
materials

Article

Design of Experiment on Concrete Mechanical Properties
Prediction: A Critical Review

Beng Wei Chong 1, Rokiah Othman 1,*, Ramadhansyah Putra Jaya 2,3 , Mohd Rosli Mohd Hasan 4,
Andrei Victor Sandu 3,5 , Marcin Nabiałek 6, Bartłomiej Jeż 6 , Paweł Pietrusiewicz 6, Dariusz Kwiatkowski 7,
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Abstract: Concrete mix design and the determination of concrete performance are not merely engi-
neering studies, but also mathematical and statistical endeavors. The study of concrete mechanical
properties involves a myriad of factors, including, but not limited to, the amount of each constituent
material and its proportion, the type and dosage of chemical additives, and the inclusion of different
waste materials. The number of factors and combinations make it difficult, or outright impossible, to
formulate an expression of concrete performance through sheer experimentation. Hence, design of
experiment has become a part of studies, involving concrete with material addition or replacement.
This paper reviewed common design of experimental methods, implemented by past studies, which
looked into the analysis of concrete performance. Several analysis methods were employed to opti-
mize data collection and data analysis, such as analysis of variance (ANOVA), regression, Taguchi
method, Response Surface Methodology, and Artificial Neural Network. It can be concluded that the
use of statistical analysis is helpful for concrete material research, and all the reviewed designs of
experimental methods are helpful in simplifying the work and saving time, while providing accurate
prediction of concrete mechanical performance.

Keywords: design of experiment; concrete properties; review; regression; response surface method-
ology; artificial neural network

1. Introduction

Design of Experiment (DoE) is an effective tool for handling multiple variables in
problem solving [1]. The method has been used to improve experimentation performance
in engineering, services, and manufacturing industries [2]. Traditionally, problems with
multiple variables are solved using the “one variable at a time” (OVAT) approach, which
holds all but one variable constant and conducts experiments until the optimal result is
obtained for the single manipulated variable. To study a problem with multiple variables,
the process is repeated for each variable until the best result is achieved. While the method
is simple and accurate, it still requires a large amount of samples and experiment, which
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consumes a lot of time, resource, and labor [3]. The problem is of highly relevance in studies
involving concrete materials. While such studies focus on a single responding variable,
such as the effect and amount of replacement material on concrete properties [4–8], the per-
formance of high-performance and self-compacting concrete is affected by a huge number
of variables that are potentially interrelated with each other [4]. Alternative concrete design
with waste material also requires a large amount of studies to be implemented. In such
cases, a big number of samples will be required to consider all the significant variables of
concrete strength. In general, the number of combinations available for r variables which
can take n numbers are denoted by the expression nr. For example, an experiment with five
variables and five values alone requires 3125 sets of data, making detailed study of concrete
properties a time- and cost-consuming task that is not practical to be conducted solely
through laboratory experimentation. Due to this reason, Design of Experiment (DoE) was
selected, in this study, as a method to optimize the process of data collection and analysis.

DoE optimizes the number of samples required to carry out accurate statistical predic-
tion, which explains the effect of each variable on the dependent variables being studied.
However, the flexibility of DoE may present a problem, particularly for researchers without
sufficient knowledge on the field, and with the absence of a clear methodology in applying
the problem-solving task [5]. The application of DoE in the study of concrete materials
has gained traction in recent decades. The applications of DoE in concrete studies range
from the prediction of concrete strength to the development of concrete mix design. The
assessment of concrete strength through non-destructive tests often requires mathematical
formulation, as it is not possible to deduce the strength of concrete through the results
of the non-destructive test. In this regard, simple linear regression with scatter plot is
commonly adopted [9]. However, more advanced DoE, such as Response Surface [10], and
even machine learning [11], have been successful in producing a more accurate prediction.
For studies related to replacement of concrete materials [12,13], DoE approaches are highly
favourable with a significant number of recent studies adopting more advanced method-
ology to analyse experimental data [14–17]. Various DoE has been used in the studies of
replacement material such as tire rubber [14,18–20], palm oil fuel ash (POFA) [21–23], fly
ash [22,24,25] and more. In another application, novel concrete mix design method, often
with the incorporation of unconventional recycled material, is optimized through the use
of curve fitting methods [26,27] or artificial intelligent based techniques [28,29].

