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ABSTRAK 

Struktur pantai dan lautan tertakluk kepada beban gelombang terpisah yang mungkin 

mencapai 690𝑘𝑁𝑚−2. Untuk mengurangkan beban ini, kita mungkin mencondongkan 

permukaan benteng ke arah lautan ataupun ke arah daratan. Walau bagaimanapun, tidak 

dijelaskan bahawa kecerunan banteng boleh mengurangkan kesan gelombang dan 

eksperimen menggunakan model baru-baru ini menunjukkan bahawa benteng yang 

condong mungkin terdedah kepada beban lebih tinggi daripada benteng yang menegak. 

Dipengaruhi oleh penemuan ini, kami melakukan kajian secara teori mengenai pengaruh 

kecerunan benteng terhadap kesan gelombang. Model-model kesan gelombang 

matematik terhadap benteng yang condong ke arah lautan dan daratan dipertimbangkan 

dengan menggunakan lanjutan model Cooker iaitu benteng laut yang menegak. Teori 

impuls tekanan yang dicadangkan oleh Cooker diterapkan ke dalam dua masalah ini yang 

akan memudahkan masalah yang bergantung pada masa dan sangat tidak linear dengan 

mempertimbangkan masa integrasi tekanan selama jangka waktu utuk impak tekanan 

impuls. Penyelesaian masalah ini ditemui dengan menyelesaikan Persamaan Laplace 

untuk sempadan tertentu. Teori perturbasi diterapkan ke dalam model-model ini dan 

masalahnya diselesaikan dengan menggunakan MATLAB. Hubungan antara tekanan 

impuls dan sudut kecenderungan dinding disiasat. Keputusan menunjukkan terdapat 

persamaan dengan kajian eksperimen. Telah didapati bahawa tekanan impuls paling 

rendah berlaku apabila kecenderungan kecil berlaku menghampiri tembok yang menegak. 

Kajian juga menunjukkan bahawa tekanan impuls meningkat apabila impak permukaan 

meningkat. Tekanan gelombang meningkat kepada 17% untuk tembok yang condong ke 

arah daratan dan 20% untuk tembok yang condong ke arah lautan jika dibandingkan 

dengan tembok yang menegak pada kecenderungan sudut 10° dengan impak permukaan 

0.5. Cadangan reka bentuk untuk tembok didapati konservatif. 
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ABSTRACT 

Shoreline and ocean structures are subjected to breaking wave loads which may reach 

690𝑘𝑁𝑚−2. To reduce these loading, we might slope the exposed surface seaward or 

landward. However, it is unclear that sloped walls can reduce the wave impact and recent 

models tests indicated that sloped walls might be exposed to higher loads than vertical 

walls. Motivated by these findings, we perform a theoretical study of wave impacts on 

sloped seawalls. The mathematical models of wave impacts on landward-inclined and 

seaward-inclined seawalls are considered by using an extension of Cooker’s model for 

vertical seawalls. The pressure impulse theory proposed by Cooker is applied into these 

two problems which simplify the highly time-dependent and very nonlinear problem by 

considering the time integral of the pressure over the duration of the impact pressure-

impulse. The solution to this problem is found by solving Laplace’s Equation for specific 

boundary condition. The perturbation theory is applied into these models and the 

problems are solved by using MATLAB. The correlation between the pressure impulse 

and the inclination angle of the wall is investigated. The results are found to be in good 

agreement with the experimental study. It was found that the lowest pressure impulse 

occurs when the small inclination happens near to the vertical wall. Study also shows that 

pressure impulse increases as impact region increases. Breaking wave pressures increase 

to 17% for landward inclined wall and to 20% for seaward inclined wall compared to 

vertical wall at 10° incline with impact region of 0.5. Design recommendations were 

found to be conservative.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research Background 

Wind blowing over the surface area of an ocean causes the formation of waves. 

As a carrier of energy, when a wave strikes the surface of any structure, it can cause a 

huge spray of water rising up into the air. 

There are forces or pressures that are acting on these structures. These forces or 

pressures are divided into two categories. They are pulsating pressure, also known as quad 

static, and impulse pressure or known as impact (Allsop, Vicinanza & McKenna, 1996). 

These pressures striking the structures often cause damage.  

Seawalls are built by the authorities to protect beaches and coastlines from being 

damaged by erosion. Seawalls are also a type of seaside safeguard developed where the 

ocean, and related waterfront forms, affect specifically upon the landforms of the drift. 

The inspiration behind a seawall is to secure zones of human residence, preservation and 

recreation from the activity of tides, waves, or torrents. There are a few types of seawall 

designs as shown in Figure 1.1.  

A breakwater is constructed and used to provide a calm lagoon for ships and 

protect harbour facilities. As ports open to rough seas, breakwaters play an important 

function in their operations. The purpose of a breakwater is to diminish the power of wave 

activity in inshore waters and consequently lessen seaside disintegration or provide safe 

harbourage. Therefore, the history of a breakwater has been one of much damage and 

failures (Takahashi, 1996). Figure 1.2 shows a simple structure of breakwater. 
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Figure 1.1 Examples of seawalls, image taken from Coastalwiki 

Source: Mangor (2019) 

 

Figure 1.2 A simple structure of breakwater, image taken from European Coast 

Source: Md Noar (2012) 

Hence, it is really important to study the significance of wave impact on a wall. 

The design of the seawall or breakwater should be considered. The engineers and 

designers should design a proper seawall or breakwater that can reduce this impact. The 

cost to design this seawall or breakwater also should be considered. A poorly designed 

seawall or breakwater may lead to structural failure as waves erode the base of the 
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seawall. This also requires constant maintenance that is time consuming and costly. 

Among the initial significant cases of damage was in a series of failures of a large rubble 

mound breakwater recorded in 1930 (Oumeraci, 1994). Since then, many studies have 

been conducted in order to develop and enhance the stability of seawalls or breakwaters. 

Waves breaking on and impacting structures has been studied theoretically and 

experimentally in the coastal engineering field. 

Coastal engineering has attracted a lot of researchers interested in investigating 

and carrying out experiments to determine wave impact on coastal structures. These 

experiments used either scaled down models or were conducted in full scale. Some 

researchers investigated this topic using theoretical studies. The results were compared 

and a good agreement was found. Their results have contributed a lot to the coastal 

engineering field and have improved the development of seawalls and breakwaters. A 

few researchers investigated landward-inclined and seaward-inclined seawalls. Most of 

the research on landward-inclined and seaward-inclined seawalls were conducted 

empirically.  

One of the earliest research work in coastal engineering was carried out by 

Bagnold (1939). He contributed to this field by investigating the high peak value of 

pressure using a wave tank model. Cooker and Peregrine (1991) proposed a mathematical 

model for the pressure impulse theory. Cooker and Peregrine (1995) then modified 

Cooker’s previous model from using exponential terms into hyperbolic terms in Fourier 

series. They also stated the pressure impulse is equal to the integral of the pressure within 

the duration of the impact. This resulted in a simplified, but much more stable, model of 

wave impact on the coast. 

Mitsuyasu, Hase, and Sibayama (1958) carried out an experiment and stated the 

correlation between impact pressure and inclination of the wall. Okamura (1993) 

compared his result by using a theoretical study and a good agreement of pressure impulse 

was found from altering the inclination of the wall. Kirkgöz (1991) studied the impact 

pressure of breaking waves on a sloping seawall and did an experiment on a backward 

sloping wall. Neelamani and Sandhya (2005) conducted an experiment on the surface 

roughness effect of a landward-inclined seawall in incident random wave fields. 
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This research is a continuity of the work of Md Noar (2012) involving wave 

impact on the rectangular model. Md Noar and Greenhow (2015b) had extended Cooker’s 

model to breakwaters with a ditch or berm by using a basis function method and a hybrid 

collocation method of the pressure impulse. In this research two more models will be 

considered; a landward-inclined seawall and a seaward-inclined seawall.  

The perturbation theory will be applied into these two cases to validate the results 

of this study. Then, the same theory as proposed by Cooker will be extended and 

compared with previous research. The pressure impulse will be found by varying the 

angle of the seawall. These quantities will be very helpful from a practical point of view 

for engineers or designers to build a seawall.  

In this case, a mathematical formulation will be studied theoretically to investigate 

the pressure impulse on landward-inclined and seaward-inclined seawalls. A 

mathematical theory will then be applied to these two problems; a landward-inclined and 

seaward-inclined seawall. Finally, the results of the two cases will be displayed 

graphically.  

1.2 Problem Statement 

Malaysia has 4800 km of coastline. Recent coastal erosion has resulted in damage 

to mangrove forests, agricultural lands, road communication links and recreational 

beaches. Midun (1988) states that coastal erosion is a natural phenomenon resulting from 

the interactions between natural processes and the system. The natural process for coastal 

erosion is caused by waves. Out of the 4800 km of coastline, about 1300 km (27%) are at 

present subject to erosion. Coastal erosion has an adverse effect economically and 

socially. Many socio-economic activities such as agriculture, housing and urbanisation, 

transportation and recreation are affected and most of the agricultural land is seriously 

threatened in the west coast of Peninsular Malaysia. In order to prevent the erosion, there 

are long term and short term plans. The short term plan involves building structural 

solutions like the construction of revetments and seawalls. Meanwhile the long term plan, 

in order to minimise the high cost of protective works in the future, will involve taking 

into account erosion for every development, planning and construction of facilities at 

affected areas.  
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As an example, in the case of Tanjung Piai in Johor, the occurrence of erosion has 

been reported since the 1930s. Critical erosion has been estimated to happen at a rate of 

2-4 m/year at the western coast of Tanjung Piai (Abdullah, 1992). Awang, Jusoh, and 

Hamid (2014) through the Department of Irrigation and Drainage (DID) reported that 

erosion rapidly increased after the dredging of a navigation channel in 2002. Since 

Tanjung Piai has a high socio-economic value for fisheries and eco-tourism, the erosion 

affects the socio-economic situation of the local residents. Awang, Jusoh, and Hamid 

(2014) also stated that heavy shipping activities around Tanjung Piai generated waves 

and disturbed the growth of mangrove trees.  

As a result, a few methods were proposed to mitigate the erosion in Tanjung Piai. 

While erosion still occurred along the east coast of Tanjung Piai, a 707m seawall was 

built in 2006 to protect the coastal area from further erosion. In 2003 and 2006, geotextile 

tubes filled with sand and laid parallel to the shoreline were installed to reduce the wave 

heights. Between 2007 and 2009, a 270m long rock revetment was constructed to protect 

the west of Tanjung Piai. Lastly, in 2010, since erosion was still occurring, a 1700 m long 

soft rock combined with 220m of revetment were built along the west and east coasts in 

order to protect Tanjung Piai from further erosion.  

Figure 1.3 shows the destruction caused by coastal erosion at Tanjung Piai. Many 

trees and plants were destroyed due to the coastal erosion.  
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Figure 1.3 Erosion in Tanjung Piai, Johor, image taken from DID 

Source: Reka (2017)  

 

Meanwhile, Toriman (2006) stated that at Kuala Kemaman in Terengganu, the 

erosion happened in a coastal area and caused a high impact to the community in Kuala 

Kemaman. The first effect is a physical dimension which involved the coastal monitoring 

due to severe erosion and the second effect is the human dimension which affected on 

human activities and economy. It caused problem among the coastal community 

especially in terms of their security. They were losing their homes and their cemetery was 

also affected. The erosion was also affecting the fishing community of Kuala Kemaman. 

Figure 1.4 shows the destruction caused by coastal erosion that occurred in Kuala 

Kemaman. The seawall was built to minimise or prevent the erosion of the shore. 
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Figure 1.4 Erosion in Terengganu, image taken from New Strait Times 

Source: David (2016) 

The increase in coastal erosion has affected about 1,282 ha or about 1% a year 

since 1990 in annual mangrove area losses in some major states in Peninsular Malaysia 

(Sahriman, Samad, Zainal, Ghazali & Abbas, 2017). The Setiu estuary and Chendering 

in Terengganu are among the areas experiencing serious erosion (McAlister & Nathan, 

1987). The huge waves that strike the coastline during the northeast monsoon were 

accepted as a hypothetical cause among researchers. This season, which occurs annually 

from November to February, has waves that are larger than normal due to the strong 

onshore winds and thus can cause comparatively more damage (Husain & Yaakob, 1988; 

Mastura, 1987). Husain, Yaakob, and Saad (1995) investigated the variability of beach 

erosion during the northeast monsoon between Penarek and Setiu Lama. This 

investigation demonstrates that in spite of the fact that the larger waves of the northeast 

monsoons may, all in all, be erosional in nature, their net impact on particular stretches 

of coastlines might be reliant upon site-particular elements including the bathymetry of 

the landward-inclined territories fronting the coastline and the impact of island covers. 

Jaafar, Yusoff, and Ghaffar (2017) reported that coast erosion occurs almost every 

year in the east coast of Peninsular Malaysia, especially in Kampung Kemeruk in Kota 

Bharu, Kelantan. Coastal areas are sensitive areas and tend to be vulnerable to various 

threats such as erosion. If this situation is left unattended without appropriate action to 
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curb aggravated erosion problems, it indirectly affects the quality of life of local 

communities. The negative impact of this disaster on humans is not only the destruction 

of property and residential areas, but also threatens the lives of the population inhabiting 

the coastal area. Therefore, studies on beach erosion are important because our country 

has a very long coastal area of 4,800 km. In addressing this problem, the steps taken by 

the authorities such as building seawalls, renovation steps, river estuary repairs and 

displacement development has been implemented in order to reduce coastal erosion.  

Larger waves represent a notable risk to individuals and resources near the 

coastline, generally due to their size during storms (Wdowinski, Bray, Kirtman & Wu, 

2016; Whittaker, Raby, Fitzgerald & Taylor, 2016). Mohd, Maulud, Begum, Selamat, and 

Karim (2018) in their study titled “The Impact of Shoreline Changes to Pahang Coastal 

Areas” covered Cherating to Pekan along the shore of the state of Pahang. These areas 

are on the east coast of Peninsular Malaysia fronting the South China Sea. Along the 10 

areas of the Pahang coast, the aggregate length of shoreline changes was observed to be 

around 14 km (14035.10 m), Pantai Balok and Tanjung Agas were exceptionally affected 

with a land loss of 26.8 ha and 94.7 ha, respectively. The seaside territories from 

Cherating to Pekan experienced a high defencelessness with a disintegration rate of 1.8 

to 20.9 meter (m) every year (yr). The worst degree of disintegration was found on the 

seaside territories of Pantai Balok, Kelab Golf Pahang, Taman Gelora, Kampung Cherok 

Paloh and Tanjung Agas with rates of 13.5 to 20.9 m/yr. For the most part, the beach front 

zones of Pahang are subjected to a higher disintegration process than growth (Mohd, 

Maulud, Begum, Selamat & Karim, 2018). Coastal erosion estimation amid the upper east 

rainstorm also provides data about the progression of shorelines along Tanjung Lumpur 

to Cherok Paloh, Pahang and a huge portion of the stations have experienced erosion 

during the time of the study (Azid et al., 2015). 

Rameli and Jaafar (2015) assessed coastline changes utilising GIS geospatial 

procedures on Carey Island which is located off the Morib coast, Selangor, Malaysia. He 

reported on the suspicion that both deposition and erosion affect the changes in shoreline 

position. An investigation of available topographical maps showed that the process of 

deposition and erosion occurred at the same time. Be that as it may, coastal erosion 

occurred frequently in Carey Island while the deposition process occurred frequently in 

Morib.  
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There are a few more examples of seawall construction in Malaysia. Figure 1.5 

shows the seawall constructed in Tanjung Piai, Johor.  Lastly, Figure 1.6 displays a 

seawall built in Georgetown, Pulau Pinang. All these seawalls were built by the 

government to prevent or reduce coastal erosion which has resulted in the destruction of 

the environment. 

 

Figure 1.5 Seawall in Tanjung Piai, Johor, image taken from Berita Harian 

Source: Ibrahim (2019) 
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Figure 1.6 Seawall in Georgetown, Pulau Pinang, image taken from the Star 

Source: Ali (2018)  

Since 1970, the only organisation involved in coastal management is the 

Department of Irrigation and Drainage (DID). Today, among the duties of the DID is to 

monitor and implement projects to control coastal erosion. DID also carries out some 

research in coastal management and provides data or information to others to control 

coastal erosion. The DID also manages the mitigation of floods in Malaysia. Figure 1.7 

shows DID satellite office in Sarawak. 

 

Figure 1.7 DID satellite office in Sarawak, image taken from DID Sarawak 

Source: Aman (1970)  

In the quest to improve coastal management and making it more efficient, the 

Technical Coastal Engineering Centre (TCEC) was established in 1987 to control critical 

coastal erosion and provide technical advice on construction projects.  
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Similarly, the National Hydraulic Research Institute of Malaysia (NAHRIM) is a 

government institute under the Malaysian Ministry of Natural Resources and 

Environment which leads the research and provides consultancy in matters of hydraulic 

and water environment. NAHRIM offers expert consulting services in all areas of 

hydrothermal engineering including river engineering, coastal engineering, water 

resources development, and water and environmental quality. NAHRIM was established 

in September 1993 under the Ministry of Agriculture Malaysia before transferred to 

Ministry of Natural Resources and Environment in 2004. Figure 1.8 shows hydraulic lab 

at NAHRIM Seri Kembangan, Selangor. 

