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ABSTRAK 

Serangan Distributed Denial-of-Service (DDoS) adalah insiden yang sering berlaku 

dalam persekitaran pengkomputeran awam yang menyebabkan gangguan utama 

prestasi. Sistem pengesanan dan pencegahan pencerobohan (IDP) adalah merupakan 

alat untuk melindungi daripada sebarang insiden tersebut, dan penempatan sistem ID/IP 

yang tepat pada rangkaian adalah sangat penting untuk pemantauan yang optimum dan 

mencapai keberkesanan yang maksimum dalam melindungi sistem. Walaupun dengan 

adanya sistem tersebut, tahap keselamatan pengkomputeran awam mesti 

dipertingkatkan. Semakin banyak serangan yang lebih kuat cuba untuk mengawal 

persekitaran pengkomputeran awam tersebut; serangan tersebut adalah termasuk 

hyperjacking mesin-maya (VM) dan juga ancaman keselamatan rangkaian tradisional 

seperti pengintipan trafik (memintas trafik rangkaian), pengintipan alamat dan 

pemalsuan VM atau alamat IP.  Menguruskan IDPS berasaskan hos (H-IDPS) adalah 

sangat sukar kerana maklumat perlu dikongfigurasikan dan diuruskan oleh setiap hos, 

ianya penting untuk memastikan penganalisis keselamatan dapat memahami struktur 

rangkaian sepenuhnya bagi membezakan antara positif palsu dan masalah sebenar. 

Untuk tujuan tersebut, adalah sangat penting untuk memahami pengelas paling utama 

dalam pembelajaran mesin, kerana ianya menawarkan perlindungan terhadap penggera 

positif palsu dalam serangan DDoS. Bagi merancang lebih banyak pengelasan yang 

berkesan, sistem bagi menilai pengelas perlu dibangunkan. Dalam thesis ini, mekanisma 

reka bentuk untuk pengelas H-IDPS dalam persekitaran pengkomputeran awam telah 

dibangunkan. Reka bentuk mekanisme ini berdasarkan Optimasi Antlion hibrid 

Algoritma (ALO) dengan Multilayer Perceptron (MLP) untuk berlindung dari serangan 

DDoS. Untuk melaksanakan mekanisme yang dicadangkan, kami menunjukkan 

kekuatan pengelas menggunakan satu dataset yang dikurangkan dimensi menggunakan 

NSL-KDD. Selain itu, kami memberi tumpuan terperinci kepada kajian dataset NSL-

KDD yang mengandungi hanya rekod terpilih. Dataset yang dipilih ini menyediakan 

analisis yang baik terhadap pelbagai teknik pembelajaran mesin untuk H-IDPS. 

Penilaian terhadap Sistem H-IDPS ini menunjukkan peningkatan ketepatan pengesanan 

pencerobohan dan mengurangkan penggera positif palsu berbanding hasil kajian lain 

yang berkaitan. Ini dapat digambarkan dengan menggunakan teknik matriks kekeliruan 

untuk mengatur pengelas, menggambarkan prestasi dan menilai tingkah laku secara 

keseluruhan. 
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ABSTRACT 

 

 Distributed denial-of-service (DDoS) attacks are incidents in a cloud computing 

environment that cause major performance disturbances. Intrusion-detection and 

prevention system (IDPS) are tools to protect against such incidents, and the correct 

placement of ID/IP systems on networks is of great importance for optimal monitoring 

and for achieving maximum effectiveness in protecting a system. Even with such 

systems in place, however, the security level of general cloud computing must be 

enhanced. More potent attacks attempt to take control of the cloud environment itself; 

such attacks include malicious virtual-machine (VM) hyperjacking as well as traditional 

network-security threats such as traffic snooping (which intercepts network traffic), 

address spoofing and the forging of VMs or IP addresses. It is difficult to manage a 

host-based IDPS (H-IDPS) because information must be configured and managed for 

every host, so it is vital to ensure that security analysts fully understand the network and 

its context in order to distinguish between false positives and real problems. For this, it 

is necessary to know the current most important classifiers in machine learning, as these 

offer feasible protection against false-positive alarms in DDoS attacks. In order to 

design a more efficient classifier, it is necessary to develop a system for evaluating the 

classifier. In this thesis, a new mechanism for an H-IDPS classifier in a cloud 

environment has desigend. The mechanism’s design is based on the hybrid Antlion 

Optimization Algorithm (ALO) with Multilayer Perceptron (MLP) to protect against 

DDoS attacks. To implement the proposed mechanism, we demonstrate the strength of 

the classifier using a dimensionally reduced dataset using NSL-KDD. Furthermore, we 

focus on a detailed study of the NSL-KDD dataset that contains only selected records. 