While the account of its application varies between studies, certain methodologies are
more commonly used than the others. Also, DoE is more frequently used in the prediction
of concrete mechanical properties, but other applications, such as density, absorption and
cost optimization are also available. Regression analysis is the simplest analytical method,
which is employed to understand the relationship between variables. For experiments
involving a large size of trials and data, the Taguchi method and Response Surface method-
ology are favoured to simplify the experimental process itself [30]. Another method is
Artificial Neural Network which can be utilized for advanced analysis, particularly by
researchers who are well-versed in the concept of computing. This paper presents a critical
review on the usage, benefits, and challenges of the aforementioned DoE methods in the
study of concrete materials.

2. Regression Analysis
2.1. The Concept of Regression Analysis

Regression analysis is a basic statistical method that is still widely used to determine
the relationship between a single dependent variable with other independent variables. A
simple linear regression identifies and expresses two variables that are linearly related to
each other. Using the most common tool such as Microsoft Excel or simple graph-plotting
software, researchers can study the relationship between variables with little effort. By
plotting two variables on graph, the relationship between them can be studied. Variables
with linear relationship fall along a line, while non-linear relationship commonly depicts a
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curved pattern on the plot. If no pattern can be discerned, the variables are independent to
each other. Figure 1 shows the general patterns of scatterplot.
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While the most basic form of regression is used to test for linear relationship, the
regression method is able to test for other relationships by transformation as shown in
Table 1. A linear relationship is studied between a dependent variable (y) and independent
variable (x) and then the relationship is transformed into second-order polynomial by
running a multiple regression with the variable y and variables of x and x2. On the other
hand, an exponential regression can be conducted with the same method by transforming
the dependent variable into its logarithmic function, i.e., ln(y), and correlating it with
the independent variable x. The ease and versatility of regression analysis explains its
popularity among researchers in the engineering disciplines, including those with limited
statistical knowledge. Apart from determining the relationship between two variables,
the expression for a single dependent variable with many variables can be formulated
using Multiple Linear Regression (MLR) or Mixed Regression, depending on whether all
variables have a linear relationship with the dependent variable.

Table 1. Regression expression for different relationships.

Types of Regression Expression Dependent Variable Independent Variable

Linear y = mx + c y x
Second-order polynomial y = Ax2 + Bx + C y x, x2

Exponential y = Aex ln(y) x
Logarithmic y = Axb ln(y) ln(x)

Types of Regression Combination of the above

2.2. Applications of Regression Analysis

Different variations of regression analysis are widely used in the study of concrete
materials. Regression analysis is used as a simple and accurate prediction for experiments
similar to past studies, which indicated a linear relationship between variables. It is
unclear whether polynomial expression may represent the data more accurately, but linear
expression is considered sufficiently accurate for the analysis. Concrete studies that require
a correlation expression, involving a single independent and dependent variable, largely
utilize the regression analysis. For example, Ramana et al. [6] applied the regression method
to evaluate the compressive strength of fiber reinforced concrete with 0 to 100% of recycled
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aggregate. The experiment returned an R2 value above 0.980 for all three conditions in
the study, indicating that the regression model could be used for prediction with minimal
deviation. A similar conclusion on non-destructive test was stated in the study by Kocáb,
Misák, and Cikrle [32]; while a linear regression with high R2 does not invalidate more
complicated expression, it can be used for achieving great effects within the scope of the
study, and it is often sufficient. In another study [33], a similar regression with a single
variable, namely concrete age, is used to predict the concrete strength under different
curing conditions. The R2 value ranged from 0.87 to 0.98 for five cases, indicating that
concrete age and compressive strength has strong linearity for various curing conditions.
The expression allowed the researcher to study the effectiveness of each curing method
by comparing the constant coefficient, as well as the slope, which indicates the rate of
strength gain. However, it is worth noting that the graphical representation of the result
showed the presence of curvature, which can potentially be represented more accurately
by a polynomial regression. Hence, in order to consider applications of the method in the
future, it is important to consider the sufficiency of a linear model, based on the scope of
the study and the degree of potential accuracy improvement if a more complex model is to
be used. While simple linear regression is commonly used to express the linear relationship
between an independent variable and a dependent variable, the linear relationship between
one variable with another can be expressed at a certain power, should the need arises. A
modified regression method was performed by Halabe and Ray [34] for the purpose of
verifying the theoretical relationship between compressive strength and ultrasonic pulse
velocity to the power of four ( fck α v4). While attempting to exclude an intercept, the
researchers concluded that a linear relationship between the variables ( fck α v) resulted in
a lower sum of square error (SSE) and higher R2. However, this does not imply that the
method is not justified and should never be attempted to verify a theoretical relation.