 
 

Figure 1.8 Hydraulic lab at NAHRIM Seri Kembangan, Selangor 

Source:  Arkib (2014) 

Based on the facts presented, the erosion occurring in Malaysia will become more 

serious without preventive measures. Tanjung Piai is one of the examples related to this 

problem. In the physical dimension, it causes damage to mangrove forests, agricultural 

lands, road communication links and recreational beaches. Meanwhile in the human 

dimension, it affects the socio-economic value of fisheries and eco-tourism and also 

affects human security in terms of losing their homes. Overcoming these problems costs 

a lot of money and is time consuming. The government is forced to spend a lot of money 

building seawalls or breakwaters to overcome this problem. A lot of money is also spent 

to allocate funding to NAHRIM, TCEC and DID to carry out research in this field to 

overcome the erosion problem.  
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In the course of this research, a mathematical modelling and mathematical 

formulation will be studied to help engineers and designers build a proper and effective 

seawall. The results will be compared to previous studies to find a good agreement and 

for analysis. The results might be helpful in cutting the cost of designing a seawall and 

reducing pressure impulse on a seawall. They also might help engineers and designers to 

build an effective seawall to overcome erosion effectively.  

1.3 Research Questions 

a) How to formulate mathematical models of the pressure impulse-theory for landward-

inclined and seaward-inclined seawals? 

b) How does the small angle of inclination from the vertical structures affect the 

pressure impulses on the wall? 

c) Do the seaward-inclined and landward-inclined seawalls produce minimum pressure 

impulse? 

1.4 Research Objectives 

This study has the following objectives: 

a) To extend the mathematical model and equations in the fluid motion of the landward-

inclined and seaward-inclined seawalls.  

b) To apply the perturbation method for solving the mathematical formulations of 

landward-inclined and seaward-inclined seawalls. 

c) To develop MATLAB algorithms for solving the mathematical formulations of the 

wave impact for the landward-inclined and seaward-inclined seawalls. 

d) To provide simplified and much more stable results in models of wave impact on 

coastal structures. 

1.5 Scope and Limitation of the Study 

This research aims to extend the pressure impulse theory on the landward-inclined 

and seaward-inclined seawalls. We will study the effect of a small angle of inclination 

and also declination in vertical structures. This research is divided into two phases; the 
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first phase is to modify the mathematical modelling of a landward-inclined and seaward-

inclined seawall. This will be achieved through extending the pressure impulse theory 

used by Cooker and Peregrine (1991). Next, Cooker’s model is altered based on these 

two problems i.e. a landward-inclined and seaward-inclined seawalls.  

In terms of the limitation of the study, research involving theoretical methods is 

quite rare in Malaysia. Hence, it is harder to find sources of theoretical methods in 

Malaysia for comparison. There are only a few organisations involved in this field and 

they are not very interested in pressure impulse towards seawalls. Furthermore, most of 

the resources concerning inclined seawalls are found in studies from 1980 to 2000. 

However, most researchers tend to study this field by conducting experiments either using 

a model or using a full scale measurement. Hence, it is quite difficult to find a latest 

resource that used a theoretical approach for this research.  

In addition, only Cooker’s model from 1991 is applicable and works for our 

method. In other words, the verification of this model and method has been done 

successfully. 

Finally, the perturbation method only works on a seaward-inclined or landward-

inclined seawalls of angle less than 15°. Angles larger than 15° will give error results. 

The assumption in every one of the issues in this postulation is the liquid is inviscid and 

incompressible.  

1.6 Significance of the Study 

This research able to contribute to the understanding of the landward-inclined and 

seaward-inclined seawall by theoretical studies. It is better if any researcher studies this 

problem using a model or full scale measurement so we can compare the results of the 

study. This study might then help engineers to estimate the pressure impulse on the wall 

for certain geometries.  

This study is expected to be considered by engineers and designers to predict the 

design of wave load conditions in order to help ensure the stability of the structures. 

Referring to this study might help a designer or engineer to estimate and minimise the 

cost to build a proper seawall.  
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1.7 Research Methodology 

The first phase is preliminaries studies. During the literature study phase, the 

preliminary background of wave impact on the seawall was reviewed and the method 

used by previous authors was studied. The scope of the research was identified. 

The next second phase is derivation of mathematical model. During this phase, 

the pressure impulse theory which proposed by Cooker and Peregrine (1991) was 

imposed, and two-dimensional model for water wave impact on vertical wall which 

modelled by Cooker and Peregrine (1991) was applied. 

The third phase is to develop a mathematical formulation of each problem. From 

the mathematical model, the fluid is assumed to be compressible and inviscid. The 

governing equations and boundary conditions was applied to Laplace's equations. 

The next phase is to solve the mathematical formulation. During this phase, the 

formulation was solved by using perturbation method. Then the results were shown using 

MATLAB. 

The last phase is result analysis and discussion. At this final phase, the results 

were analysed. For the validation of the results, the later studies or experiments work by 

previous research was compared. 

1.8 Outline of the Thesis 

The thesis has been divided into six chapters, and each chapter will be elaborated 

significantly including the explanation and discussion of the pressure impulse theory. In 

these two problems, we assume the fluid is incompressible and inviscid.  

Chapter 2 provides a comprehensive review of previous studies by researchers in 

this field. It provides a review of pressure impulse on seawalls, breakwaters and 

overtopping. The review of these studies will be explained experimentally and 

theoretically. It also discusses a literature review of the perturbation method since this 

method is applied in this model. 
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 Chapter 3 will cover the explanation of the pressure impulse theory. It will 

include Cooker’s theory. It will also explain the governing equation in this chapter. 

Furthermore, the method to be applied will be introduced in this chapter. 

The mathematical modelling of a landward-inclined seawall is introduced in 

Chapter 4. It is then followed by the mathematical formulation of a landward-inclined 

seawall. The methodology of the research is discussed briefly in this chapter. The methods 

should be followed to achieve the objectives of the research and to obtain accurate results. 

We will discuss the result of pressure impulse on a landward-inclined seawall. The results 

will be analysed and presented in tables and graphs. The results of previous studies will 

also be discussed and compared to the current results. 

Chapter 5 briefly discusses the mathematical modelling of a seaward-inclined 

seawall. The mathematical formulation of this problem will be discussed. The 

methodology of the research is also discussed briefly in this chapter. The methods should 

be followed to achieve the objectives of the research and to obtain accurate results. We 

will then examine the aftereffect of pressure impulse on a seaward-inclined seawall. The 

outcomes will be examined and introduced in tables and charts. In addition, the 

correlation of past investigations will be examined and contrasted with current outcomes. 

Finally, Chapter 6 will conclude all the results and objectives of the research. It 

will also cover the recommendations for further work in order to improve the current 

mathematical model or to test a new mathematical model in other structural designs.
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

The coastal engineering field has attracted researchers who wish to investigate the 

wave impact on the seawall. There have been several research works in this field, both 

experimentally and theoretically. Bagnold (1939) was among the earliest person 

researching wave impact and focused on the nature of the shock pressure of wave striking 

on the vertical seawall. The research in this field has been developed theoretically and 

experimentally whether in full scale measurement or using a model and they mostly 

agreed with Bagnold’s observations. 

The results of laboratory experiments (Bagnold, 1939; Chan & Melville, 1988; 

Hattori, Arami & Yui, 1994; Ingram, Gao, Causon, Mingham & Troch, 2009; Kirkgöz, 

1991; Pullen, Allsop, Bruce & Pearson, 2009) and full-scale measurements (Bullock, 

Crawford, Hewson, Walkden & Bird, 2001; Bullock, Obhrai, Peregrine & Bredmose, 

2007; Cuomo, Allsop, Bruce & Pearson, 2010; Hofland, Kaminski & Wolters, 2011) have 

contributed to the knowledge of wave impact pressures and its effects on coastal 

structures. The theoretical approach has also contributed a lot to this field, (Cooker & 

Peregrine, 1992; Md Noar & Greenhow, 2015a, 2015b; Okamura, 1993). This is vital 

knowledge in improving the design of coastal structures such as breakwaters and 

seawalls. 

2.1.1 Model Scale 

A model scale is most generally a physical representation of an object which 

maintains accurate relationships between all important aspects of the model, although 

absolute values of the original properties need not be preserved. This enables the 
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demonstration of some properties of the original object without examining the original 

object itself. As a result, the researchers have given us new results or detail and also some 

improvements for us to study the characteristics of wave impact pressure.  

An experiment was conducted to study the problem of wave pressure on vertical 

walls by using a wave tank model (Bagnold, 1939). The study clearly stated that when 

waves strike a wall, they are likely to yield high shock pressure in a very short time. 

Bagnold (1939) also stated that in a very short time, ∆𝑡, the pressure goes up to its high 

peak value, 𝑝𝑝𝑘 and normally the time taken is from 1 to 10 𝑚𝑠. He also proposed the 

pressure impulse, 𝑃 as the integral of pressure over the period of impact. 

Kirkgoz (1982) conducted an experiment to study the breaking wave impact on 

vertical walls. He claimed that the breaking wave with its front face parallel to the wall 

produces the greatest shock pressures. He then continued his study by conducting a new 

experiment, and found that the backward landward-inclined and forward landward-

inclined wall may experience higher impact pressure than a vertical wall (Kirkgöz, 1991). 

Chan and Melville (1988) conducted an experiment on the impact pressure due to 

deep-water breaking on surface piercing flat plate. They stated that the dynamics of 

trapped air during impact may cause a higher pressure and pressure oscillations. Chan 

(1994) also had the same result in an experiment on deep water plunging-wave impact on 

a vertical wall. The result was compared theoretically by Cooker and Peregrine (1991) 

and a good agreement was found. 

Hattori, Arami, and Yui (1994) found that the highest impact pressures of very 

short duration happened when small air bubbles were trapped between the wall and the 

vertical wave during the impact. Ingram, Gao, Causon, Mingham, and Troch (2009) 

conducted a numerical modelling work package to study impulsive wave overtopping at 

coastal structures. The simulation shows impulsive, aerated, near overtopping jets 

dominated the overtopping process on a vertical seawall. Pullen, Allsop, Bruce, and 

Pearson (2009) did a comparison between field and laboratory measurements of mean 

overtopping and spatial distribution on a vertical seawall. The study shows there are no 

scale effects that need to be considered when comparing between field and laboratory 

tests but the wind effect needed to be accounted and corrected for accordingly. 



 

18 

Kisacik, Troch, Van Bogaert, and Caspeele (2014) investigated uplift impact 

forces on a vertical wall with an overhanging horizontal cantilever slab. In a little scale 

test set-up under wave impact (imprudent) loads, a vertical wall with an overhanging flat 

cantilever piece is tested. An arrangement of parameters overseeing the expectation of 

wave stacking on the structure is examined. From the breaking wave kinematics and 

impact loads experiment, the result of a prediction model of uplift impact force is 

introduced.  

Using a model test, a numerical simulation of wave impact on a rigid wall using 

a two–phase compressible Smoothed Particle Hydrodynamics (SPH) method was studied 

by Rafiee, Dutykh, and Dias (2015). A SPH strategy in light of the SPH–ALE plan was 

utilised for demonstrating two-stage streams with extensive thickness proportions and 

sensible sound velocities. The SPH plot was additionally enhanced to go around the 

elastic flimsiness that may happen in the SPH recreations. The distinction in the area of 

the effect weight was related to the interface thickness in the level set reproductions 

though the proposed SPH conspire was equipped for displaying sharp interfaces between 

the stages. 

Kocaman and Ozmen-Cagatay (2015) explored dam-break induced shock waves 

impact on a vertical wall by doing trial tests and Volume of Fluids, VOF-based on 

Computational Fluid Dynamics, CFD simulations. New research facility tests were done 

in a rectangular flume with a smooth even wet bed for two distinctive tailwater levels. 

The discoveries demonstrate that the effect of dam-break surge wave on a downstream 

end divider causes wave reflection against the divider and a negative wave event moving 

upstream with undulations on a free surface. Holloman, Deshpande, and Wadley (2015) 

investigated an impulse transfer during sand impact with a solid block. During this 

experiment, a vertical pendulum device was utilised to tentatively explore the impulse 

and pressure connected by the effect of wet engineered sand upon the level surface of a 

back upheld strong aluminium test square. The experimental study shows that the 

momentum transferred to the test structure and is assumed to be equivalent to the 

incoming sand's free field momentum, with the possibility that the sand stagnates against 

a planar surface upon impact. 

Shih (2016) studied random wave impact on highly pervious pipe breakwaters 

through a physical experiment. This examination explored the execution of a pervious 
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pipe screen breakwater introduced before a seawall to reduce the wave impact force and 

wave pressure. The outcomes demonstrated that pervious pipe snags set vertically before 

a dike can viably moderate and decrease the wave impact by more than 70%.  

An investigation of offshore breaking wave impacts on a large offshore structure 

was carried out by Hu, Mai, Greaves, and Raby (2017). The discoveries are significant to 

offshore and beach front structures in distinguishing the outrageous loads, maximum 

pressure and most extreme run-up required for their design. There are four types of wave 

impact recognized in the tests. They are slightly breaking, flip-through, large air pocket 

and broken wave impacts. The outcome demonstrates a good agreement was found in the 

four wave impact types between numerical expectations and experimental measurements 

of surface height, run up and impact zone. This study has demonstrated various types of 

wave impact will affect the highest wave run-up and maximum load. Hence, this study is 

required to be considered separately for design purposes.  

Van Doorslaer, Romano, De Rouck, and Kortenhaus (2017) investigated the 

impact on a storm wall caused by non-breaking waves overtopping a smooth inclining 

embankment. An experimental modelling was conducted at three unique scales which are 

small, middle and large scale in order to quantify such effects. The tested geometry was 

a smooth inclining embankment. The forces from the waves overtopping the dams in the 

range of 20 to 40 kN/m model scale in the dimensionless freeboard (Rc/Hm0) scope of 1 

to 2 was demonstrated as a result. Compared to impact forces on vertical walls as 

computed by the Shore Protection Manual (SPM), it is much lower. The diminishment of 

wave overtopping should be possible by introducing a versatile or changeless storm wall.  

A nonlinear wave interaction with curved front seawalls was investigated by De 

Chowdhury, Anand, Sannasiraj, and Sundar (2017) in the Ursell number ranging from 8 

to 16. Analyses have been conducted to gauge the dynamic weight on these seawalls 

under the activity of customary monochromatic waves. Two diverse numerical models 

have been utilised to break down the deliberate information: An in-house SPH molecule 

based model and the business CFD bundle ANSYS-FLUENT. The SPH arrangement 

contains a few imperative nonlinear viewpoints likewise uncovered in the investigations. 

The correlation of estimated and reenacted weights along the bended front demonstrates 

the ability of the SPH models in anticipating the idea of run-up and overtopping, if it 

happens. 
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Extreme wave run-ups and pressures on a vertical seawall were studied by Ning 

et al. (2017). Correlations with exploratory information demonstrate that the stretched out 

numerical model can precisely foresee extraordinary wave run-ups and pressures on a 

vertical seawall. The impacts of the wave spectrum bandwidth, the position of the wall 

and the wave nonlinearity on the wave run-up and the greatest wave load on the vertical 

seawall are explored by doing parametric research.  

Qin, Tang, Xue, Hu, and Guo (2017) conducted a numerical study of wave impact 

on the deck-house caused by freak waves by using a model test. An improved strategy is 

proposed to surmise the deck-house wall as an Euler beam with a middle of an 

intermediate elastic bearings. By applying an understood iterative calculation, the Fluid-

Structure Interaction (FSI) is applied. Three re-creations are worked up, including a 

customary wave impact against a rigid wall, a laboratory scale freak wave impact against 

a flexible wall, and the deck-house impact caused by a full-scale freak wave. By 

contrasting the neighbourhood pressure between the elastic deck and the elastic deck 

close to the vertical wall, it was discovered that the hydro elasticity altogether impacts 

the liquid area close to the elastic body. 

Song and Zhang (2018) studied the boundary element study of wave impact on a 

vertical wall with air entrapment. This research intends to accomplish the total procedure 

of simulation for wave impact with air entanglement utilising Boundary Element Method, 

BEM. A multi scale calculation with the assistance of an extended organised framework 

is presented for the nearby impact zone. Impacts of the pneumatic force on the effect 

procedure with air entanglement are likewise examined, where a logical conclusion due 

to the law of conservation is applied to clarify the discoveries. The impact of the air 

ensnared between a vertical wall and an overturning wave also assumes a fundamental 

part in the physical procedure of wave impact. Jensen (2018) investigated a solitary wave 

impact on a vertical wall. Wave impact on a vertical wall is explored in a physical and 

numerical wave tank. In a wave tank, a flip-through was moving quickly vertical because 

of a stream and a case with an extremely soaked wave was produced. Next, the front was 

relatively vertical and the measurement of impact pressure was 60% higher than the flip-

through case where the greatest pressure is discovered. Due to the impact and once-over 

process, an articulated double pressure peak is recorded for measurement of pressure. 
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In the latest research, Marzeddu, Stagonas, Gironella, and Sánchez-Arcilla (2018) 

investigated an experimental set-up and calibration errors for mapping wave-breaking. In 

concurrence with existing literature, researchers characterised adjustment capacities are 

accounted for to decrease the error in many estimations. However, in logical 

inconsistency to past work, straight and nonlinear fit capacities are stated to yield 

measurably indistinct outcomes. This study investigates the primary parameters 

influencing the precision and error of pressure result prompted by laboratory set-up and 

calibration system. 

