Dense Units) (Gao et al., 2005) was proposed by Gao et al. for data stream and

considered as the primitive grid-based clustering algorithm for data stream. DUCstream

assumes the arrival of data in chunks and generates dense unit with some data points.

This algorithm also introduces the concept of local dense unit which is a candidate for

dense unit. Each dense unit is considered as a vertex of a connected graph. The vertices

of this graph indicate the neighborhood between two dense units. When a new dense

unit is formed, it is either create a disjoint graph or participate to the existing graph. In

case of disjoint graph, the dense unit creates a new cluster; otherwise, it is assigned to

an existing cluster. The clustering statistics are reflected by clustering bit string

represents the number of dense units where 1 and 0 states for dense and non-dense unit.

The clustering result is updated by an incremental process. DUCstream takes low

processing time and the memory space by adapting the bitwise clustering. However, the

success of this algorithm heavily depends on size of chunks of data which depends on

the user to determine.

Recently, another density grid-based clustering algorithm called DGB (Density

grid-based) is proposed (B. Wu & Wilamowski, 2017). The algorithm automatically

computes the number of clusters and detects noise. In addition, a new method of finding

mountain ridges (Vallim et al., 2014) of a cluster is introduced. Instead of simply

counting the data points, a soft decision strategy is proposed to compute nodes density.

DGB detects the outliers efficiently and produce arbitrary shaped cluster. In addition, it

decreases the processing time. However, the algorithm suffers low cluster quality

(accuracy and purity) as the algorithm cannot handle the case of the non-uniform

density distribution of data in data space. Thus the cluster quality needs to be improved.

26

2.4.2 Density Micro-clustering Algorithms

Micro-clustering is a popular clustering approach in the field of data stream to

summarize the temporal locality of data points. The concept of micro-cluster was first

introduced in (T. Zhang et al., 1996) for large data base and successfully applied to data

stream in (Aggarwal et al., 2003).The basic idea of density micro-clustering algorithms

is to store and update the synopsis information about the data stream in a metadata

called micro-cluster. Micro-cluster is a method to keep statistical information about the

data locality. It can adjust well with evolution of the underlying data streams. Such a

method can be used to filter out noise or outliers and to discover clusters of arbitrary

shape. Figure 2.5 illustrates the micro-clusters and clusters. Micro-cluster extend the

concept of cluster feature (CF) (T. Zhang et al., 1996) that maintains the triple vector to

summarize the clustering information. Researchers have proposed many density micro-

clustering algorithms which can discover arbitrary shaped clusters efficiently.

Figure 2.5 Micro-Clusters framework in density-based clustering

Some of the algorithms are online-offline and others are online clustering. The

basic concept of online-offline approach and online approach is explained in details in

Section 2.3.2.1 and Section 2.3.2.2. In the following section (Section 2.4.2.1), the

evolution of popular online-offline micro-clustering algorithms and online micro-

clustering algorithms are described in Section 2.4.2.2.

27

2.4.2.1 Online-offline Density Micro-clustering

Micro-clustering is a popular method in clustering of data stream to summarize

the data stream effectively and to maintain the temporal locality of data points. Micro-

clusters is the temporal extension of cluster feature (CF) (T. Zhang et al., 1996) for data

stream. In the field of density micro-clustering, DBSCAN (Ester et al., 1996) is

considered to be a primitive algorithm which was developed for large spatial dataset but

also adopted for data stream. The clustering algorithm creates micro-clusters and then

clusters in high-density regions based on density neighborhood in a two-phase process.

A micro-cluster represents the summarization of data points in it. In online phase,

DBSCAN recursively selects a data point randomly and create micro-clusters by

searching its neighborhood. In offline phase, the micro-clusters are used to generate

final clusters. DBSCAN has the ability to find arbitrarily shaped clusters and it is robust

to outliers. However, the algorithm is not entirely deterministic as any points those are

reachable from more than one cluster, can be part of either cluster. Moreover, it is not

preferable for high dimensional data set as it suffers from the so-called "curse of

dimensionality" difficulty and it takes much memory space for loading the whole

dataset in memory. The performance of DBSCAN is improved in G-DBSCAN (Kumar

& Reddy, 2016) based on a graph theory (Zahn, 1970). The algorithm utilizes a graph-

based index structure of groups to decrease the neighbour searching time. Rather than

searching the entire patterns of data, G-DBSCAN uses the group method of searching

pattern where patterns are grouped using graph-based structure. Similar to DBSCAN,

the algorithm runs in two phases; the online and the offline phase. G-DBSCAN

improved the processing time and can detect the outliers efficiently. However, G-

DBSCAN is not evolving and not scalable to high-dimensional data stream.

Based on DBSCAN, several online-offline clustering algorithms are introduced

in the literature. DenStream(Density Based Data Stream Clustering) (Cao et al., 2006)

and CluStream (Aggarwal et al., 2003) are two most popular among them. They work as

the basic algorithm for many new micro-clustering algorithms. DenStream is able to

discover arbitrary shaped clusters for evolving data stream with noise. The clusters are

then created based on these micro-clusters. DenStream defines three types of micro-

clusters and they are core micro-cluster, potential micro-cluster, and outlier micro-

cluster. The core micro-clusters are used to create the clusters with arbitrary shape. Any

28

potential micro-cluster with weight above the threshold weight is considered as the core

micro-cluster whereas the micro-cluster which has the weight less than the threshold

weight is defined as the outlier micro-cluster. To handle the evolving nature, the weight

of each micro-cluster is reduced exponentially with time using a fading function. It is a

hybridization of online and offline framework. In online phase, it uses the DBSCAN

algorithm to build the initial potential micro-clusters based on neighbourhood of data

points. In the offline phase, DenStream adopts DBSCAN to find the final cluster from

the current potential micro-clusters. It also uses a pruning to identify the real outlier-

micro-cluster in outlier buffer based on the weight of the outlier micro-cluster. The

algorithm also defines a density threshold function where the density threshold is

measured. Any micro-cluster with density below the density threshold is considered to

be the real outlier micro-cluster and removed from the outlier buffer. Though

DenStream has the ability to handle the evolving data stream effectively but it does not

release any memory space by either removing or merging micro-clusters until the

pruning phase. Furthermore, the pruning of outlier micro-cluster is a time-consuming

task. On the other hand, CluStream uses k-means algorithm for clustering evolving data

streams. The algorithm starts by an offline process where the initial micro-clusters are

created using a standard k-means algorithm from a predefined number of data points

from data stream. In the online phase, these initial micro-clusters are used to cluster the

later data stream. When a data point arrives, it is mapped to a micro-cluster based on the

distance from data point to micro-cluster center. The data point lies in the closest micro-

cluster and the micro-cluster information is updated. CluStream frees up the memory

space by either merging two micro-clusters or deleting an old micro-cluster as outlier.

The offline phase generates the macro-cluster or simply cluster from the current micro-

clusters in memory to summarize the statistics of the micro-clusters. CluStream is

effective for both evolving and core streams. It shows high data point processing rate

and linear scalability with data dimensionality. The major downside of this algorithm is

that it is unable to generate cluster of arbitrary shape as the k-means focuses more on

detecting spherical clusters even. Moreover, it is inefficient to apply on high-

dimensional data stream.

The performance of DenStream is further improved in C-DenStream (Ruiz et al.,

2009) and rDenStream (Liu et al., 2009). C-DenStream (DenStream with Constraints)

creates arbitrary shape clusters with constraint. The algorithm extends the instance-level

29

constraints from static data to data stream. The constraints consist of domain-related

knowledge. In C-DenStream, the constraint instructs the data or instances towards the

clustering i.e. whether the data belong to the same micro-cluster (Must-Link constraints)

or to a different micro-cluster (Cannot-Link constraints). Finally, based on the generated

micro-cluster, the clusters are formed using C-DBSCAN algorithm (Ruiz et al., 2007).

The algorithm takes advantage when the domain expert has prior knowledge about the

group membership and thus it is very useful for those applications. However, C-

DenStream cannot handle high dimensional data stream, requires an expert of the

application to define the constraints and cannot solve the limited memory space issue.

On the other hand, rDenStream was developed specially for very noisy data stream

applications. rDenStream executes in three steps micro-clustering, macro-clustering and

retrospect learning. In the first step, potential micro-clusters and outlier micro-clusters

are formed in online mode using the same approach as in DenStream. Only the potential

micro-clusters are forwarded as input to the next step, while outlier micro-clusters are

placed in historical outlier buffer. The next step uses DBSCAN approach where all the

generated potential micro-clusters are used to produce macro-clusters or simply clusters

based on the density threshold. The final step is called the retrospect step. In this step,

the misinterpreted outlier micro-clusters are learned again to increase the robustness of

the clustering. The clusters form a classifier which is used to re-learn the outlier micro-

cluster in the historical outlier buffer. rDenStream extracts knowledge pattern from the

initially arriving data stream and improves the clustering accuracy through a re-learning

process. The downside of this algorithm is that it requires high processing time in re-

learn step and extra memory space to store outlier micro-clusters.

For clustering of heterogeneous data stream, the two popular online-offline

algorithms are HDenStream(Density based Clustering over Heterogeneous Data

Stream) (Lin & Lin, 2009) and Str-FSFDP (J. Y. Chen & He, 2016). In HDenStream,

the data points are defined by two kinds of attributes continuous attributes and

categorical attributes which may be important in distinguishing the clusters. Beside

deriving the concept of core micro-cluster, potential micro-cluster, outlier micro-cluster

from DenStream, the separate distance measures between data point to data point, data

point to micro-cluster or micro-cluster to micro-cluster are adopted from HCluStream

(C. Yang & Zhou, 2006). This algorithm maintains a two-dimensional (2D) array to

store the frequency of categorical attributes. This algorithm is quite similar to

30

DenStream with online and offline phases and the pruning phase. Like DenStream,

HDenStream also can identify arbitrary shaped clusters and provides high cluster

quality. But this algorithm does not describe the idea to store the categorical attributes

in an efficient way. On the other hand, Str-FSFDP computes the cluster centers

automatically. A new micro-cluster vector is introduced for storing and updating the

summarization information of mixed data dynamically. A new micro-cluster decay

function and deletion mechanism has been introduced to handle the evolving behaviour

of data stream. In the offline stage, Str-FSFDP determines the micro-cluster centres

based on field intensity, linear regression and residuals analysis. In the online stage, the

data points are mapped to the micro-cluster based on its field intensity and micro-cluster

centers. The micro-cluster decay function and micro-cluster removing strategy are

executed on the micro-clusters to detect the drift in data stream. Str-FSFDP generates

arbitrary shaped clusters and can detect outliers efficiently for heterogeneous data

stream. However, the algorithm needs further effort to improve the cluster quality.

Two sliding window based clustering algorithms called SDStream (Density-

based Clustering over Sliding Windows) (Ren & Ma, 2009) and CC_TRS (Riyadh et

al., 2017) were proposed. SDStream (Density-based Clustering over Sliding Windows)

was proposed based on the idea of analyzing the most recent data stream and the data

points are removed those are not in current window. In the online part, the new data

points are added to the either any potential micro-cluster or to an outlier micro-cluster in

main memory. The micro-clusters are stored in the form of Exponential Histogram of

Cluster Feature (EHCF) in main memory. A set of data points with time stamp form a

temporal cluster features (TCF) and a set of ordered TCF form an EHCF. The memory

is freed up by merging micro-clusters or deleting an outdated outlier micro-cluster

based on timestamp. In the offline part, DBSCAN algorithm is executed on the potential

micro-cluster in memory to generate the clusters of arbitrary shape. SDStream is

concerned about the user’s interest in the distribution of most recent data stream.

Processes the most recent data and summarizes the old data by using sliding window

model. It can handle noisy environment and evolving nature of data stream. But

SDStream cannot handle high dimensional data stream. Moreover, it does not explain

properly the main usage of exponential histogram. On the other hand, CC_TRS

(Continuous Clustering of Trajectory Stream) was specially designed for clustering of

trajectory data streams based on micro-cluster life. The online phase summarizes the

31

spatiotemporal data stream into temporal micro clusters and the offline phase generates

clusters based on micro-clusters in a response to user request. Similar temporal micro-

clusters are merged when the size of occupied memory exceeds a given memory space.

CC_TRS provides high quality clusters with low data processing time. However, the

algorithm takes high memory space the data structure of temporal micro cluster has

extra temporal fields.

By combining the advantages of density clustering and affinity propagation

clustering (Frey & Dueck, 2007), two online-offline micro-clustering algorithms called

APDenStream (Affinity Propagation and Density Based Clustering) (J. P. Zhang et al.,

2013)and ADStream(Adaptive Density Based Clustering) (Ding et al., 2016).

APDenStream uses the decay density to handle the evolving features of data stream. To

generate and maintain micro-cluster information, it uses the online dynamic delete

mechanism. The algorithm also adapts the WAP (Xiangliang Zhang et al., 2009)

algorithm to detect new class patterns which is absorbed in the clustering model. The

online phase finds the micro-cluster for a newly arrived data point or passes it to the

Reservoir memory and updates the micro-cluster metadata. The offline phase is invoked

by the user to generate clusters in the reservoir and merge this result with the model

result within every time stamp. APDenStream generates good quality clusters,

particularly in noisy environment. The downside of this algorithm is that it takes high

memory space to define the Reservoir and not applicable for high dimensional data

stream. On the other hand, ADStream detects the initial cluster automatically by passing

messages to data points in data stream. The online-phase generates the micro-clusters by

analyzing the dynamic data stream in a sliding window and applying affinity

propagation method. The offline phase forms macro-cluster using the micro-clusters at

different time granularities. ADStream shows impressive performance in detecting

clusters in complex hybrid data streams. But this algorithm suffers from the negative

effect of noise on performance in complex data streams.

For clustering of high-dimensional data stream, DenStream is extended in

HDDStream(Clustering over High Dimensional Data Stream) (Ntoutsi et al., 2012) and

PreDeConStream (Hassani et al., 2012). While the data points and dimensions are

summarize in form of micro-cluster in the online phase, the offline phase use

PreDeCon(Bohm et al., 2004), a projected clustering algorithm, to produce the final

32

clusters. HDDStream introduces the concept of prefer vector to maintain micro-clusters.

The prefer vector is computed based on variance where data points are denser along this

dimension in a cluster. A micro-cluster with prefer vector is refer to as projected micro-

cluster. Initially, an initial set of potential projected micro-clusters are created by

applying PreDeCon on the predefined amount of data points from the data stream. In the

online phase, the data points are assigned to a potential projected micro-cluster by

updating the prefer vector; then finding the closest potential projected micro-cluster to

the data points and finalizing the operation without affecting the natural boundary. In

offline phase, from the generated potential projected micro-cluster, the final clusters are

generated. HDDStream is able to able to handle high-dimensional data stream and

create cluster with high quality. The major disadvantage of this algorithm is that it

cannot handle the evolving nature of data stream properly as it does not check the prefer

vector during pruning. Similar to HDDStream, PreDeConStream also uses the concept

of prefer vectors for subspace using the variance of micro-clusters and their neighbours.

A weight of data points is used to recognize changes in the data stream quickly which is

calculated using a fading function. Three types micro-cluster are maintained in this

algorithm and they are core micro-cluster, potential micro-cluster and outlier micro-

cluster. The improvement is done in the pruning time where the pruning is done both

on newly added or deleted potential micro-cluster. The neighbours of these both types

of micro-clusters are checked for updating the subspace prefer vectors and are kept in a

separate list called affected micro-clusters. This generated list is used to expand the

clusters. Though PreDeConStream improves the efficiency but the pruning phase

suffers from the time penalty for searching the affected neighbouring clusters.

2.4.2.2 Online Density Micro-clustering

Density micro-clustering technique has drawn remarkable attention of researcher

due to its exceptional performance over data stream. However, most of the algorithms

are online-offline clustering and the field has the scarcity of online algorithms. In the

field of density micro-clustering, SOStream (Isaksson et al., 2012) is an excellent online

algorithm that adapts the density threshold to form the clusters. SOStream (Self-

organizing Density-based Clustering) uses the online competitive learning concept

(Kohonen, 1982) where the winner cluster influences its neighbour micro-clusters. The

cluster creation, merging and deleting processes are online in SOStream. When a data

33

point appears, it is mapped to a micro-cluster based on the distance between the data

point and all existing clusters. The micro-cluster with minimum distance is said to be

winner cluster and the data point belongs to the winner cluster. The micro-cluster

information and the density threshold is recursively updated. The neighbourhood of

micro-clusters is defined and they are merged if neighbourhood distance is less than the

merge-threshold distance. SOStream achieves better clustering quality with occupying

less memory. Though SOStream can adapt the threshold but the competitive learning

part suffers from time penalty which makes SOStream unsuitable for data stream

clustering. Moreover, the algorithm is not fully evolving.