On the other hand, multiple regression analysis has been utilized in concrete studies
concerning more than one variable. The number of variables varies from as little as two [35]
to as many as 10 [36]. Multiple linear regression (MLR) is the simplest form of multiple
regression and is used in many research to obtain satisfactory results [35]. However, care
must be taken as MLR only model the linear relationship between all the variables with the
dependent variable while the inflence of certain variables may be non-linear. The effective-
ness of MLR can be on par with other advanced methods such as Artificial Neural Network
(ANN) in certain studies [37]. However, a more advanced statistical method would be
more accurate for the modelling of analysis involving more variables [38]. While many
studies use the classic MLR method, the backward method of the analysis is also viable as
can be seen in the research of concreting productivity involving 10 factors [36]. To ensure
the best MLR model, multicolinearity between predicting variables should be avoided.
However, Aggarwal et al. [39] discovered that multicolinearity is present when using the
proportion of concrete constietuents as the variables for concrete strength prediction, and
used ridge regression to circumvent the problem. However, a practical application of a
concrete strength prediction model has to make use of mix design proportion, and hence,
most reviewed studies tend to disregard the effect of multicolinearity in the application
of MLR. One method for compressing the information in the variables and eliminating
multicolinearity is Principle Component Analysis (PCA). E. Garcia-Taengua [40] used PCA
to combine three interrelated workability variables into an uncorrelated variable. In other
cases where the interrelated variables are unknown [41,42], MLR was first applied normally
before PCA was applied.

While performing a comprehensive analysis of different types of regression on the
prediction of the strength of High Performance Concrete, Jin, Chen and Soboyejo [43] used
the same data set, but conducted regression with the constituent of concrete expressed
in kg/m3 versus ratio, in order to cement and percentages replacement. There is also no
clear superiority between numeric variables method and relative method. MLR achieved a
high accuracy of R2 = 0.907 despite not being the most accurate model. This is the overall
trend observed in this review process. For very similar studies on the compressive concrete
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strength, MLR, logarithmic regression [44,45], and mix regression [4,43] were found to
predict the dependent variable with great accuracy. On the other hand, exponential and
second order polynomial regression are not favourable. The modified regression method
with Fisher test has also been used to achieve a great effect in estimating the cost of
concrete mixes [46]. Hence, researchers who intend to employ the regression analysis
should utilize various types of regression analysis to obtain the most accurate expression.
Based on the above reviews, it was also discovered that the common programs used for
regression analysis are Minitab [43], SPSS [47], and MATLAB [35,38]. Table 2 summarizes
the applications of the regression methods being reviewed.

Table 2. Application of regression analysis.

Sources Dependent Variable No. of Variables Methodology R2

[6] Compressive strength 1 Linear Regression 0.890
[32] Compressive strength 1 Linear Regression 0.878–0.963
[33] Compressive strength 1 Linear Regression 0.870–0.980
[34] Compressive strength 1 Modified LR –
[35] Compressive strength 1 Modified LR –
[35] Stress-strength ratio 2 Classic MLR 0.738

[48]
Compressive strength 5 Classic MLR 0.82

Slump 5 Classic MLR 0.73–0.88
[49] Compressive strength 5 Classic MLR 0.612
[37] Compressive strength 4 Classic MLR 0.962
[47] Compressive strength 7 Classic MLR 0.96–0.98
[38] Compressive strength 8 Classic MLR 0.800
[44] Compressive strength 6 Logarithmic Regression 0.758–0.866
[45] Compressive strength 8 Logarithmic Regression 0.999
[36] Compressive strength 10 Backward MLR 0.857
[46] Concreting productivity 4 Modified Regression –

[43]

Cost of concrete 9 (numeric) Classic MLR 0.907
Compressive strength 8 (relative) Exponential Regression 0.876
Compressive strength 8 (relative) Logarithmic Regression 0.953
Compressive strength 8 (relative) Mixed Regression 0.740–0.914