2.1.2 Full-Scale Measurement 

Full-scale measurement is the experimentation of real-life situation in real 

location that will give an overview of the problem being measured and using large scale 

measurement. Bullock, Crawford, Hewson, Walkden, and Bird (2001) studied the 

influence of air and scale wave impact pressures at Admiralty Breakwater, Alderney. 

They found that the aeration level of seawater is higher than freshwater. They also noticed 

the peak pressure of freshwater waves is larger than the peak pressure of seawater waves. 

Subsequently, they concluded that the entrained air caused the maximum impact pressure 

to be lower. Bullock, Obhrai, Peregrine, and Bredmose (2007) investigated again the 

characteristics of the impact waves and used large-scale regular wave tests on sloping and 

vertical walls. They proposed that in some cases, the high level of aeration can increase 

the force and impulse on the wall. They noticed that at a sloping wall, the pressures, force, 

and impulse will be lower compared to a vertical wall. 

Cuomo, Allsop, Bruce, and Pearson (2010) conducted a full measurement 

experiment in Barcelona within the framework of the Violent Overtopping by Waves at 

Seawalls (VOWS) on breaking wave loads at vertical seawalls and breakwaters. A simple 

and intuitive set of prediction formula was introduced for quasi-static, impact forces and 

overturning moments and it produced a good agreement with the new measurement. They 

compared the previous measurements from physical model tests at small and large scale 

with this new prediction formula and found encouraging results. 

Hofland, Kaminski, and Wolters (2011) carried out a full scale measurement of 

pressure fields on a vertical seawall. They collaborated with the Joint Industry Project 

Sloshel in LNG tanks using high spatial and temporal resolution. The flip-through impact 
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was found to have caused the highest peak pressure and force but it was also found to 

happen very rarely in a random wave field. Peregrine (2003) stated that violent pressure 

caused the flip-through to occur; it occurs without impact of liquid on the wall, 

independent of the global dynamics and is a local phenomenon.  

Stagonas, Marzeddu, Cobos, Conejo, and Muller (2016) studied the use of a 

pressure mapping system for measuring wave impact induced pressures. A set-up and an 

adjustment strategy were proposed and utilised for this work. The framework was 

approved against a pressure transducer and load cell measurement and for a scope of 

waves breaking on a vertical seawall. Using an extensive number (120 estimations for 

each case considered) of breaking and broken waves communicating with the wall, the 

peak pressure profiles and the pressure distribution maps detailed by the framework 

concur well with results obtained by utilising pressure transducers. It was found that 

through cautious alignment and set-up the pressure mapping framework has the ability to 

furnish pressure distribution maps with a decent precision. 

2.1.3 Theoretical Work 

Weggel and Maxwell (1970) modelled the wave impact on vertical walls and 

solved the wave equation in a compressible fluid. A similar work was done by Partenscky 

and Tounsi (1989). 

Cooker and Peregrine (1991) had modelled the wave as a rectangular region filled 

by fluid. They compared their theory (1991) with experimental works by Weggel and 

Maxwell (1970) and also by Partenscky and Tounsi (1989). They compared the shape of 

distribution of peak pressure using the chosen impact region, 𝜇  by the previous 

experimenters using their own mathematical model and found a good agreement. 

Presently, Cooker’s model (1991) is extended in this study. Subsequently, Cooker and 

Peregrine (1995) applied the theory to study the impact of deep water waves, the impact 

in a container, the impact of a water sheet on still water and a triangular wave. They found 

that the pressure impulse field is insensitive to variations of the wave shape where the 

distance is greater than half of the water depth from the impact region. 

 Okamura (1993) investigated the impulsive pressure due to wave impact on a 

sloping wall. He studied the relation between the maximum pressure impulse and the 
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inclination angle of a wall. The results showed that the pressure impulse has a maximum 

value in the case of a near vertical wall.  

Two methods had been applied in order to find wave impacts on rectangular 

structures i.e. hybrid collocation method and a basis function method (Md Noar, 2012). 

The hybrid collocation method was applied into the berm and ditch problem and a wall 

with a deck. Meanwhile, the basis function method was applied into a missing block 

problem and structures with baffles. The difference between the hybrid collocation 

method and the basis function method is at the matching interface. For the hybrid 

collocation method, the equation and derivatives will be matched by collocation points 

distributed over the depth. In contrast, for the basis function method, both equations and 

their derivatives will be multiplied by basis function and then integrated over the depth. 

Cooker (2013) created a model of water impact onto a porous breakwater. He 

found that there are two types of flow, depending on the porosity, 𝛽 of the barrier. He 

considered the small value of 𝛽 giving an insight into the sudden changes in flow and the 

high pressures that occur when a wave impacts a nearly impermeable seawall. Mamak 

and Guzel (2013) studied the wave impact pressures on curved seawalls. The results 

showed that the pressure impulse model can be used to model the wave impact pressures 

and their distribution on curved seawall models with good accuracy. A slight decrease 

has been observed in pressures for increasing radii of curvatures, especially in the case 

where the water depth at the wall was 14 cm. The location of the maximum impact 

pressure was found to occur above the still water level for all cases tested in this study.  

Md Noar and Greenhow (2015b) developed a simple analytical model for the 

pressure impulse and then applied it to a vertical seawall with berm and ditch and a 

vertical seawall with a missing block. They found that the berm has only a small effect 

on the pressure impulse on the seawall while within the ditch, repeated pressure impulses 

may liquefy the seabed there and may destabilize the wall. For the missing block case, 

they found that the pressure impulse decreases when the width of the missing block 

increases. Md Noar and Greenhow (2015a) modelled a vertical baffle at a free surface, a 

vertical baffle in front of a wall, a vertical baffle at a deck in front of a seawall and a 

vertical baffle on the seabed in front of a wall.  
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Akbari (2017) conducted a theoretical study of the simulation of wave 

overtopping using an enhanced SPH method for different coastal structures. Based on the 

idea of surface viscosity initially presented by Xu (2010), this issue was illuminated by 

altering the consistency of surface particles. This change can be utilised for both 

Incompressible and Weakly Compressible SPH strategies and its usage is simple and 

computationally productive as well. By this research, free surface boundary was 

simulated more precisely by methods for the presented alteration. As a result, the 

approximated values especially the wave-overtopping rate turn out to be more accurate.  

Paprota, Staroszczyk, and Sulisz (2018) investigated the Eulerian and Lagrangian 

modelling of a solitary wave attack on a seawall. The two approaches i.e. the semi-

analytical method and the SPH method were applied to investigate the problem of a 

solitary wave attack. The expectations of the two approaches were contrasted by differing 

wave regimes for which the two strategies produced satisfactory outcomes. The after-

effects of numerical re-creations have demonstrated that both proposed techniques 

foresee basically a similar free-surface profiles for rushes of little and direct amplitudes. 

For maximum waves, a few errors between the after-effects of the two methods happen. 

By comparing these two models results with empirical data, a good agreement was found 

with experimental data of wave crest and maximum wave run-up at a wall. 

Based on this research, theoretical work is chosen. A rectangular region filled by 

fluid from Cooker and Peregrine (1991) has been extended into two models of wave 

impact on seaward-inclined seawall and landward-inclined seawall. Pressure impulse 

theory is discussed in chapter three. 

2.1.4 Perturbation Method 

The perturbation theory method will be applied in this research for these two 

problems in Chapter 3 and Chapter 4 i.e. the mathematical modelling of a landward-

inclined and a seaward-inclined seawall respectively. After the results have been 

obtained, we will run the coding in MATLAB to illustrate them in tables and figures. 

Perturbation theory leads to an expression for the desired solution in terms of a 

formal power series in a small parameter, 𝜀 , known as the perturbation series that 

quantifies the deviation from the exactly solvable problem. The leading term in this power 

series is the solution of the exactly solvable problem while further terms describe the 
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deviation in the solution. Perturbation theory comprises mathematical methods for 

finding an approximate solution to a problem by starting from the exact solution of a 

related, simpler problem. A critical feature of the technique is a middle step that breaks 

the problem into solvable and perturbation parts. Perturbation theory is applicable if the 

problem at hand cannot be solved exactly, but can be formulated by adding a small term 

to the mathematical description of the exactly solvable problem. Consider 

𝑥 = 𝑥0 + 𝜀𝑥1 + 𝜀
2𝑥2 +⋯ 2.1 

Here, 𝑥0 is the known solution to the exactly solvable initial problem and  𝑥1, 𝑥2, … are 

the higher order terms. For small 𝜀 these higher order terms are successively smaller. An 

approximate “perturbation solution” is obtained by truncating the series, usually by 

keeping only the first two terms. 

A few researchers have recently applied the perturbation method in their studies. 

Mirzazadeh and Ayati (2016) applied the perturbation method for a system of Burger 

equation. They noticed the method is very simple and effective. The computational 

difficulties of other methods are reduced in this model. All calculations with simple 

manipulations can also be made. 

Claude, Duigou, Girault, and Cadou (2017) investigated an eigensolution to a 

vibroacoustic interior coupled problem with the perturbation method. As a result, they 

proposed to apply a perturbation method to compute the eigenvalues of a vibroacoustic 

interior coupled problem. Because it only requires a linear solver and a subroutine to 

realize matrix-vector product, this proposed method is much easier to implement in 

computational software 

Moutsinga, Pindza, and Mare (2018) studied the perturbation and transform 

methods for pricing under pure diffusion models with affine coefficients. They introduced 

an efficient method in order to solve the system of Riccati differential equation. The 

Laplace and perturbation methods are combined in this technique as a part of an algorithm 

to the exact solution of the nonlinear Riccati equation. As a conclusion, they proposed to 

solve nonlinear systems of stiff Riccati differential equations arising in finance by 

combining the Laplace and perturbation methods.

https://en.wikipedia.org/wiki/Approximation_theory
https://en.wikipedia.org/wiki/Solution_(equation)
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CHAPTER 3 

 

 

PRESSURE IMPULSE THEORY 

3.1 Introduction 

During the impact of waves on a seawall, the horizontal of the waves is 

immediately brought to rest. This sudden and unexpected change of the wave’s motion is 

accompanied by a large pressure, 𝑝 over a short time acting on the wall and also through 

the fluid. Since wave impacts occur for a very short time, typically  10−2𝑠  or may be 

less, it is appropriate to define the pressure impulse. 

The first definition of pressure impulse 𝑃  had been proposed by Cooker and 

Peregrine (1991) as the integral of pressure with respect to time: 

𝑃(𝑥, 𝑦) = ∫ 𝑝(𝑥, 𝑦, 𝑡)

𝑡𝑎

𝑡𝑏

𝑑𝑡 
 

3.1 

The notation 𝑡𝑏 is the time before the impact while 𝑡𝑎 is the time after the impact. Next, 

𝑥 and 𝑦 are the Cartesian coordinates of position and 𝑝 is pressure.  

The peak pressure, 𝑝𝑝𝑘 (typically 4 × 105𝑁𝑚−2) can also be estimated from a 

calculation of the value of 𝑃 , by assuming that during the impact the pressure is 

approximately triangular, and ∆𝑡 = 𝑡𝑎 − 𝑡𝑏  are known. It can be referred in Figure 3.1. 
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Figure 3.1 The sketch of pressure as a function of time  

Under the fixed wave condition (at a point on the wall) the pressure impulse is 

approximately constant although the peak pressure will vary unpredictably (Bagnold, 

1939). Therefore,  

𝑃 = 𝑝𝑝𝑘
∆𝑡

2
 3.2 

It can be expressed as: 

𝑝𝑝𝑘 =
2𝑃

∆𝑡
 3.3 

But since ∆𝑡 is uncertain, the peak pressure  𝑝𝑝𝑘  is also an uncertain estimation. 

This is the reason the pressure impulse, 𝑃, is chosen to study the wave impact on a rigid 

structure and to get the peak pressure. For a high impact  𝑝𝑝𝑘  can be very high and ∆𝑡 

very small, but the product of Equation 3.2 will stay finite and approximately constant 

for wave impact from similar waves. In a comparison of their result with an experimental 

measurement, they stated that this theory uses simple boundary conditions and produces 

𝑝𝑝𝑘 

Pressure 

𝑡𝑏 𝑡𝑎 

  𝐴𝑟𝑒𝑎 = ∫ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑡

𝑡𝑎

𝑡𝑏

 

            = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐼𝑚𝑝𝑢𝑙𝑠𝑒, 𝑃 
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an approximate solution for other wave shapes in more complex geometries. Therefore, 

we refer to the model of Cooker and Peregrine (1991) which is a two-dimensional model 

for water wave impact on a vertical wall.  

3.2 Cooker’s Model 

Cooker and Peregrine (1991, 1995) created a mathematical model for the pressure 

impulse theory for impact between a region of incompressible and inviscid. Cooker’s 

model from 1991 was designed for the pressure impulse theory of an impact region. 

Figure 3.2 represents a model of a two-dimensional vertical seawall. The full line is the 

wave after the impact while the dotted line is the incoming waves. The area between 

dotted line and full line is the impact zone. 

 

Figure 3.2 The sketch of a realistic wave impact  

 Cooker and Peregrine (1991) modelled the real situation as a rectangular shaped 

region filled by fluid where the seabed is at 𝑦 = −𝐻 while the seawall is at  𝑥 = 0, and 

the free surface is at 𝑦 = 0. The fluid domain is defined by  𝑥 ≥ 0, −𝐻 ≤ 𝑦 < 0  and 𝜇 

𝑃 = 0 

𝛿𝑃

𝛿𝑛
= 𝑈𝑛𝑏 

𝑈𝑛𝑏 

𝛿𝑃

𝛿𝑛
= 0 

∇2𝑃(𝑥, 𝑦) = 0 

∇𝑃 → 0 
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is a parameter that describes the impact region, −𝜇𝐻 ≤ 𝑦 < 0  . This can be shown in 

Figure 3.3. 

 

Figure 3.3 Cooker’s model in 1991 

The notations used in Figure 3.3 are defined as: 

0 ≤ 𝜇 ≤ 1 : a dimensionless constant indicating how much of the wall is hit  

𝐻 > 0       : total water depth at time impact, from seabed to the top of the wave

𝑈°       : a typical impact velocity  

Cooker and Peregrine (1995) then improved their mathematical model from 1991, 

changing from using exponential terms to hyperbolic terms. They stated that the 

exponential will decay when 𝑥 → ∞  (Cooker & Peregrine, 1991) and transformed the 

previous model into a specific boundary, 𝑥 = 𝐵 instead of  𝑥 → ∞  . The new model is 

illustrated in Figure 3.4. 

𝑥 

𝑦 

1

𝜌

𝛿𝑃

𝛿𝑥
= 𝑈° 

𝛿𝑃

𝛿𝑥
= 0 

𝛿𝑃

𝛿𝑦
= 0 

∇2𝑃 = 0 

∇𝑃 → 0 

𝑃 = 0 

−𝜇𝐻 

−𝐻 

𝑥 = 0 
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Figure 3.4 Cooker’s model in 1995 

 Cooker and Peregrine (1995) stated that the rectangular region is full with an ideal 

fluid domain by neglecting any cushion of air. Bagnold (1939) suggested the greatest 

pressure impulse happens due to an adiabatic compression over a large area of thin air 

cushion and the wave front must be almost plane and parallel to the wall at the moment 

of impact. This model was developed by Faltinsen and Timokha (2011) theoretically. 

However, we will not consider it here. 

3.3 Governing Equation 

The governing equations for this problem are based on the mathematical model 

suggested by Cooker and Peregrine (1991, 1995). The fluid is said to be incompressible 

and inviscid. The boundary conditions are displayed in Figure 3.4. Let’s say 𝑈°, 𝐿°, ∆𝑡, 

𝜌 , 𝑔 , 𝑢  and  𝑝𝑠  are typical impact velocity, length, time, water density, gravitational 

acceleration, velocity and pressure, respectively, for the incident wave. Euler’s equations 

made dimensionless with respect to these scaling are: 

 

𝑦 = 0 

𝑦 = −𝜇𝐻 

𝑦 = −𝐻 

𝛿𝑃

𝛿𝑥
= 0 

𝛿𝑃

𝛿𝑥
= −𝜌𝑈(𝑦) 

𝛿𝑃

𝛿𝑦
= 0 

∇2𝑃 = 0 

𝑃 = 0 

𝑃 = 0 

𝐵 
𝑦 

𝑥 
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𝛿𝑢

𝛿𝑡
+ (

𝑈°∆𝑡

𝐿° 
) (𝑢. ∇)𝑢 = −(

∆𝑡𝑝𝑠
𝜌𝑈°𝐿°

) ∇𝑝 − (
𝑔∆𝑡

𝑈°
) 𝑗 3.4 

   𝐺1         𝐺2          𝐺3          

The notation  𝑗 in Equation 3.4 is a unit vector directing upwards. Cooker and Peregrine 

(1991) had labelled 𝐺1, 𝐺2 and 𝐺3  as dimensionless groupings and they are discussed as 

follows.  