This selected dataset provides a good analysis of various machine-learning techniques 

for H-IDPS. The evaluation process H-IDPS system shows the increases of intrusion 

detection accuracy and decreases the false positive alarms when compared to other 

related works. This is epitomized by the skilful use of the confusion matrix technique 

for organizing classifiers, visualizing their performance, and assessing their overall 

behaviour. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Motivation  

In the current cyber environment, the importance of cyber security cannot be denied. As 

the size and reach of the Internet continues to grow, cyber security has become a 

necessity for large, well-known organizations, small businesses, and individuals. 

Intrusion Detection and Prevention Systems (IDPS) are an efficient way of detecting and 

preventing cyber security threats (Modi & Acha, 2017). However, not enough attention 

and awareness has been placed on IDPS, especially among small businesses and 

individuals. As a result, the selection and deployment of IDPS is widely regarded as 

being highly technical, expensive, and time-consuming.  

Today, the research community is focused on finding appropriate solutions for 

the issue of cloud security, which is the biggest obstacle preventing the full adoption of 

cloud services. In the world of computing, there are different security domains, each of 

which addresses various aspects of security (Kritikos et al., 2017). However, mixed in 

with these domains are numerous security challenges that need to be addressed and 

handled. A survey conducted by Right Scale in January 2017 asked 1002 IT 

professionals about the adoption of cloud infrastructure and its related technology. 

Security and lack of resources were identified as the major problems, with 25% of the IT 

professionals considering security to be a major obstacle to the adoption of cloud 

computing (Birje et al., 2017).  

All types of attacks that are applicable to computer networks and data in transit 

similarly apply to the cloud computing paradigm, such as Remote to Local (R2L), Probe, 
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User to Root (U2R), Side channel, Masquerade, DNS spoofing, SQL injections, and 

Distributed Denial-of-Service (DDoS) attacks (Latha & Prakash, 2017).  

To handle security issues in the cloud environment, techniques based on security 

policies and firewalls have been proposed. While these are primary security techniques, 

they are not sufficient to provide secure systems. For instance, a firewall sniffs network 

packets at the boundary of the network to detect and prevent attacks from entering the 

network, but it cannot detect insider attacks and does not provide in-depth packet 

analysis. Moreover, attacks such as DDoS are too complex to be discovered using 

traditional firewalls or countermeasures.  

 Lin and Li (2018) investigated the top four infrastructure DDoS attacks. As 

shown in Figure 1.1, User Datagram Protocol (UDP) fragments, Domain Name System 

(DNS) floods, Network Time Protocol (NTP) floods, and Charge attacks are the 

dominant threats. Compared to the previous quarter, there was a rise in UDP fragment, 

NTP, and Charge attacks, and a slight fall in DNS attacks. Organizations can keep their 

servers safe from these DDoS attacks if services such as Charge and NTP are 

inaccessible from the Internet or are patched. 
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Figure 1.1 DDoS attack vector frequency Q1. 

Source: Lin and Li (2018) 

In this research, a classifier mechanism is developed for host- based IDPS in the 

cloud environment. The mechanism is designed based on the Antlion Optimization 

Algorithm (ALO) with a Multilayer Perceptron (MLP) to protect against DDoS attacks. 

To verify the proposed mechanism, we demonstrate the strength of the classifier using a 

dimensionally reduced dataset (Su et al., 2017). The mechanism is then evaluated under 

NSL-KDD DDoS traffic conditions. The proposed mechanism is compared with 

mechanisms developed in the past five years that have been reported in the literature.  

1.2 Problem Statement 

The volume of targeted network attacks is steadily increasing and evolving, forcing 

businesses to revamp their network security systems due to possible data and financial 

losses. Intrusion Detection and Prevention Systems (IDPS) is an essential component 

for any security system. IDPS main function is to identify unauthorized access that 

attempts to compromise confidentiality, integrity or availability of computer or 

computer networks. One of the major steps in encountering the problem of IDPS is 

classifying the types of attacks (Modi & Acha, 2017). 
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The rapid growth and increasing utility of the Internet mean that Internet 

security issues are of vital importance. DDoS attacks are one of the most serious issues, 

and a means of preventing such attacks should be devised as soon as possible. These 

attacks prevent users from communicating with service providers and have damaged 

many major websites around the world. Flooding attacks present a significant problem 

to cloud IDPS (Agrawal & Tapaswi, 2017). 