[4] Compressive strength 8 Mixed Regression 0.844

3. Taguchi Method
3.1. The Concept of the Taguchi Method

The Taguchi method is a modified DoE method invented by a Japanese scientist named
Dr Genechi Taguchi in the 1940s, about 25 years after the introduction of the original DoE
by R.A. Fisher [50]. The original DoE method requires either the full factorial method of
conducting experiment on all nr number of combinations or determinations of the optimal
condition for every variable by testing one variable at a time (OVAT). This is especially
true for many experiments, which utilize the classic regression or the MLR method. To
reduce the number of tests required, the fractional factorial method was developed. The
Taguchi method aims to minimize the number of testing using its own method called the
Orthogonal Array. The Orthogonal Array is presented as preset tables, whereby details
of the number of experiments, as shown in Table 3, are required to predict the dependent
variable, based on the number of variables and values each variable can take. While
the underlying principle of the Orthogonal Array is complex, the method can be used by
simply following the preset tables once a basic understanding of the method is attained [51].
Table 4 shows the commonly used arrays for the experiment design. As indicated in the
table, the Taguchi Orthogonal Array is extremely effective at minimizing the number of
trials needed for the experiments and also capable of cutting down complex experiments
with over a million numbers of full factorial combinations into only 32 trials. Taguchi also
requires less trials without overlooking interaction between variables which is a major
weakness of the OVAT method [52]. Such appeal earns it many usage in the research of
concrete materials which is cost, time, and labor intensive [53].
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Table 3. L-4 Orthogonal Array.

Trail
Factors

A B C

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

Table 4. Taguchi orthogonal array.

Array Factors Full Factorial Combinations OVAT Taguchi

L-4 3 two-level factors 8 6 4
L-8 7 two-level factors 128 14 8
L-12 11 two-level factors 2048 22 12
L-16 15 two-level factors 32,768 30 16
L-32 31 two-level factors 2,147,483,648 62 32
L-9 4 three-level factors 81 12 9

L-18 1 two-level and 7
three-level factors 4374 23 18

L-27 13 three-level factors 1,594,323 39 27
L-16 * 5 four-level factors 1024 20 16

L-32 * 1 two-level and 9
four level factors 524,288 38 32

* Modified array.

3.2. Applications of Taguchi Method

In most studies that applyi the Taguchi method, researchers are concerned with deter-
mining the quantity or proportion of each constituent material that is needed to produce a
concrete mix design with the best strength and performance. While this method showed
promising results in all of the reviewed literatures, only two studies [54,55] attempted to
develop an expression for predicting the results. Specifically, Shiri et al. [54] conducted
ANOVA on top of the Taguchi analysis to obtain the significance of each variable based on
95% confidence level and developed an accurate expression using the regression analysis.
In similar vein, Abbasi et al. [55] who conducted the regression analysis using the data set
similarly advised by the Taguchi Orthogonal Array also obtained an accurate expression for
the relationship between variables and the compressive strength and electric resistance of
concrete. However, the expression for permeability is less accurate, with R2 value of 0.634.
With that in mind, this paper reviewed the existing literature and conducted the regression
analysis on the data set from each study to verify this phenomena. In each reviewed paper,
the experimental regime was duplicated, and the data were manually filled in from the
Taguchi Orthogonal Array if it was not presented in the studies. Studies which did not
include the parameters in detail were neglected [56]. MLR was firstly conducted on the
data sets. When the result was not satisfactory (R2 < 0.80), the main effect plot from Taguchi
analysis was referred to and any non-linear effect of the variable was transformed into an
appropriate function. Then, the mixed regression analysis was conducted. From the output,
any variable which was not significant was excluded. Finally, the regression analysis was
carried out for the remaining variables and the final R2 was reported, as shown in Table 5.
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Table 5. Taguchi method and regression analysis.

Sources Dependent Variable Factors Level Array R2

[53] Porosity 4 4 L-16 * 0.813
[57] Compressive strength 4 3 L-9 0.963
[56] Compressive strength 4 3 L-9 -

[58]
Dry density 5 4 L-16 * 0.637

Flexural strength 5 4 L-16 * 0.900

[59]
14d Compressive strength 3 4 L-16 * 0.528
28d Compressive strength 3 4 L-16 * 0.720

[60]
Compressive strength 3 3 L-9 0.954

Water absorption 3 3 L-9 0.960
[54] Compressive strength 4 3 L-9 0.962

[55]
Compressive strength 3 2, 3, 12 L-18 * 0.911

Electric resistance 3 2, 3, 12 L-18 * 0.801
Permeability 3 2, 3, 12 L-18 * 0.634

[27]
Compressive strength 5 2, 4 L-16 * 0.374

Tensile strength 5 2, 4 L-16 * 0.449

[61]
7d Compressive strength 3 3 L-9 0.905
28d Compressive strength 3 3 L-9 0.890

* Modified array.

The table above shows that the regression analysis on orthogonal array produced
satisfactory result for most studies. Porosity [53], compressive strength [59,60,62], flexural
strength [58], and even water absorption [60] of concrete can be accurately expressed
using this method. The concrete compressive strength at seven days can be accurately
estimated in the experiment by Hadi et al. [61]. However, the derived expression failed
to predict the compressive strength of self-compacting concrete at 14 days in another
experiment by Teimortashlu, Dehestani, and Jalal [59]. Therefore, more studies may be
required to explain this deviation. Some plausible reasons could be due to the selection
of variables and the behavior of self-compacting concrete. The regression method also
failed in the study byArulraj et al. [27] whereby three of the five variables only have two
levels, resulting in insufficient data, in order to develop an accurate expression. Despite
certain shortcomings, the method is generally successful in providing information for a
more detailed experimental analysis. It is recommended that future applications of the
Taguchi method may utilize the regression analysis on Orthogonal Array.