For a sudden impact, the impact time is much less than the time scale of the 

evolution of the wave as a whole, i.e  ∆𝑡 ≪ 𝐿° 𝑈°⁄ . Then, based on Equation 3.4,            

𝐺1 = 𝑈°∆𝑡 𝐿° ≪ 1⁄ , and the nonlinear term can be neglected. Next, 𝐺3 = 𝑔∆𝑡 𝑈°⁄ ≪ 1 , 

then the last term in Equation 3.4 is so small and can be neglected. Besides that, as for 

𝐺2 = ∆𝑡𝑝𝑠 𝜌𝑈°𝐿°⁄ , we can have a balance between the first and third term in Equation 

3.4. Cooker and Peregrine (1991) proves this is consistent with the statement: 

“Impulse exerted on the wall~Incident wave momentum” 

Neglecting the small terms in Equation 3.4 yields: 

𝛿𝑢

𝛿𝑡
= −(

∆𝑡𝑝𝑠
𝜌𝑈°𝐿°

) ∇𝑝 3.5 

By choosing  ∆𝑡𝑝𝑠 = |𝑈°| = 𝐿° = 1  , i.e. 𝑝𝑠 = (𝜌𝑈°𝐿° ∆𝑡⁄ ) . From this case, 

considered here we can choose to non-dimensionalise problem by the characteristic 

length, time and velocity become the water depth, duration of impact and velocity of 

impact directly. Then Equation 3.5 indicated that pressure impulse is scaled by 𝜌𝑈°𝐿°. 

Equation 3.5 becomes: 

𝛿𝑢

𝛿𝑡
= −

1

𝜌
∇𝑝 3.6 

over a short interval, ∇𝑡. 

Now, the integration of Equation 3.6 with respect to time through the impact 

interval, [𝑡𝑏 ,𝑡𝑎 ] gives 
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𝑢𝑎 − 𝑢𝑏 = −
1

𝜌
∇𝑝 3.7 

The notation of 𝑢𝑎 is velocity after impact and 𝑢𝑏 is velocity before impact, ∇. 𝑢𝑏 

and ∇. 𝑢𝑎 will vanish (∇. 𝑢𝑏 = 0, ∇. 𝑢𝑎 = 0  ) by taking the divergence of Equation 3.7. 

Therefore, it shows that the pressure impulse satisfies Laplace’s equation: 

∇2𝑃 = 0 3.8 

Equation 3.8 does not contain time, hence we can solve the boundary-value problem 

in a fixed domain which is a mean position for the fluid during the impact. In the fluid 

domain, the boundary conditions are applied to Laplace’s equation as follows: 

a) At the free surface, where pressure is constant and taken to be zero reference 

pressure. 

𝑃 = 0 3.9 

b) At points on a fixed rigid boundary, in contact with the liquid before and after the 

impulse, the normal velocity is zero and it gives  

𝛿𝑃

𝛿𝑛
= 0 3.10 

c) When the liquid meets a solid boundary during impact, the change in normal velocity 

gives the normal derivative of pressure impulse. For the simplest case of a stationary 

or moving rigid boundary,  

𝑢𝑛𝑏 =
1

𝜌

𝛿𝑃

𝛿𝑛
 3.11 

The notation 𝑢𝑛𝑏 is the normal component of the approach velocity of the liquid. The 

subscript 𝑛𝑏 denotes the components normal to the boundary. Conditions b) and c) are 

easily altered to account for moving rigid boundaries including the case where the impact 

causes a rigid body to move. 
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d) When liquid meets liquid two boundary conditions are needed on the common 

interface. One is that the pressure impulse is continuous: 

𝑃1 = 𝑃2 3.12 

Considering the change in velocity on each side of the interface gives  

𝑢1𝑛𝑏 − 𝑢2𝑛𝑏 =
1

𝜌1

𝛿𝑃1
𝛿𝑛

−
1

𝜌2

𝛿𝑃2
𝛿𝑛

 3.13 

The subscript 𝑛𝑏 denotes the components normal to the boundary and subscript 𝑏 

denotes the liquid velocities immediately before the impact. In all the above cases, an 

inelastic impact is assumed. 

The solution of the boundary value problem for the first model by Cooker and 

Peregrine (1991) in Figure 3.3 is solved using the separation of variables in Laplace’s 

equation and Fourier analysis giving  

𝑃(𝑥, 𝑦) = ∑𝑎𝑛 sin (
𝜆𝑛𝑦

𝐻
) 𝑒𝑥𝑝 (−

𝜆𝑛𝑥

𝐻
)

∞

𝑛=0

 
 

 3.14 

with  𝑎𝑛 = 2𝜌𝑈°𝐻(cos(𝜇𝜆𝑛) − 1) 𝜆𝑛
2⁄   where  𝜆𝑛 = (𝑛 + 1 2⁄ )𝜋 and the constant 𝑎𝑛 is 

determined by solving boundary conditions with given 𝛿𝑃 𝛿𝑥⁄  at 𝑥 = 0, the wall  

𝛿𝑃

𝛿𝑥
|
𝑥=0

=∑−𝑎𝑛𝜆𝑛 sin(𝜆𝑛𝑦)

∞

𝑛=1

= 𝑓(𝑥) = {
−𝜌𝑈°, −𝜇𝐻 ≤ 𝑦 ≤ 0

0, −𝐻 ≤ 𝑦 < 0
 3.15 

 Cooker and Peregrine (1995) had modified the previous model (Cooker & 

Peregrine, 1991) from using exponential terms to using hyperbolic terms in Fourier series 

and a new solution was found, as shown in Figure 3.4. But, this change still satisfies 

Laplace’s equation. Thus, the new model solution in Figure 3.4 in the Fourier series can 

be stated as: 
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𝑃(𝑥, 𝑦) = ∑𝑎𝑛 sin (
𝜆𝑛𝑦

𝐻
)
sinh (

𝜆𝑛(𝑥 − 𝐵)
𝐻 )

cosh (
𝜆𝑛𝐵
𝐻 )

∞

𝑛=0

 3.16 

with  𝑎𝑛 = ∫ (2𝜌𝑈° 𝜆𝑛
2⁄ )

0

−𝜇𝐻
𝑠𝑖𝑛(𝜆𝑛𝑦 𝐻⁄ )𝑑𝑦 , where  𝜆𝑛 = (𝑛 + 1 2⁄ )𝜋 

The results of pressure impulse on the wall of Cooker’s model (1991) are shown 

in Figure 3.5, Figure 3.6, Figure 3.7 and Figure 3.8. From these results, it can be stated as 

impact region, 𝜇 increases, pressure impulse, 𝑃 are increasing. It can be seen from peak 

pressure, 𝑝𝑝𝑘 from these figures. As we can see, when value of impact region, 𝜇 has been 

increased from 0.1 to 0.5, peak pressure is increasing from 0.057 to 0.290. It can be seen 

from Figure 3.5 and Figure 3.6. Next, impact region, 𝜇 is increase from 0.8 until 1.0. The 

results from Figure 3.7 and Figure 3.6 show the peak pressure, 𝑝𝑝𝑘 increase from 0.510 

to 0.730. From these figures, Cooker’s result shows as, 𝜇 increases, pressure impulse, 𝑃 

are increasing. 

Cooker’s result (1991) can be shown in Table 3.1. The impact region, 𝜇 can be 

related with pressure impulse, 𝑃. 

Table 3.1 The result of Cooker’s model (1991) 

Impact Region, 𝝁 𝟓° 

0.1 0.058  

0.5 0.290 

0.8 0.510 

1.0 0.720 

Source: Cooker (1991) 
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(a) 

 

 

 

(b) 

Figure 3.5 3D plot, (a) and contour plot, (b) with 𝜇 = 0.1 

Pressure impulse at 𝜇 = 0.1 

Pressure impulse at 𝜇 = 0.1 
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(a) 

 

 

 

(b) 

Figure 3.6 3D plot, (a) and contour plot, (b) with 𝜇 = 0.5 

Pressure impulse at 𝜇 = 0.5 

Pressure impulse at 𝜇 = 0.5 
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(a) 

 

 

(b) 

Figure 3.7 3D plot, (a) and contour plot, (b) with 𝜇 = 0.8 

Pressure impulse at 𝜇 = 0.8 

 

Pressure impulse at 𝜇 = 0.8 
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(a) 

 

(b) 

Figure 3.8 3D plot, (a) and contour plot, (b) with 𝜇 = 1.0 

Pressure impulse at  𝜇 = 1.0 

Pressure impulse at  𝜇 = 1.0 
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3.4 Non-Dimensionalisation 

We have non-dimensionalised our calculation for most of the problems in this 

thesis. By taking Cooker’s Model from Figure 3.4 as a concrete illustration, the required 

boundary conditions in this current problem may be described as a non-dimensionalised 

by culling incipient non-dimensional factors in view of variables that normally show up 

in the problem. Prime (') variables indicate non-dimensionalised quantities. 

𝑥 = 𝑥′𝐻, 𝑦 = 𝑦′𝐻, 𝐵 = 𝐵′𝐻, 𝑃 = 𝑃′𝜌𝑈°𝐻 3.17 

The corresponding derivatives are variable 

𝛿𝑥 = 𝛿𝑥′𝐻, 𝛿𝑦 = 𝛿𝑦′𝐻,     𝛿𝑃 = 𝛿𝑃′𝜌𝑈°𝐻   3.18 

On the wall, substituting the non-dimensional variable quantity into Equation 3.11 gives 

𝛿𝑃

𝛿𝑥′𝐻
= −𝜌𝑈(𝑦) = −𝜌𝑈° 3.19 

to become 

𝛿𝑃

𝛿𝑥′
= −𝜌𝑈°𝐻 3.20 

and 

𝛿𝑃

𝛿𝑥′
= −1 3.21 

The comparative advances are rehashed to other boundary conditions and the 

solution, as opposed to presenting another notation for all variables. The prime notation 

is dropped and gives us the dimensionless boundary value problem for pressure impulse. 

It is illustrated in Figure 3.9. 
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Figure 3.9 The dimensionless boundary value problem for pressure impulse  

Subsequently, the Fourier series of dimensionless solution moves toward becoming 

𝑃(𝑥, 𝑦) = ∑𝑎𝑛 sin(𝜆𝑛𝑦)
sinh(𝜆𝑛(𝑥 − 𝐵))

cosh(𝜆𝑛𝐵)

∞

𝑛=0

 3.22 

With  𝑎𝑛 = ∫(−2 𝜆𝑛⁄ ) sin(𝜆𝑛𝑦)𝑑𝑦  where  𝜆𝑛 = (𝑛 + 1 2⁄ )𝜋 

Equation 3.21 then becomes 

𝑃(𝑥, 𝑦: 𝜇) = ∑∫
−2

𝜆𝑛2
(1 − cos(−𝜇𝜆𝑛)) sin(𝜆𝑛𝑦)

sinh(𝜆𝑛(𝑥 − 𝐵))

cosh(𝜆𝑛𝐵)

∞

𝑛=0

 3.23 

The physical parameter can be found in this problem. The quantity unit and 

dimensions are mentioned in Table 3.1.  𝑃 can be shown as a dimensionless quantity by  

𝑦′ = 0 

𝑦′ = −𝜇𝐻 

𝑦′ = −𝐻 

𝛿𝑃′

𝛿𝑥′
= 0 

𝛿𝑃′

𝛿𝑥′
= −1 

𝛿𝑃′

𝛿𝑦′
= 0 

∇′2𝑃′ = 0 

𝑃′ = 0 

𝑃′ = 0 

𝑥′ = 𝐵 
𝑦 

𝑥 
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𝑃 = ∫ 𝑝

𝑡𝑎

𝑡𝑏

𝑑𝑡 =
[𝑇][𝑀][𝐿][𝑇−2]

𝐿2
= [𝑀][𝑇−1][𝐿−1]     3.24 

Furthermore, it has a similar dimension to 

𝜌𝑈°𝐻 = [𝑀][𝐿−3][𝐿][𝑇−1][𝐿] = [𝑀][𝑇−1][𝐿−1] 3.25 

Finally, the scaling pressure for pressure impulse, 𝑃 is given by 

𝑃 =
𝑃′

𝜌𝑈°𝐻
 3.26 

 

Table 3.2 Physical quantities 

Physical Quantity      Symbol     SI Unit Dimensions 

Velocity 𝑈° 𝑚𝑠−1 [𝐿][𝑇−1] 

Depth 𝐻 𝑚 [𝐿] 

Density 𝜌 𝑘𝑔𝑚−3 [𝑀][𝐿−3] 

Area  𝐴 𝑚2 [𝐿2] 

Impact Time 𝑡 𝑠 [𝑇] 

Force 𝐹 𝑘𝑔𝑚𝑠−2 [𝑀][𝐿][𝑇−2] 

Pressure Impulse 𝑃 𝑘𝑔𝑚−1𝑠−1 [𝑀][𝐿−1][𝑇−1] 

 

3.5 Convergence Test 

In order to verify and validate the numerical convergence of the summation in 

Equation 3.8, we truncate the sums at 𝑛 = 𝑁, then examine the effect of varying the value 

of  𝑁 on the results. The convergence can be tested numerically or analytically.  

To look at the infinite analytically, we will apply the Integral Test to show the 

series is convergent (Stewart & Bair, 2009). By taking the infinite total of Equation 3.14, 

the equation will be 

𝑃(𝑥, 𝑦: 𝜇) = ∑
cos(𝜇𝜆𝑛) − 1

𝜆𝑛2
sin (

𝜆𝑛𝑦

𝐻
) 𝑒𝑥𝑝 (

−𝜆𝑛𝑥

𝐻
)

∞

𝑛=0

 3.27 
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Where  𝜆𝑛 = (𝑛 + 1 2⁄ )𝜋 .  

Next,  𝑎𝑛 = ∑ (cos(𝜇𝜆𝑛) − 1 𝜆𝑛
2⁄ )sin (

𝜆𝑛𝑦

𝐻
) 𝑒𝑥𝑝 (

−𝜆𝑛𝑥

𝐻
)∞

𝑛=0 .  

The slowest convergence case happens when 𝑥 = 0, 𝑦 = 𝐻 and 𝜇 = 1.0. As we 

can see, the value of 𝑁 can be set at 100 as there is not much of a difference in the pressure 

output and position of maximum pressure on the wall for 𝑁 in a range of values. 

From the result illustrated by Table 3.3, an acceptable accuracy can be obtained 

through the truncation of Fourier series at 𝑁 = 10 until 𝑁 = 100. The percentage of 

difference for each result is calculated which truncates at 𝑁 = 100 where it is assumed 

to be convergent. Table 3.2 shows that the Fourier series can be truncated at 50N  

because there is only a 0.061% difference compared to 𝑁 = 100. The results indicate an 

acceptable accuracy at 𝑁 = 50 to 𝑁 = 100. 

Table 3.3 Pressure changes for values of  𝑁 at 𝑦 = −0.125 and 𝜇 = 1.0 

N Pressure  % Difference from  𝑵 = 𝟏𝟎𝟎 

10 0.26772 1.520 

20 0.26332 0.110 

30 0.26327 0.125 

40 0.26392 0.120 

50 0.26344 0.061 

60 03.6361 0.038 

70 0.26367 0.030 

80 0.26352 0.003 

90 0.26365 0.020 

100 0.26360 0.000 

The convergence of peak pressure is presented numerically at 𝑥 = 0 and 𝑦 = −0.125 by 

the next graph in Figure 3.10 for different values of 𝑁 and by using 𝜇 = 0.1. It clearly 

shows the pressure impulse of Cooker’s model converging when the value of 𝑁  is 

increasing. 
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Figure 3.10 Convergence of Cooker’s model
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CHAPTER 4 

 

 

MATHEMATICAL MODELLING OF A LANDWARD-INCLINED SEAWALL 

4.1 Introduction 

A literature study shows that Kirkgöz (1978) set up an experiment of a model of 

seawall at angles of 0° and 30°. He noticed that the average impact pressure was greater 

at 30° compared to 0°. 

Kirkgöz (1991) investigated the impact pressure of breaking waves on vertical 

and backward sloping walls by conducting laboratory experiments. He found that the 

impact pressure on backward and forward sloping walls was higher compared to those on 

vertical walls. Neelamani and Sandhya (2005) studied the surface roughness effect of 

vertical and landward-inclined seawalls in incident random wave fields. They found that 

seawalls at 50° and 60° inclinations received more wave pressure due to the plunging 

effects compared to vertical walls. Therefore, the purpose of the present chapter is to 

investigate how a small angle of inclination on vertical structures affect the pressure 

impulses on the wall by using the pressure-impulse theory. Pressure impulse might 

increase or decrease when the angle of inclination is increased.  

4.2 Mathematical Modelling of a Landward-Inclined Seawall 

The model of a landward-inclined seawall is illustrated in Table 4.1. The bottom 

of the wall is represented by  𝑥𝑤, but the domain is still similar to Cooker’s theory. We 

need to apply the perturbation theory in order to solve this problem. The notation 𝜀 

represents the angle of the wall from a vertical line in a positive clockwise direction. In 

this case, it is less than zero making it a negative value. 
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Figure 4.1 Model of a landward-inclined seawall   

 

4.3 Mathematical Formulation of a Landward-Inclined Seawall 

Cooker’s model in Figure 3.4 is modified. Therefore, we consider a new altered 

equation from Equation 3.1 as follows 

𝑃(𝑥, 𝑦; 𝜀) = ∑𝑃𝑘(𝑥, 𝑦)𝜀𝑘
∞

𝑘=0

 4.1 

This problem becomes a series of problems for various types of order of 𝜀, with 

each new order depending on the previous one. 𝑃, 𝜀 and 𝑘 are pressure impulse, angle of 

a landward-inclined wall and number of terms, respectively. 