ELM (Baruah & Angelov, 2012) and DEC (Baruah & Angelov, 2014) are two

online evolving clustering techniques. ELM(Evolving Local Means) is designed based

on the mean-shift algorithm for data stream. In this algorithm, clusters are summary of

data points in data stream which consists of two elements; a cluster centre and a

distance parameter. When a data point from the data stream arrives, ELM learns from

either the scratch or existing clusters. The cluster information is updated recursively by

shifting the mean and distance parameter. After shifting the mean, if the cluster overlaps

with another cluster then they are merged based on the neighbourhood distance. ELM is

an online algorithm of stream clustering which provides high cluster purity but does not

describe the strategy to remove outdated cluster which is required for evolving

clustering. On the other hand, DEC (Dynamically Evolving Clustering) was designed

based on concept from computational geometry. DEC defines the cluster as a group of

data points which are bounded by a hypersphere with a centre and a radius. The cluster

summarizes the data points in forms of with a feature vector where the weight of a

cluster decreases with time. DEC defines a threshold of weight to distinguish the core

cluster (weight above the threshold) and noncore cluster (weight below the threshold).

When a data point from data stream arrives, the nearest existing core cluster is searched.

The weight of every cluster is updated at every timestamp called the inspection time.

After every timestamp, the core and non-core clusters are checked to change their

status. To distinguish the outlier from non-core cluster, DEC also defines a lower limit

of weight threshold. Any non-core cluster, having the weight below this limit, is

identified as outlier and deleted from memory. The evolving nature of cluster in DEC

algorithm save the memory space and improve the processing time. But the technique

raised an issue to select the optimal value of cluster radius and adaption.

34

Inspired from bio-nature, two well-known density micro-clustering algorithms namely

FlockStream (Forestiero et al., 2013) and ACSC (Fahy et al., 2018) was introduced.

FlockStream was intrucued based on flocking model (Eberhart et al., 2001) that defines

agent in form of new data point and two types of micro-cluster (potential micro-cluster

and outlier-micro-cluster). When a new data point arrives, FlockStream search for

similar micro-cluster by checking whether the sub-space of other micro-cluster overlaps

with the visibility distance of the data point. The micro-clusters can shift in the virtual

space up to a predefined threshold for a specific time according to some rules such as

cohesion, separation, and alignment (Forestiero et al., 2013). The overlapping micro-

clusters form the micro-cluster representative (simply cluster). Though the data point

processing rate of FlockStream is high and forms outlier micro-cluster to handle noise,

it does not clarify when and how to remove the outliers micro-cluster from memory.

Based on ant colony optimization (ACO) (Dorigo et al., 1996), ACSC(Ant Colony

Stream Clustering) is proposed. It offers a single pass tumbling window model(Li et al.,

2005) to form clusters incrementally. Like other micro-cluster based clustering, it also

summarizes the clustering using micro-clusters. A stochastic method was introduced to

find the rough clusters and they are refined by a method which was designed based on

the observed sorting behavior of ants. ACSC is scalable, robust to noise and generate

high quality cluster. It requires less computational time. But the algorithm is not able to

find the clusters of similar density only.

Based on representing the micro-cluster with graph, two recent micro-clustering

techniques are CODAS (Hyde & Angelov, 2015) and CEDAS(Hyde et al., 2017).

CODAS (Clustering Online Data-streams into Arbitrary Shape) is a data-driven

algorithm which generates the micro-cluster to summarize the data points in it. The

micro-cluster consists of a centre, radius, and density. The micro-cluster consists of core

region covered by inner half of the radius and non-core region covered by outer half.

When a data point from data stream arrives, it falls into either empty region or a micro-

cluster region. In case of empty region, the data point creates a new micro-cluster itself.

Otherwise, the data point is assigned to the micro-cluster and it’s information is updated

recursively. The micro-clusters are presented using the clustering graph and the clusters

are generated from the graph. A micro-cluster with local density below the threshold is

referred to as outlier. CODAS generates high cluster quality and it is scalable to multi-

dimensional data stream. However, the generated cluster does not evolve. CODAS is

35

improved in CEDAS (Clustering of Evolving Data-streams into Arbitrary Shapes) for

detecting the evolving behaviour by introducing a simple aging process. The micro-

clusters also include the energy. The energy of micro-cluster is maintained by a simple

aging process. The aging process confirms the removal of old micro-cluster. Similar to

CODAS, the clusters are mapped, updated and presented using the clustering graph. In

addition, the energy of all other micro-cluster is decreased by an amount depending on

decay of application. Micro-cluster with local density below density threshold and

negative energy is marked as outlier and removed from the memory. Also, micro-

clusters with negative energy but local density above the density threshold are

considered as old micro-cluster and removed from the clustering graph and from

memory. Every time a micro-cluster is modified, the clustering graph is updated and

clusters are re-generated. This task confirms the immediate access to clustering result.

CEDAS is a fully online clustering algorithm for evolving data stream. But the

algorithm suffers from two major problems. It is difficult and erroneous task to select

the optimal value of cluster radius. The linear aging process and immediate removal of

micro-cluster affects the clustering quality as some deleted micro-clusters are

significant.

2.5 Summary of Literature Review

The above discussed density based clustering algorithm are summarized and

compared in Table 2.3. The major features for comparing the algorithms are the

clustering summarization method, data processing method and generated cluster shape,

the ability of handling the evolving nature and the noisy behaviour of data stream and

whether the technique is applicable for high dimensional data stream. The techniques

are also compared in terms of its advantages and disadvantages. The advantages and

disadvantages are analyzed with respect to cluster quality, memory requirement and

completeness of the technique.

According to the Table 2.3, the density based clustering algorithms are either

density grid based or density micro-clustering types. The clustering algorithms only

maintain the summary of data points instead of storing all data points from the data

stream. The density grid clustering algorithms store the synopsis information in the

grids whereas density micro-clustering algorithms store the data stream summary

information in micro-clusters. It is desired that a clustering algorithm is able to

36

generated arbitrary shaped clusters. Most of the density based clustering algorithms

generate arbitrary shaped clusters except CluStream, HDDStream, ELM, DEC and

PKS-Stream. They generate either spherical or hyper-ellipsoidal shaped clusters. It is

desired to have fully online method for clustering of data stream. However, major

algorithms in Table 2.3, are hybridization of online and offline phases in their

execution. The micro-cluster mapping is done in an online manner. However, the

clustering results are generated in an offline phase using the generated micro-clusters.

Some algorithms like rDenStream, FlockStream, ELM, DEC, CODAS and CEDAS are

online density based clustering algorithms. They generate cluster in an online manner

where the clustering results are immediately available. Evolving is one of the vital

properties which indicate that the current content of data stream may not be relevant

always and this property should be handled carefully.

In Table 2.3, in most of the density based clustering algorithms handle this

property where the generated micro-clusters evolve with time. This evolving is provided

either by maintaining energy of micro-clusters or by maintaining a timestamp. After

expiring the timestamp or energy, the micro-clusters are marked as unusable and

immediately removed from the result. However, two algorithms namely DenStream and

CODAS are not evolving in nature. The generated micro-clusters are not removed from

these algorithms. An ideal clustering algorithm should be should be scalable. This

property describes that the algorithm is applicable to low to high dimensional data

streams. About 50% of the discussed algorithms like CEDAS, DD-Stream, DCU-stream

etc. are scalable and half of them are not. The non-scalable algorithms cannot be applied

on high dimensional data stream applications like genetic data stream, satellite data

stream. Most of the natural data streams are not cleaned and noisy samples are present

in the stream. Thus the clustering algorithms should consider the presence of noise in

data stream. Most of algorithms can detect the noisy data points except DEC. The noisy

samples are removed and they don’t participate in cluster summarization updating. This

property keeps the cluster summary accurate and free from noise.

37

Table 2.3 Summary of reviewed density-based algorithms for data stream

Clustering

Algorithms

Working

Principle

Cluster

Shape

Data

Processing
Evolving Scalable

Noise

detection
Major Advantage Major Limitations

ACSC

(Fahy et al., 2018)
Micro-clustering Arbitrary Online √ √ √ Less computational time.

Limited to find the clusters of similar

density only.

ADStream

(Ding et al., 2016)
Micro-clustering Arbitrary Online-offline √ √ √

Process complex hybrid data

streams.

Negative impact of noise on

performance.

APDenStream

(J. P. Zhang et al., 2013)
Micro-clustering Arbitrary Online-offline √ × √

Good performance in noisy

environment

Takes high memory space to define the

reservoir.

CC_TRS

(Riyadh et al., 2017)
Micro-clustering Arbitrary Online-offline √ × ×

Very effective for trajectory

data stream.
Requires high memory space.

C-DenStream

(Ruiz et al., 2009) Micro-clustering Arbitrary Online-offline √ × √

Very useful in the applications

with knowledge on the group

membership.

Needs an expert to define its

constraints.

CEDAS

(Hyde et al., 2017)
Micro-clustering Arbitrary Online √ √ √ Efficient draft handling.

Heavily depends on the user-defined

parameter.

CluStream

(Aggarwal et al., 2003)
Micro-clustering Spherical Online-offline √ × √ High data processing rate.

Inefficient to apply on high-

dimensional data stream.

CODAS

(Hyde & Angelov, 2015)
Micro-clustering Arbitrary Online × √ √ High cluster quality.

The unused old micro-clusters are not

removed.

D-Stream

(Y. Chen & Tu, 2007) Density Grid Arbitrary Online-offline √ × √

Low time complexity and high

cluster quality.

Inefficient way to define time gap.

DCUStream

(Y. Yang et al., 2012)
Density Grid Arbitrary Online-offline √ √ √ Clustering uncertain data High time complexity

38

Table 2.3 Continued

Clustering

Algorithms

Working

Principle

Cluster

Shape

Data

Processing
Evolving Scalable

Noise

detection Major Advantage Major Limitations

DD-Stream

(Jia et al., 2008)
Density Grid Arbitrary Online-offline √ √ √ High cluster quality. High time complexity

DEC

(Baruah & Angelov,

2014)

Micro-clustering
Hyper-

ellipsoidal
Online √ √ ×

Require low the memory space

and processing delay

Heavily depends on the user-defined

parameter.

DENGRIS-Stream

(Amini & Wah, 2012) Density Grid Arbitrary Online-offline √ × √

First density clustering

algorithm for evolving data

streams over sliding window

model.

No evaluation to show the algorithm

effectiveness compared.

DenStream

(Cao et al., 2006)
Micro-clustering Arbitrary Online-offline √ × √ High cluster accuracy

Suffers from the time-consuming

pruning operation.

DGB

(B. Wu & Wilamowski,

2017)

Density-Grid Arbitrary online × √ √ Low time complexity. Not effective for high density clusters.

DUCStream

(Gao et al., 2005)
Density Grid Arbitrary Online √ × √

Low time and space

complexity.

Heavily depends on the user-defined

parameter.

ELM

(Baruah & Angelov,

2012)

Micro-clustering
Hyper-

ellipsoidal
Online √ √ √ High cluster purity

Does not describe the strategy to

remove outdated cluster

ExCC

(Bhatnagar et al., 2014)
Density Grid Arbitrary Online-offline √ × √ Clustering heterogeneous

data streams

The hold queue strategy needs more

memory and processing time.

FGCH

(J. Chen et al., 2018) Density Grid Arbitrary Online-offline √ √ √
High quality cluster and high

processing speed.

Require initial density from user and

data points are feed with fixed speed

39

Table 2.3 Continued

Clustering

Algorithms

Working

Principle

Cluster

Shape

Data

Processing
Evolving Scalable

Noise

detection
Major Advantage Major Limitations

FlockStream

(Forestiero et al., 2013)
Micro-clustering Arbitrary Online √ × √ High processing speed. No clear strategy to remove the outliers.

G-DBSCAN

(Kumar & Reddy, 2016)
Micro-clustering Arbitrary Online-offline √ × √ Effective in noisy data stream. Cluster quality is not high.

HDDStream

(Ntoutsi et al., 2012)
Micro-clustering Spherical Online-offline √ √ √ High cluster accuracy.

Inefficient pruning and It cannot handle

the data in a limited time.

HDenStream

(Lin & Lin, 2009)
Micro-clustering Arbitrary Online-offline √ × √

Ability to work on

heterogeneous data stream.

Lack of details about saving categorical

features in an efficient way.

MR-Stream

(Wan et al., 2009)
Density Grid Arbitrary Online-offline √ × √ High cluster quality. Not effective in highly noisy stream.

PKS-Stream

(Ren et al., 2011)
Density Grid

Hyper-

ellipsoidal
Online-offline √ √ √ Low time and space

complexity.

Does not have any pruning on the tree

after adding a new data point.

PreDeConStream

(Hassani et al., 2012)
Micro-clustering Arbitrary Online-offline √ √ √ It improves the efficiency of

the HDDStream.

Suffer from a time-consuming process

for searching the affected clusters.

rDenStream

(Liu et al., 2009)
Micro-clustering Arbitrary Online √ × √ High accuracy.

Memory usage and the time complexity

are high.

SDStream

(Ren & Ma, 2009) Micro-clustering Arbitrary Online-offline √ × √
High accuracy in noisy

environment

Lack of clarification about the purpose

of using exponential histogram to store

micro-clusters.

SOStream

(Isaksson et al., 2012)
Micro-clustering Arbitrary Online √ × √

Good clustering quality

occupying less memory.

Suffers from the time-consuming

method, SOM (Self Organizing Maps).

Str-FSFDP (J. Y. Chen

& He, 2016)
Micro-clustering Arbitrary Online-offline √ × √

Process mixed data with lower

time complexity.
Lower clustering quality.

40

It can be seen from the Table 2.3, ACSC, HDDStream, FGCH, CODAS,

SDStream, APDenStream, and ExCC show excellent performance in terms of cluster

purity. The purities of these algorithms are more than 96%. Some algorithms like

CEDAS, PreDeConStream, SOStream, DenStream, FlockStream, G-DBSCAN, MR-

Stream, rDenStream are able to generate good clusters with 91-95% cluster purity. On

the other hand, the rest clustering algorithms in Table 2.3 provide moderate quality

clusters. The purities of these clusters are less than or equal 90% like the purity of

ADStream, DStream, DCUStream, ELM, H-DenStream, Str-FSFDP are 88%, 90%,

81%, 87%, 90% and 89% respectively. The accuracy measures for some of these

algorithms are available. The accuracies of these algorithms are close to the purity

values of these algorithms. Like the accuracies of ACSC, CODAS, CEDAS, ADStream,

APDenStream, DCUStream and DDStream are 98%, 98.9%, 96.5%, 86%, 98.5%, 82%

and 93.5% respectively. CC_TRS, FSFDP, ADStream, SOStream, DD-Stream take

very less processing time per data, whereas PreDeConStream, CODAS, SDStream,

HDDStream, FGCH, MR-Stream, rDenStream is slow algorithms. The rest algorithms

like ELM, DEC, CEDAS, D-Stream, C-DenStream, ExCC require moderate data

processing time to complete the clustering task. The scalability results show that

CEDAS, DenStream, CC_TRS, DStream, ELM, H-DenStream and MR-Stream is

scalable to high dimensional data stream.

To summarize, every algorithm has its own advantages and limitations. Most of these

algorithms are not fully online algorithm and suffers from the consuming excessive

memory space. Few algorithms like ELM, DEC, CODAS, CEDAS are the fully online

algorithm in Table 2.3. However, some of them take more processing time or excess

memory or unable to generate arbitrary shaped clusters. All of the density-based

clustering algorithms maintain the global and constant value of micro-cluster radius.

This fact contributes to leave some sparse regions in the micro-cluster and the cluster

quality is degraded as a result. Moreover, the micro-clusters are created and deleted

frequently that increases the processing time of clustering. The issues have been

described in details (Section 1.3, Chapter 1). Adapting the concept of local optimal

radius and preventing the frequent creation and removal of micro-clusters can solve

these issues. Thus it is still an open research issue to provide a fully online clustering

algorithm makes a trade-off among clustering quality, processing time and memory

requirement.

41

CHAPTER 3

METHODOLOGY

3.1 Introduction

Extracting the knowledge or information from data stream is becoming more

and more useful in real time applications. Clustering is a method of extracting summary

information of data stream that helps the companies towards real-time decision-making

(Yu et al., 2013). For illustration, clustering trajectory data stream helps the drivers to

know the congestion on road at any time in traffic management system. Continuous

clustering of patient movements can help the doctors to predict the condition of patient

in hospital. In Chapter 2, already several density based data stream clustering

algorithms have been discussed with their basic working principle. The flaws of each of

them are also identified and discussed. Most of the density-based clustering algorithms

are not fully online. Though, few algorithms are online but they suffer from several

problems which are tabulated in Table 2.3, Chapter 2. In the field of density-based

clustering, the research gaps are discussed in details in Section 1.3, Chapter 1. Several

objectives are set in Section 1.4, Chapter 1 to mitigate the problems.

In this chapter, the developed BOCEDS algorithm is described in details. The

data structure of the developed BOCEDS algorithm is visualized and explained in

Section 3.2.1. The flowchart of the algorithm has been drawn as Figure 3.2 in Section

3.2.2. The steps of the algorithm are also described in details by formulating the

solution and providing the algorithmic presentation. Finally, Section 3.3 concludes the

chapter by summarizing the algorithm, the way of mitigating the problems by the

algorithm.

42

3.2 Developed Algorithm

The goal of the developed BOCEDS is to provide high cluster quality and low

memory requirement and processing delay and detect the noise and evolving

characteristics of data points in a data stream. BOCEDS is a single phase clustering

algorithm that generates clusters from data stream in a fully online manner. The

algorithm stores the data summary information in a data structure called micro-clusters.