The tables provided for the Taguchi Orthogonal Array were also found to be helpful
as most of the reviewed studies have adopted one of the preset arrays without the need
for additional technical modification. L-9 matric is useful for small-scale material studies,
while modified L-16 matric is suitable for mix design optimization due to the large number
of variables influencing the concrete performance. For the studies that require a matric
outside of the provided presets, the development of a unique matric, fitting a different
number of factor and level is possible. Abbasi et al. [55] modified the preset L-18 matric into
a unique matric with 12 levels. In another event, a larger matric can be used in experiments
with fewer factors by assuming an empty column on the selected array. For example, L-9
array, which accommodates four level-three factors [56,57] can be used in experiments with
only three level-three factors [60,61]. The above findings suggest that the Taguchi method
is a highly optimized method to deliver accuracy results in concrete-related experiments.

4. Response Surface Methodology (RSM)
4.1. The Concept of the RSM

The RSM is another DoE method which evaluates the effect and interaction of multiple
variables on a dependent variable. Just like the Taguchi method, the primary purpose is to
simplify the experimental process and optimize the responses. According to Bradley [62],
the RSM mechanism involves understanding the topography of the response surface,
including the local maximum, local, minimum and ridge lines and also find the region
where the most appropriate response occurs. As shown in Table 6, the RSM considers the
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first order, second order, and interaction effects between the variables, in order to formulate
a response surface that determines the optimum condition for the dependent variable. Like
all DoE methods, the RSM provides a mathematical solution to a problem, reduces the
number of experimental trials, and saves the cost and time in the study conducted [63].
It also includes the interaction effect of variables to improve the accuracy of the model.
However, one disadvantage of the RSM is that the experimental data are fitted to a second-
order polynomial order, even though it may not be the most suitable model for expressing
all systems with curvature [64].

Table 6. General expression of RSM for two independent variables.

Effect Term

Intercept/Constant B0
First order B1x1, B2x2

Second order B11x2
1, B22x2

2
Interaction B12x1x2

General Expression y = B0 + B1x1 + B2x2 + B11x2
1 + B22x2

2 + B12x1x2

Although the RSM offers a sophisticated analysis tool for experimental data, it does
not specify the methodology by which data should be collected. Unlike the Taguchi
method, which adheres to the Orthogonal Array, multiple methodologies exist for the data
collection process. The methods include Box-Behnken Design (BBD), Central Composite
Design (CCD), Doehlert Matrix (DM), three-level full factorial designs, and others. Three-
level factorial design involves conducting experiments on all possible combinations, and
hence, has limited applications in relation the RSM, as the number of experiments required
becomes too large when the number of factors increases, causing low efficiency in data
collection [65]. The efficiency of the other three methods were also being studied from
other studies [66,67], and the summary of findings is tabulated on Table 7. From the table,
DM was found to be the most efficient model for data selection. One advantage of the
DM method is that it uses different number of levels for the variables, allowing a variable
with known stronger effect to be assigned with more levels for detailed analysis [66]. The
second most efficient method is the BBD. The BBD method can be considered for any
experiment that may result in inaccuracy if it is performed at the extreme conditions, since
such experiment does not contain combinations for which all factors are at their highest
or lowest levels [67]. This benefit is especially relevant, and thus, should be taken into
consideration for the studies of concrete materials.

Table 7. Efficiency of various DoE methods.

Variables (K) Number of Coefficient (p) Number of Experiments (f) Efficiency (p/f)

CCD DM BBD CCD DM BBD

2 6 9 7 - 0.67 0.86 -
3 10 15 13 13 0.67 0.77 0.77
4 15 25 21 25 0.60 0.71 0.60
5 21 43 31 41 0.49 0.68 0.61
6 28 77 43 61 0.36 0.65 0.46
7 36 143 57 85 0.25 0.63 0.42
8 45 273 73 113 0.16 0.62 0.40