Each of  𝑃𝑘 term is given by: 

𝑃𝑘(𝑥, 𝑦) = 𝑃𝑘𝑒−𝜆𝑛𝑥 sin 𝜆𝑛𝑦 4.2 

𝛿𝑃

𝛿𝑥
= −𝜌𝑈 

𝛿𝑃

𝛿𝑥
= 𝑈 𝛿𝑃

𝛿𝑦
= 0 

𝑥 = 𝑥𝑤 

𝑃 = 0 

∇2𝑃 = 0 

∇𝑃 → ∞ 

𝑥 

𝑦 
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The wall is assumed to be flat. The model can be explained by this triangle where 

𝐻 is the depth and  𝑥𝑤 is the bottom of the wall, 

 

Figure 4.2 Triangle of a model of a landward-inclined seawall  

From Table 4.2, the equation of tan 𝜀 can be described as 

tan 𝜀 =
𝑥𝑤
𝐻

 4.3 

Now, the value of 𝑥  will be defined as 

𝑥 =
𝑥𝑤
𝐻
𝑦 = 𝑦 tan 𝜀 ,    − 𝐻 < 𝑦 < 0 4.4 

Since the wall is flat, it can be described as in Figure 4.3.  

 

Figure 4.3 Direction of a flat wall  

𝑛= 𝑥𝑖 − 𝑦𝑗 

𝐻 

−𝜀 

𝑥𝑤 
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From Figure 4.3, the value of  𝑛 can be defined by 

𝑛 = cos 𝜀𝑖 − sin 𝜀𝑗 4.5 

Now, the boundary condition of the wall impacted by the water waves become 

𝛿𝑃

𝛿𝑛
= ∇𝑃. 𝑛 = cos 𝜀

𝛿𝑃

𝛿𝑥
− sin 𝜀

𝛿𝑃

𝛿𝑦
= −𝜌𝑈° cos 𝜀 4.6 

Therefore, Equation 4.6 will give 

𝛿𝑃

𝛿𝑛
= −𝜌𝑈° cos 𝜀 4.7 

For the region of the seawall in constant contact, the boundary condition is 

𝛿𝑃

𝛿𝑥
= tan 𝜀

𝛿𝑃

𝛿𝑦
 4.8 

Since = 𝑦 tan 𝜀  , therefore from Equation 4.4 and 𝛿𝑃 𝛿𝑛⁄ = −𝜌𝑈° cos 𝜀 = 0 . The 

following approximations are given for small 𝜀 by using Taylor Series, 

tan 𝜀 ≈ 𝜀 +
𝜀3

3
+⋯ 4.9 

The perturbation theory applied to this model gives the solution  

𝑃 =∑𝑃𝑘
∞

𝑘=0

𝜀𝑘 = 𝑃0 + 𝜀𝑃1 + 𝜀2𝑃2 + 𝜀3𝑃3 +⋯ 4.10 

Equation 4.10 will then be approximated for small  , and the perturbation solution to the 

boundary conditions gives 
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𝑃𝑥
0 + 𝜀(𝑃𝑥

1 − 𝑃𝑦
0) + 𝜀2 (𝑃𝑥

2 − 𝑃𝑦
1 −

𝑃𝑥
0

2
) + 𝜀3 (𝑃𝑥

3 − 𝑃𝑦
2 −

𝑃𝑥
1

2
−
𝑃𝑦
0

6
) +⋯ 

= −𝜌𝑈° cos 𝜀 = − 𝜌𝑈° (1 −
𝜀2

2
) + Ο(𝜀4) 

4.11 

Since cos 𝜀 = (1 −
1

2
𝜀2  ). 

Then, each of the 𝑃𝑥
𝑘 and 𝑃𝑦

𝑘

 
terms is expanded by using Taylor Series at 𝑥 = 0, 

giving 

𝑃𝑥
𝑘 = 𝑃𝑥

𝑘(0, 𝑦) + 𝑥𝑃𝑥𝑥
𝑘 (0, 𝑦) +

𝑥2

2
𝑃𝑥𝑥𝑥
𝑘 (0, 𝑦) +

𝑥3

6
𝑃𝑥𝑥𝑥𝑥
𝑘 (0, 𝑦) + ⋯ 4.12 

𝑃𝑦
𝑘 = 𝑃𝑦

𝑘(0, 𝑦) + 𝑥𝑃𝑦𝑥
𝑘 (0, 𝑦) +

𝑥2

2
𝑃𝑦𝑥𝑥
𝑘 (0, 𝑦) +

𝑥3

6
𝑃𝑥𝑥𝑥
𝑘 (0, 𝑦) +⋯ 4.13 

Note that, from Equation 4.9, value of  𝑥 = 𝑦 tan 𝜀 ≈ (𝜀 +
1

3
𝜀3) 𝑦 

Then, the Taylor Series of Equation 4.12 becomes: 

𝑃𝑥
𝑘 = 𝑃𝑥

𝑘(0, 𝑦) + 𝜀𝑦𝑃𝑥𝑥
𝑘 (0, 𝑦) +

𝜀2𝑦2

2
𝑃𝑥𝑥𝑥
𝑘 (0, 𝑦) 

+
𝜀3

3
(𝑦𝑃𝑥𝑥

𝑘 (0, 𝑦) +
𝑦3

2
𝑃𝑥𝑥𝑥𝑥
𝑘 (0, 𝑦)) +⋯ 

4.14 

Next, the Taylor Series of Equation 4.13 becomes: 

𝑃𝑦
𝑘 = 𝑃𝑦

𝑘(0, 𝑦) + 𝜀𝑦𝑃𝑦𝑥
𝑘 (0, 𝑦) +

𝜀2𝑦2

2
𝑃𝑦𝑥𝑥
𝑘 (0, 𝑦)  

+
𝜀3

3
(𝑦𝑃𝑦𝑥

𝑘 (0, 𝑦) +
𝑦3

2
𝑃𝑦𝑥𝑥𝑥
𝑘 (0, 𝑦)) +⋯ 

4.15 

The boundary condition takes the following form, as we neglect 0(𝜀4) and greater 

terms. By substituting Equation 4.14 and Equation 4.15 into Equation 4.11: 
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𝑃𝑥
0 + 𝜀𝑦𝑃𝑥𝑥

0 +
𝜀2𝑦2

2
𝑃𝑥𝑥𝑥
0 +

𝜀3

3
(𝑦𝑃𝑥𝑥

0 +
𝑦3

2
𝑃𝑥𝑥𝑥𝑥
𝑘 (0, 𝑦)) +⋯ 

+𝜀 (𝑃𝑥
1 + 𝜀𝑦𝑃𝑥𝑥

1 +
𝜀2𝑦2

2
𝑃𝑥𝑥𝑥
1 − 𝑃𝑦

0 − 𝜀𝑦𝑃𝑦𝑥
0 −

𝜀2𝑦2

2
𝑃𝑦𝑥𝑥
0 ) +⋯ 

+𝜀2 (𝑃𝑥
2 + 𝜀𝑦𝑃𝑥𝑥

2 − 𝑃𝑦
1 − 𝜀𝑦𝑃𝑦𝑥

1 −
1

2
𝑃𝑥
0 −

1

2
𝜀𝑦𝑃𝑥𝑥

0 ) +⋯ 

+𝜀3 (𝑃𝑥
3 − 𝑃𝑦

2 −
1

2
𝑃𝑥
1 −

1

6
𝑃𝑦
0) = −𝜌𝑈° (1 −

𝜀2

2
) 

4.16 

The conditions for the boundary condition of the above equation to remain true. 

It can be found by equating the coefficients of the powers of 𝜀 for both sides of Equation 

4.16.   

Now, we are going to compare each coefficient of  𝜀0, 𝜀1, 𝜀2 and 𝜀3. 

For the solution of  𝜀0, 

𝑃𝑥
0 = {

0, −𝐻 < 𝑦 < −𝜇𝐻
−𝜌𝑈°, −𝜇𝐻 < 𝑦 < 0

 4.17 

This is similar to Cooker’s solution in Equation 3.15. 

For the solution of 𝜀1, 

𝑃𝑥
1 = 𝑃𝑦

0 − 𝑦𝑃𝑥𝑥
0     − 𝐻 < 𝑦 < 0 4.18 

For the solution of 𝜀2 , 

𝑃𝑥
2 =

{
 

 𝑃𝑦
1 +

𝑃𝑥
0

2
− 𝑦(𝑃𝑥𝑥

1 − 𝑦𝑃𝑦𝑥
0 ) −

𝑦2𝑃𝑥𝑥𝑥
0

2
, −𝐻 < 𝑦 < −𝜇𝐻

𝑃𝑦
1 +

𝑃𝑥
0

2
− 𝑦(𝑃𝑥𝑥

1 − 𝑦𝑃𝑦𝑥
0 ) −

𝑦2𝑃𝑥𝑥𝑥
0

2
+ 𝜌𝑈°, −𝜇𝐻 < 𝑦 < 0

 

 

4.19 

 

For the solution of 𝜀3, 

𝑃𝑥
3 −

𝑃𝑥
1

2
−
𝑃𝑦
0

6
− 𝑦 (𝑃𝑥𝑥

2 − 𝑃𝑦𝑥
1 −

𝑃𝑥𝑥
0

6
) 

−
𝑦2

2
(𝑃𝑥𝑥𝑥

1 − 𝑃𝑦𝑥𝑥
0 ) −

𝑦3𝑃𝑥𝑥𝑥𝑥
0

6
,      − 𝐻 < 𝑦 < 0 

 

4.20 
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Next, the first order solution, Ο(𝜀1) is going to be solved. The 𝑛𝑡ℎ term of  𝑃𝑛
𝑘 

can be separated on the left hand side by multiplying each condition by  sin (
𝜆𝑛𝑦

𝐻
) and 

then it is integrated over(−𝐻, 0). This can be solved by applying the orthogonality of 

(sin (
𝜆𝑛𝑦

𝐻
) , 𝑛 ∈ 𝑁). But, since the orthogonality does not always apply to the right hand 

side, it will be left with an infinite sum. Hence, each  𝑃𝑛
𝑘−1  and  𝑃𝑛

𝑘−2 are defined. Then, 

these coefficients are determined by integral of products from the set 

(sin (
𝜆𝑛𝑦

𝐻
) , cos (

𝜆𝑛𝑦

𝐻
) , 𝑦𝑛,  𝑛 ∈ 𝑁) . In order to find the first order solutions of 𝜀1 , 

Equation 4.18 is multiplied by sin(𝜆𝑛𝑦) and then it is integrated over (−𝐻, 0). It gives: 

∫𝑃𝑥
1 sin (

𝜆𝑛𝑦

𝐻
)

0

−𝐻

𝑑𝑦 = ∫(𝑃𝑦
0 − 𝑦𝑃𝑥𝑥

0 ) sin (
𝜆𝑛𝑦

𝐻
)

0

−𝐻

𝑑𝑦 4.21 

Then, the derivatives in Equation 4.21 can be calculated, 

𝑃𝑥
1(0, 𝑦) = −∑𝜆𝑛𝑃𝑛

1 sin (
𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

 4.22 

𝑃𝑦
0(0, 𝑦) = ∑𝜆𝑛𝑃𝑛

1 cos (
𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

 4.23 

𝑃𝑥𝑥
0 (0, 𝑦) = −∑𝜆𝑛

2𝑃𝑛
0 sin (

𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

 
4.24 

 

Next, we substitute Equation 4.22, Equation 4.23 and Equation 4.24 into Equation 4.21 

which leads to the following approximation for the first order solution: 

𝑃(𝑥, 𝑦) = 𝑃0(𝑥, 𝑦) + 𝜀𝑃1(𝑥, 𝑦) 4.25 

By substituting the Equation 4.25,  

𝑃(𝑥, 𝑦) = ∑𝑃𝑛
0𝑒−𝜆𝑛𝑥 sin (

𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

+ 𝜀∑𝑃𝑛
1𝑒−𝜆𝑛𝑥 sin (

𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

𝑃1(𝑥, 𝑦) 4.26 
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𝑃(𝑥, 𝑦) = ∑(𝑃𝑛
0 + 𝑃𝑛

1)𝑒−𝜆𝑛𝑥 sin (
𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

 4.27 

𝑃(𝑥, 𝑦) ≈ ∑(𝑃𝑛
0 + 𝑃𝑛

1)𝑒−𝜆𝑛𝑥 𝑠𝑖𝑛 (
𝜆𝑛𝑦

𝐻
)

𝑁

𝑛=0

 4.28 

The second order solution, Ο(𝜀2) is going to be solved. A solution of 𝑃2(𝑥, 𝑦)
 

will be found by using a similar method to 𝑃1(𝑥, 𝑦). Equation 4.19 will be multiplied by 

sin(𝜆𝑛𝑦) and integrated over (−𝐻, 0). Hence, it will give: 

∫𝑃𝑥
2 sin (

𝜆𝑛𝑦

𝐻
)

0

−𝐻

𝑑𝑦 = ∫(𝑃𝑦
1 − 𝑦(𝑃𝑥𝑥

1 − 𝑃𝑦𝑥
0 ) −

𝑦2

2
𝑃𝑥𝑥𝑥
0 ) sin (

𝜆𝑛𝑦

𝐻
)

0

−𝐻

𝑑𝑦 4.29 

Calculating the relevant derivatives and substituting them into Equation 4.19 leads to the 

following approximation for the second term, 𝑃2(𝑥, 𝑦)
 
and therefore the second order 

solution is 

𝑃(𝑥, 𝑦) = 𝑃0(𝑥, 𝑦) + 𝜀𝑃1(𝑥, 𝑦) + 𝜀2𝑃1(𝑥, 𝑦) 4.30 

Finally it can be approximated as, 

𝑃(𝑥, 𝑦) = ∑(𝑃𝑛
0 + 𝜀𝑃𝑛

1 + 𝜀2𝑃𝑛
2)

∞

𝑛=0

𝑒−𝜆𝑛𝑥 𝑠𝑖𝑛 (
𝜆𝑛𝑦

𝐻
) 4.31 

𝑃(𝑥, 𝑦) ≈ ∑(𝑃𝑛
0 + 𝜀𝑃𝑛

1 + 𝜀2𝑃𝑛
2)

𝑁

𝑛=0

𝑒−𝜆𝑛𝑥 𝑠𝑖𝑛 (
𝜆𝑛𝑦

𝐻
) 

 

4.32 

4.4 Result and Discussion of Landward-Inclined Seawall 

The results of our mathematical model will be discussed in this section. The 

results of our study will also be confirmed and verified to ensure our study, method and 

calculation are accurate and correct. This is done by comparing our results with Cooker's 

results from 1991 and 1995. In addition, some previous studies related to our research 

will be included in this chapter. We will then discuss the relevance and compare the 

results. The results will be represented by diagrams, figures or tables and will be analysed. 
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4.5 Validation of Result for Landward-Inclined Seawall 

Table 4.1 shows the comparison of pressure impulse from Cooker’s model (1991) 

and a landward-inclined wall’s model. It can be seen from the results that the values of 

the pressure impulse from Cooker’s model (1991) and landward-inclined wall’s model 

are exactly equivalent. Although the value of impact region, 𝜇 is varied, we still get the 

same result. We can therefore validate that our method is correct since we found a good 

agreement with Cooker’s results. 

Table 4.1 Comparison of Cooker’s model and a landward-inclined wall model 

Impact Region, 𝛍  Cooker’s Model Landward-inclined Model 

0.1 0.058  0.058 

0.5 0.290 0.290 

0.8 0.510 0.510 

1.0 0.720 0.720 

Source: Cooker (1991) 

Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7 show that the values of peak 

pressure from Cooker’s model and landward-inclined wall’s model are equivalent. When 

comparing a landward-inclined wall’s model at angle 𝜀 = 0°  with Cooker’s model at the 

value of impact region, 𝜇 when 𝜇 = 0.1, 𝜇 = 0.5, 𝜇 = 0.8 and 𝜇 = 1.0, we can see that 

although we increased the value of  𝜇 , a landward-inclined wall’s model still gives 

consistent results which are equivalent to Cooker’s results.  

When we tested at 𝜇 = 0.1 until 𝜇 = 1.0, the pressure impulse keeps increasing 

similar to Cooker’s model (1991). Therefore, the results obtained from a landward-

inclined wall’s model are still similar to Cooker’s results (1991). 

Hence, we can conclude that even though the value of 𝜇 always varies, the results 

obtained are consistent following Cooker’s model (1991). Therefore, a landward-inclined 

wall’s model is said to be correctly verified by this comparison. Our method previously 

can also be verified. 