In case, a data doesn’t fall into any micro-clusters in the current model, it creates a new

micro-cluster itself. The data structures are updated every time a data arrives from the

data stream in a fully online manner. Along with summary information, the micro-

clusters also maintain an energy level to bear the timing information about the last

change. The energy of a micro-cluster is increased every time it receives a new data and

otherwise decreased. The micro-cluster with non-positive energy is considered as

irrelevant micro-cluster and move from main memory to a special memory, called

buffer. This operation confirms the correct functionality of BOCEDS to evolving data

stream. In case, a new data maps to a micro-cluster in buffer then it is marked as

relevant micro-cluster and move to main memory again. The micro-clusters in memory

generate micro-clustering graphs based on their connectivity. A single graph forms a

cluster.

Section 3.2.1 describes the data structures used in the developed BOCEDS

algorithm in details. The algorithmic parameters and the steps are discussed in Section

3.2.2. The sub-algorithms are also presented in this section.

3.2.1 Data Structures in BOCEDS

The developed BOCEDS is an online micro-clustering density-based clustering

algorithm. Similar to other micro-clustering density techniques, it summarizes the

clustering information in the form of micro-clusters. The macro-clusters are generated

based on membership among the micro-clusters in a clustering graph. Two connected

micro-clusters belong to the same macro-cluster. BOCEDS defines the “decay”

parameter to detect the evolving property of data and the “minimum density threshold”

to differentiate the outliers from the micro-clusters. Decay is defined as the total data

points from the data stream that arrive in a period at a specific sampling rate or the

number of data points that arrive per unit time (Hyde et al., 2017). The minimum

43

number of data points required to form a micro-cluster is known as the minimum

density threshold ()densityTh . A micro-cluster with a local density less than the threshold

is an outlier micro-cluster. Figure 3.1(a) and Figure 3.1(b) show the structure of a

micro-cluster and the neighbourhood of micro-clusters, respectively. In Figure 3.1(b), a

total of 8 micro-clusters are denoted by V1,V2,V3,V4,V5,V6,V7,V8. Figure 3.1 (c) derives

the clustering graph from the micro-clusters intersections (Figure 3.1 (b)). In Figure 3.1

(c), the macro-clusters or simply clusters are denoted by M1, M2 and M3.

(a)

(b)

(c)

Figure 3.1 The data structure in BOCEDS algorithm (a) Micro-cluster structure (b)

Insections of micro-cluster (c) The formation of clustering graph and macro-cluster

44

A micro-cluster (MC) is defined as the tuple),,,,,,(MELERCNNMC  , where

i. Center (C) is the center of the micro-cluster that defines the location of the micro-

cluster in the data space. It is computed as the mean of the data points in the

micro-cluster (Figure 3.1(a));

ii. Radius (R) is the radius of the micro-cluster that describes the spread of the

micro-cluster from the center. The inner region covered by half of the radius is

known as the kernel region (the grey region in Figure 3.1(a)), whereas the outer

half part is called the shell region (the greenish region in Figure 3.1(a)).

iii. Local density (N) is the local density of a micro-cluster that describes the number

of data points within the micro-cluster radius. N  is defined as the number of data

points in the shell region of the micro-cluster.

iv. Energy (E) is the energy of a micro-cluster that is defined as the potential of the

micro-cluster. It is used to determine the length of time since a micro-cluster

receives last data. The energy of every micro-cluster is updated (the details of

which is in Section 3.2.2.3) after clustering every data point. A micro-cluster dies

or lives on the basis of energy. A micro-cluster with zero or negative energy

)0(E is killed and does not participate in the clustering graph.

v. Edge list (EL) in each micro-cluster shows the connected or edged micro-clusters.

Two micro-clusters with radius R1 and R2 are considered intersected if the

distance (d) between their centers is less than the intersecting distance

)
2

(2
1

R
Rd  . In other words, two micro-clusters are considered edged if the

kernel region of a micro-cluster intersects with the shell or kernel region of

another micro-cluster. The intersecting micro-clusters collectively form the edge

list of a micro-cluster. In Figure 3.1(b), the edge list of V1 micro-cluster comprises

V2 and V3 micro-clusters. Meanwhile, the edge list of V7 micro-cluster consists

only of V8 micro-cluster. As the shell region,V8 intersects with the shell region of

V4 micro-cluster; thus, they do not belong to the same macro-cluster.

vi. Macro-cluster (M): Intersecting micro-clusters form a single macro-cluster. A

micro-cluster with local density more than the threshold but with no intersecting

45

micro-cluster forms a macro-cluster. Figure 3.1(c) illustrates the formation of

three macro-clusters (i.e., M1, M2, and M3).

Each time a new data point emerges; it either contributes to form a new micro-

cluster or falls into an existing micro-cluster. BOCEDS maintains four types of micro-

clusters, namely, core, potential, weak, and outlier micro-clusters. The developed

algorithm defines the density threshold (densityTh ; Section 3.2.1) and the micro-cluster

energy to distinguish among different types of micro-clusters. The micro-clusters are

defined as the following Definitions 1 to 4.

Definition 1 (Core Micro-cluster). A core micro-cluster at time t, where

),,,,,,(tttttttcore MELERCNNMC  is defined as the group of close points

tNXXX ..,........., 21 in a high-density area where

i. the local density(tN) is equal or exceeds the density threshold, densityt ThN 

where densityTh is an application-dependent and user-defined parameter;

ii. the number of data points in the shell region (tN ) is less than or equal to the

local density, tt NN  ;

iii. the radius (tR) holds maxmin RRR t  , where minR to maxR is the range of the

micro-cluster radius defined by the user;

iv. the living energy is positive, 0tE ;

v. the center (
t

N

t

k

t

k

tDk
N

X

C

t









1,) is calculated as the mean of tX D-dimensional

data points in the shell region of the micro-cluster)(tN  ;

vi. the edge list is },......,,{ 21 Pt MCMCMCEL  , where the micro-cluster is

intersected with other P core micro-clusters; and

46

vii. the macro-cluster id
tM is a unique integer assigned to each intersected micro-

cluster from edge list tEL .

Definition 2 (Weak Micro-cluster). A weak micro-cluster,

),,,,,,(tttttttweak MELERCNNMC  , in the buffer is defined as the group of close data

points
tNXXX ,....,, 21 in the high-density area at time t, with the local density(tN)

equal or more than the density threshold(densityTh), the number of data points in the shell

region (tN ) is less than or equal to local density(tN), positive energy(0tE), empty

edge list(tEL), and no macro-cluster id (0tM). The center(tC) and radius(tR)

are calculated similar to Definition 1.

Definition 3 (Potential Micro-cluster). A potential micro-cluster

),,,,,,(tttttttpotential MELERCNNMC  is defined as the group of one or more close

points
tNXXX ,....,, 21

at time t, with the local density(tN) below the density threshold

(
densityTh), the number of data points in the shell region (tN ) is less than or equal to

local density(tN), positive energy(0tE), radius(tR) equal to minimum radius(minR

), empty edge list(tEL), and zero macro-cluster id(0tM). The center(tC) is

calculated similar to Definition 1.

Definition 4 (Outlier Micro-cluster). An outlier micro-cluster

),,,,,,(tttttttoutlier MELERCNNMC  is defined as the group of one or more data points

tNXXX ..,........., 21 in a low-density area at time t, with the local density (tN) below the

density threshold (densityTh), the number of data points in the shell region(tN ) is less

than or equal to local density(tN), non-positive energy(0tE), radius(tR) equal to

minimum radius(minR), empty edge list(tEL), and zero macro-cluster id(0tM).

The center(tC) is calculated similar to Definition 1.

The algorithm requires a user defined parameter, namely density threshold to

define the types of micro-cluster (Section 3.2.2). The parameter denotes the number of

minimum data points to differentiate a micro-cluster from the background noise of data

stream. A micro-cluster with the local density below the density threshold is considered

47

as noise or outlier micro-cluster. A density threshold equal to one defines that the data

stream contains no noise. On the basis of the four definitions, a micro-cluster needs the

local density to be above the user-defined density threshold to be a core (Definition 1)

or weak (Definition 2) micro-cluster, whereas the condition is reversed for potential

(Definition 3) and outlier (Definition 4) micro-clusters. The micro-cluster center is

calculated as the mean of the data points in the shell region only because they prevent

the micro-cluster from following the drift of the data stream endlessly by limiting its

movement (Hyde et al., 2017). Although core and weak micro-clusters have a positive

energy, a core micro-cluster is stored in the primary memory, whereas a weak micro-

cluster is stored in a special buffer memory. The core micro-cluster actively participates

in cluster graph and has a positive macro-cluster id, whereas a weak micro-cluster does

not participate in the cluster graph and no macro-cluster id is assigned to it. Similar to

weak micro-clusters, potential and outlier micro-clusters do not participate in the cluster

graph and do not have a macro-cluster identification number. Outlier micro-clusters are

identified as noise and removed immediately after identification.

3.2.2 Description of the Developed BOCEDS Algorithm

Prior to the execution of the developed BOCEDS algorithm, few application-

dependent parameters are defined on the basis of the expert knowledge of the

application similar to other micro-cluster density-based clustering techniques, such as

DenStream, CluStream, DEC, CODAS, and CEDAS. The developed BOCEDS

algorithm defines the following clustering parameters.

i. Decay)(Decay : Decay is the number of data points from the data stream that

arrive per unit time. It is the data rate. A decay of 1000 implies that 1000 data

points are sequentially coming on an average per unit time (e.g., second, minute)

from the data stream. It is used to update the energy of micro-clusters. This

value is set based on expert knowledge about the application.

ii. Maximum)(maxR and Minimum)(minR Radii: The maximum and minimum radii

of micro-clusters are set based on expert knowledge about the application. The

maximum radius confirms the separation and smoothness of micro-clusters,

whereas the minimum radius confirms the formation of micro-clusters with

48

sufficient data points. Recently, the authors in (Albertini & Mello, 2018)

described an adaptive method for estimating clustering parameters.

iii. Minimum Threshold)(densityTh : The minimum threshold is the minimum number

of data points required to form a core micro-cluster. This value separates the

micro-clusters from the background noise.

After setting the application parameters, the developed BOCEDS algorithm is executed

on data stream ,......},,,{ 3210 XXXXX  by the following six distinct steps.

i. Initialize the micro-cluster (Section 3.2.2.1)

ii. Search the target micro-cluster (Section 3.2.2.2)

iii. Update the micro-clusters (Section 3.2.2.3)

iv. Move the weak micro-cluster to the buffer (Section 3.2.2.4)

v. Kill the weak micro-cluster in the buffer (Section 3.2.2.5)

vi. Update the cluster graph (Section 3.2.2.6)

Figure 3.2 shows the developed BOCEDS clustering procedure. The procedure

begins by reading the application-dependent clustering parameters

),,(maxmin, DecayRRThdensity . The clustering procedure then waits for the data points

)(iX from the data stream)(X .

As show in Figure 3.2, when a data point)(iX arrives, it searches for the target

micro-cluster (T), where iX resides based on the Euclidean distance between the data

point and the hyper-spherical micro-clusters. BOCEDS emphasizes on maintaining a

hyper-spherical micro-cluster because of its favourable computational characteristics

over hyper-ellipsoidal or hyper-box-shaped micro-clusters in terms of dimensional

stability and processing time (Hyde et al., 2017). The searching operation is executed

on the core)(coreMC , weak)(weakMC , and potential)(potentialMC micro-cluster sets

(Section 3.2.2.2).

49

Figure 3.2 Developed BOCEDS clustering algorithm

If the data resides in a weak micro-cluster, the micro-cluster is immediately

turns into core micro-cluster. If the data reside in a potential micro-cluster, then the

micro-cluster is checked for core micro-cluster set membership and added to the set.

Figure 3.2 indicates that in the case of successful searching, the information of the

target micro-cluster (T) is extracted and updated (Section 3.2.2.3). Otherwise, a new

potential micro-cluster is created (Section 3.2.2.1). The energy of every micro-cluster in

the system is updated to find the weak micro-cluster candidate in the core micro-cluster

set (Section 3.2.2.4), the outlier micro-cluster in the potential micro-cluster set, and the

dying micro-clusters in the weak micro-cluster set (Section 3.2.2.5). Energy (E)

represents the energy of micro-clusters (i.e., potential, core, and weak micro-clusters).

E≤0 of a core micro-cluster indicates that the micro-cluster is weak (temporarily

irrelevant) and is thus stored in the buffer. Meanwhile, E≤0 of a weak micro-cluster

indicates that the micro-cluster is dying (entirely irrelevant) and is thus removed

50

completely from the buffer. Finally, E≤0 of a potential micro-cluster indicates that the

micro-cluster is dying (outlier). The core micro-cluster with non-positive energy

becomes a weak micro-cluster, and the micro-cluster is moved to the buffer memory.

Spherical micro-clusters are then represented using the clustering graph, which is

finally updated by updating the core micro-cluster set (Section 3.2.2.6). Arbitrarily

macro-clusters (or simply clusters) of arbitrary shape are formed using the graph. Thus,

although the micro-clusters are spherical, they generate arbitrarily shaped clusters.

Sections 3.2.2.1 to 3.2.2.6 describe the procedures of the developed BOCEDS

clustering algorithm.

3.2.2.1 Initialize the Micro-cluster

In this step, new micro-cluster)(newMC is created in case the data point does not

fall in any micro-cluster. The micro-cluster creation begins by initializing the micro-

cluster feature vector. The data point is set as the center of the micro-cluster)(iXC  ,

and the initial radius is set to the minimum radius)(minRR  . The local density and

number of data points in the shell region are set to 1)1( NN because the micro-

cluster contains only one data point. The edge list is an empty set of intersecting micro-

clusters)(EL . The initial energy is set to 1)1(E to ensure that a micro-cluster is

just created with full energy level. The newly created micro-cluster)(newMC has a local

density)1(N less than the density threshold)(densityThN  and has a positive energy

)1(E . Thus, on the basis of Definition 3, newMC is a potential micro-cluster and is

thus added to the potential micro-cluster set)(potentialMC using the union operation in

Eq. 3.1.

newpotentialpotential MCMCMC  3.1

However, the setting of the density threshold to 1)1(densityTh implies that the

new micro-cluster immediately turns into a core micro-cluster)(coreMC and practically

no potential micro-clusters exists. Potential micro-clusters do not participate in the

clustering graph; thus, they do not have macro-cluster ids)0(M .

51

3.2.2.2 Search the Target Micro-cluster

Each time a new data point arrives from the data stream, the developed

BOCEDS attempts to map it to an existing micro-cluster based on the Euclidean

distance)(d between the micro-cluster center and the data point. A data point)(iX

belongs to a micro-cluster,),,,,,,(MELERCNNQ  , if the distance value)(d is less

than the radius of the micro-cluster and is expressed by Eq. 3.2.

RCXd i ),(
 3.2

The mapped micro-cluster may be one of the following micro-cluster sets:

a. A weak micro-cluster from the core micro-cluster set)(weakMC in the buffer;

b. A potential micro-cluster from the potential micro-cluster set)(potentialMC ; or

c. A core micro-cluster from the core micro-cluster set)(coreMC .

To find the target micro-cluster for the newly arrived data point)(iX , the

developed BOCEDS uses a three-step search operation, as illustrated in Algorithm 1.

The first search operation is executed on a weak micro-cluster set in the buffer using

Eq. 3.2. This search operation is a type of pruning operation that aims to find the

relevant micro-cluster from the temporary irrelevant micro-clusters.

Algorithm 1: Micro-cluster Searching

Input: Data point iX , core micro-cluster set coreMC , potential micro-cluster set

potentialMC , weak micro-cluster set weakMC .

Output: Micro-cluster, T that contains iX .

Step 1: Initialize a target micro-cluster, nullT 

Step 2: Find a weak micro-cluster,Q)..(weakMCQei  that satisfies Eq. 3.2.

Step 3: If nullQ  , then

Set QT  and go to Step 8.

[End If]

Step 4: Find a potential micro-cluster,

Q )..(potentialMCQei  that satisfies Eq. 3.2.

52

Step 5: If nullQ  , then

Set QT  and go to Step 8.

 [End If]

Step 6: Find a core micro-cluster,

Q )..(coreMCQei  that satisfies Eq. 3.2.

Step 7: If nullQ  , then

Set, QT 

 [End If]

Step 8: Return T.

If no such weak micro-cluster is found, then the algorithm searches the potential

micro-cluster set to find the target micro-cluster in a similar manner as the first search

operation. In case these two search operations fail, a final search is executed on the core

micro-cluster set to find the mapped core micro-cluster. In case two or more micro-

clusters satisfy Eq. 3.2, the algorithm randomly selects the target micro-cluster.

3.2.2.3 Update the Micro-clusters

If any micro-cluster receives a new data point, then the metadata will be updated

recursively. If at the
tht time instant, micro-cluster),,,,,,(ttttttt MELERCNNT  exists

and a new data point (1tX) has been mapped to that micro-cluster, then its summary

information or metadata at
tht)1( time is updated online, as discussed in Algorithm 2.