4.2. Applications of the RSM

Table 8 summarizes the information obtained from the relevant literatures reviews.
Reviews on the efficiency of data collection methods [66,67] indicates that the DM and BBD
methods are the most efficient, but most of concrete-related studies used the CCD method
in designing the experiments. The reason for selecting this method was not specified in
several studies [68–70]. Yet, according to Nambiar and Ramamurthy [71], the CCD allows
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equal precision of estimates in all directions. Meanwhile, other researchers [72,73] used
CCD due to its rotatability and ability to predict the result within experimental range with
great precision. Of all the literature reviewed, many researchers used the Minitab software
to conduct the RSM experimental design and data analysis [74–76]. Design Expert were
also favored by several others [68,69], while one study used the Statistical Analysis System
(SAS) to perform the experiment [71]. Since BBD and CCD are the two methods provided
in Minitab, this may explain why the said methods are frequently adopted. While the RSM
is able to handle larger number of variables, most researchers use it to design experiments
involving two [75,77–79] or three [68–70] variables, presumably to make full use of the
contour plot, which can represent the effect of two variables as commonly used in design
codes such as Eurocode 2 [70].

In certain studies, workability of concrete, as indicated by slump test result, was
selected as an dependant variable of RSM analysis. While the workability of concrete can
be measured at the early phase of concrete production, the inclusion of slump value is
mainly done to study the inflence of replacement material on concrete workability through
the RSM model. For example, in the study of concrete with electronic waste [68] and
rubber waste [80], the workability of concrete with respect to water-cement ratio was
studied through RSM contour plot. On the other hand, Nambiar and Ramamurthy [71]
forumulated a prediction model for foam concrete workability for the development of mix
design. Similarly, Şimşek et al. [72] used surface plot to optimize the mix proportion of
concrete. Apart from producing the response surface to study the optimal condition of
independent variables that gives the highest performance, researchers frequently perform
further analysis to obtain the equation for the prediction of the dependent variable. One
method is by conducting ANOVA on the results [74,75,81] to determine the significance
of each term using Student’s t-test. In this process, terms which are deemed insignificant
are removed. While most studies use the convention rule of taking a confidence level of
95% with the threshold of p-value < 0.05 to determine the significance of each variable in
the analysis, researchers have attempted to adopt lower confident levels to include more
variables in the final model. For example, Mrudul et al. [73] used 90% confidence level
(p-value <0.10) in t-test, but the final model remained satisfactory with R2 value above
0.90, which indicate that 90% variation in compressive strength of silica infused recycled
aggregate concrete can be attributed to the variables. Meanwhile, Vasudevan, Poornima,
and Balachandran [76] optimized the output with 85% confident level. The R2 value of
the original RSM model was 0.980, but after dispensing terms with p-value above 0.15,
the R2 became 0.975, which was a negligible drop even though the process eliminated
3 terms from the RSM model. This hints that the standard convention of 95% confidence
interval does not need to be absolutely followed when optimizing equations. The ability of
the RSM in predicting the concrete properties is satisfactory. Even though the RSM only
presents data in the second-order polynomial or quadratic form [64], reviews of existing
studies showed that this does not impact the accuracy of the model. The inclusion of
the interaction effect improves the model significantly. The Response Surface Regression
provides a detailed analysis and accurate estimation of mechanical properties [14]. In
addition, other properties such as permeability, sorptivity [76] and water absorption [14] of
concrete can be modelled or predicted.
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Table 8. Summary of the RSM studies.

Sources Dependent Variable Factor Method

[77] Compressive strength 5 BBD
[75] Compressive strength 2 -
[74] Compressive strength 3 CCD
[78] Cement-SP compatibility 3 CCD
[71] Compressive strength, dry density 3 CCD
[72] Slump, compressive strength, split tensile strength 3 CCD
[68] Slump, density, compressive strength, split tensile strength 2 CCD
[73] Compressive strength 2 CCD
[76] Compressive strength, permeability, sorptivity 3 CCD
[69] Mechanical properties 2 CCD
[14] Mechanical properties, water absorption 3 CCD