 

 



 

53 

 

 

(a) 

Figure 4.4 Comparison between Cooker’s model, (a) and landward-inclined model 

at 0°, (b) when 𝜇 = 0.1 

Pressure impulse at 𝜇 = 0.1 

Pressure impulse at 𝜇 = 0.1 
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(b) 

Figure 4.4 Continued 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.1 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.1 

P
re

ss
u

re
 i

m
p

u
ls

e 



 

55 

 

 

(a) 

Figure 4.5 Comparison between Cooker’s model, (a) and landward-inclined model 

at 0°, (b) when 𝜇 = 0.5 

Pressure impulse at 𝜇 = 0.5 

Pressure impulse at 𝜇 = 0.5 

S
ea

w
al

l 

Seabed 

P
re

ss
u

re
 i

m
p

u
ls

e 



 

56 

 

 

 

(b) 

Figure 4.5 Continued 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.5 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.5 
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(a) 

Figure 4.6 Comparison between Cooker’s model, (a) and landward-inclined model 

at 0°, (b) when 𝜇 = 0.8 

Pressure impulse at 𝜇 = 0.8 

Pressure impulse at 𝜇 = 0.8 
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(b) 

Figure 4.6 Continued 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.8 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.8 
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(a) 

Figure 4.7 Comparison between Cooker’s model, (a) and landward-inclined model 

at 0°, (b) when 𝜇 = 1.0 

Pressure impulse at 𝜇 = 1.0 

Pressure impulse at 𝜇 = 1.0 
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(b) 

Figure 4.7 Continued 

 

Pressure impulse at  𝜀 = 0°, 𝜇 = 1.0 

Pressure impulse at  𝜀 = 0°, 𝜇 = 1.0 
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4.6 The Effect of Varying Impact Zone towards Pressure Impulse 

We will discuss how varying the impact zone,  will affect the pressure impulse. 

We only tested at an angle of inclination for the seawall, 𝜀 = 5° at different values of 𝜇. 

Table 4.2 shows the effect of varying the impact region, 𝜇 at the angle of 5°. 

Table 4.2 The effect of varying impact region at angle of 5° 

Impact Region, 𝛍 𝟓° 

0.1 0.068  

0.5 0.310 

0.8 0.530 

1.0 0.790 

From Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11 below, we can see that 

the value of peak pressure will vary as we vary the value of 𝜇. We are testing the value 

of impact region, 𝜇 when = 0.1 , 𝜇 = 0.5, 𝜇 = 0.8 and 𝜇 = 1.0 for the angle of 𝜀 = 5°.  

As we can see, pressure impulse increased by 0.242 when we increased the value 

of impact region, 𝜇 from 0.1 to 0.5. After we increased the value of impact region, 𝜇 from 

0.5 to 0.8, pressure impulse increased by 0.220. When the value of impact region, 𝜇 was 

increased again from 0.8 to 1.0, pressure impulse also increased by 0.260. 

We can therefore conclude that if the value of impact region, 𝜇 increases, the 

value of pressure impulse also increases. 
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Figure 4.8 The effect of varying impact region, 𝜇 = 0.1 at angle of 5° 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.1 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.1 
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Figure 4.9 The effect of varying impact region, 𝜇 = 0.5 at angle of 5° 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.5 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.5 
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Figure 4.10 The effect of varying impact region, 𝜇 = 0.8 at angle of 5° 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.8 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.8 
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Figure 4.11 The effect of varying impact region, 𝜇 = 1.0 at angle of 5° 

Pressure impulse at  𝜀 = 5°, 𝜇 = 1.0 

Pressure impulse at  𝜀 = 5°, 𝜇 = 1.0 
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4.7 The Effect of Varying Angle of Inclination towards Pressure Impulse 

The values of pressure impulse as the angle of a landward-inclined seawall 

increases are shown below in Table 4.3. A landward-inclined wall’s model was tested at 

different angles of 𝜀 = 5° and 𝜀 = 10°. The values of impact region, 𝜇 are varied to get 

a better result and to be compared to each value of angle, 𝜀. The results were recorded 

and compared in Table 4.3. 

Table 4.3 Comparison a landward-inclined seawall model at 𝜀 = 5° and 𝜀 = 10° 

Impact Region, 𝝁  𝟓° 𝟏𝟎° 

0.1 0.068  0.078 

0.5 0.310 0.340 

0.8 0.530 0.570 

1.0 0.790 0.820 

From the above table, at impact region of 𝜇 = 0.1, the pressure impulse on a 

landward-inclined seawall at an angle of 𝜀 = 10° is slightly higher than the pressure 

impulse on a landward-inclined-inclined seawall at angle of 𝜀 = 5°  by 0.010. 

At impact region of 𝜇 = 0.5, the pressure impulse at angle of 10° is greater than 

at angle of 5° by 0.030. The trend of increasing impact pressure continues when 𝜇 is 

increased to 0.8 and 1.0 while the angle is increased from 5° to 10°. 

Therefore, we can conclude that peak pressure impulse on a landward-inclined 

seawall increases as the angle of inclination of the seawall is increased. 

Figure 4.12 and Figure 4.13 indicate the peak pressure impulse at 𝜇 = 0.1 for 

angle of inclination, 𝜀 values of 5° and 10. The difference between these two figures is 

observed. 
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Figure 4.12 The pressure impulse on landward-inclined model at 5° as 𝜇 = 0.1 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.1 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.1 
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Figure 4.13 The pressure impulse on landward-inclined model at 10° as 𝜇 = 0.1 

We are now going to compare the pressure impulse at 𝜇 = 0.5 as 𝜀 increases from 

5° to 10°. Figure 4.14 and Figure 4.15 show the difference between these two figures.  

Pressure impulse at  𝜀 = 10°, 𝜇 = 0.1 
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Figure 4.14 The pressure impulse on landward-inclined model at at 5° as 𝜇 = 0.5 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.5 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.5 
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Figure 4.15 The pressure impulse on landward-inclined model at 10° as 𝜇 = 0.5 

Figure 4.16 and Figure 4.17 illustrate the peak pressure impulse at 𝜀 values of 5° 

and 10° at𝜇 = 0.8. The difference between these two figures is observed. 

Pressure impulse at  𝜀 = 10°, 𝜇 = 0.5 

Pressure impulse at  𝜀 = 10°, 𝜇 = 0.5 

P
re

ss
u

re
 i

m
p

u
ls

e 



 

71 

 

 

 

Figure 4.16 The pressure impulse on landward-inclined model at 5° as 𝜇 = 0.8 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.8 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.8 
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Figure 4.17 The pressure impulse on landward-inclined model at 10° as 𝜇 = 0.8 

Finally, Figure 4.18 and Figure 4.19 show the peak pressure impulse as the value 

of 𝜀 increases from 5° and 10° at 𝜇 = 1.0. The difference between these two figures is 

recorded. 

Pressure impulse at  𝜀 = 10°, 𝜇 = 0.8 
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Figure 4.18 The pressure impulse on landward-inclined model at 5° as 𝜇 = 1.0 

Pressure impulse at  𝜀 = 5°, 𝜇 = 1.0 

Pressure impulse at  𝜀 = 5°, 𝜇 = 1.0 
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Figure 4.19 The pressure impulse on landward-inclined model at 10° as 𝜇 = 1.0 

The results demonstrate that the pressure impulse increases as the value of angle 

of inclination of the wall, 𝜀 increases. Hence, we can conclude that the pressure impulse 

will increase as the value of 𝜀 increases.  

Pressure impulse at  𝜀 = 10°, 𝜇 = 1.0 
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4.8 Previous Study Results 

In 1995, Kirkgoz conducted a laboratory experiment on the maximum impact 

pressure from breaking waves on vertical and landward-inclined coastal structures using 

a scale model. The results of maximum pressure impulse and bottom pressure impulse 

from his experiment are illustrated below in Table 4.4. 

Table 4.4 Dimensionless Maximum Pressure Impulse on Sloping Wall 

Impact Region 𝟎° 𝟓° 

99 64.5 88.9 

90 33.3 45.6 

50  14.9 19.3 

10  7.2 7.8 

Source: Kirkgoz (1995) 

Table 4.4 shows that Kirkgöz (1995) only tested a landward-inclined seawall at 

an angle of 5°. Comparatively the peak impact pressure at 5° is higher than on a vertical 

seawall with an angle of 0°. 

These results show that the minimum pressure impulse occurs at a vertical 

seawall. From our model, we notice that the minimum pressure impulse also happens 

when 𝜃 = 0°. Hence, we can validate that our method is correct since we get similar 

results with Kirkgoz’s research.  

4.9 Conclusion of Landward-Inclined Seawall 

Based on the numerical solution, we have found that the pressure impulse on a 

landward-inclined seawall increases as impact region, 𝜇 is increased. This is proven by 

previous study by Cooker (1991). Besides, as the angle of the wall increases, the pressure 

impulse on a landward-inclined seawall also increases. A similar result was found by 

Kirkgöz (1995) who studied the impact pressure of breaking waves on a landward-

inclined seawall via a laboratory experiment. It can be concluded that minimum pressure 

impulse occurs when the small inclination occurs near the vertical wall.  

As impact region, 𝜇 and angle of inclination wall, 𝜀 increase, the pressure impulse 

may get trapped at the bottom of the seawall. This can cause the bottom foundation of the 
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seawall become weak and eventually, the seawall may topple over. Hence, if there is a 

vertical seawall tends to incline landward after several years of construction, it should be 

fixed as soon as possible in order to prevent seawall from damage. Similarly, if this 

problem occurred in Tanjung Piai, Kuala Kemaman and Setiu after several years of 

construction of the seawalls, the government should fix the seawalls as soon as possible 

in order to prevent seawall from damage and it will affect the cost to build new seawalls. 
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CHAPTER 5 

 

 

MATHEMATICAL MODELLING OF A SEAWARD-INCLINED SEAWALL 

5.1 Introduction 

Kirkgöz (1978) carried out a laboratory experiment of breaking wave impact on a 

30° backward sloping wall to investigate the effect of varying the angle of inclination of 

the wall against the wave impact. 

In later studies (Kirkgöz, 1991, 1995) investigated the impact pressure of breaking 

waves on vertical and backward sloping walls by conducting laboratory experimentation. 

He conducted experiments on 5° , 10°,  20° and 30°  backward sloping walls under 

breaking wave impact. He found that the impact pressure on backward sloping walls was 

greater compared to those on vertical walls. A good agreement was found for all 

experimental results.  

Therefore, the aim of the present research is to study how small angles of 

declination on a vertical structure affect the pressure impulses on the wall. Pressure 

impulse might increase or decrease when the angle of declination is increased.  

5.2 Mathematical Modelling of a Seaward-Inclined Seawall 

Similar to the landward-inclined seawall model, the model of a seaward-inclined 

seawall is illustrated as below. However, there are slight differences. 
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Figure 5.1 Model of a seaward-inclined seawall  

The base of the wall is now positioned at (−𝐻, 0) and the top of the wall is at 

(𝑥𝑤, 0). An angle, 𝜀 is chosen as a parameter, where 𝜀 is the angle of the wall from the 

vertical line in a negative clockwise direction and is greater than zero (positive value) in 

this case.  

5.3 Mathematical Formulation of a Seaward-Inclined Seawall 

The equation of pressure impulse on a seaward-inclined seawall is given by 

𝑃(𝑥, 𝑦; 𝜀) = ∑𝑃𝑘(𝑥, 𝑦)𝜀𝑘
∞

𝑘=0

 5.1 

This problem then becomes a series of problems for various types of order of 𝜀, with each 

new order depending on the previous one. Each of the 𝑃𝑘  term is given by: 

𝑃𝑘(𝑥, 𝑦) = 𝑃𝑘𝑒−𝜆𝑛𝑥 sin 𝜆𝑛𝑦 5.2 

𝑥 = 𝑥𝑤 

𝑦 

𝑥 

∇2𝑃 = 0 

∇𝑃 → ∞

= 𝑥𝑤 

𝑃 = 0 

𝛿𝑃

𝛿𝑥
= −𝜌𝑈 

𝛿𝑃

𝛿𝑦
= 0 



 

79 

We assume the wall is flat and the wall can now be described by: 

 

Figure 5.2 Triangle of a seaward-inclined seawall  

The value of x can be explained by 

tan 𝜀 =
𝑥𝑤
𝐻

 5.3 

But, in this case, it is slightly different compared to a landward-inclined seawall. It will 

be 

𝑥 =
𝑥𝑤

𝐻
𝑦 + 𝑥𝑤 = (𝑦 + 𝐻) tan 𝜀 ,    − 𝐻 < 𝑦 < 0 ,  5.4 

Since the wall is flat, it can be described as in Figure 5.3. 

 

Figure 5.3 Direction of a flat wall  

From Figure 5.3, the value of 𝑛 can be defined by 

𝑛= 𝑥𝑖 − 𝑦𝑗 

 

𝐻 

𝜀 

𝑥𝑤 
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𝑛 = cos 𝜀𝑖 − sin 𝜀𝑗 5.5 

Now, the boundary condition of the wall impacted by the water waves become 

𝛿𝑃

𝛿𝑛
= ∇𝑃. 𝑛 = cos 𝜀

𝛿𝑃

𝛿𝑥
− sin 𝜀

𝛿𝑃

𝛿𝑦
= −𝜌𝑈° cos 𝜀 5.6 

Equation 5.6 then becomes  

𝛿𝑃

𝛿𝑛
= −𝜌𝑈° cos 𝜀 5.7 

For the region of the seawall in constant contact, the boundary condition is 

𝛿𝑃

𝛿𝑥
= tan 𝜀

𝛿𝑃

𝛿𝑦
 5.8 

Since  𝑥 = (𝑦 + 𝐻) tan 𝜀 from Equation 4.4 and 𝛿𝑃 𝛿𝑛⁄ = −𝜌𝑈° cos 𝜀 = 0. 

The following approximations are given for small 𝜀 by using Taylor Series, 

tan 𝜀 ≈ 𝜀 +
𝜀3

3
+⋯ 5.9 

Now, the perturbation theory will be applied here, and the solution is 

𝑃 =∑𝑃𝑘
∞

𝑘=0

𝜀𝑘 = 𝑃0 + 𝜀𝑃1 + 𝜀2𝑃2 + 𝜀3𝑃3 +⋯ 5.10 

Equation 5.10 will be then approximated for small 𝜀, and the perturbation solution to the 

boundary conditions gives 
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𝑃𝑥
0 + 𝜀(𝑃𝑥

1 − 𝑃𝑦
0) + 𝜀2 (𝑃𝑥

2 − 𝑃𝑦
1 −

𝑃𝑥
0

2
) + 𝜀3 (𝑃𝑥

3 − 𝑃𝑦
2 −

𝑃𝑥
1

2
−
𝑃𝑦
0

6
) +⋯ 

= −𝜌𝑈° cos 𝜀 = − 𝜌𝑈° (1 −
𝜀2

2
) + Ο(𝜀4) 

    5.11 

Then, by expanding each of the 𝑃𝑥
𝑘 and 𝑃𝑦

𝑘

 
terms using Taylor Series at 𝑥 = 0 gives 

𝑃𝑥
𝑘 = 𝑃𝑥

𝑘(0, 𝑦) + 𝑥𝑃𝑥𝑥
𝑘 (0, 𝑦) +

𝑥2

2
𝑃𝑥𝑥𝑥
𝑘 (0, 𝑦) +

𝑥3

6
𝑃𝑥𝑥𝑥𝑥
𝑘 (0, 𝑦) + ⋯ 5.12 

𝑃𝑦
𝑘 = 𝑃𝑦

𝑘(0, 𝑦) + 𝑥𝑃𝑦𝑥
𝑘 (0, 𝑦) +

𝑥2

2
𝑃𝑦𝑥𝑥
𝑘 (0, 𝑦) +

𝑥3

6
𝑃𝑥𝑥𝑥
𝑘 (0, 𝑦) + ⋯ 5.13 

From Equation 5.9 where  𝑥 = (𝑦 + 𝐻) tan 𝜀 ≈ (𝜀 +
1

3
𝜀3) (𝑦 + 𝐻). 

Then, the Taylor Series becomes: 

𝑃𝑥
𝑘 = 𝑃𝑥

𝑘(0, 𝑦) + 𝜀(𝑦 + 𝐻)𝑃𝑥𝑥
𝑘 (0, 𝑦) +

𝜀2(𝑦 + 𝐻)2

2
𝑃𝑥𝑥𝑥
𝑘 (0, 𝑦)

+
𝜀3

3
((𝑦 + 𝐻)𝑃𝑥𝑥

𝑘 (0, 𝑦) +
(𝑦 + 𝐻)3

2
𝑃𝑥𝑥𝑥𝑥
𝑘 (0, 𝑦)) +⋯ 

5.14 

While Equation 5.13 becomes 

𝑃𝑦
𝑘 = 𝑃𝑦

𝑘(0, 𝑦) + 𝜀(𝑦 + 𝐻)𝑃𝑦𝑥
𝑘 (0, 𝑦) +

𝜀2(𝑦 + 𝐻)2

2
𝑃𝑦𝑥𝑥
𝑘 (0, 𝑦)

+
𝜀3

3
((𝑦 + 𝐻)𝑃𝑦𝑥

𝑘 (0, 𝑦) +
(𝑦 + 𝐻)3

2
𝑃𝑦𝑥𝑥𝑥
𝑘 (0, 𝑦)) +⋯ 

5.15 

Now, the boundary condition takes the following form as we neglect  0(𝜀4)  and greater 

terms, after substituting Equation 5.14 and Equation 5.15 into Equation 5.11:  
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𝑃𝑥
0 + 𝜀(𝑦 + 𝐻)𝑃𝑥𝑥

0 +
𝜀2(𝑦 + 𝐻)2

2
𝑃𝑥𝑥𝑥
0

+
𝜀3

3
((𝑦 + 𝐻)𝑃𝑥𝑥

0 +
(𝑦 + 𝐻)3

2
𝑃𝑥𝑥𝑥𝑥
𝑘 (0, 𝑦)) +⋯ 

+𝜀 (𝑃𝑥
1 + 𝜀(𝑦 + 𝐻)𝑃𝑥𝑥

1 +
𝜀2(𝑦 + 𝐻)2

2
𝑃𝑥𝑥𝑥
1 − 𝑃𝑦

0 − 𝜀(𝑦 + 𝐻)𝑃𝑦𝑥
0

−
𝜀2(𝑦 + 𝐻)2

2
𝑃𝑦𝑥𝑥
0 ) +⋯ 

+𝜀2 (𝑃𝑥
2 + 𝜀(𝑦 + 𝐻)𝑃𝑥𝑥

2 − 𝑃𝑦
1 − 𝜀(𝑦 + 𝐻)𝑃𝑦𝑥

1 −
1

2
𝑃𝑥
0 −

1

2
𝜀(𝑦 + 𝐻)𝑃𝑥𝑥

0 )

+ ⋯ 

+𝜀3 (𝑃𝑥
3 − 𝑃𝑦

2 −
1

2
𝑃𝑥
1 −

1

6
𝑃𝑦
0) = −𝜌𝑈° (1 −

𝜀2

2
) 

5.16 

There are conditions for the boundary condition of the equation above to remain 

true. They can be found by equating the coefficients of the powers of 𝜀 for both sides of 

Equation 5.16. 