Regardless, the security level of general cloud computing must be enhanced. 

More potent attacks attempt to take control of the cloud environment itself; such attacks 

include malicious virtual machine (VM) hyper-jacking and traditional network security 

threats such as traffic snooping, which intercepts network traffic, address spoofing, and 

the forging of VMs or IP addresses. It is difficult to manage host-based IDPS because 

information must be configured and managed for every host, although these drawbacks 

can be overcome by employing the misclassification detection and prevention method 

(Kizza, 2017). To summarize these issues, Figure 1.2 illustrates the general security 

issues faced by cloud computing. 
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Figure 1.2 Drawbacks of cloud computing security. 

 

To date, various methods have been proposed to prevent a user’s connection 

being cut-off when trying to perform an action that is flagged as a malicious activity in 

the IDPS. IT departments must then spend a significant amount of time checking every 

computer that encounters a false negative scenario (Patel et al., 2013). 
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Even though, the pre-processing classification in H-DIPS is made successfully, 

classification of DDoS Datasets seems to be a challenging task in term of lower 

accuracy and false alarm rates (Eid et al., 2011; Hassanien et al., 2014;Emiro De la Hoz 

et al., 2014; Enache & Patriciu, 2014; Kanakarajan & Muniasamy, 2016; Pajouh et al., 

2017). 

Hence, these issues led to the fundamental research questions examined in this 

thesis are: 

RQ1: Do current classifier mechanisms offer feasible accuracy, and false negative rate 

against DDoS attacks? 

RQ2: How efficient is the development of current classifiers against DDoS traffic in 

terms of the host-based intrusion detection and prevention systems? 

RQ3: What is the overall performance of the evaluation procedures used to assess the 

results in terms of their metrics and comparative analysis?  

 

1.3 Research Aim and Objectives 

The purpose of this research is to design a new classifier for host-based intrusion 

detection and prevention system in the cloud environment to achieve the better 

performance in term of accuracy, incorrect classification rate, false negate rate, true 

positive rate, precision, recall, F1 score and area under curve during the new classifier 

placement. This aim be further explicated by the following specific research objectives: 

i. To design a classifier mechanism using ALO-MLP to improve the accuracy in host-

based intrusion detection and prevention system and reduce the false negative rate.   

ii. To develop the ALO-MLP classifier mechanism through DDoS traffic as host 

based in intrusion detection and prevention system using NLS-KDD dataset.   

iii. To evaluate the performance of the proposed mechanism using machine learning 

metrics and compare it with existing classifiers in simulation environment.  
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1.4 Research Scope 

The main domain of this research is implement a classifier mechanism for 

Intrusion detection and prevention systems in cloud computing Environment. The 

proposed mechanism uses a new designed ALO with MLP for increase the accuracy 

rate and decrease the false alarm rate. Snort has used as H-IDPS and the network traffic 

came from extracting features of DDoS dataset NSL-KDD. Furthermore, a new 

classifier has tested over cloud environment using hypervisor, and that done through 

configure Snort on it. Moreover, this proposed mechanism will improve the problem of 

low accuracy and high false alarm to see the best performance of H-IDPS. The designed 

mechanism to be developed both in semi real time and simulated environment.  

 

 

1.5 Research Framework 

The overall process mechanism used throughout this research is illustrated in 

Figure 1.3. The operational framework is divided across the following stages: literature 

review, research methodology, and the evaluation stage for the proposed strategy. 

These stages of the research operational framework can be described as follows: 

1. A comprehensive investigation of the security threats in cloud computing 

through a review of the available relevant literature. Furthermore, a 

comprehensive literature review of existing H-IDPS examines the applicability 

of deploying detection–prevention methods in cloud computing. The literature 

review conducted in this research is summarized in Chapter 2. 

2. Design and implement a new classifier based-on ALO-MLP in Snort and 

investigation of the core mechanism for the deployment of H-IDPS in the cloud 

environment. The aim of these mechanism is to enable the prevention of DDoS 

Attacks through NSL-KDD DDoS dataset, and this is discussed in Chapter 3. 
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3. The resulting datasets are evaluated through several machine learning metrics 

using Weka as a simulation platform, as demonstrated in Chapter 4. 

4. Mechanism evaluation using our prevention mechanism metrics with other 

machine learning metrics, for example, correct and incorrect classification. 