The local density)(1tN is simply incremented by Eq. 3.3. In the case where T is a

weak micro-cluster)(weakMCT  or a potential micro-cluster)(potentialMCT  with a

local density greater than the density threshold)(densityt ThN  , T is added to the core

micro-cluster set)(coreMC . If T is already a core micro-cluster)(coreMCT  or a newly

added core micro-cluster, then its radius)(1tR is recursively updated by utilizing the

forgetting mechanism (Khamassi et al., 2018; W. Wang & Vrbanek, 2008). The micro-

cluster radius is updated if the data point stays in the shell region of the micro-cluster

because the data points in kernel region have minimal impact on increasing the radius

and the current radius is sufficiently large. The radius updating equation is formulated

based on the statement that the farther away the data point expands, the more intensive

the micro-cluster radius is than in the case of a closer data point. The closeness of the

53

data point to the outer edge of the micro-cluster is defined as]1}/),(2[{ 1  RCXd tt , and

the radius is increased by a forgetting factor of)/1(Decay per unit closeness. Thus, the

micro-cluster radius is updated using Eq. 3.4.

Local density, 11  tt NN 3.3

Radius,






































 

 max

1

1 ,
1

1
),(2

min R
DecayR

CXd
RR

t

tt

tt 3.4

The micro-cluster radius never exceeds the maximum radius)(maxR .The micro-

cluster center)(1tC is updated only if the data point lies in the shell regions (d stays in

the range of],5.0[11  tt RR). The motivation of this operation is that the participating

points for center updating remain in the shell region because they prevent the micro-

cluster from following the drifting of the data stream endlessly by limiting its

movement (Hyde et al., 2017). If data point 1tX resides in the shell region, then the

number of data points in the shell region)(1

tN and the micro-cluster center)(1tC are

updated using Eq. 3.5 and Eq. 3.6, respectively.

Number of data points in the shell region, 11 
 tt NN 3.5

Center,
1

11

1

)1(











t

k

t

k

ttk

t
N

XCN
C 3.6

for k=1,2,3,…,D, where D is the dimension size of data point

To update the energy)(1tE of the micro-cluster, a new energy updating

function is designed based on the Newton’s law of gravitation(Newton, 1729), where

the amount of energy gained by the micro-cluster is inversely proportional to the

distance between the cluster center and the data point. Thus, the energy)(1tE of the

newly mapped core micro-cluster is updated using Eq. 3.7.

Energy,
DecayR

CXdR
EE

t

ttt

tt

1),(1

1 






 

 

 3.7

54

Algorithm 2: Micro-cluster Update

Input: Data point iX , micro-cluster),,,,,,(ttttttt MELERCNNT  , and distance

),(ti CXd

Step 1: Update the local density)(tN of T using Eq. 3.1.

Step 2: If   )()()(1 weakdensitytpotential MCTThNMCT  
, then

Add the micro-cluster)(T to core micro-cluster set,

TMCMC corecore 

Update the radius)(1tR of micro-cluster)(T using Eq. 3.4.

Set 11 tE

Else If coreMCT  , then

Update the radius)(1tR of micro-cluster)(T using Eq. 3.4

Update the energy)(1tE of micro-cluster)(T using Eq. 3.7.

[End If]

Step 4: If
1

1

2


  t

t Rd
R

, then

Update the number of data points in shell region)(1

tN of micro-

cluster)(T using Eq. 3.5.

Update the center)(1tC of micro-cluster)(T using Eq. 3.6.

[End If]

Step 4: Exit

From Algorithm 2, if the newly mapped micro-cluster is a weak one, then its

energy)(1tE is simply reset to 1. In case of potential micro-cluster, the energy)(1tE is

set to 1 if the density)(1tN is equal or above the density threshold)(densityTh .

Furthermore, in Algorithm 2, if the mapped micro-cluster)(T is a potential

micro-cluster and its local density)(1tN only meets the density threshold)(densityTh , then

the micro-cluster)(T is converted to core micro-cluster and added to the core micro-

cluster set)(coreMC . Meanwhile, a weak micro-cluster (a special type of core micro-

cluster in buffer with no energy) has lost its energy to be live due to the evolving

characteristic of data stream. The weak micro-cluster already meets its density

55

threshold. Thus, if the mapped micro-cluster is a weak one, then it is relevant to the

current data stream contents and is immediately converted to core micro-cluster and

added to the core micro-cluster set)(coreMC .

3.2.2.4 Move the Weak Micro-cluster to Buffer

After clustering each data point, the energy of each core micro-cluster is

decreased to reflect the evolving nature of the data stream. Any core micro-cluster with

the energy below zero is marked as a weak micro-cluster. In this step, the irrelevant

micro-cluster is stored in a special storage called buffer. The purpose of this operation

is to give chance to an irrelevant micro-cluster to be alive again in case data comes to

this micro-cluster in near future. The case has been illustrated in Section 1.3, Chapter 1.

This operation prevents the frequent creation and deletion of micro-cluster to reduce the

processing time. Algorithm 3 describes the weak micro-cluster identification process

and the moving of weak micro-clusters in a special buffer.

Algorithm 3: Moving Weak Micro-clusters to Buffer

Input: Core micro-cluster set (coreMC), weak micro-cluster set (weakMC) in buffer,

Decay

Step 1: Reduce the energy of
Decay

1
from all core micro-clusters in coreMC .

Step 2: For each micro-cluster coreMCMELERCNNT ),,,,,,(, do

If 0E , then

Remove all edges from T , EL

Remove the edge)(),(TELTTEdge  from any core micro-

cluster

coreMCT  , ),(TTEdge

Reset the number of macro-clusters of T , 0M

Remove T from the core micro-cluster set,

TMCMC corecore 

Set the new dying energy 5.0E

Add the micro-clusterT to the weak micro-cluster set in buffer,

TMCMC weakweak  .

56

 [End If]

 [End For]

Step 4: Exit.

0E of a core micro-cluster (T) indicates that the micro-cluster has become

weak (temporarily irrelevant).The identified weak micro-clusters are moved to the

buffer memory with setting a new dying energy half of the initial energy (i.e. 5.0E).

The purpose of storing the weak micro-cluster in the buffer is to serve as reference to

weak micro-clusters in the future. They do not participate in the cluster graph and are

disconnected from the graph by the removal of the intersecting edges

3.2.2.5 Kill the Weak Micro-cluster in Buffer

Along with the reduction of the energy of the core micro-cluster (Section 3.2.4),

the energy of each weak micro-cluster in the buffer is also reduced by
Decay

1
. The

purpose of this operation is to identify the dying micro-clusters that are unrelated to the

recent data stream contents for a long time. A weak micro-cluster with a zero or

negative energy)0(E is identified as a dying micro-cluster and is killed permanently

from the memory. A dying micro-cluster is a totally irrelevant micro-cluster with

respect to the current data stream content. The size of buffer is small and to

accommodate the temporary irrelevant micro-cluster, the totally irrelevant or dying

micro-cluster needs to be removed. The purpose of this operation is to delete the dying

micro-cluster from memory to prevent the buffer from growing beyond its limit of size.

The procedure for identifying and killing dying micro-clusters is presented in

Algorithm 4.

Algorithm 4: Micro-cluster Removal

Input: Weak micro-cluster set (weakMC), potential micro-cluster set (potentialMC),

Decay

Step 1: Reduce an amount of
Decay

1
energy from all weak micro-clusters in weakMC .

Step 2: For each weak micro-cluster (weakMCMELERCNNW ),,,,,,(), do

If 0E , then

57

Remove T from the weak micro-cluster set in the buffer,

WMCMC weakweak  .

[End If]

 [End For]

Step 3: Reduce an amount of
Decay

1
 energy from all potential micro-clusters in

potentialMC .

Step 4: For each potential micro-cluster (potentialMCMELERCNNP ),,,,,,(), do

If 0E , then

Remove P from the potential micro-cluster set,

PMCMC potentialpotential  .

[End If]

 [End For]

Step 5: Exit.

Furthermore, from Algorithm 4, the weak micro-clusters with a non-positive

energy)0(E are identified as candidates for dying micro-clusters and are completely

removed from the buffer. The energy of each potential micro-cluster is also decreased,

and the micro-cluster with a zero or negative energy)0(E is marked as an outlier.

Similar to a weak micro-cluster, outliers are also removed from the memory

permanently.

3.2.2.6 Update the Cluster Graph

Similar to other density-based clustering techniques, such as CODAS, CEDAS,

BOCEDS maintains a clustering graph to generate a macro-cluster online. The

clustering graph must be updated in four cases.

Case 1. A potential micro-cluster satisfies the minimum density threshold to be

the core micro-cluster.

Case 2. A weak micro-cluster becomes a core micro-cluster because it contains

the current data point.

Case 3. The center of a core micro-cluster is shifted.

58

Case 4. A core micro-cluster is moved to the buffer and changes to a weak

micro-cluster.

In the above cases, the edge list of the micro-clusters may be changed; thus, the

number of macro-clusters must be updated accordingly.

Algorithm 5: Update Cluster Graph(G)

Input: A core micro-cluster),,,,,,(MELERCNNT  that has been generated or

modified, core micro-cluster set (coreMC), clustering graph G

Step 1: For each core micro-cluster (coreMCMELERCNNT ),,,,,,(), do

Set d =Euclidean distance between centers of micro-clusters T andT 

Set d =intersecting distance between T and T  from Eq. 3.8

If dd  , then

Add the edge),(TTEdge  to the edge list of T  ,

),(.. TTEdgeELTELT 

Add the edge),(TTEdge  to the edge list of T ,

),(.. TTEdgeELTELT  .

[End If]

[End For]

Step 2: If any micro-cluster edge list has changed, then

Set a new number of macro-clusters throughout the graph.

[End If]

Step 3: Exit.

The first two cases introduce a new vertex in the clustering graph. For Cases 1–

3, the intersecting micro-clusters are calculated, and the edge lists are updated. If two c-

micro-clusters T and T with radii R and R , respectively, exist, then the intersecting

distance (d ) is the distance between the centers of the two c-micro-clusters and is

calculated using Eq. 3.8.
















2

2
R

R

R
R

d
if

if

,

,

RR

RR




 3.8

59

If the edge list is changed, then the number of macro-clusters is updated on the

basis of the edge list. In Cases 4 and 5, one vertex is removed from the graph. Any edge

that connects the removed vertex and a vertex in the graph is removed from the graph.

The number of macro-clusters is reassigned in the graph.

3.3 Summary

This chapter explains the developed online clustering algorithm called BOCEDS

in details to overcome the identified research problems. BOCEDS is a single stage

algorithm that generates the clusters from the data stream in a single online stage. The

algorithm uses the concept of micro-cluster to summarize the data from data stream.

BOCEDS defines four types of micro-cluster and they are core, potential, weak and

outlier micro-clusters. Outlier micro-clusters are the background noise and core micro-

clusters are the final micro-clusters those participate in cluster generation. On the other

hand, potential micro-clusters are converted to either core or outlier micro-cluster. The

rest weak micro-cluster is temporary irrelevant micro-clusters those are identified as

totally irrelevant of core micro-cluster in later period of time. Euclidean distance

measure has been used to compute the distance between micro-clusters and also the

distance between data and micro-clusters.

Before execution of the algorithm, the application parameters (minimum and

maximum radius, density threshold, decay) are set by the application expert. The

algorithm executes in five distinct steps. In the first step, a micro-cluster is created in

case the data does not fall into any micro-clusters in the current model. The micro-

cluster searching operation is executed in the second step. The searching domains are

weak, potential and core micro-cluster set. A data may falls into a region of a micro-

cluster. In such a case, the information of the micro-cluster is updated in a fully online

manner in the third step. The forgetting mechanism is utilized to design the radius

updating procedure and Newton’s gravity law is adapted to design the micro-cluster

energy updating procedure. The energy of every micro-clusters including core, potential

and weak micro-cluster are updated in every time, a data is clustered. In the fourth step,

based on the current energy, some core micro-clusters become weak (temporary

irrelevant) micro-clusters and stored in a special stage called buffer. On the other hand,

some weak micro-clusters become dying (totally irrelevant) micro-cluster and are

removed from buffer completely. In the final step, clustering graphs are generated based

60

on the connectivity among core micro-clusters. Each disjoint graph represents a single

macro-cluster or simply cluster.

To summarize, BOCEDS uses the concept of maintaining the local optimal

radius rather than global radius concept of other algorithms to effectively reduce the

sparse regions in a micro-cluster by maintain the local optimal radius. This fact also

helps to handle noise effectively. The algorithm has the ability to handle evolving data

stream by considering an energy that which decreases over time. Another prominent

feature of BOCEDS can keep track of the temporary irrelevant micro-clusters by storing

them in buffer those are ignored by other density-based algorithms. The pruning of

these micro-clusters prevents the frequent creation and removal of micro-clusters. The

operation improves the processing time significantly. The whole steps works

recursively those in turns provide a fully online behaviour of BOCEDS.

61

CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Introduction

In the previous chapter (Chapter 3), the developed BOCEDS algorithm has been

discussed in details. The input parameters have also been defined. The developed

clustering algorithm called BOCEDS is implemented using MATLAB R2014a and run

on a Core i7 processor with 2GB primary memory environment. The algorithm is

executed in Microsoft Windows 10 operating system environment. This chapter

describes the correct functionality of BOCEDS algorithm in Section 4.2.1 to form

clusters in dense regions, to detect noises in data stream, to detect the drift in data

stream. The scalability and processing speed properties of the algorithm is discussed in

Section 4.2.2. The cluster quality and memory requirement is measured and explained

in Section 4.2.3 to evaluate the performance of BOCEDS. Some parameters are used in

the algorithm, which are set based on expert knowledge on domain. The sensitivity of

those parameters are measured and described in Section 4.2.4. To evaluate the

applicability of developed algorithm to real-world data stream, a case study that

describes the clustering of real-world weather data stream is discussed in Section 4.3.

4.2 Performance Metrics

Evaluating the performance of clustering algorithm is one of the important

issues to validate the goodness of the clustering result (Maulik & Bandyopadhyay,

2002). The performance of clustering algorithm is defined in terms of five metrics by

most of the clustering algorithms for data stream (Amini et al., 2014; Hyde & Angelov,

2015; Reddy & Bindu, 2017). The metrics are described in the following Section 4.2.1

to Section 4.2.5.

62

4.2.1 Cluster Formation and Noise Sensitivity

To validate the correct functionality of a clustering algorithm, it is necessary to

test the formation of micro-clusters as well as clusters as new data arrives from a data

stream. Cluster formation metric describes the fact that how the algorithm forms adds,

merges and separates macro-clusters in a continuously evolving environment (Hyde et

al., 2017). It is also important to visualize the creation and removal of micro-clusters

over time. The cluster formation metric is evaluated on both of clean and noisy data

stream to ensure the proper functionality of the algorithm. The generated micro-clusters

and clusters visualized with different colour to differentiate them.

The visualization of cluster formation on noisy data stream alone cannot

describe the functionality of the algorithm. It is necessary to define a numerical metric.

The solution is to measure the noise sensitivity of the clustering algorithm. Noise

sensitivity describes the behavior of a clustering algorithm in a noisy data stream

environment. This characteristic is calculated by comparing the percentage of data point

assignment (Hyde & Angelov, 2015) before and after adding the noise to the data

stream. The percentage of data point assigned to a cluster has been redefined as the data

coverage. If tN data points from data stream generate C core micro-clusters at time t,

then data coverage is the ratio of the cumulative local densities to the total data points

that appeared (tN), as shown as follows:

Data coverage,

%1001 




t

C

i

i

t
N

n

DC 4.1

Where, in is the local density of the micro-cluster I at time t.

If cleanDC is the data coverage over clean data stream (before adding noisy data)

and noisyDC is the data coverage over noisy data stream (after adding noisy data), then

the noise sensitivity or identified noise is measured by

Noise sensitivity, noisyclean DCDCNoise [%] 4.2

The noise sensitivity defines the percentage of noise in the data stream. An ideal

clustering algorithm detects all the noises in the data stream.

63

4.2.2 Processing Speed and Dimensionality

Processing time is a very important metric to evaluate any algorithm. The data

point processing speed is measured as the average time needed to complete the

clustering of a data point from the data stream (Aggarwal et al., 2003). The processing

time usually measured in a window basis way over the whole data stream and expressed

in seconds, milliseconds or micro-seconds. On the other hand, the dimensionality metric

describes the scalability behaviour of the clustering algorithm for low to high

dimensional data stream. Usually, dimensionality property is defined in terms of

scalability. Scalability is measured as the change in processing time from low- to high-

dimensional data stream.

4.2.3 Cluster Quality

Cluster quality describes the quality of generated clusters by the clustering

algorithm. The metric is defined in terms of two parameters, namely, cluster accuracy,

and purity (Amini et al., 2014; Hyde & Angelov, 2015). These two parameters are

measured with respect to the true cluster (class) labels that are known for the data

stream.

 Purity is defined as the number of data points that belong to a dominant cluster.

The higher percentage of the dominant class labels in each cluster, the higher the cluster

purity. If in samples exist in a cluster and among them, d

in samples lie in the dominant

cluster, then for N clusters, the mean purity is measured as

%1001 



i

N

i

d

i

n

n

Purity 4.3

The presence of a high number of clusters with few data points may provide

high purity despite most of the data points clustered incorrectly. Cluster accuracy solves

this limitation; it is defined as the amount of data points in a cluster that truly belong to

the cluster(Hyde & Angelov, 2015). If in samples exist in a cluster and among them, d

in

samples lie in the dominant cluster, then for N clusters, the accuracy is measured as

64

%100

1

1 









N

i

i

N

i

d

i

n

n

Accuracy 4.4

An ideal clustering algorithm shows a balanced accuracy and purity for any data

stream. It is also expected the accuracy and purity equal or close to 100% in all time

periods.