Now, we are going to compare each coefficient of  𝜀0, 𝜀1, 𝜀2 and 𝜀3. 

For 𝜀0, the solution is 

𝑃𝑥
0 = {

0, −𝐻 < 𝑦 < −𝜇𝐻
−𝜌𝑈°, −𝜇𝐻 < 𝑦 < 0

 5.17 

This is still similar to Cooker’s solution in Equation 3.15. 

For 𝜀1, the solution is 

𝑃𝑥
1 = 𝑃𝑦

0 − 𝑦𝑃𝑥𝑥
0     − 𝐻 < 𝑦 < 0 5.18 

For 𝜀2, the solution is 

𝑃𝑥
2 =

{
 

 𝑃𝑦
1 +

𝑃𝑥
0

2
− 𝛾(𝑃𝑥𝑥

1 − 𝛾𝑃𝑦𝑥
0 ) −

𝛾2𝑃𝑥𝑥𝑥
0

2
, −𝐻 < 𝑦 < −𝜇𝐻

𝑃𝑦
1 +

𝑃𝑥
0

2
− 𝛾(𝑃𝑥𝑥

1 − 𝛾𝑃𝑦𝑥
0 ) −

𝛾2𝑃𝑥𝑥𝑥
0

2
+ 𝜌𝑈°, −𝜇𝐻 < 𝑦 < 0

     5.19 

Where 𝛾 = (𝑦 + 𝐻) 
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For 𝜀3, the solution is 

𝑃𝑥
3 −

𝑃𝑥
1

2
−
𝑃𝑦
0

6
− (𝑦 + 𝐻)(𝑃𝑥𝑥

2 − 𝑃𝑦𝑥
1 −

𝑃𝑥𝑥
0

6
) 

−
(𝑦 + 𝐻)2

2
(𝑃𝑥𝑥𝑥

1 − 𝑃𝑦𝑥𝑥
0 ) −

(𝑦 + 𝐻)3𝑃𝑥𝑥𝑥𝑥
0

6
,      − 𝐻 < 𝑦 < 0 

5.20 

The first order solution, Ο(𝜀1) is going to be solved. The 𝑛𝑡ℎ term of  𝑃𝑛
𝑘 can be 

separated on the left hand side by multiplying each condition by sin (
𝜆𝑛𝑦

𝐻
)  and then 

integrating it over (−𝐻, 0) . This can be solved by applying the orthogonality of  

(sin (
𝜆𝑛𝑦

𝐻
) , 𝑛 ∈ 𝑁). But, since the orthogonality does not always apply to the right hand 

side, we will be left with an infinite sum. Hence, we define each  𝑃𝑛
𝑘−1  and  𝑃𝑛

𝑘−2 and so 

on. These coefficients are determined by the integral of products from the set 

(sin (
𝜆𝑛𝑦

𝐻
) , cos (

𝜆𝑛𝑦

𝐻
) , 𝑦𝑛,  𝑛 ∈ 𝑁). In order to find the first order solution, 𝜀

1, Equation 

5.18 will be multiplied by sin(𝜆𝑛𝑦) and then integrated over (−𝐻, 0). It gives: 

∫𝑃𝑥
1 sin (

𝜆𝑛𝑦

𝐻
)

0

−𝐻

𝑑𝑦 = ∫(𝑃𝑦
0 − (𝑦 + 𝐻)𝑃𝑥𝑥

0 ) sin (
𝜆𝑛𝑦

𝐻
)

0

−𝐻

𝑑𝑦 5.21 

These derivatives will then be displayed as, 

𝑃𝑥
1(0, 𝑦) = −∑𝜆𝑛𝑃𝑛

1 sin (
𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

 5.22 

𝑃𝑦
0(0, 𝑦) = ∑𝜆𝑛𝑃𝑛

1 cos (
𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

 5.23 

𝑃𝑥𝑥
0 (0, 𝑦) = −∑𝜆𝑛

2𝑃𝑛
0 sin (

𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

 5.24 

We substitute Equation 5.22, Equation 5.23 and Equation 5.24 into Equation 5.21 which 

leads to the following approximation for the first order solution: 

𝑃(𝑥, 𝑦) = 𝑃0(𝑥, 𝑦) + 𝜀𝑃1(𝑥, 𝑦) 5.25 
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By substituting the equations above, it will be expressed as, 

𝑃(𝑥, 𝑦) = ∑𝑃𝑛
0𝑒−𝜆𝑛𝑥 sin (

𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

+ 𝜀∑𝑃𝑛
1𝑒−𝜆𝑛𝑥 sin (

𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

𝑃1(𝑥, 𝑦) 5.26 

𝑃(𝑥, 𝑦) = ∑(𝑃𝑛
0 + 𝑃𝑛

1)𝑒−𝜆𝑛𝑥 𝑠𝑖𝑛 (
𝜆𝑛𝑦

𝐻
)

∞

𝑛=0

 5.27 

𝑃(𝑥, 𝑦) ≈ ∑(𝑃𝑛
0 + 𝑃𝑛

1)𝑒−𝜆𝑛𝑥 𝑠𝑖𝑛 (
𝜆𝑛𝑦

𝐻
)

𝑁

𝑛=0

 5.28 

The second order solution, Ο(𝜀2) is going to be solved. A solution of 𝑃2(𝑥, 𝑦)
 

will be found by using a similar method to 𝑃1(𝑥, 𝑦). Equation 5.19 will be multiplied by 

sin(𝜆𝑛𝑦) and integrated over (−𝐻, 0). Hence, it will give: 

∫𝑃𝑥
2 sin (

𝜆𝑛𝑦

𝐻
)

0

−𝐻

𝑑𝑦 = ∫(𝑃𝑦
1 − 𝛾(𝑃𝑥𝑥

1 − 𝑃𝑦𝑥
0 ) −

𝛾2

2
𝑃𝑥𝑥𝑥
0 ) sin (

𝜆𝑛𝛾

𝐻
)

0

−𝐻

𝑑𝑦 5.29 

Where 𝛾 = (𝑦 + 𝐻)  

Calculating the relevant derivatives and substituting them into Equation 5.19 leads 

to the following approximation for the second term,  𝑃2(𝑥, 𝑦)
 
and therefore the second 

order solution:  

𝑃(𝑥, 𝑦) = 𝑃0(𝑥, 𝑦) + 𝜀𝑃1(𝑥, 𝑦) + 𝜀2𝑃1(𝑥, 𝑦) 5.30 

The final solution would be, 

𝑃(𝑥, 𝑦) = ∑(𝑃𝑛
0 + 𝜀𝑃𝑛

1 + 𝜀2𝑃𝑛
2)

∞

𝑛=0

𝑒−𝜆𝑛𝑥 𝑠𝑖𝑛 (
𝜆𝑛𝑦

𝐻
) 5.31 

𝑃(𝑥, 𝑦) ≈ ∑(𝑃𝑛
0 + 𝜀𝑃𝑛

1 + 𝜀2𝑃𝑛
2)

𝑁

𝑛=0

𝑒−𝜆𝑛𝑥 𝑠𝑖𝑛 (
𝜆𝑛𝑦

𝐻
) 

 

5.32 
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5.4 Result and Discussion of Seaward-Inclined Seawall 

We will discuss the results of our mathematical model in this section. The results 

of our study will also be confirmed and verified to ensure the result of seaward-inclined 

seawall’s model, method and calculation are accurate and correct. This is done by 

comparing seaward-inclined seawall’s model with Cooker's results from 1991. In 

addition, the results of previous studies will also be discussed here. The results will be 

represented by diagrams, figures or tables and will be analysed. 

5.5 Validation of Result for a Seaward-Inclined Seawall 

Table 5.1 shows a comparison of results of pressure impulse from Cooker’s model 

(1991) and a seaward-inclined seawall’s model. From the results, it can be seen that the 

values of the pressure impulse from Cooker’s model (1991) and seaward-inclined 

seawall’s model are equivalent. Although the value of impact region, 𝜇 is varied, the 

similar results are obtained. Here, we can validate our method is correct since we found 

a good agreement with Cooker’s results. 

Table 5.1 Comparison of Cooker’s model and a seaward-inclined wall model 

Impact Region, 𝛍  Cooker’s Model Seaward-Inclined Model 

0.1 0.058  0.058 

0.5 0.290 0.290 

0.8 0.510 0.510 

1.0 0.720 0.720 

Source: Cooker (1991) 

From Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 below, we can see that the 

values of peak pressure from Cooker’s model (1991) and seaward-inclined seawall’s 

model are also equivalent. We are comparing seaward-inclined model at angle  0  

with Cooker’s model (1991) at different values of  𝜇 as 𝜇 = 0.1, 𝜇 = 0.5 , 𝜇 = 0.8, and 

𝜇 = 1.0. Although we have increased the value of 𝜇, seaward-inclined seawall’s model 

still gives consistent results. When we tested at 𝜇 = 0.1  until 𝜇 = 1.0 , the pressure 

impulse kept increasing in tandem with Cooker’s model (1991). Therefore, the results 

obtained from seaward-inclined wall model are still similar to Cooker’s results. Hence, 

we can conclude that even though the values of 𝜇  varies, the results obtained are 
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comparable. Therefore, seaward-inclined wall model is said to be correctly verified by 

doing this comparison. As such, our method can also be verified. 

 

 

(a) 

Figure 5.4 Comparison between Cooker’s model, (a) and a seaward-inclined wall 

model at 0°, (b) when 𝜇 = 0.1 

Pressure impulse at 𝜇 = 0.1 

Pressure impulse at 𝜇 = 0.1 
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(b) 

Figure 5.4 Continued 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.1 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.1 
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(a) 

Figure 5.5 Comparison between Cooker’s model, (a) and a seaward-inclined wall 

model at 0°, (b) when 𝜇 = 0.5 
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(b) 

Figure 5.5 Continued 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.5 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.5 
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(a) 

Figure 5.6 Comparison between Cooker’s model, (a) and a seaward-inclined wall 

model at 0°, (b) when 𝜇 = 0.8 
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(b) 

Figure 5.6 Continued 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.8 

Pressure impulse at  𝜀 = 0°, 𝜇 = 0.8 
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(a) 

Figure 5.7 Comparison between Cooker’s model, (a) and a seaward-inclined wall 

model at 0°, (b) when 𝜇 = 1.0 
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(b) 

Figure 5.7 Continued 

 

 

Pressure impulse at  𝜀 = 0°, 𝜇 = 1.0 

Pressure impulse at  𝜀 = 0°, 𝜇 = 1.0 
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5.6 The Effect of Varying Impact Zone towards Pressure Impulse  

We will discuss in this section how varying the impact zone value, 𝜇 affects the 

pressure impulse. We only tested at angle of inclination of seawall, 𝜀 = 5° at different 

values of 𝜇. Table 5.2 shows the effect of varying impact region, 𝜇 at an angle of  5°. 

Table 5.2 The effect of varying impact region at angle of 5° 

Impact Region, 𝝁 𝟓° 

0.1 0.072 

0.5 0.320 

0.8 0.550 

1.0 0.810 

Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11 below show that the value of 

peak pressure will rise as we increase the value of 𝜇. Hence, we can conclude that if the 

value of 𝜇 increases, the value of pressure impulse also increases. 

As we can see, pressure impulse increased by 0.248 when we increased the value 

of impact region, 𝜇 from 0.1 to 0.5. When we increased the value of impact region, 𝜇 

from 0.5 to 0.8, pressure impulse increased by 0.230. The pressure impulse then increased 

by a further 0.260 when the impact region, 𝜇 was raised from 0.8 to 1.0. 

Hence, we can conclude that if the value of impact region, 𝜇 increases, the value 

of pressure impulse also increases. 
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Figure 5.8 The effect of varying impact region, 𝜇 = 0.1, at angle of 5° 
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Figure 5.9 The effect of varying impact region, 𝜇 = 0.5, at angle of 5° 
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Figure 5.10 The effect of varying impact region, 𝜇 = 0.8, at angle of 5° 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.8 
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Figure 5.11 The effect of varying impact region, 𝜇 = 1.0, at angle of 5° 
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5.7 The Effect of Varying Angle of Inclination towards Pressure Impulse 

A comparison of pressure impulse values as the angle of a seaward-inclined 

seawall increases are shown in Table 5.3. We had tested our model at different angles of 

𝜀 = 5° and 𝜀 = 10°. Here, the values of impact region, 𝜇 were varied to get a better 

result. The results were recorded and compared in the table below. 

Table 5.3 Comparison a seaward-inclined seawall model at 𝜀 = 5° and 𝜀 = 10° 

Impact Region, 𝝁  𝟓° 𝟏𝟎° 

0.1 0.072 0.082 

0.5 0.320 0.350 

0.8 0.550 0.580 

1.0 0.810 0.840 

From the above table, at impact region of 𝜇 = 0.1, the pressure impulse on a 

seaward-inclined seawall at an angle of 𝜀 = 10°  is slightly higher than the pressure 

impulse on a seaward-inclined seawall at an angle 𝜀 = 10°  of  by 0.010. 

When tested again at impact region of 𝜇 = 0.5, the pressure impulse at an angle 

of 10° is greater than at an angle of 5° by 0.030. The trend of increasing pressure impulse 

is repeated when  was increased to 0.8 and 1.0. 

Therefore, we can conclude that the peak pressure impulse on a seaward-inclined 

seawall increases in tandem with an increase in the angle of the seawall. 

Figure 5.12 and Figure 5.13 indicate the peak pressure impulse at 𝜀 values of 5° 

and 10° when 𝜇 = 0.1. The difference between these two figures are observed. 
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Figure 5.12 The pressure impulse on seaward-inclined model at 5° as 𝜇 = 0.1 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.1 
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Figure 5.13 The pressure impulse on seaward-inclined model at 10° as 𝜇 = 0.1 

Pressure impulse at  𝜀 = 10°, 𝜇 = 0.1 
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We are now going to compare the pressure impulse when 𝜇 = 0.5 as 𝜀 increases 

from 5° to 10°. Figure 5.14 and Figure 5.15 show the difference between these two 

figures. 

 

 

Figure 5.14 The pressure impulse on seaward-inclined model at 5° as 𝜇 = 0.5 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.5 
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Figure 5.15 The pressure impulse on seaward-inclined model at 10° as 𝜇 = 0.5 

Figure 5.16 and Figure 5.17 illustrate the peak pressure impulse at 𝜀 values of  5° 

and 10° when 𝜇 = 0.8. The difference between these two figures is observed. 
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Figure 5.16 The pressure impulse on seaward-inclined model at 5° as 𝜇 = 0.8 

Pressure impulse at  𝜀 = 5°, 𝜇 = 0.8 
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Figure 5.17 The pressure impulse on seaward-inclined model at 10° as 𝜇 = 0.8 

Finally, Figure 5.18 and Figure 5.19 indicate the peak pressure impulse at 𝜀 values 

of 5° and 10° when 𝜇 = 1.0. The difference between these two figures is observed. 
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Figure 5.18 The pressure impulse on seaward-inclined model at 5° as 𝜇 = 1.0 

Pressure impulse at  𝜀 = 5°, 𝜇 = 1.0 

Pressure impulse at  𝜀 = 5°, 𝜇 = 1.0 

P
re

ss
u

re
 i

m
p

u
ls

e 



 

107 

 

 

 

Figure 5.19 The pressure impulse on seaward-inclined model at 10° as 𝜇 = 1.0 

The results show that the pressure impulse will increase as we increase the value 

of the angle of seaward-inclined seawall, 𝜀.   
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5.8 Comparison between Landward-Inclined and Seaward-Inclined Seawall 

Table 5.4 shows a comparison of pressure impulse on a landward-inclined and a 

seaward-inclined seawall. We had tested our model at the angle of 𝜀 = 5°. Here, the 

values of 𝜇 are varied to get a better result.  