Further, a comparative study with other mechanisms based on DDoS attacks 

which present in NSL-KDD is discussed in Chapter 5. 
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   Problem Identification;

  Review of related works ;

  Highlight recommendation;

  Highlight strengths and gaps;

  Pre-processing; classifier and dataset

 Problem formulation;

  Solution Representation;

 Generate the initial solution for  H-IDPS;

 Design a classifier based on  ALO-MLPUse ALO-MLP

      in H-IDPS for Cloud environment through SNORT engine

 Create the Dataset and  test it through Weka

 Use hybrid PCA-LDA for dataset

 dimensional reduction.

 Implement the  Snort Testbed though 

ALO-MLP pre-processor in Cloud environment 

 Test the dataset through Weka 

 Evaluation and Comparison;

 Compare with each other;

 Compare with similar and state-of-the-art 

approaches.

1

2

3

4

5

Objectives 

2

3

1

 

Figure 1.3 Operational research Framework. 
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1.6 Thesis Outline 

The remainder of this thesis is organized in the following manner: 

 Chapter 2 discusses related studies in terms of their techniques, drawbacks, and 

challenges. It ends with a discussion on the history of the accomplished design. 

 Chapter 3 highlights the general requirements and considerations involved in 

designing a practical DDoS detection and prevention system, the algorithms 

used for attacks present in NSL-KDD, and the complexities of both the training 

and deployment phases. 

 Chapter 4 discusses the experiments conducted on the system for parameter 

measurements and evaluation through various metrics. The system is then 

compared with existing mechanisms. 

 Chapter 5 reports the results of our evaluations and comparative analyses.  

 Chapter 6 concludes the current research and offers suggestions for future 

work. 

 

 

 



CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Overview 

The present research aims to collect and investigate all the credible and effective 

studies to have examined the security of cloud computing. More specifically, the salient 

features and methods of previous papers will be extracted, and their characteristics 

described. To achieve these goals within the context of previous methods and 

assessment techniques, case studies covering new methods, datasets, and benchmarks 

are investigated with respect to the research questions raised in Chapter 1. 

This Chapter provides an overview of previous research on cloud computing, 

DDoS, and H-IDPS. Section 2.2 gives a general background to cloud computing and its 

security issues. In Section 2.3, DDoS is critically reviewed to show how attacks 

influence the cybersecurity world, especially in cloud computing. Section 2.4 discusses 

the evacuation findings for existing H-IDPS in DDoS attacks on cloud computing to 

identify the current security challenges.  

2.2 Cloud Computing Security and DDoS Attack Classifiers  

For decades, there have been fears surrounding privacy on the Internet, leading 

to agency computers functioning solely on isolated intranets connected via hard cables 

(da Silva Filho et al., 2018). Recently, the utilisation of the cloud has become 

ubiquitous—we store photos, emails, business files, and our very identities there—but 

many companies still fear the cloud, wondering how they can classify and secure their 

information if it has been entrusted to someone else. This concern has made cloud 

computing one of the more polarising issues for IT professionals.  
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According to the 2017 Cost of Data Breach Study: Global Overview (Ponemon 

Institute, June 2017), the average total cost of a data breach is US$ 3.62 million, with 

the average cost for each lost or stolen record containing sensitive and confidential 

information being US$141. While these costs decreased from 2016 to 2017, the 

numbers remain astronomical, particularly to small businesses who may be unable to 

recover from data breach liabilities. Not any industry is safe from cyberattacks, and the 

number of such attacks continues to grow. 

Cyberattacks such as DDoS flooding have experienced extraordinary growth. 

They are often launched by sophisticated attackers—sometimes state-sponsored—that 

can overwhelm traditional and legacy security. Modern attackers are cyber spies that 

use traditional espionage tactics together with innovative and disruptive malware to 

bypass passive, defence-based security measures. To defeat such attacks, security must 

transform itself into an active agent that hunts today’s attacks as aggressively as it 

classifies them. 

To predict and defeat attacks in real time, cybersecurity must move to the cloud. 

The cloud can leverage big data and instant analytics across a large swath of end users, 

allowing known threats to be instantly addressed and those that seek to overwhelm 

security to be predicted. Cloud security must create a collaborative approach that 

analyses the event streams of normal and abnormal activity across all users to build a 

global threat-monitoring system. 