5. Artificial Neural Networks (ANNs)
5.1. The Concept of ANNs

The Neural Network is a web of interconnected neurons, which conduct parallel
processing during the thinking process, and where millions of neurons transmit signals
to each other to process information [79]. In the human brain, neurons receive sensory
input from the external world via dendrites, process it and give the output through axons,
as shown in Figure 2. ANNs are an advanced analysis methodology, which simulate the
thinking process of the human brain [81]. Mathematically, ANNs are used to process a
number of inputs and provide an output, similar to other DoE methods, which take in
multiple variables to predict the dependent variable. Figure 3 shows the basic schematic
of the ANNs. The mechanism of ANNs involves three layers, which are the input layer,
hidden layer, and output layer. The input layer is where data are inserted. A system of
weighted connections is used to process the data and return the result at the output layer.
The process begins with a feed-forward of the inputs and ends with the output. Then,
the weight of connections needs to be optimized, usually by backward propagation. The
difference between the predicted value and actual value is considered to adjust and modify
the mechanism of the hidden layer. ANNs have a series of advantages and disadvantages.
For data analysis, the most pronounced advantages are the ability to tolerate error in the
system due to their processing [82], and the ability to solve complex non-linear relationship
between variables [83]. The resistance to a faulty system also extends their ability to work
with incomplete data [84]. ANNs are advantageous compared to programmed computer
algorithms as they can improve their own rules through the number of decisions made [85].
On the other hand, the solution provided by ANNs is often not described [79], and its
complexity can be prone to overfitting of data.
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5.2. The Applications of ANNs

Table 9 summarizes the information obtained from the reviews of ANNs-related
literature. As observed, a variety of tools and software are used by researchers to conduct
ANNs. MATLAB, with the Neural Network Fitting Tool [86], remains a popular choice
that has been used in many studies [38,87,88]. Other than that, several researchers used
other software such as JMP [74], QBasic [89], Neuro Solutions [90], and WEKA [91]. Unlike
other DoE methods reviewed, ANNs are a more complex system which requires various
setup steps. First, the perceptron needs to be constructed by setting up the number of input
nodes, hidden layer, and hidden nodes. The number of input nodes is simply the number
of variables in the studies. However, there is no requirement for a fixed number of hidden
layer and nodes. In several concrete-related studies, the researchers only used one or at
most two hidden layers [89,92]. However, the number of neurons in the hidden layer largely
varies by studies. The more hidden layer neurons are introduced into the perceptron, the
more memorizing power and the less reasoning capability the system holds [93]. Hence, the
number of neurons should be kept minimal but enough to simulate the training data. A rule
of thumb for the maximum number of neurons is NH ≤ 2Ni + 1 where NH represents the
number of neurons and Ni represents the number of inputs. This convention was referred
to by some researchers [38,90] when deciding the number of neurons. However, most
studies performed trial-and-error to obtain the most suitable model for each respective
experiment [93], and not all studies adhere to the rule of thumb [94].

Table 9. Summary of ANNs studies.

Sources No. of Variables No. of Hidden Nodes No. of Data Training-to-Testing Ratio R2

[38] 7 15 140 85-15 0.961
[37] 4 NS 15 NS 0.898
[74] 4 4 17 NS 0.980
[87] 3-5 4–6 28 70–15–15 0.891–0.990
[89] 6 12,6 639 63–15–22 -
[95] 7 4 32 k-fold 0.869
[90] 7 4 173 80–10–10 0.899
[92] 5 6, 6 2340 60–20–20 0.999
[96] 3 3 12 NS 0.970
[86] 8 NS 1030 Levenberg-Marquardt algorithm 0.916
[93] 6, 8 8 80, 31 k-fold 0.919–0.969
[97] 7 8 103 NS NS
[91] 5 NS 55 NS 0.879–0.893
[94] 4–6 50 49, 27 75–25 0.898–1.000
[98] 9 NS 1030 50–50 0.860
[88] 2 NS 209 Levenberg-Marquardt algorithm 0.800–1.00
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Another important consideration of ANNs is to specify the amount or portion of data
on training, validation, and testing of the perceptron. Algorithm training is important,
and incorrect or insufficient training will result in poor quality of the model. Several
researchers applied the training algorithm rather than the manual selection. K-fold cross
validation [93,95] and Levenberg-Marquardt training algorithm [86,88] provided by MAT-
LAB are commonly used. If it is decided that no algorithm will be used, the researchers
devote a portion of the available data set for training, validation, and testing process. A
huge majority of the data is allocated for the system training, ranging from 50% to 80%.
The remaining data is usually distributed evenly for validation and testing [87,90,92]. In
certain studies, only the training-to-testing ratio was given [16,68], but the proportion
skewed heavily towards training. Khashman and Akpinar [98] who conducted the same
ANNs models with a training-to-testing ratio of 40–60, 50–50, and 60–40 concluded that
model with a ratio of 50–50 is the best. However, this should not be used as the abso-
lute guideline as the experiment had a huge amount of data (i.e., 1030). More studies
are still needed to formulate conclusions on this decision, and researchers are advised
to experiment with various proportions for achieving the best result. Another setting
required for back-propagation ANNs is the training rate, momentum, and iteration, which
is summarized in Table 10.

Table 10. Summary on the settings of back-propagation ANNs.