Table 5.4 Comparison between landward-inclined and seaward-inclined wall at 5° 

Impact Region, 𝝁  Landward-Inclined Seawall Seaward-Inclined Seawall 

0.1 0.068 0.072 

0.5 0.310 0.320 

0.8 0.538 0.580 

1.0 0.790 0.810 

We are now going to compare the pressure impulse when 𝜇 = 0.5 at angle of 

landward-inclined and seaward-inclined seawall of  5°. Figure 5.20 and Figure 5.21 show 

these values. The difference between these two figures is recorded. 

As we can see, at impact region of 𝜇 = 0.1 the pressure impulse on a seaward-

inclined seawall is higher than on a landward-inclined seawall by 0.004. After the value 

of impact region was increased to 0.5, the pressure impulse on a seaward-inclined seawall 

remained higher than on a landward-inclined seawall by 0.010. 

Although the value of impact regions increased up to 1.0, the pressure impulse on 

seaward-inclined seawall was still higher than on a landward seawall by 0.020. 

Figure 5.20, Figure 5.21, Figure 5.22, Figure 5.23, Figure 5.24 and Figure 5.25 

show the comparison between the pressure impulse on a seaward-inclined seawall and a 

landward-inclined seawall. 
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Figure 5.20 The pressure impulse on landward-inclined seawall at 5° as 𝜇 = 0.5 
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Figure 5.21 The pressure impulse on seaward-inclined seawall at 5° as 𝜇 = 0.5 

Figure 5.22 and Figure 5.23 illustrate the peak pressure impulse on a landward-

inclined and a seaward-inclined seawall at 𝜀  values of 5° and 10° when 𝜇 = 0.8. The 

difference between these two figures is observed. 
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Figure 5.22 The pressure impulse on landward-inclined seawall at 5° as 𝜇 = 0.8 
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Figure 5.23 The pressure impulse on seaward-inclined seawall at 5° as 𝜇 = 0.8 

Finally, Figure 5.24 and Figure 5.25 indicate the peak pressure impulse on a 

landward-inclined and seaward-inclined seawall at the angle 𝜀 of 5° when 𝜇 = 1.0. The 

difference between these two figures is observed. 
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Figure 5.24 The pressure impulse on landward-inclined seawall at at 5° as 𝜇 = 1.0 
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Figure 5.25 The pressure impulse on seaward-inclined seawall at 5° as 𝜇 = 1.0 

From all the results, we can conclude that a seaward-inclined seawall has a higher 

pressure impulse on it compared to a landward-inclined seawall. The results were 

consistent although we varied the value of  𝜇. 
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5.9 Previous Study Results 

 Kirkgöz (1991) had conducted an experiment using a model test. He tested for 

landward-inclined, vertical and seaward-inclined seawalls. A seaward-inclined seawall 

had been modelled and tested at angles of 5° , 10° , 20°  and 30° . The laboratory 

experiment is illustrated in Figure 5.26. 

 

Figure 5.26 An Experimental Model by Kirkgoz 
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Table 5.5 Dimensionless bottom pressure impulse on a sloping wall 

Impact Region 𝟎° 𝟓° 𝟏𝟎° 𝟐𝟎° 𝟑𝟎° 

99 64.5 73.7 88.3 97.3 99.4 

90 33.3 35.3 42.4 50.3 36.9 

50  14.9 16.2 19.4 16.8 13.5 

10  7.2 7.9 6.7 5.7 5.2 

Source: Kirkgoz (1995) 

Based on Table 5.5, it can be said that minimum pressure impulse occurs at a 

vertical wall during 𝜀 = 0° (Kirkgöz, 1991, 1995). We can also state based on the average 

and maximum pressure impulse from Kirkgoz’s result that as the angle of wall declination 

increases, the pressure impulse also increases.  

5.10 Conclusion of Seaward-Inclined Seawall 

We have found in this chapter that based on the numerical solution, as the impact 

region, 𝜇 increases, the pressure impulse increases. This is consistent to Cooker’s result 

(1991). We also noticed that the pressure impulse on a seaward-inclined seawall increases 

as the angle of the seawall increases. A good agreement was found with the findings of 

Kirkgöz (1991) who studied the impact pressure of breaking waves on a backward sloping 

wall via laboratory experiment.  

Besides, from our study, we notice a landward-inclined seawall is much better 

compared to a seaward-inclined seawall since a seaward-inclined seawall produces higher 

pressure impulse compared to a landward-inclined seawall. Similar to a landward-

inclined seawall case, if impact region, 𝜇 and angle of inclination wall, 𝜀 rise up, the 

pressure impulse will get trapped at the bottom of the seawall. This can cause the bottom 

foundation of the seawall become weak and eventually, the seawall may topple over. 

Hence, if there is a vertical seawall tends to incline seaward after several years of 

construction, it should be fixed as soon as possible in order to prevent seawall from 

damage.  

From this study, the government should consider to build a proper design of 

seawall. In addition to reducing costs, a proper seawall can also last a long time from 

collapse. As in Tanjung Piai, Kuala Kemaman or Setiu, the government should look at 

the structure of the previous seawall whether it is leaning to incline landward or seaward 
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after several years of construction, it should be fixed as soon as possible. As we know, if 

the current seawall in Tanjung Piai, Kuala Kemaman or Setiu already inclined, the 

pressure impulse on the seawall would be greater. The seawall might be collapse soon. 

Hence, the government should take appropriate action to repair the seawall as soon as 

possible to prevent it from collapsing in order to prevent seawall from damage and it will 

affect the cost to build a new seawall. The responsible organisation such as NAHRIM or 

DID should play a similar role in helping the government to design, build or improve 

seawall. 
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CHAPTER 6 

 

 

CONCLUSION 

6.1 Conclusion 

This study considered two problems involving the pressure impulse on a 

landward-inclined and seaward-inclined seawall. This investigation started by analysing 

and extending the mathematical model of previous researchers.  

The pressure impulse theory was discussed and Cooker’s model introduced in 

Chapter Three. The governing equation was also considered in this chapter. 

In the next chapter, Cooker’s model was extended to design a new mathematical 

model of a landward-inclined seawall. Chapter Four provided a formulation to obtain the 

result of pressure impulse. The perturbation method was applied to obtain the numerical 

solution. Lastly, MATLAB software was run to display the result. The results were then 

analysed and discussed. Previous studies were also compared to this result. 

Chapter 5 covered the extension of Cooker’s model into a new mathematical 

model of a seaward-inclined seawall. The formulation was provided and perturbation 

method applied to obtain the numerical solution. Finally, MATLAB was used to display 

the results, which were then analysed and discussed. Previous studies were then 

compared to the results. 

As a conclusion we will relate our result and discussion based on the objectives 

of this research. Based on the results and discussions, the following conclusions can be 

derived according to the objectives of this research. 

Based on the first research objective, the mathematical model and equation in the 

fluid motion and its boundary conditions in landward-inclined and seaward-inclined 
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seawalls can be solved by extending and modifying Cooker’s model and using the 

pressure impulse theory. 

Next, referring to the second research objective, perturbation method works and 

can be applied for solving the mathematical formulations of landward-inclined and 

seaward-inclined seawalls. In these two problems, the results show the perturbation 

method only works for angles of inclination for a landward-inclined and seaward-inclined 

seawalls below than 15 . 

By going back to the third research objective, MATLAB algorithms can be 

developed to solve the mathematical formulations of these two problems by solving the 

formulation and applying the perturbation method in these two problems. 

Based on the fourth research objective, the simplified and much more stable 

results on the model of wave impact on coastal structures by analysing the results can be 

provided based on this research. As conclusion, when the angle of wall inclination for  

landward-inclined and seaward-inclined seawalls increase, the pressure impulse also 

increases. Secondly, as impact region,  increases, the pressure impulse also increases. 

Next, the results show a seaward-inclined seawall has a higher pressure impulse on it 

compared to a landward-inclined seawall. The results are consistent although the value 

of impact region,   is varied.  

Finally, if there is a vertical seawall tends to incline landward or seaward after 

several years of construction, it should be fixed immediately in order to prevent seawall 

from damage.  

6.2 Recommendations 

Several recommendations are suggested for further work in this field in order to 

develop a new mathematical model. There are: 

a) Investigate the total impulse and moment of seawall and seabed for a landward-

inclined and seaward-inclined seawalls.  

b) Study the case of overtopping towards a landward-inclined and seaward-inclined 

seawalls.  
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c) Apply perturbation method into the berm and ditch for a landward-inclined and 

seaward-inclined seawalls.  

d) Extend the mathematical model of a landward-inclined and seaward-inclined 

seawalls for missing block problem.
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APPENDIX A 

MATLAB PROGRAM OF COOKER’S MODEL 

function cooker =cooker_(mu) 
format compact 
H=1;                    %  The water depth 
U=1;               %  Velocity of Wave 
N=50;           %  Number of terms to be summed 
gridpoints=50;     %  The number along an axis of the grid 
xmax=2;           %  The maximum distance along the seabed. 
B=2; 

  
% Interval & Grid Formed 
x=linspace(0,xmax,gridpoints+1); 
y=linspace(-H,0,gridpoints+1); 
[X,Y]=meshgrid(x,y); 

  
% Initialize the solution Matrix 
Zn=zeros(gridpoints+1); 

  
% Calculate the Sum 
for n=1:N 
   ln=(n-1/2)*pi/H; 
    Pn=-2/(ln^2)*(-1+cos(ln*mu)); 
   Zn=Zn+Pn.*sinh(ln*(X-B))/cosh(ln*B).*sin(ln.*Y); 
end 

  
z=Zn; 

  
% Plot the graph 

  
surf(X,Y,Zn) 
xlabel('Distance along Seabed') 
ylabel('Height down Seawall') 
zlabel('pressure impulse') 
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APPENDIX B 

MATLAB PROGRAM OF LANDWARD-INCLINED SEAWALL 

Main 

% perturbsol.m 
function z=perturbsoln 
% This programme calculates the first order perturbation solution. 
% Program Parameters 
format compact 
mu=0.8;                % Still Water level 
H=1;                   % Water Depth 
U=1;                  % Wave velocity 
%angle=0 
angle=-pi/36; 
%angle=pi/180; 
xmax=2;             % B              
xw=H*tan(angle);       
gridpoints=100; 
N=200;                % Number of terms to sum over 

  
% Generate the Domain grid 

  
[X,Y]=generategrid_neg(xw,xmax,H,gridpoints); 

  
% Initialize Solutions as Matrices over the whole domain 

  
sol=zeros(gridpoints+1); 

  
P0=P0coeff(N,U,mu,H); 
P1=P1coeff(N,H,P0); 
P2=P2coeff(N,H,P0,P1); 

  
for n=1:N+1 
   ln=(n-1/2)*pi/H; 
   sol=sol+(P0(n)+angle*P1(n)+angle^2*P2(n)).*exp(-ln.*X).*sin(ln.*Y); 
end 

  
z=sol; 
surf(X,Y,z) 

  
%pcolor(X,Y,z) 
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For I seven 

function z=iseven(n) 

  
if isint(n)==1 
   if isint(n/2)==1; 
      z=1; 
   else 
      z=0; 
   end 
else 
   error('Must Enter an Integer') 
end 

 
For generate grid 

function [X,Y]=generategrid_neg(xw,xmax,H,N) 

  
% (x,y) defines the bottom of the wall and seabed 

  
y=linspace(-H,0,N+1); 
Y=y'; 
for i=1:N 
   Y=[Y y']; 
end 

  
x=linspace(xw,xmax,N+1); 
X=x; 

  
for j=1:N 
   x0=xw*y(j+1)/(-H); 
   x=linspace(x0,xmax,N+1); 
   X=[X; x]; 
end 
 

For isin 

function z=isint(n) 

  
if n==round(n) 
   z=1; 
else 
   z=0; 
end 
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For coefficient 0 

function z=P0coeff(N,U,mu,H) 

  
for n=1:N+1 
   ln=(n-1/2)*pi/H; 
   P0(n)=2*U/(ln^2*H)*(cos(ln*mu*H)-1); 
end 
z=P0; 
 

For coefficient 1 

function z=P1coeff(N,H,P0) 

  
for m=1:N+1              
   P1n=0;                                      % Initialise the nth 

term P_n^1 
    for n=1:N+1 
      ln=(n-1/2)*pi/H;                           % eigenvalues 
      lm=(m-1/2)*pi/H;                           % eigenvalues 
      if n~=m 
         if iseven(n)==1 
            term=lm*ln/(ln+lm)^2; 
         else 
            term=lm*ln/(ln-lm)^2; 
         end 
      else 
         term=-((H*ln)^2+3)/4; 
      end      
      P1n=P1n+P0(n)*term;  
   end 
   P1(m)=2*P1n/lm/H; 
end 

  
z=P1; 
 

For coeeficient 2 

function z=P2coeff(N,H,P0,P1) 

  
for m=1:N+1  
   P2n=0; 
    for n=1:N+1 
      ln=(n-1/2)*pi/H;                           % eigenvalues 
      lm=(m-1/2)*pi/H;                           % eigenvalues 
      if n~=m 
         if iseven(n)==1 
            term1=lm*ln/(ln+lm)^2; 
         else 
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            term1=lm*ln/(ln-lm)^2; 
         end 
         term2=((-1)^(n+m+1))*2*H*ln^3*lm^2/(ln^2-lm^2)^2; 
      else 
         term1=-((H*ln)^2+3)/4; 
         term2=H*ln*(1-2*((H*ln)^2)/3)/8; 
      end 
      P2n=P2n+P1(n)*term1+P0(n)*term2; 
   end 
   P2(m)=2*P2n/lm/H; 
end 

  
z=P2; 
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APPENDIX C 

MATLAB PROGRAM OF SEAWARD-INCLINED SEAWALL 

Main 

% perturbsol.m 
function z=perturbsoln 
% This programme calculates the first order perturbation solution. 
% Program Parameters 
format compact 
mu=0.8;                % Still Water level 
H=1;                   % Water Depth 
U=1;                  % Wave velocity 
%angle=0 
angle=pi/36; 
%angle=pi/180; 
xmax=2;             % B              
xw=H*tan(angle);       
gridpoints=100; 
N=200;                % Number of terms to sum over 

  
% Generate the Domain grid 

  
[X,Y]=generategrid_pos(xw,xmax,H,gridpoints); 

  
% Initialize Solutions as Matrices over the whole domain 

  
sol=zeros(gridpoints+1); 

  
P0=P0coeff(N,U,mu,H); 
P1=P1coeff(N,H,P0); 
P2=P2coeff(N,H,P0,P1); 

  
for n=1:N+1 
   ln=(n-1/2)*pi/H; 
   sol=sol+(P0(n)+angle*P1(n)+angle^2*P2(n)).*exp(-ln.*X).*sin(ln.*Y); 
end 

  
z=sol; 
surf(X,Y,z) 

  
%pcolor(X,Y,z) 
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For I seven 

function z=iseven(n) 

  
if isint(n)==1 
   if isint(n/2)==1; 
      z=1; 
   else 
      z=0; 
   end 
else 
   error('Must Enter an Integer') 
end 

 
For generate grid 

function [X,Y]=generategrid_pos(xw,xmax,H,N) 

  
% (x,y) defines the bottom of the wall and seabed 

  
y=linspace(-H,0,N+1); 
Y=y'; 
for i=1:N 
   Y=[Y y']; 
end 

  
x=linspace(0,xmax,N+1); 
X=x; 

  
for j=1:N 
   x0=xw*y(j+1)/(H)+xw; 
   x=linspace(x0,xmax,N+1); 
   X=[X; x]; 
end 
 

For isin 

function z=isint(n) 

  
if n==round(n) 
   z=1; 
else 
   z=0; 
end 
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For coefficient 0 

function z=P0coeff(N,U,mu,H) 

  
for n=1:N+1 
   ln=(n-1/2)*pi/H; 
   P0(n)=2*U/(ln^2*H)*(cos(ln*mu*H)-1); 
end 
z=P0; 
 

For coefficient 1 

function z=P1coeff(N,H,P0) 

  
for m=1:N+1              
   P1n=0;                                      % Initialise the nth 

term P_n^1 
    for n=1:N+1 
      ln=(n-1/2)*pi/H;                           % eigenvalues 
      lm=(m-1/2)*pi/H;                           % eigenvalues 
      if n~=m 
         if iseven(n)==1 
            term=lm*ln/(ln+lm)^2; 
         else 
            term=lm*ln/(ln-lm)^2; 
         end 
      else 
         term=-((H*ln)^2+3)/4; 
      end      
      P1n=P1n+P0(n)*term;  
   end 
   P1(m)=2*P1n/lm/H; 
end 

  
z=P1; 
 

For coeeficient 2 

function z=P2coeff(N,H,P0,P1) 

  
for m=1:N+1  
   P2n=0; 
    for n=1:N+1 
      ln=(n-1/2)*pi/H;                           % eigenvalues 
      lm=(m-1/2)*pi/H;                           % eigenvalues 
      if n~=m 
         if iseven(n)==1 
            term1=lm*ln/(ln+lm)^2; 
         else 
            term1=lm*ln/(ln-lm)^2; 
         end 
         term2=((-1)^(n+m+1))*2*H*ln^3*lm^2/(ln^2-lm^2)^2; 
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      else 
         term1=-((H*ln)^2+3)/4; 
         term2=H*ln*(1-2*((H*ln)^2)/3)/8; 
      end 
      P2n=P2n+P1(n)*term1+P0(n)*term2; 
   end 
   P2(m)=2*P2n/lm/H; 
end 

  
z=P2; 
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