Because many different users leverage the same cloud environment, cloud 

security is particularly suited to a collaborative environment that instantly predicts 

threats through a worldwide threat-monitoring system and shares them among all users 

under the cloud umbrella. Cyberattacks continue to disrupt our way of life with 

innovative new approaches to seeding malware and stealing our data. In turn, security 

must actively work to disrupt cyber spies, attackers, and terrorists through a 

collaborative security approach that leverages the big data and analytics that thrive 

within the cloud. The following sub-sections will review the basis of cloud computing 

and outline the challenges faced in detecting and preventing threats using machine 

learning classifiers. 

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=SEL03130WWEN
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2.2.1 Cloud Computing  

The cloud refers to a distinct IT environment designed for remotely provisioning 

scalable and measured IT resources. The term originated as a metaphor for the Internet, 

which is a network of networks providing remote access to a set of decentralized IT 

resources. Before cloud computing became its own formalized IT industry sector, the 

symbol of a cloud was commonly used to represent the Internet in a variety of 

specifications and mainstream documentation of web-based architectures (Kaul et al., 

2017). Figure 2.1 shows the importance of cloud computing in remote services and 

virtual desktop applications. 

 

Figure 2.1 Cloud computing. 

 

In the cloud environment, a hypervisor is an important component in the 

management of cloud servers, defined as the computer software, firmware, or hardware 

that creates and runs VMs (Perez-Botero et al., 2013). The hypervisor presents the guest 

operating system with a virtual operating platform and manages the execution of the 

guest operating system. Multiple instances of an operating system may share virtualized 

hardware resources.  
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Hypervisors can be classified into two types: Type-1 (native or bare metal) or 

Type-2 (hosted). These hypervisors run directly on the host hardware, controlling the 

hardware and managing the guest operating systems. Therefore, they are sometimes 

called bare metal hypervisors. Figures 2.2 and 2.3 illustrate the Type-1 and Type-2 

hypervisors. 

Hardware

OS
       Hypervisor 

 

Figure 2.2 Type-1 native bare metal hypervisor. 

 

Hardware

OS
       Hypervisor 

OS

 

Figure 2.3 Type-2 hosted hypervisor. 
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In conclusion, the hypervisor is primarily a management interface for the 

hardware primitives. The isolation of the central processing unit (CPU), memory, and 

input/output is now performed at the hardware level, with the hypervisor managing how 

much of the hardware resources can be used by a VM. With the ability to leverage these 

CPU extensions, the attack surface of the hypervisor shrinks considerably. Many 

security-related concerns about virtualization are unwarranted. Multiple hardware- and 

software-supported isolation techniques—as well as other robust security mechanisms 

such as access control and resource provisioning address the risks associated with these 

worries, especially DDoS attacks. In the following sections, we will explain how these 

technologies address security concerns. 

2.2.2 Data Storage Security in Cloud Computing 

The recent rapid growth in the availability and popularity of cloud services has enabled 

convenient on-demand remote storage and computation. Security and privacy concerns, 

however, are preventing the wider adoption of cloud technologies. That is, in addition to 

the new security threats that emerge with the adoption of cloud technologies, a lack of 

direct control over one’s data or computations requires new techniques to enhance a 

service provider’s transparency and accountability. 

2.2.2.1 Cloud Storage 

Cloud storage services offer remote maintenance, management, and back-up of 

data (More & Chaudhari, 2016). This is available to users over a network, typically the 

Internet, and allows files to be stored online so that the user can access them from any 

location via the network. Many of these services are free up to a certain number of 

gigabytes, with additional storage available for a monthly fee. All cloud storage services 

provide drag‐ and‐ drop access and the synchronization of folders and files between 

desktop/mobile devices and the cloud drive. They also allow account users to 

collaborate with each other when working on documents as shown in Table 2.1. 
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The public cloud is understandably synonymous with risk, as the end-user is not 

in control of the infrastructure .Although the CIO Mid-Year Review 2014 (a survey of 

CIOs in India) found that the number of executives citing security as the top concern 

dropped from 44% to 25% from 2013 to 2014 (Himmel & Grossman, 2014), cloud 

computing undoubtedly offers many possibilities for cybercriminals, not least of which 

is powerful DDoS attacks. 