4.2.4 Memory Efficiency

Due to the volume property of data stream, data comes continuously from the

data stream and the amount of data grows exponentially. However, low memory

requirement is desired for any algorithm to reduce the maintenance cost. So, evaluating

the memory efficiency is an important metric to define the performance of the

clustering algorithm. Memory efficiency is measured as the storage required when

clustering the data stream. However, the storage requirement is proportional to the

micro-clusters in the model for online clustering algorithm as the data points are

removed immediately after clustering (Baruah & Angelov, 2014; Hyde et al., 2017).

Low memory requirement is desired for an online clustering algorithm for data stream.

4.2.5 Parameter Sensitivity

The operation of almost all the algorithms depends strongly on the initialization

of its parameters. The sensitivity analysis evaluates the algorithms based on the analysis

of these parameters (Baruah & Angelov, 2014; Riyadh et al., 2017). It shows how the

algorithm’s parameters affect the clustering quality and the best setting for the

algorithm’s parameters (Dong et al., 2018; Guha et al., 2001; Shao et al., 2018). The

parameter sensitivity is defined in terms of three parameters and they are density

threshold, decay and micro-cluster radius. The first step in this analysis of performance

is the investigation of the sensitivity of the algorithms for varying parameters. The

investigation of the sensitivity of density threshold and micro-cluster radius is evaluated

by measuring the cluster quality based on Eq. 4.3 and Eq. 4.4. On the other hand, the

sensitivity of decay is measured by computing the computational time for different

decay setting.

65

4.3 Result Analysis

A series of experiments has been executed on two syntactic and one practical

data stream to measure the performance of the developed BOCEDS algorithm and

compare it with existing density-based clustering algorithms. The performance of the

developed BOCEDS algorithm measured over three benchmark data stream in the field

of online clustering and they are Mackey–Glass, helical, and KDDCUP’99 data stream.

Before execution of the BOCEDS algorithm on a data stream, four application

dependent parameters are set by the user and they are minimum radius (Rmin), maximum

radius (Rmax), decay (Decay) and density threshold(Thdensity). The optimal values of two

parameters (Decay and Thdensity) are directly derived from literature as the data streams

in this experiment are well studied by several algorithms. As the concept of other two

parameters is new, the optimal values of them (Rmin and Rmax) are set by the

experiments. The popular trial and error method is used to find the optimal values of

these two parameters. In this method, initially the values of Rmin and Rmax are set to be

identical as the optimal value of radius exists in literature. The value of Rmin is

decreased by a small amount of 0.01 and the value of Rmax is increased by a small

amount of 0.01 till the cluster quality remains same or increases. In the case the cluster

quality is found highest, the values of Rmin and Rmax are set to be used for the rest of

experiments.

The performance of BOCEDS algorithm is defined in terms of cluster formation

(Section 4.3.1.1), noise sensitivity (Section 4.3.1.2), data point processing speed

(Section 4.3.2.1), scalability (Section 4.3.2.2), response to variable decay (Section

4.3.2.3), cluster purity (Section 4.3.3.1), cluster accuracy (Section 4.3.3.2), memory

efficiency (Section 4.3.3.3), and parameter sensitivity (Section 4.3.4).

4.3.1 Cluster Formation and Noise Sensitivity

Mackey–Glass time series is a benchmark dataset that has been used to study the

behaviour of dynamic changes in many evolving clustering algorithms (Blazic &

Skrjanc, 2019; Kakkar et al., 2017; Makul & Ekinci, 2017). Although Mackey–Glass

time series is a stationary dataset, the developed algorithm clusters data points online,

wherein the data points are removed immediately after clustering. This dataset is used

to show the manner in which micro-clusters are formed in the clean data stream with

66

local optimal radius. Adding some noisy data to this data stream, make the Mackey-

Glass data stream as a noisy data stream environment. This noisy data stream is used to

define the behaviour of BOCEDS algorithm in a noisy environment.

The dataset is a syntactic three-dimensional data stream that is composed of two

Mackey–Glass time series (Glass & Mackey, 2010) generated by the following

nonlinear time delay differential equation:

)()(1

)()(
10 tbxtx

tax

dt

tdx









 4.5

This equation is solved using the fourth-order Runge–Kutta numerical method

with different values for a and b, and the data stream is generated. The 10th data of data

stream has been replaced with a noisy data to generate a noisy Mackey–Glass data

stream, which contains 10% noisy data. The noisy data are those data those are not in

the normal range of data. In case of Mackey-glass time series data, the data are

normalized to the range from 0.0 to 1.0. The noisy data are chosen from the data

beyond this range. The developed BOCEDS algorithm is applied on a clean Mackey–

Glass data stream to understand the cluster formation in dense areas separated by sparse

areas. BOCEDS is executed on the noisy Mackey–Glass data stream to validate the

correct functionality in a noisy environment. The clustering parameters for clean and

noisy Mackey–Glass data streams are set as 1000Decay data points, 15densityTh data

points, 03.0min R , and 07.0max R .

4.3.1.1 Cluster Formation

BOCEDS algorithm generates the macro-clusters or simple clusters in the highly dense

areas separated by low dense areas of data stream. When this algorithm is executed on

the clean Mackey–Glass data stream, the clustering results after four time periods are

shown in Figure 4.1(a)–3(d). For one-fourth time period (first 10000 data points), the

clustering result in Figure 4.1(a) confirms that micro-clusters and clusters are formed as

data points that arrive in new dense areas. The generated micro-clusters have a nearly

equal radius.

68

arrival. The data are shown in Figure 4.2(a) and Figure 4.2(b) for clean and noisy

Mackey–Glass data streams, respectively, where the change in the number of macro-

clusters is reflected by the change in data path color.

(a) Without noise

(b) With noise

Figure 4.2 Formation of macro-clusters in Mackey–Glass data stream

69

A comparison of Figure 4.2(a) and Figure 4.2(b) indicates that the formation of

macro-clusters in noisy data stream is slightly delayed compared with that in clean data

stream. The potential micro-clusters take more time to meet the density threshold than

clean data stream due to the presence of noisy data points in noisy data stream. This fact

is the cause of initial delay for forming the macro-clusters in case of noisy Mackey–

Glass data stream. In Figure 4.2(a) and Figure 4.2(b), a single macro-cluster contains all

the data points, except the noisy data points until point A. The trend of varying the

number of macro-clusters is relatively similar in clean and noisy data streams. At Point

A, the data stream is separated into two distinct macro-clusters, and the change is

denoted by the color blue. The short duration of macro-cluster existence is illustrated in

Points C–D, G–H, H–I, I–J, and J–K. The data stream ends at Point N.

From Figure 4.2(a) it can be seen that BOCEDS maintains the local radius

during clustering the data stream that is updated towards its optimal value. Moreover,

some micro-clusters are created and deleted over time that confirms the correct

functionality of BOCEDS to handle evolving data stream. From Figure 4.2(b), it can be

concluded that BOCEDS is able to generate clusters in both of clean and noisy

environments.

4.3.1.2 Noise Sensitivity

The measured noise (using Eq. 4.2) of existing CEDAS and developed

BOCEDS techniques over clean and noisy (10% noise) Mackey–Glass data streams is

shown in Figure 4.3. From the figure, the initial identified noise by existing CEDAS

algorithm is more than the original noise (10%) by a considerable amount. By contrast,

the identified noise is more in the developed BOCEDS algorithm as the micro-cluster

radius is less than its optimal value in these time periods and more some micro-clusters

do not get enough data to be core micro-cluster. From Figure 4.3, it is also seen that the

percentage of detected noise becomes up and down periodically due to the addition of

noisy data in the noisy data stream. As time progresses, the identified noise by

BOCEDS algorithm oscillates the original amount of noise (10%). In these time

periods, the micro-clusters recursively update their radius toward their optimal radius,

and the deviation in noise percentage from the original noise amount (10%) decreases.

70

Figure 4.3 Noise sensitivity over Mackey–Glass data stream

Finally, the identified noise remains close to the original percentage of noise in

the developed BOCEDS algorithm. Conversely, the amount of identified noise by

CEDAS remains approximately at 7%. Thus, BOCEDS identifies nearly all the noisy

data points, whereas CEDAS fails to identify some noise in the Mackey–Glass data

stream. The developed BOCEDS also shows a superior performance in identification of

noisy data points in comparison with the existing CEDAS.

4.3.2 Speed and Dimensionality

The helical data stream contains a set of helixes (Steinhaus, 1999). The original

helical data stream consists of three helical data series of a circular helix, as shown as

follows:

ctZZtrYtrX );cos();sin(
 4.6

where r is the radius of the helix, and c is the pitch parameter (pitch=2c).

In the equation, as the value of t increases, points X, Y, and Z produce a right-

handed helix around the z-axis in a right-handed coordinate system. The helical data

stream is generated using the above time series equation for different values of t and a

71

constant value of c. The data series is then moved into a higher-dimensional data space

by adding additional data coordinates. The developed BOCEDS is executed on a high-

dimensional data stream to measure the data point processing speed and response to

high dimensionality. The clustering parameters are set as 1000Decay data points,

4densityTh data points, 04.0min R , and 06.0max R .

4.3.2.1 Processing Speed

It is desired for any clustering algorithm to show high processing speed to

enable real time processing of data stream. Figure 4.4 shows the change in processing

delay with time for clustering of a three-dimensional helical data stream using the

developed BOCEDS algorithm and compares it with other two density-based online

clustering techniques, namely, CEDAS and CODAS.

Figure 4.4 Processing time on a helical data stream

As shown in Figure 4.4, the processing time of CODAS is considerably higher

than those of CEDAS and BOCEDS. This result is due to the fact that the micro-

clusters in CODAS do not evolve, whereas those in CEDAS and BOCEDS are evolving

in nature. In the developed BOCEDS algorithm, the initial micro-cluster radius is below

its optimal, and the number of initial micro-clusters is more in BOCEDS than that in

72

CEDAS. Accordingly, the initial processing time is more in BOCEDS than in CEDAS.

However, the radius is updated toward its optimal because increased data points reach a

micro-cluster. Although a time penalty is incurred for pruning operation, BOCEDS

recovers some micro-clusters rather than creating new micro-clusters by a time-

consuming process, thereby reducing the processing time. Similarly, rather than

updating the edges of micro-clusters in the clustering graph at every data point, the

developed algorithm only rechecks the edges if the center of the core micro-cluster is

shifted or a new core micro-cluster is added to the graph. Figure 4.4 depicts that as time

progresses; the processing time becomes close by half of the data point arrival time.

The processing time of BOCEDS finally goes below the processing time of CEDAS,

and the trend continues because most of the micro-clusters either reach their optimal or

maximum radius.

4.3.2.2 Scalability

A good clustering algorithm requires low processing time and low delay penalty

for extending it to a higher-dimensional data space. Figure 4.5 compares the sample or

data point processing speed of the developed BOCEDS clustering algorithm with those

of CEDAS, CODAS, CluStream, and DenStream on a helical data stream.

Figure 4.5 Processing speed on a helical data stream

73

The maximum limit of allowable number of micro-clusters in CluStream is 100

micro-clusters. All techniques form arbitrarily shaped macro-clusters similar to

BOCEDS. Figure 4.5 illustrates that the data point processing time linearly increases in

all mentioned techniques. The processing time of BOCEDS is considerably less than

those of CluStream, CODAS, and DenStream. The processing speed of BOCEDS is

less than that of CEDAS by a small amount. Although a time penalty is incurred for the

pruning operation, the processing time is greatly reduced by adopting the

spatiotemporal similarity concept in the developed BOCEDS. Thus, the time penalty

factor of BOCEDS for increasing the dimension size is less than those of the online or

hybrid clustering algorithms.

4.3.2.3 Response to Variable Decay

Decay defines the amount of data arrives per unit time from a data stream. A

clustering algorithm shows the linear relationship between the decay and data

processing time. The mean processing time is recorded for different decay periods for

low- to high-dimensional helical data stream to measure the behaviour of the developed

BOCEDS in variable decay. The plotted result of these records is shown in Figure 4.6.

Figure 4.6 Processing time for various decay settings in the developed BOCEDS

74

The decay is increased from an initial value 500 to 1500 with an interval of 250.

Eq. 3.7 states that the energy-reducing factor for each micro-cluster reduces with

increasing decay for an evolving data stream. Thus, the decay time is also proportional

to the number of micro-clusters due to the continuous drift in helical data stream. This

relationship between the decay and the number of micro-clusters implies that the mean

data point processing time increases with the decay. Figure 4.6 clearly reflects the

relationship, in which the mean data point processing time increases with the decay.

Moreover, the processing time also increases with increasing the number of dimensions.

The reasons for this behaviour of BOCEDS algorithm has been discussed in Section

4.3.2.2. This characteristic shows that BOCEDS algorithm is efficient in handling the

velocity property of data stream.

4.3.3 Cluster Quality

A well-known practical data stream called KDDCUP’99 (Bay et al., 2000) has

been used for measuring cluster quality and memory. The data stream contains

approximately 4900000 network traffics. The data stream is reduced to 10% to simulate

the network intrusion attacks using the developed algorithm. Each data point of the

stream is characterized with 41 features and an additional attribute for defining the

attack. The database contains 21 types of network attack along with normal network

traffic. The developed BOCEDS algorithm is applied on KDDCUP’99 data stream to

identify the network traffic clusters. The clustering parameters are set as 1000Decay

data points, 3densityTh data points, 06.0min R , and 12.0max R . The cluster analysis is

performed for 500time intervals spaced at 10K data points. The data points are

immediately removed after clustering. The performance parameters (i.e., accuracy,

purity, and memory) are measured in every window.

4.3.3.1 Cluster Purity

The purity of clustering KDDCUP’99 using the developed BOCEDS is

measured using Eq. 4.3 at several time periods. The purity of another two recent highly

pure density-based clustering, namely, CODAS and CEDAS, is also measured on the

same data stream. Moreover, the mean cluster purity of DStream and MRStream is

taken from the results presented by Wan et al. (Wan et al., 2009). The cluster purity is

75

calculated for 500 time intervals spaced at 10K data points. Figure 4.7 compares the

purity of BOCEDS with those of DStream, MRStream, CODAS, and CEDAS.

Figure 4.7 Purity for clustering of KDDCUP’99 data stream

As shown in Figure 4.7, CODAS exhibits the highest clustering purity for the

experimental time period among the clustering techniques. Nevertheless, CODAS is a

non-evolving clustering algorithm. The remaining algorithms are evolving clustering

methods. The developed BOCEDS shows the maximum purity at most of the time

period, whereas DStream shows the worst performance in terms of purity due to the

appearance of outlier data that are made from errors. The contributing factor behind this

success in BOCEDS is the online updating of the micro-cluster radius toward its local

optimal in contrast to a unique and global radius of micro-clusters in CEDAS. The

purity performance of BOCEDS is above 90% at all time periods, except for the time

period of 150 (Figure 4.7). The purity of BOCEDS is also higher than that of CEDAS at

nearly all time periods. Although the purity of MRStream is good, BOCEDS is still

superior at most of the time periods. Figure 4.7 emphasizes the improvement in purity

of BOCEDS.

76

4.3.3.2 Cluster Accuracy

The accuracy of clustering KDDCUP’99 using the developed BOCEDS is

measured using Eq. 4.4 and recorded for different time periods. The clustering accuracy

of another two recent highly accurate density-based clustering, namely, CODAS and

CEDAS, is also measured on the same data stream. The cluster accuracy is measured

for 500 time intervals spaced at 10K data points. Figure 4.8 plots the recorded accuracy

and compares BOCEDS with CODAS and CEDAS.

Figure 4.8 Accuracy for clustering of KDDCUP’99 data stream

Among BOCEDS, CEDAS, and CODAS, CODAS shows the highest clustering

accuracy; however, the micro-clusters in CODAS do not evolve. Between the other

evolving two clustering methods, the developed BOCEDS shows higher accuracy than

CEDAS due to the same reason of improving cluster purity (Section 4.3.3.1). In Figure

4.8, the minimum accuracy in CEDAS is nearly 77%, which is found at approximately

150 time periods; meanwhile, the minimum accuracy is improved by more than 5% in

the developed BOCEDS. In CEDAS, numerous downward spikes are found, which

imply that the accuracy falls below 90% in considerable time period. On the contrary,

only a single spike goes below 90% in BOCEDS accuracy. This result indicates that the

77

data points are more correct in BOCEDS than in CEDAS. Thus, the improvement in

accuracy of BOCEDS is considerable (Figure 4.8).

4.3.3.3 Memory Efficiency

Hence, the number of micro-clusters in the developed BOCEDS is compared

with the number of micro-clusters in CODAS, DenStream, and CEDAS when

clustering the KDDCUP’99 data stream to demonstrate the memory efficiency. The

result is plotted in Figure 4.9.

Figure 4.9 Memory usage in clustering of KDDCUP’99 data stream

According to Figure 4.9, the number of generated micro-cluster in CODAS

shows an increasing trend because it is not an evolving clustering algorithm. The

number of micro-cluster in DenStream is taken from the results presented by Wan et al.