Sources Training Rate Momentum Iteration

[37] 0.04 0.1 500
[89] 0.08 0.65 10,000

[93]

0.04 0.1 500
0.6 0.3 500
0.5 0.2 1000
0.2 0.1 1300

[91] 0.2 0.1 400

ANNs are widely used to predict the concrete compressive strength with number of
variables more than the commonly used for other DoE methods. One unique application
of ANNs is that the advanced computing power of the method allows the meta-analysis of
several concrete studies that use the same replacement materials. Gupta [95] who collected
32 data from 10 different literature on concrete containing nano-silica formulated an
accurate model for 28 days concrete compressive strength without the need to perform any
experiment. In another study, Asteris and Mokos [88] used 209 data sets from a thesis [99]
and performed ANNs on the prediction of concrete strength using the non-destructive
tests result. A similar analysis was conducted by Noorzaei et al. [89] and Santosa and
Purbo Santosa [97] who also achieved the same success using the constituents of concrete
as variables. The accuracy of ANNs, as denoted by the R2 value, is superior to regression
analysis [38,90], including multiple non-linear regression [92]. However, in one study on
self-compacting concrete [37], the result of MLR provided a higher R2 value than the model
produced from ANNs. This may be attribute to the low number of data in the experiment
(i.e., 15), as ANNs perform better when more data is being fed. In addition, the R2 value
should not be the sole factor used to decide on the best model. In another experiment on
recycled aggregate concrete [74], both RSM and ANNs methods provided high R2 values
but the Root Mean Squared Error (RMSE) of the ANNs model was significantly lower than
the other models.

To model the concrete compressive strength at a certain age, most studies tend to
include the constituents of concrete as the variables, and a model is produced for every
date concerned. However, an alternative methodology was conducted by Chopra et al. [94],
whereby in their experiment, six variables of concrete constituent were used to predict
the 28-day concrete strength. As for 56-day concrete strength, the 28-day strength was
added as an additional factor, and the 56-day strength was added again for the prediction
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of 90-day strength in the study. This method allows the strength gain to be studied in more
detailed. Meanwhile, Atici [87] used the regression model to create six models of different
combinations of significant variables before applying ANNs to determine the best solution.
In another study, the ANNs method was compared with Genetic Programming [94], but
the differences in accuracy are indiscernible as both methods produce highly accurate
models. However, Chandwani et al. [100] proposed the hybridization of ANN and Genetic
Algorithm (GA), which improved the convergence speed and accuracy of the model [101]
and helped in the derivation of optimal result [102]. ANN-GA is currently not too widely
applied in concrete material studies, but has seen usage in complex studies involving more
advanced technologies, such as self-healing concrete [103]. Overall, the literature reviews
indicate that ANNs is a complex, but powerful DoE method that allows researchers to
perform the advanced analysis of concrete performance.

6. Conclusions

This paper discussed the concept and applications of the DoE methods in the research
regarding concrete mechanical properties. In the field of concrete materials, the concrete
performance is affected by a multitude of variables, which makes it impractical to study
and experiment an innovation through sheer experimentation. DoE offers a solution for
minimizing the number of experiments to conserve time, money and labor, as well as
provide a superior data analysis methodology that can give accurate results and predic-
tions. When applying DoE, and especially in complex analysis, it is important to ensure
the physical meaning of the variables is sound, instead of merely seeking the strongest
correlations, as mathematical correlation does not necessary imply logical causation. The
mixed regression analysis is a versatile technique that can provide an expression for the
properties of sustainable concrete, through either single or multiple variables. The com-
bination of linear and logarithmic functions is widely used in the modelling of concrete
properties. Regression analysis has adequate accuracy, but it is less accurate compared to
other advanced techniques. The Taguchi method is applied to minimize the number of
experiments required to a huge extent using the Orthogonal Array. It is effective and easy to
use, provided that the number and level of variables fit into the array. L-9 matrix is suitable
for the study on replacement of concrete materials while modified L-16 matrix is largely
used for design mix optimization. The RSM is mainly used in concrete material studies
with two or three variables to produce response surface which is similar to information
exist in the design standard. CCD is a commonly used method in organizing the data for
the experiment. Last, ANN is an advanced method of analysis that requires the use of
cross-discipline knowledge in concrete-related studies, but it can provide a highly accurate
expression when a sufficiently large amount of data is available. In studies concerning
sustainable concrete, DoE methods have shown successful results concrete properties, the
effect of replacement materials, and the development of concrete mix design. However,
mechanical properties of concrete are currently the dominant application of DoE with
application on other properties to be explored.
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