At the 2014 Black Hat conference, a pair of testers from Bishop Fox 

demonstrated how free-tier public cloud services could be pooled into a mini botnet that 

could mine the bitcoin cryptocurrency and potentially carry out DDoS attacks or 

password cracking. Targeted attacks such as Operation Ababil in 2013, which 

specifically focused on banking websites, have capitalized on Web vulnerabilities, and 

the number of such attacks may increase as more organizations supply and become 

dependent upon software-platform, and Infrastructure-as-a-Service (IaaS) (Gillman et 

al., 2015). As today, many personal cloud storage applications exist, for instance Apple 

iCloud, Microsoft OneDrive, Google Drive and Dropbox.  

Dropbox is a cross platform application running on OS X, iOS, Android, 

Windows/Windows Phone and Linux. It offers a storage service, which can be accessed 

from the browser or automatically synced with the local file system via an ad-hoc client 

interface running in background. It also enables collaboration by allowing users to 

exchange up to-date contents located in a shared folder. The Web version of Dropbox 

offers a basic backup service, which can be used to revert to a prior version of a file, for 

instance to cope with accidental deletions or modifications (Boughorbel et al., 2017). 
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Table 2.1 Cloud storage advantages and disadvantages 

No. Cloud storage Description Strengths Weaknesses 

1 Dropbox Dropbox gives users the ability to share entire 

folders with other Dropbox account users, 

which allows updates to be viewable by all 

collaborators (Drago et al., 2012).  

Ease of use. Very intuitive interface; for 

example, folders are shared by simply 

right‐ clicking the file or folder on the 

desktop and choosing to share. 

Lowest amount of free 

storage of the offerings 

reviewed in this document. 

When inviting users to share 

files/folders, the email 

invitation must be sent to the 

email address associated with 

the users’ Dropbox account 

(Sudharsan & Latha, 2013).  

2 OneDrive Can share content regardless of whether 

colleagues have accounts. Email notifications 

are sent when files are uploaded, downloaded, 

or added. Passwords can be set for important 

files.  

Offers the most free storage of the 

options reviewed in this document. Like 

Google Drive, it is possible to edit 

documents within a browser, without 

having to open a client application like 

Microsoft Word. 

Phishing email attacks have 

contained links to OneDrive 

(Daryabar et al., 2016).  

 

 

3 B o x Box offers the ability to set time limits for user 

access to certain files. Further, it enables more 

control over user access to files and documents 

because security levels can be defined(Khan et 

al., 2018). Box is geared towards businesses 

and enterprises, but is also available for 

personal use  

Storage of larger file sizes. Box is 

organized and user friendly, creating 

and organizing several layers of folders 

for all documents and data. It uses 

tagging to keep track of folders and 

files.    

Flooding attack platforms. 

4 Qualys Qualys is a unique tool for securing personal 

file(s) in cloud computing (Everett, 2009).. As 

security threats continue to rise, regulatory 

compliance has mandated growing 

organizations to answer two crucial questions:  

1) Are we secured from malicious threats and 

hackers?  

2) Can we demonstrate regulatory compliance?  

There is one advantage to the session-

based authentication with v2.0: it 

triggers the reprocessing of the data. 

Suffers from a performance 

overhead. 

http://www.qualys.com/
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No. Cloud storage Description Strengths Weaknesses 

 

5 White Hat Security 

White Hat Security is an online security tool 

based on SaaS that protects other websites 

through commercial contract services (Denning 

et al., 2013). 

Unlimited assessments, verification of 

every vulnerability, re-testing of every 

vulnerability on demand. 

Weak design for risk 

management security tool 

solutions. 

6 Okta 

Okta is a replicate active directory for cloud 

applications with the same set of processor 

capabilities; however, Okta is a web service 

integration of salesforce.com intended for 

active directory integration and security 

applications (Smith, 2011). 

Utilizes multifactor authentication for 

all SaaS/cloud apps via soft token, 

security questions or third parties that 

are fully integrated with Okta. 

Okta is taking a cloud-based, 

on-demand approach to single 

sign-on, identity, and access 

(Usmani et al., 2018).   

7 Proofpoint 

One of the concerns in cloud data centre attacks 

is whether the cloud is secure (Mohamed et al., 

2012).This issue can be answered by a proof 

point, which is a double-blind encryption 

technology that performs encryption on the day 

before the data leaves the customer’s premises 

and is stored in the cloud.  

Customers benefit from the scalability, 

performance, and economic advantages 

of Proofpoint’s ongoing investment in 

the latest innovations in virtualization 

and cloud computing. 

 

 

Centralized key management 

is often at the forefront of any 

encryption strategy, but good 

key management can be 

difficult to effectively 

implement and can prove 

difficult to fully understand. 