(Wan et al., 2009). Among the other evolving clustering methods, DenStream is the

worst clustering algorithm in terms of memory efficiency as it stores the all of the

outliers for future reference. The number of micro-clusters in CEDAS and BOCEDS is

close to each other. However, the number of micro-clusters is more in BOCEDS than

that in CEDAS. Although BOCEDS generates a lower number of core micro-cluster

than CEDAS does, the number of micro-clusters is further increased by the weak micro-

78

cluster in BOCEDS. Moreover, the total micro-cluster is more in BOCEDS than in

CEDAS. Thus, in comparison with CEDAS, BOCEDS shows a small amount of

memory space penalty.

4.3.4 Parameter Sensitivity

Sensitivity analysis is an important metric to evaluate an algorithm, especially in

the case when the algorithm takes some parameters from the user. Sensitivity analysis is

an efficient and robust ways to realize the effect on the output of the algorithm due to

the changes in input parameters (Tøndel et al., 2013). This evaluation metric has been

well studied by many clustering algorithms like kDDBSCAN (Jungan et al., 2018), k-

mean-sharp (Olukanmi & Twala, 2017), FDCA (Jinyin et al., 2017). In this subsection,

the sensitivity of the developed BOCEDS has been analysed with respect to the density

threshold of the clustering parameters and the micro-cluster radii in a similar manner as

those in (Dong et al., 2018; Guha et al., 2001; Shao et al., 2018). The popular

KDDCUP’99 (Bay et al., 2000) data stream has been used to measure the accuracy and

purity for different parameter settings in our experiment.

4.3.4.1 Density Threshold)(densityTh

densityTh is varied from 1 to 6 to study the behaviour of BOCEDS for different

settings of density threshold. The clustering parameter Decay is set to 1000,
minR is set

to 0.06, and
maxR is set to 0.12 (similar to the third experiment in Section 4.2.3. The

clustering purity and accuracy have been measured using Eq. 4.3 and Eq. 4.4). Table

4.1shows the measured purity for different time periods.

In Table 4.1, the bold font values represent the maximum purity at different time

periods for different values of density threshold. From the table, the measured purities

are close to one another in most of the time periods. For example, in the time period of

50, the purities stay between 99.630 and 99.638. The maximum purity of 99.638 is

found for 6,5,4densityTh , which is larger than the other density threshold with a

negligible amount. In some time periods (i.e., 100, 200, 250, 300, 450), the purities are

100% for all density threshold settings.

79

Table 4.1 Purity of clustering for KDDCUP’99 for different values of densityTh

1densityTh

2densityTh

3densityTh

4densityTh

5densityTh

6densityTh

T

im
e

(m
s)

50 99.63 99.635 99.6375 99.638 99.638 99.638

100 100 100 100 100 100 100

150 80.708 81.565 82.49752 82.321 82.134 82.122

200 100 100 100 100 100 100

250 100 100 100 100 100 100

300 100 100 100 100 100 100

350 98.229 97.663 97.88945 97.765 97.967 98.028

400 90.053 90.922 91.06759 90.068 90.871 90.801

450 100 100 100 100 100 100

500 91.971 97.887 97.88734 95.189 93.95 92.636

In these time periods, the change in data stream is relatively low. On the

contrary, purity is considerably lower for two time periods (i.e., 150 and 400) for all

density threshold settings due to the frequent change in the content of data stream. The

lowest purity is found in the time period of 150. In most of the time periods (i.e., 100,

150, 200, 250, 300,400, 450, and 500), the purity is highest for 3densityTh setting. For

the other two time periods, the purity of clustering KDDCUP’99 data stream is near the

highest purity. Thus, the best purity result is found for 3densityTh setting.

Table 4.2 shows the clustering accuracy for different time periods. The bold

values represent the maximum accuracy at different time periods for different values of

density threshold. Similar to purities, the accuracy values are close to one another for all

threshold densities)6,5,34,2,1(densityTh .

In all times periods, the accuracies for all densityTh are close to 100%. Similar to

purity values, the accuracies are 100% for some time periods (i.e., 100, 200, 250, 300,

and 450) for all values of densityTh . The lowest purity is found in the time period of 150

for all density threshold settings due to the same reason for dropping the clustering

purity. Moreover, 80% of time periods show the highest accuracy for 3densityTh .

80

Table 4.2 Accuracy of clustering the KDDCUP’99 for different values of densityTh

1densityTh 2densityTh 3densityTh 4densityTh 5densityTh 6densityTh
T

im
e
 (

m
s)

50 99.985 99.985 99.98547 99.985 99.985 99.985

100 100 100 100 100 100 100

150 80.708 81.848 81.99446 81.848 81.771 81.815

200 100 100 100 100 100 100

250 100 100 100 100 100 100

300 100 100 100 100 100 100

350 98.943 96.216 99.10307 99.103 99.165 99.165

400 98.275 98.585 97.36508 97.365 98.081 98.081

450 100 100 100 100 100 100

500 92.266 98.765 98.76543 97.705 94.863 93.202

A density threshold setting less than the optimal value creates false clusters,

which are originally outliers. By contrast, a density threshold more than the optimal,

identifies some true clusters as outliers. The effect is reflected in Table 4.2, where an

increasing trend in accuracy occurs in most of the time periods as the density threshold

)(densityTh increases until it reaches 3, and the accuracy then decreases with increase in

threshold value in most of time periods. Thus, the best accuracy is found for 3densityTh

setting.

4.3.4.2 Maximum and Minimum Radii

The clustering accuracies and purities are measured using Eq. 4.3 and Eq. 4.4

and for various radius settings to study the sensitivity of maximum)(maxR and minimum

)(minR radii. The clustering parameter Decay is set as 1000, and densityTh is set to 3

(similar to the third experiment in Section 4.2.3).

The first study towards sensitivity analysis is to investigate the improvement in

clustering accuracy and purity as a result of using the concept of local radius rather than

global radius. For this purpose, the radius is varied from 0.06 to 0.12 with an increment

of 0.01, and the result is compared with the range of radius setting. For the first seven

cases, the minimum and the maximum radius of micro-cluster set to an identical value.

This setting confirms that the algorithm uses a unique global radius. The last case uses

the proposed range of radius where the minimum radius must be lower than the

81

maximum radius. For each case, the accuracy and purity is calculated in a window of

10000 data (using Eq. 4.3 and Eq. 4.4) and recorded. The mean accuracy and purity is

computed from the recorded accuracy and purity values respectively. Figure 4.10

illustrates the improvement in cluster quality in terms of accuracy and purity when a

range micro-cluster radius is used instead of a global optimal radius in clustering the

KDDCUP’99 data stream.

Figure 4.10 Accuracy and purity for identical)(maxmin RR  and radius range

)(maxmin RR  in clustering of KDDCUP’99 data stream

From Figure 4.10, the accuracies and purities are consistently below 97% for all

cases of global optimal radius setting, except for the setting of 07.0maxmin  RR ,

where accuracy is approximately 97% and purity is 97.7%. On the contrary, the

proposed local optimal radius concept shows a clear improvement in cluster quality, in

which accuracy and purity are found as 98.995% and 98.107%, respectively. It is stated

every micro-cluster sets its radius to local optimal value independently rather than using

a predefined global radius for all micro-clusters (Section 3.2.2.3). This fact contributes

to improve the cluster quality (accuracy and purity) in the last case where less sparse

regions are presented than the first seven cases.

0.06-0.06 0.07-0.07 0.08-0.08 0.09-0.09 0.1-0.1 0.11-0.11 0.12-0.12 0.06-0.12

94

95

96

97

98

99

100

A
cc

u
ra

cy
 &

 P
u

ri
ty

[Rmin-Rmax]

 Accuracy

 Purity

82

The experiment is extended to study the sensitivity of radius range),(maxmin RR

setting in KDDCUP’99 data stream. minR varies from 0.03 to 0.08 with an increment

value of 0.01, and maxR varies from 0.06 to 0.15 with an increment value of 0.01. For

this experiment, the accuracy and purity are measured for every 10000 data points. The

average accuracy and purity values are recorded in Table 4.3.

Table 4.3 Clustering accuracy for different settings of],[maxmin RR

Accuracy Rmax

 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

R
m

in

0.03 97.616 97.618 97.618 97.618 97.618 97.618 97.618 97.128 97.128 97.128

0.04 97.682 97.942 97.174 97.313 97.164 97.174 97.784 97.775 97.772 97.772

0.05 97.525 97.623 97.646 97.753 97.753 97.753 97.744 97.892 97.892 97.892

0.06 96.682 97.939 97.971 97.918 97.918 97.918 98.125 97.979 97.996 97.996

0.07 - 96.984 97.779 97.01 97.884 97.844 96.982 97.541 97.54 97.54

0.08 - - 96.275 97.116 97.51 97.459 97.458 97.448 97.448 97.448

For example, with 06.0,03.0 maxmin  RR setting, the average accuracy is

97.616%, and the purity is 97.734%. In Table 4.3, the maximum clustering accuracy

and purity are found for)12.0,06.0(maxmin  RR setting. The accuracies and purities

degrade by a small amount when the minimum radius is decreased from 0.06 to 0.03.

Similarly, accuracies and purities increase when the maximum radius is decreased from

0.12 to 0.06.

Table 4.4 Clustering purity for different settings of],[maxmin RR purity

 Rmax

Purity 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

R
m

in

0.03 97.734 97.657 97.657 97.657 97.657 97.657 97.657 95.941 95.941 95.941

0.04 97.643 97.731 97.79 97.817 97.817 97.817 97.817 96.084 96.084 96.084

0.05 97.063 97.38 97.356 97.43 97.43 97.43 97.421 95.771 95.771 95.771

0.06 96.906 97.205 97.532 97.361 97.02 97.717 98.107 97.064 95.957 95.957

0.07 - 97.716 96.589 96.581 96.662 96.588 96.657 96.54 96.553 96.553

0.08 - - 96.224 96.568 96.423 96.338 96.366 96.421 96.414 96.414

This degradation is due to the fact that each cluster does not contain sufficient

data points for being a cluster, and they are falsely identified as outliers. A minimum

radius greater than 0.06 also results in lowering the accuracy and purity; in these cases,

83

a negative separation exists between clusters and outliers, and many outliers are falsely

considered main clusters. The same trend is found when the maximum radius is greater

than 0.12.)12.0,06.0(maxmin  RR

is a good range of radius, which dampens the

effects of outliers. However, Table 2 indicates that when a deviation exists in setting the

radius parameters from their optimal value, accuracy and purity degrade by a small

amount because the micro-cluster radius is recursively updated to its local optimal.

Therefore, accuracy and purity remain high despite a deviation in selecting the radius

parameters.

4.4 Case Study: Clustering of Weather Data Stream Using BOCEDS

Changes in clusters are detected and tracked as time progresses to investigate

the evolving behaviour of data stream (Shao et al., 2018). The developed BOCEDS

algorithm has been applied to atmospheric data stream of San Paulo, Brazil City. The

data stream is downloaded from Kaggle dataset repository(Jose, 2018). In our clustering

process, only two dimensions (i.e., air pressure and temperature) are used to visualize

the clusters in a two-dimensional environment. The data stream is captured at a 1-min

interval for a time period of 1 year, 11 months, and 6 days from September 10 to

August 16. The data stream contains a total of 1048576 data points. The data points

appear in the BOCEDS sequentially in air pressure–temperature pairs to mimic an

online data stream. This data stream is used to examine the capability of BOCEDS to

detect the temporal drift in real data stream similarly to (Hyde et al., 2017).For the

clustering task, the data points are normalized to a range of 0 to 1. The air pressure has

an actual value range of 905.00mbar to 929.50mbar and the air temperature of 31.64 oF

to 99.50 oF. It is demonstrated how BOCEDS handles the three types of drifting (i.e.,

short, medium, and long terms) in the data stream. The short-term is defined as 1 week,

medium-term is defined as 1 month, and long-term is defined as 6 months. The

clustering parameter densityTh is set to 1 to observe the entire data space that contains the

data points. The radius parameter
minR is set to 0.02, whereas

maxR is set to 0.04. Similar

to (Hyde et al., 2017), these values are estimated by considering historical data points at

the distances from the main clusters to data points that are considered as an outlier.

84

4.4.1 Short-term Drift Analysis

The variation in data stream from September 10, 2011 to October 1, 2011 is

plotted to visualize the short-term drift. The plots with clusters are drawn for 1-week (7

days) interval. The micro-clusters with identical colors belong to the same clusters.

Figure 4.11(a)–Figure 4.11(d) show the cluster at four distinct dates for short-term drift

analysis. The clustering plot in Figure 4.11(b) (September 10, 2011) is remarkably

different from that in Figure 4.11(b) (September 17, 2011).

(a) Clustering result on Sep 10, 2011 (b) Clustering result on Sep 17, 2011

(c) Clustering result on Sep 24, 2011 (d) Clustering result on Oct 01, 2011

Figure 4.11 Plots of BOCEDS clustering from September 10, 2011 to October 1,

2011 with 1-week interval for short-term drift visualization

85

On September 10, only one cluster is generated. After 7 days, on September 17,

two clusters are generated. The green-colored cluster has multiple micro-clusters. By

contrast, the red-colored micro-cluster creates a single cluster. In Figure 4.11(c),

although the number of total micro-clusters increases, the number of clusters remains

two on September 24, 2011. Some micro-clusters are dying out due to their evolving

nature, and some micro-clusters are generated. On October 1, 2011 the total number of

generated clusters is 3, where one cluster contains a single micro-cluster, another cluster

contains two micro-clusters, and the third cluster contains more than two micro-

clusters. Thus, the first cluster is circular, the second cluster is ellipsoidal, and the third

one is arbitrarily shaped. Despite the first 2 weeks showing a noticeable difference in

terms of short-term drifting, the spread of data points in data space is consistent for the

preceding two weeks and shows a less noticeable difference. This phenomenon

demonstrates that the weather data stream changes over short time periods and how the

developed BOCEDS algorithm follows these changes to detect the short-term drift in a

fully online approach.

4.4.2 Medium-term Drift Analysis

The weather data stream from March 31, 2012 to June 30, 2012 with 1-month

interval is considered to present the medium-term drift. The clustering results are

plotted at four consecutive months for medium-term drift analysis, as shown in Figure

4.12(a)–(d). Figure 4.12 depicts that the clustering results are clearly distinguishable

from one another.

From the figures, five clusters exist on March 31, 2012. In the next month, some

micro-clusters are newly generated, whereas some are removed due to the evolving

nature of the experimental data stream. Some micro-clusters in Figure 4.12 (a) are also

present in Figure 4.12(b) because they receive data points in the interval. On April 30,

2012, four clusters are present. In the next two months, a considerable change in the

data stream is observed. In the two months, frequent changes in the data stream occur,

and BOCEDS follows these changes to handle the drift. To illustrate, only three clusters

are present in Figure 4.12(c) that illustrates that the weather in the month of May is less

bumping. However, comparing to the weather of May, the weather in June is more

changing.

86

(a) Clustering result on March 31, 2012 (b) Clustering result on April 30, 2012

(c) Clustering result on May 30, 2012 (d) Clustering result on June 30, 2012

Figure 4.12 Plots of BOCEDS clustering from March 31, 2012 to June 30, 2012 with

1-month interval for medium-term drift visualization

From the figures, it can be seen that that weather of San Paulo city changes

remarkably from one month to next month. The changes in weather are well visualized

in the cluster analysis by the developed BOCEDS algorithm. Thus, Figure 4.12

demonstrates the capability of the algorithm to identify the medium-term (1 month)

drift.

87

4.4.3 Long-term Drift Analysis

To present the long-term drift, the BOCEDS clustering result is plotted of the

weather data stream from March 31, 2012 to June 30, 2012 with 6-month interval. The

plots are shown in Figure 4.13(a)– Figure 4.13(d) for long-term drift analysis.

(a) Clustering Result on March 9, 2012 (b) Clustering Result on September 9, 2012

(c) Clustering result onMarch9, 2013 (d) Clustering result on August 16, 2013

Figure 4.13 Plots of BOCEDS clustering from March 9, 2012 to August 16, 2013

with 6-month interval showing for long-term drift visualization

The clustering results in Figure 4.13(a)–Figure 4.13(d) show that the micro-

clusters are generating and fading away from the first half of the year to the second half

of the year. The most noticeable point in Figure 4.13 is that a similarity occurs between

88

Figure 4.13(a) and Figure 4.13(c) and between Figure 4.13(b) and Figure 4.13(d) to

some level. This trend illustrates that the weather is repeated in a yearly basis. Thus,

Figure 4.13 demonstrates how the developed BOCEDS clustering algorithm follows the

long-term drift in weather data stream.

4.5 Summary

In this chapter, the characteristics of the developed BOCEDS algorithm have

been described based on some synthetic and practical data stream. Seven well-known

evaluation metrics including cluster formation, noise sentivity, processing speed,

scalability, cluster accuracy, cluster purity, memory efficiency are selected to show the

high quality of the developed algorithm. The metrics are calculated on selected time

units, stream speeds and horizons. Both of syntactic and real word data stream are used

for the evaluation of BOCEDS. The real and synthetic data stream are chosen from the

reviewed literature which are most used. They have variety in size, number of clusters,

and differences in their densities. A wide spectrum of experiments has been conducted

in this section as well.