As such, any business needs 

to develop a detailed 

approach to create, store and 

remediate its keys. 

8 Zscaler 

Zscaler is a cloud security approach that can 

protect against advanced security 

threats(Ahmad et al., 2013). Forced policies for 

social media and cloud applications can prevent 

data loss without compromising user 

experience from any location and device, 

wherever they are in the world. 

Zscaler is a SaaS platform, much like 

Salesforce.com, but is solely focused on 

security and compliance. 

Lack of flexibility with 

respect to changes in security 

requirement tools. 
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2.2.3 Cloud DDoS Machine Learning Techniques for Classification of Attacks   

Although the number of cloud projects has increased dramatically over recent 

years, ensuring the availability and security of project data, services, and resources is 

still a crucial and challenging research issue (Subashini & Kavitha, 2011). DDoS 

attacks are the most prevalent cybercrime after information theft. TCP and/or UDP 

flood attacks can exhaust the cloud’s resources, consume most of its bandwidth, and 

damage an entire cloud project within a short period of time. 

First, it is important to understand how DDoS attacks work. DDoS utilizes the 

distributed nature of the Internet, in which hosts are owned by disparate entities around 

the world (Zlomislić et al., 2017). The DDoS attacker attempts to distribute different 

types of DDoS attack tools to the target network via the backbone network. Next, the 

attacker builds thousands of zombies, represented as active and passive attackers 

(Kamatchi et al., 2017). The victim is then subjected to a DDoS attack. This attack 

mechanism can be applied to all types of computer network, as shown in Figure 2.4. 
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Figure 2.4 DDoS attack scenario in the cloud computing environment. 
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DDoS attack detection and prevention is a vital part of reactive DDoS mitigation 

(Bharot et al., 2017). There are two main methods for detecting attack traffic via IDPS, 

i.e. signature-based and anomaly-based techniques (Purwanto & Rahardjo, 2014). 

Signature-based detection consists of matching the packet signature against known 

attack signatures stored in a database. If the database is adequately populated, a low 

false negative rate is highly probable. However, this technique is unable to detect 

attacks that are not included in the database.  

Although there are different vectors for DDoS attacks, they all aim to 

overwhelm servers, firewalls, or other perimeter-defined devices by sending large 

volumes of request packets (Saied et al., 2016). The network becomes overwhelmed to 

the point where a website becomes inaccessible. According to Black Lotus, the UDP 

flooding attack rate reached 53% in 2017 (Lotus, 2017). Moreover, the TCP and HTTP 

rates were 33% and 14%, respectively. Figure 2.5 illustrates the different types of DDoS 

attacks described by (Bhardwaj et al., 2016), and Table 2.2 describes various DDoS 

attack types. 

 

Figure 2.5 Black Lotus: three main DDoS flooding attacks. 

 

 

UDP Flood 

53% 
TCP Flood 

33% 

[CATEGORY 

NAME] 

[PERCENTAGE] 

DDoS Attack Type 

UDP Flood TCP Flood HTTP Get Flood  



22 

Table 2.2 DDoS attack types  

DDoS Attack DDoS characteristics and types  

Infrastructure Application Direct Reflection 

UDP flood P N/A - - 

TCP flood P N/A P N/A 

HTTP flood  P P P N/A 

ICMP flood P N/A P N/A 

XML flood  P P P N/A 

Ping of death  P P P N/A 

Smurf P N/A N/A N/A 

P = Partially       N/A = Not applicable. 

In cloud computing, the changing network traffic can bring about new DDoS 

attack types, which represent a serious risk to enterprise resources. Therefore, security 

administrators have a real need to employ efficient IDPS, especially H-IDPS. Such 

systems might be capable of learning from the network behaviour, by monitoring the 

characteristics of a single host and the events occurring within that host for suspicious 

activity. Figure 2.6 shows the characteristics of H-IDPS monitoring network traffic 

(only for that host), system logs, running processes, file access and modification, and 

system/application configuration changes.  

GatewayInternet

H-IDPS
H-IDPS

H-IDPSH-IDPS

H-IDPS

 

Figure 2.6 Schematic of H-IDPS.  
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Table 2.3 compares several detection methods based on criteria collected from existing 

surveys (Garcia-Teodoro et al., 2009; Nazer & Selvakumar, 2011). 