The ability of the developed algorithm to generate clusters with varying the

micro-cluster radius has been evaluated for both of clean and noisy Mackey-Glass data

streams (Section 4.3.1.1). The evaluation includes the evolution of clusters and cluster

change as time progresses. The result shows that BOCEDS is able to generate clusters

in both clean and noisy data stream environment. The noise sensitivity is also measured

by numerical analysis that shows an improvement in noise detection by developed

algorithm when compared to the existing algorithm To evaluate the processing time

characteristics, BOCEDS has been applied on helical data stream (Section 4.2.2). The

processing time has been described by measuring and analysing the mean data

processing time by the algorithm. The experiment also evaluates the behaviour of

BOCEDS over low to high dimensional helical data stream. This evaluation describes

the scalability properties. BOCEDS shows linear scalability on both the number of

clusters and the number of data dimensions. BOCEDS is faster and more scalable than

the other aligned clustering algorithms in the literature. To measure the cluster quality,

BOCEDS is applied on practical KDDCUP’99 network data stream (Section 4.2.3). The

cluster quality is described in terms of cluster accuracy and purity. The results show

that the developed algorithm provides more pure and accurate cluster than the existing

89

CEDAS, CODAS, DStream and MRStream algorithms. The sensitivity of algorithmic

parameters is also measured by varying important parameters of BOCEDS with

numerical analysis and described in details. The sensitivity analysis determines the best

range for prominent parameters of the algorithm. Finally, BOCEDS has been executed

on real word weather data stream to show the capability of algorithm to detect the drift

in data stream for handling the evolving characteristics (Section 4.3).

Summing up, BOCEDS algorithm clearly shows the best performance in terms

of cluster accuracy and cluster purity among the aligned clustering algorithms due to

maintaining the local optimal radius of micro-cluster in an online manner and buffering

the micro-cluster. Moreover, the algorithm provides better processing speed and

scalability comparing to other exiting algorithms by formulating non-linear energy

function and pruning the irrelevant cluster. Thus, it is proved from the experimental

result that BOCEDS is an effective and efficient density-based algorithm for clustering

of evolving data stream.

90

CHAPTER 5

CONCLUSION

5.1 Introduction

Analysis of data stream is beneficial for several IT-based applications such as

traffic management, anomaly detection and weather forecasting. Data from data stream

arrives continuously over time with high speed. The size of a stream grows rapidly and

become unbounded. Clustering of data stream helps the data mining scientist to extract

the pattern from data stream. Density-based clustering is one kind of clustering

technique that has gained the remarkable popularity among all clustering techniques

due to its excellent clustering performance over data stream. The aim of the current

study is to design a new density-based clustering algorithm to handle the challenges of

evolving data stream clustering efficiently. The objectives of this research study were as

follows:

i. To design an online clustering algorithm based on the concept of local optimal

radius and irrelevant micro-cluster buffering.

ii. To implement the algorithm by adapting a non-linear procedure for updating the

micro-cluster energy and pruning the micro-clusters.

iii. To evaluate the performance of the developed algorithm against selected

benchmark functions as case studies.

Addressing the first objective, a new density-based fully online clustering

algorithm called BOCEDS in order to achieve the first objective. The algorithm

introduces the concept of local radius where each micro-cluster maintains its own value

of radius independently. This fact confirms that the micro-clusters as well as clusters

91

have less or no sparse region. Based BOCEDS identifies the irrelevant micro-clusters

based on its energy and stores them into special buffer storage. The algorithm works in

two distinct stages. In the first stage, the data points map to a micro-clusters in the

current model or creates a new micro-clusters in case the data point lies in the data

space outside all micro-clusters. The information of newly mapped micro-cluster is

updated recursively to enable an online process (Section 3.2.2.3). The radius of newly

mapped micro-cluster is updated towards its optimal that is local to the micro-cluster.

The forgetting mechanism is adapted to formulate the micro-cluster updating procedure.

This operation reduces the dependency on user to set the optimal value of micro-cluster

radius prior to the execution of algorithms. The micro-cluster with zero or negative

energy is identified as irrelevant micro-cluster and stored in a special storage called

buffer. In the second stage, the micro-clusters except irrelevant micro-clusters generate

micro-clustering graph based on their connectivity to compute the clusters. The

connected micro-clusters form an arbitrary shaped cluster which is maintained in an

online manner. The second stage confirms that the algorithm has the updated clustering

result at all the time period. Both of the stages of BOCEDS algorithm are online which

ensures that BOCEDS is an online clustering algorithm.

Every time a micro-cluster receives a new data, its energy is updated based on

positional information of the data in the data space. The energy updating procedure is

described by a non-linear formula. The formula is designed by adapting the gravity law

of Newton. The recursive nature of this non-linear formula again supports the online

process of BOCEDS algorithm. The energies of micro-clusters, except the newly

mapped micro-cluster are reduced by a specific amount. The micro-clusters with zero or

negative energy are identified as irrelevant micro-clusters and stored in buffer with new

energy. Moreover, a pruning operation is introduced to identify the micro-clusters with

zero or negative energy in buffer and considered as totally irrelevant. The totally

irrelevant micro-clusters are pruned out from buffer to ensure no out-dated micro-

cluster is stored to represent the current data stream. On the other, a micro-cluster is

called temporary irrelevant if a data mapped to that micro-clusters in buffer. In this

case, this micro-cluster is considered for cluster generation and move to primary

memory from buffer. This operation prevents the frequent creation and removal of

micro-cluster. This two operations help to achieve the second objective successfully.

92

To achieve the final objective, the BOCEDS algorithm is evaluated against the standard

performance metrics in the field of density-based clustering. The algorithm executed on

both of syntactic and practical data stream to evaluate the effectiveness and efficiency.

From the experiment, it is visualized that BOCEDS is able to form the micro-clusters as

well as clusters at the dense regions in clean and noisy data stream successfully (Section

4.3.1.1). It is also confirmed that new micro-clusters are created and old micro-clusters

are removed from the system to prove the correct functionality of the algorithm over

evolving data stream. The experiment for measuring noise sensitivity found that

BOCEDS is able to identify about 100% noise where the existing algorithm detects

about 70% noise (Section 4.3.1.2). The data processing time of the developed algorithm

is lower than other popular online density-based algorithms (Section 4.3.2.1). To test

the scalability of BOCEDS algorithm, the change in processing time is tracked for low

to high dimensional data stream and compared with other density-based clustering

algorithms like CODAS, CEDAS, CluStream, DenStream (Section 4.3.2.2). It is shown

that BOCEDS shows the best performance in terms of scalability. BOCEDS

demonstrates its capability to generate high-quality clusters in practical network attacks

in KDDCUP’99 data stream. The result shows that the clusters generated in BOCEDS

are purer and more accurate with a lower variance than those of similar existing

clustering algorithms (Sections 4.3.3.1-4.3.3.2). Nevertheless, the memory requirement

of the developed algorithm is relatively more than that of the fully online density-based

CEDAS due to storing the temporarily irrelevant micro-clusters in a special buffer. The

memory requirement, however, remains considerably lower than those of other

clustering algorithms (Section 4.3.3.3). The parameter sensitivity experiment illustrates

that BOCEDS still generates high-quality clusters in a small deviated optimal radius,

density threshold, and decay setting (Sections 4.3.2.3, 4.3.4.1 and 4.3.4.2). From the

experiment, it is stated that BOCEDS is less sensitive to its parameters. The execution

of BOCEDS on a real-world weather data stream demonstrates the capability of the

developed algorithm to generate and evolve clusters in a non-stationary dynamic

environment (Section 4.4).

To summarize, the developed BOCEDS algorithm is a fully online algorithm for

clustering the noisy evolving data stream into arbitrarily shaped. This algorithm

outperforms the existing algorithms for density-based clustering in terms of noise

sensitivity, cluster quality, processing speed and scalability. BOCEDS is also proved to

93

be less sensitive to its parameters. Therefore, the developed BOCEDS algorithm shows

the effectiveness of the operational framework to generate clusters in evolving data

stream.

5.2 Contributions

There are a number of density-based clustering algorithms for data stream.

However, a majority of them are offline clustering algorithm those are designed for

static data set; not for data stream. Some of them online-offline clustering those suffers

from storage problem and not ideal for data stream. Yet only a few algorithms are fully

online. However, they suffer from low cluster quality and low noise sensitivity problem

due to pre-setting of algorithmic parameter like micro-cluster radius. Moreover, they

have high computation time and low scalability as the micro-clusters are created and

deleted frequently to handle the evolving nature of data stream. Therefore, a new

density-based clustering was presented in this thesis to overcome the aforementioned

problems. Furthermore, according to data stream properties, the challenges in clustering

data streams had to be considered in the developed algorithm. The specific

contributions of this study include

• a new density-based clustering algorithm for data streams that generate arbitrary

clusters in a fully online manner.

• a new online procedure for adapting the micro-cluster radius based on the

forgetting mechanism to improve the cluster quality and noise sensitivity.

• a new non-linear procedure for computing the micro-cluster energy based on the

Newton’s gravity law to handle the evolving property efficiently.

• a new mechanism for micro-cluster buffering and pruning to improve the

processing time.

• a new method for numerical analysis of noise sensitivity of algorithm

• an extensive evaluation

94

5.3 Limitations of Current Study

This study presents a fully online clustering algorithm that shows better

performance when comparing to other algorithms in literature. However, the study has

some limitations as follows:

i. It is observed that, the developed BOCEDS requires more memory by a small

amount comparing to other density-based clustering algorithm. This fact makes

the algorithm less memory efficient. This issue need to be solved in future to

handle the data stream efficiently.

ii. The algorithm uses two radius parameters (maximum and minimum radius).

Though, the algorithm improves cluster quality, noise sensitivity and processing

speed, the number of algorithm parameter increased. However, an ideal should

minimize the number of user dependent parameter.

iii. In this study, Euclidean distance is used for mapping the newly arrived data into

micro-cluster. However, more analysis is required to determine if other kinds of

distances such as Minkowski distance, Manhattan distance, Chebyshev distance,

Cosine distance can increase the quality.

5.4 Future Research Directions

Data stream clustering is an unsupervised learning technique in the field of data

stream mining. Density based clustering algorithm requires some parameters to be set

and the performance of clustering heavily depends on the optimality of these

parameters. This fact generates the scarcity of designing an appropriate algorithm that

can automatically update its parameters towards their optimal value. Also some

temporarily irrelevant clusters need to be identified to enhance the clustering

performance in an evolving application environment. These issues are solved in this

research. However, this research opens some research issues in the future:

i. This research takes the constant value of density threshold from application user.

A deviation of this parameter from its optimal value affects the noise detection

result and clustering result remarkably. Therefore, density-based clustering

algorithm is still desired that can adapt all of its parameters in an online basis.

95

ii. It is desired for any algorithm to process all types of attributes as many IT-based

applications produce data stream that contains textual, categorical or mixed

attributes. However, BOCEDS is able to generate clusters from the data stream

that contains only numerical attributes. To make attribute type independent, the

current BOCEDS algorithm needs extension. The current research can be

extended in future to process all types of data stream.

iii. Low data processing time and low memory space are two vital requirements of

data stream clustering algorithms. The current research shows good performance

in terms of these two criteria. The future research can target to increase the

processing speed and reduce the required memory further.

iv. The developed algorithm has been applied on real world weather data stream

that shows an excellent performance in terms of drift detection. The future work

would integrate the algorithm towards designing several intelligent systems in

real time decision making like anomaly detection in financial transactions,

attack identification on security system, tracking malicious activities on social

networks, pattern detection on biomedical images, and so on.

96

REFERENCES

Ackermann, M. R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., & Sohler,

C. (2012). StreamKM++: A clustering algorithm for data streams. Journal of

Experimental Algorithmics, 17, 2.4.

Aggarwal, C. C., Philip, S. Y., Han, J., & Wang, J. (2003, September 12-13). A

framework for clustering evolving data streams. Paper presented at the 29th

International Conference on Very Large Databases, Berlin, Germany.

Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015).

Efficient machine learning for big data: A review. Big Data Research, 2(3), 87-

93.

Albertini, M. K., & Mello, R. F. D. (2018). Estimating data stream tendencies to adapt

clustering parameters. International Journal of High Performance Computing

and Networking, 11(1), 34-44.

Amini, A., & Wah, T. Y. (2012, December 21-22). DENGRIS-Stream: A density-grid

based clustering algorithm for evolving data streams over sliding window.

Paper presented at the International Conference on Data Mining and Computer

Engineering, Bangkok, Thailand.

Amini, A., Wah, T. Y., & Saboohi, H. (2014). On density-based data streams clustering

algorithms: A survey. Journal of Computer Science and Technology, 29(1), 116-

141.

Ansah, J., Kang, W., Liu, L., Liu, J., & Li, J. (2018). Information Propagation Trees

for Protest Event Prediction, Cham.

Baruah, R. D., & Angelov, P. (2012, June 10-15). Evolving local means method for

clustering of streaming data. Paper presented at the 2012 IEEE International

Conference on Fuzzy Systems, Brisbane, QLD, Australia.

Baruah, R. D., & Angelov, P. (2014). DEC: Dynamically evolving clustering and its

application to structure identification of evolving fuzzy models. IEEE

Transactions on Cybernetics, 44(9), 1619-1631.

Bay, S. D., Kibler, D., Pazzani, M. J., & Smyth, P. (2000). The UCI KDD archive of

large data sets for data mining research and experimentation. ACM SIGKDD

Explorations Newsletter, 2(2), 81-85.

Bhatnagar, V., Kaur, S., & Chakravarthy, S. (2014). Clustering data streams using grid-

based synopsis. Knowledge and Information Systems, 41(1), 127-152.

97

Blazic, S., & Skrjanc, I. (2019). Incremental Fuzzy C-regression Clustering from

Streaming Data for Local-model-network Identification. IEEE Transactions on

Fuzzy Systems, 1-1.

Bohm, C., Railing, K., Kriegel, H. P., & Kroger, P. (2004, November 01-04). Density

connected clustering with local subspace preferences. Paper presented at the 4th

IEEE International Conference on Data Mining, Brighton, UK.

Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., & Song, A. (2015). Efficient agglomerative

hierarchical clustering. Expert systems with applications, 42(5), 2785-2797.

Bryant, A., & Cios, K. (2018). RNN-DBSCAN: A density-based clustering algorithm

using reverse nearest neighbor density estimates. IEEE Transactions on

Knowledge and Data Engineering, 30(6), 1109-1121.

Can, U., & Alatas, B. (2017). Big social network data and sustainable economic

development. Sustainability, 9(11), 2027.

Cao, F., Estert, M., Qian, W., & Zhou, A. (2006, April 20-22). Density-based clustering

over an evolving data stream with noise. Paper presented at the 2006 SIAM

International Conference on Data Mining, Bethesda, MD, USA.

Chen, J., Lin, X., Xuan, Q., & Xiang, Y. (2018). FGCH: A fast and grid based

clustering algorithm for hybrid data stream. Applied Intelligence, 1-17.

Chen, J. Y., & He, H. H. (2016). A fast density-based data stream clustering algorithm

with cluster centers self-determined for mixed data. Information Sciences, 345,

271-293.

Chen, Y., & Tu, L. (2007, August 12 - 15). Density-based clustering for real-time

stream data. Paper presented at the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Jose, California,

USA.

Chenaghlou, M., Moshtaghi, M., Leckie, C., & Salehi, M. (2018). Online clustering for

evolving data streams with online anomaly detection. Paper presented at the

Pacific-Asia Conference on Knowledge Discovery and Data Mining, Cham.

Cheng, W., Wang, W., & Batista, S. (2018). Grid-based clustering Data Clustering (pp.

128-148): Chapman and Hall/CRC.

Ding, S., Zhang, J., Jia, H., & Qian, J. (2016). An adaptive density data stream

clustering algorithm. Cognitive Computation, 8(1), 30-38.

98

Dong, S., Liu, J., Liu, Y., Zeng, L., Xu, C., & Zhou, T. (2018). Clustering based on grid

and local density with priority-based expansion for multi-density data.

Information Sciences, 468, 103-116.

Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of

dimensionality. AMS Math Challenges Lecture, 1, 32.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,

26(1), 29-41.

Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm Intelligence: Elsevier.

Esposito, C., Ficco, M., Palmieri, F., & Castiglione, A. (2015). A knowledge-based

platform for Big Data analytics based on publish/subscribe services and stream

processing. Knowledge-Based Systems, 79, 3-17.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. Paper presented at the

2nd International Conference on Knowledge Discovery and Data Mining.

Fahy, C., Yang, S., & Gongora, M. A. (2018). Ant colony stream clustering: A fast

density clustering algorithm for dynamic data streams. IEEE Transactions on

Cybernetics, 49(6), 2215-2228.

Fan, W., & Bifet, A. (2013). Mining big data: Current status, and forecast to the future.

ACM SIGKDD Explorations Newsletter, 14(2), 1-5.

Fong, S., Wong, R., & Vasilakos, A. (2016). Accelerated PSO swarm search feature

selection for data stream mining big data. IEEE Transactions on Services

Computing(1), 1-1.

Forestiero, A., Pizzuti, C., & Spezzano, G. (2013). A single pass algorithm for

clustering evolving data streams based on swarm intelligence. Data Mining and

Knowledge Discovery, 26(1), 1-26.

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points.

Science, 315(5814), 972-976.

Gao, J., Li, J., Zhang, Z., & Tan, P. N. (2005, May 18-20). An incremental data stream

clustering algorithm based on dense units detection. Paper presented at the

Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hanoi,

Vietnam.

Garofalakis, M., Gehrke, J., & Rastogi, R. (2016). Data stream management: A brave

new world. In M. Garofalakis, J. Gehrke & R. Rastogi (Eds.), Data Stream

99

Management: Processing High-Speed Data Streams (pp. 1-9). Berlin,

Heidelberg: Springer Berlin Heidelberg.

Glass, L., & Mackey, M. (2010). Mackey-glass equation. Scholarpedia, 5(3), 6908.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., . . .

Abdessalem, T. (2017). Adaptive random forests for evolving data stream

classification. Machine Learning, 106(9), 1469-1495.

Gudenas, B. L., Wang, J., Kuang, S. Z., Wei, A., Cogill, S. B., & Wang, L. J. (2019).

Genomic data mining for functional annotation of human long noncoding

RNAs. Journal of Zhejiang University-SCIENCE B, 20(6), 476-487.

Guha, S., Rastogi, R., & Shim, K. (2001). Cure: An efficient clustering algorithm for

large databases. Information Systems, 26(1), 35-58.

Han, J. (2005). Data mining: Concepts and techniques. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques (3rd ed.).

San Francisco, CA, USA: Elsevier.

Hannachi, A., & Trendafilov, N. (2017). Archetypal analysis: Mining weather and

climate extremes. Journal of Climate, 30(17), 6927-6944.

Hassani, M., Spaus, P., Gaber, M. M., & Seidl, T. (2012, September 17-19). Density-

based projected clustering of data streams. Paper presented at the 6th

International Conference on Scalable Uncertainty Management, Marburg,

Germany.

Hyde, R., & Angelov, P. (2015, June 24-26). A new online clustering approach for data

in arbitrary shaped clusters. Paper presented at the 2nd IEEE International

Conference on Cybernetics Gdynia, Poland.

Hyde, R., Angelov, P., & MacKenzie, A. (2017). Fully online clustering of evolving

data streams into arbitrarily shaped clusters. Information Sciences, 382, 96-114.

Isaksson, C., Dunham, M. H., & Hahsler, M. (2012, July 13-20). SOStream: Self

organizing density-based clustering over data stream. Paper presented at the

International Workshop on Machine Learning and Data Mining in Pattern

Recognition, Berlin, Heidelberg.

Jacques, J., & Preda, C. (2014). Functional data clustering: A survey. Advances in Data

Analysis and Classification, 8(3), 231-255.

100

Jia, C., Tan, C., & Yong, A. (2008, September 25-26). A grid and density-based

clustering algorithm for processing data stream. Paper presented at the 2nd

International Conference on Genetic and Evolutionary Computing, Jingzhou,

Hubei, China.

Jinyin, C., Huihao, H., Jungan, C., Shanqing, Y., & Zhaoxia, S. (2017). Fast Density

Clustering Algorithm for Numerical Data and Categorical Data. Mathematical

Problems in Engineering, 2017, 15.

Jose, J. (2018). Minute Weather. Retrieved from:

https://www.kaggle.com/julianjose/minute-weather

Jungan, C., Jinyin, C., Dongyong, Y., & Jun, L. (2018). A -Deviation Density Based

Clustering Algorithm. Mathematical Problems in Engineering, 2018, 16.

Kakkar, S., Singh, S., Singh, S., & Banga, V. K. (2017, November 19). Investigations

on the performance of fuzzy logic system when evolved using genetic algorithm

for different number of fuzzy rules. Paper presented at the 30th International

Conference on Instrumentation, Electrical and Electronics Engineering,

Bangalore,India.

Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to

cluster analysis (Vol. 344): John Wiley & Sons.

Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2018). Discussion

and review on evolving data streams and concept drift adapting. Evolving

Systems, 9(1), 1-23.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43(1), 59-69.

Kosmidis, I., & Karlis, D. (2016). Model-based clustering using copulas with

applications. Statistics and Computing, 26(5), 1079-1099.

Kranen, P., Assent, I., Baldauf, C., & Seidl, T. (2011). The ClusTree: Indexing micro-

clusters for anytime stream mining. Knowledge and Information Systems, 29(2),

249-272.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017).

Ensemble learning for data stream analysis: A survey. Information Fusion, 37,

132-156.

Kumar, K. M., & Reddy, A. R. M. (2016). A fast DBSCAN clustering algorithm by

accelerating neighbor searching using Groups method. Pattern Recognition, 58,

39-48.

http://www.kaggle.com/julianjose/minute-weather

101

Li, J., Maier, D., Tufte, K., Papadimos, V., & Tucker, P. A. (2005, June 14-16).

Semantics and evaluation techniques for window aggregates in data streams.

Paper presented at the 2005 ACM SIGMOD International Conference on

Management of Data, Baltimore, Maryland, USA.

Lin, J., & Lin, H. (2009). A density-based clustering over evolving heterogeneous data

stream. Paper presented at the 2009 ISECS International Colloquium on

Computing, Communication, Control, and Management.

Liu, L. X., Guo, Y. F., Kang, J., & Huang, H. (2009, December 15-18). A three-step

clustering algorithm over an evolving data stream. Paper presented at the IEEE

International Conference on Intelligent Computing and Intelligent Systems,

Phoenix, Arizona, USA.

Losee, R. M. (2006). Browsing mixed structured and unstructured data. Information

Processing & Management, 42(2), 440-452.

Lv, Y., Ma, T., Tang, M., Cao, J., Tian, Y., Al-Dhelaan, A., & Al-Rodhaan, M. (2016).

An efficient and scalable density-based clustering algorithm for datasets with

complex structures. Neurocomputing, 171, 9-22.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. Paper presented at the Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability.

Makul, Ö., & Ekinci, M. (2017, May 15-18). A graph form data stream clustering

approach based on dimension reduction. Paper presented at the 25th

International Conference on Signal Processing and Communications

Applications, Antalya,Turkey.

Malsiner, W. G., Frühwirth, S. S., & Grün, B. (2016). Model-based clustering based on

sparse finite Gaussian mixtures. Statistics and Computing, 26(1), 303-324.

Mansalis, S., Ntoutsi, E., Pelekis, N., & Theodoridis, Y. (2018). An evaluation of data

stream clustering algorithms. Statistical Analysis and Data Mining: The ASA

Data Science Journal, 11(4), 167-187.

Maulik, U., & Bandyopadhyay, S. (2002). Performance evaluation of some clustering

algorithms and validity indices. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(12), 1650-1654.

McParland, D., & Gormley, I. C. (2016). Model based clustering for mixed data:

clustMD. Advances in Data Analysis and Classification, 10(2), 155-169.

Mohana, N. C., Rao, H. Y., Rakshith, D., Mithun, P., Nuthan, B., & Satish, S. (2018).

Omics based approach for biodiscovery of microbial natural products in

102

antibiotic resistance era. Journal of Genetic Engineering and Biotechnology,

16(1), 1-8.

Monath, N., Zaheer, M., Silva, D., McCallum, A., & Ahmed, A. (2019). Gradient-

based Hierarchical Clustering using Continuous Representations of Trees in

Hyperbolic Space. Paper presented at the Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

Anchorage, AK, USA.

Newton, I. (1729). In [experimental] philosophy particular propositions are inferred

from the phenomena and afterwards rendered general by induction":" Principia

(Vol. 3): General Scholium.

Ng, R. T., & Han, J. (2002). CLARANS: A method for clustering objects for spatial

data mining. IEEE Transactions on Knowledge & Data Engineering(5), 1003-

1016.

Nguyen, H. L., Woon, Y. K., & Ng, W. K. (2015). A survey on data stream clustering

and classification. Knowledge and Information Systems, 45(3), 535-569.

Ntoutsi, I., Zimek, A., Palpanas, T., Kröger, P., & Kriegel, H. P. (2012, April 26-28).

Density-based projected clustering over high dimensional data streams. Paper

presented at the 12th SIAM International Conference on Data Mining, Anaheim,

California, USA.

Olukanmi, P. O., & Twala, B. (2017). Sensitivity analysis of an outlier-aware k-means

clustering algorithm. Paper presented at the 2017 Pattern Recognition

Association of South Africa and Robotics and Mechatronics.

Oussous, A., Benjelloun, F. Z., Lahcen, A. A., & Belfkih, S. (2018). Big data

technologies: A survey. Journal of King Saud University-Computer and

Information Sciences, 30(4), 431-448.

Park, H. S., & Jun, C. H. (2009). A simple and fast algorithm for K-medoids clustering.

Expert systems with applications, 36(2), 3336-3341.

Park, N. H., & Lee, W. S. (2004). Statistical grid-based clustering over data streams.

ACM SIGMOD Record, 33(1), 32-37.

Pilevar, A. H., & Sukumar, M. (2005). GCHL: A grid-clustering algorithm for high-

dimensional very large spatial data bases. Pattern Recognition Letters, 26(7),

999-1010.

Puschmann, D., Barnaghi, P., & Tafazolli, R. (2017). Adaptive clustering for dynamic

IoT data streams. IEEE Internet of Things Journal, 4(1), 64-74.

103

Ramírez, G. S., Krawczyk, B., García, S., Woźniak, M., & Herrera, F. (2017). A survey

on data preprocessing for data stream mining: Current status and future

directions. Neurocomputing, 239, 39-57.

Rasmussen, C. E. (2000). The infinite Gaussian mixture model. Paper presented at the

Advances in Neural Information Processing Systems.

Reddy, K. S. S., & Bindu, C. S. (2017, February 10-11). A review on density-based

clustering algorithms for big data analysis. Paper presented at the IEEE

International Conference on I-SMAC (IoT in Social, Mobile, Analytics and

Cloud), Palladam, India.

Ren, J., Cai, B., & Hu, C. (2011). Clustering over data streams based on grid density

and index tree. Journal of Convergence Information Technology, 6(1).

Ren, J., & Ma, R. (2009). Density-based data streams clustering over sliding windows.

Paper presented at the 6th International Conference on Fuzzy Systems and

Knowledge Discovery.

Riyadh, M., Mustapha, N., Sulaiman, M., & Sharef, N. B. M. (2017). CC_TRS:

Continuous Clustering of Trajectory Stream Data Based on Micro Cluster Life.

Mathematical Problems in Engineering, 2017.

Ruiz, C., Menasalvas, E., & Spiliopoulou, M. (2009, October 3-5). C-denstream: Using

domain knowledge on a data stream. Paper presented at the 12th International

Conference on Discovery Science, Porto, Portugal.

Ruiz, C., Spiliopoulou, M., & Menasalvas, E. (2007, October 11-14). C-DBSCAN:

Density-based clustering with constraints. Paper presented at the International

Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft

Computing, Halifax, NS, Canada.

Sardar, T. H., & Ansari, Z. (2018). Partition based clustering of large datasets using

MapReduce framework: An analysis of recent themes and directions. Future

Computing and Informatics Journal, 3(2), 247-261.

Shao, J., Tan, Y., Gao, L., Yang, Q., Plant, C., & Assent, I. (2018). Synchronization-

based clustering on evolving data stream. Information Sciences, 501, 573-587.

Sharma, P., & Sharma, A. (2017, 6-7 July 2017). Online K-means clustering with

adaptive dual cost functions. Paper presented at the 2017 International

Conference on Intelligent Computing, Instrumentation and Control

Technologies.

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., De Carvalho, A. C., & Gama,

J. (2013). Data stream clustering: A survey. ACM Computing Surveys, 46(1), 13.

104

Statista. (2018, May 2018). Information created globally 2005-2025. Retrieved

October 16, 2018, from https://www.statista.com/statistics/871513/worldwide-

data-created/

Steinhaus, H. (1999). Mathematical snapshots (3rd ed.). New York: Dover: Courier

Corporation.

Sumathi, S., & Sivanandam, S. (2006). Data mining tasks, techniques, and applications.

Introduction to Data Mining and its Applications, 29, 195-216.

Tøndel, K., Vik, J. O., Martens, H., Indahl, U. G., Smith, N., & Omholt, S. W. (2013).

Hierarchical multivariate regression-based sensitivity analysis reveals complex

parameter interaction patterns in dynamic models. Chemometrics and Intelligent

Laboratory Systems, 120, 25-41.

Vallim, R. M., José Filho, A. A., de Mello, R. F., de Carvalho, A. C., & Gama, J.

(2014). Unsupervised density-based behavior change detection in data streams.

Intelligent Data Analysis, 18(2), 181-201.

W.M. Ma, E., & Chow, T. W. S. (2004). A new shifting grid clustering algorithm.

Pattern Recognition, 37(3), 503-514.

Wan, L., Ng, W. K., Dang, X. H., Yu, P. S., & Zhang, K. (2009). Density-based

clustering of data streams at multiple resolutions. ACM Transactions on

Knowledge discovery from Data, 3(3), 14.

Wang, W., & Vrbanek, J. (2008). An evolving fuzzy predictor for industrial

applications. IEEE Transactions on Fuzzy Systems, 16(6), 1439.

Wang, Z., Yu, Z., Chen, C. P., You, J., Gu, T., Wong, H. S., & Zhang, J. (2018).

Clustering by local gravitation. IEEE Transactions on Cybernetics, 48(5), 1383-

1396.

Win, K. N., Chen, J., Chen, Y., & Fournier-Viger, P. (2019). PCPD: A Parallel Crime

Pattern Discovery System for Large-Scale Spatiotemporal Data Based on Fuzzy

Clustering. International Journal of Fuzzy Systems, 21(6), 1961-1974.

Wu, B., & Wilamowski, B. M. (2017). A fast density and grid based clustering method

for data with arbitrary shapes and noise. IEEE Transactions on Industrial

Informatics, 13(4), 1620-1628.

Wu, X., Zhu, X., Wu, G., & Ding, W. (2014). Data mining with big data. IEEE

Transactions on Knowledge and Data Engineering, 26(1), 97-107.

Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals

of Data Science, 2(2), 165-193.

http://www.statista.com/statistics/871513/worldwide-data-created/
http://www.statista.com/statistics/871513/worldwide-data-created/

105

Xu, L., Jiang, C., Wang, J., Yuan, J., & Ren, Y. (2014). Information security in big

data: Privacy and data mining. IEEE Access, 2, 1149-1176.

Yang, C., & Zhou, J. (2006, December 18-22). Hclustream: A novel approach for

clustering evolving heterogeneous data stream. Paper presented at the 6th IEEE

International Conference on Data Mining Workshops, Hong Kong, China.

Yang, Y., Liu, Z., Zhang, J. P., & Yang, J. (2012, May 29-31). Dynamic density-based

clustering algorithm over uncertain data streams. Paper presented at the 9th

International Conference on Fuzzy Systems and Knowledge Discovery,

Chongqing, China.

Yu, Y., Wang, Q., & Wang, X. (2013). Continuous clustering trajectory stream of

moving objects. China Communications, 10(9), 120-129.

Zahn, C. T. (1970). Graph theoretical methods for detecting and describing gestalt

clusters. IEEE Transaction on Computers, 20, 68.

Zhan, Y., Tan, K. H., & Huo, B. (2019). Bridging customer knowledge to innovative

product development: a data mining approach. International Journal of

Production Research, 1-16.

Zhang, J. P., Chen, F. C., Liu, L. X., & Li, S. M. (2013, May 23-25). Online stream

clustering using density and affinity propagation algorithm. Paper presented at

the 4th IEEE International Conference on Software Engineering and Service

Science, Beijing, China.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering

method for very large databases. Paper presented at the 1996 ACM SIGMOD

International Conference on Management of Data.

Zhang, X., Furtlehner, C., Perez, J., Germain, R. C., & Sebag, M. (2009, June 28-30).

Toward autonomic grids: analyzing the job flow with affinity streaming. Paper

presented at the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Paris, France.

Zhang, X., & Xu, Z. (2015). Hesitant fuzzy agglomerative hierarchical clustering

algorithms. International Journal of Systems Science, 46(3), 562-576.

Zhao, Y., & Song, J. (2001, 29 Oct.-1 Nov. 2001). GDILC: A grid-based density-isoline

clustering algorithm. Paper presented at the 2001 International Conferences on

Info-Tech and Info-Net.

106

 APPENDIX A

ACHIEVEMENTS

Journal Papers

i. Islam, M. K., Ahmed, M. M., Zamli, K. Z. (2019). A buffer-based online

clustering for evolving data stream. Information Sciences, 489, 113-135. (ISI

Q1, IF:5.524)

ii. Islam, M. K., Ahmed, M. M., Zamli, K. Z.. i-CODAS: An improved online data

stream clustering into arbitrary shaped clusters. Engineering Letters. (SJR 0.3,

Accepted, 2019)

iii. Islam, M. K., Ahmed, M. M., Zamli, K. Z., Mehbub S.. Online tweet stream

processing to predict civil unrest based on recursive weight, event diffusion and

location graph. Journal of Information and Communication Technology. (SJR

0.22, Accepted, 2019)

Conference Paper

i. Islam, M. K., Ahmed, M. M., Zamli, K. Z. (December 14-15, 2018). Identifying

the pornographic video on YouTube using vlog stream. Paper presented at the 4th

IEEE International Conference on Computing Communication and Automation,

India.