Table 2.3 Comparison of H-IDPS methods based on collected criteria 

H-IDPS technique Alarm rate Robust

ness 

Resource consumption Reliability Speed 

Signature Low Low Low Low Hig

h 

Anomaly High High High High Mi

drate 

Hybrid Midra

te 

High High High Mi

drate 

  

Although H-IDPS will generally produce the correct classification, some events 

may be classified falsely. True positive (TP) and false negative (FN) classifications 

represent correctly classified events, whereas false positive (FP) and true negative (TN) 

represent wrongly classified events (Sahani et al., 2018). Recognizing a TN as being 

intrusive but not anomalous is a very difficult task that cannot be performed by the 

system itself. Instead, some human factor must be involved in the mechanism for 

recognizing such events. FPs that are not intrusive but anomalous are classified as 

intrusive but may be normal user events.  

In general, to reduce the false alarm rate, an extra module known as a filter must 

be implemented before H-IDPS. In this way, false alarms can be eliminated from the 

output and the network administrator will only handle the relatively few alarms that are 

real intrusion attempts, thus saving time and manpower. This Chapter explains how the 

filter module works and how it reduces the number of false alarms. In conclusion, we 

must understand why machine learning is important in H-IDPS and identify the gaps in 

recent research; this is summarized in the next section. 
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Figure 2.7  Classification of true/false negative/ positive. 

Machine learning is the process of knowledge discovery from data without the 

need for explicit programming (Ndibwile et al., 2015). Machine learning techniques 

have become very popular over the past decade and are now used in many day-to-day 

applications such as image recognition, natural language processing, spam detection, 

intrusion detection and prevention, search engine applications, fault prediction, and 

stock market analysis (see Appendix A). In Table 2.4, shows several researchers have 

concentrated on machine learning approaches for detecting and preventing intrusion 

using fuzzy clustering, artificial neural networks (ANNs), support vector machines 

(SVMs), and fuzzy neural networks, which go beyond the conventional approach of 

generating results based on the detection rate and false negative rate. 
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Table 2.4 H-IDPS machine learning methods. 

IDPS technique Characteristics/Advantages Limitations/Challenges 
Anomaly detection • Uses statistical test on collected 

behaviour to identify intrusions.   

• Can reduce the rate of false alarms for 

unknown attacks. 

• Requires a lot of time to identify attacks. 

• Detection accuracy is based on the 

amount of collected behaviour features.  

IDPS based on 

fuzzy logic 

• Used for quantitative features.  

• Provides better flexibility for uncertain 

problems.  

• Has a lower detection accuracy than 

ANNs.  

ANN-based IDPS • Classifies unstructured network packets 

efficiently.  

• Efficiency of classification is increased 

when multiple hidden layers are used. 

• Requires a lot of time and large number 

of training examples  

• Requires many samples to train 

effectively. 

• Relatively poor flexibility. 

SVM-based IDPS • Although sample data are limited, 

intrusions can still be correctly classified. 

 • Manages many features. 

• Classifies only discrete features. 

Therefore, there is a need for that feature 

to be pre-processed before application. 

IDPS based on 

association rules 

• Used to detect signatures of relevant 

known attacks in misuse detection. 

• Not useful for unknown attacks. 

• Needs a lot of database scans to generate 

rules. 

• Can only be used for misuse detection. 

GA-based IDPS • Used to select best detection features.   

• High level of efficiency. 

• Complex method.  

• Used in a specific way rather than 

general.  

 

The most common challenges faced by traditional methods are that IDPS generate false 

alarms and do not use proper standards or parameters to evaluate threats. This can lead 

to the misuse problem. We argue that it is necessary to test the robustness of machine 

learning mechanisms such as ANNs and MLP, especially in the diversified operating 

conditions prevalent in cloud scenarios. 

2.2.3.1 ANNs 

ANNs are information processing systems inspired by the behaviour of 

biological nervous systems (Modi & Acha, 2017). A neural network consists of many 

highly interconnected processing elements that work in unison to solve a specific 

problem. Each processing element is called a neuron, and these elements are controlled 

by an activation function (see Figure 2.8). The output of each neuron becomes the input 

to all neurons in the next layer. The learning process involves finding the best set of 

weights to solve a particular problem.  

One of the design issues for ANNs is the type of transfer function used to 

compute the output of a node from its net activation. Popular transfer functions include: 
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1. Step function. 

2. Signum function. 

3. Sigmoid function. 

4. Hyperbolic tangent function. 
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Figure 2.8 Structure of ANN. 

The ANN gathers knowledge by detecting the patterns and relationships within 

the data fed into it and is essentially trained through experience. As a result, the ANN 

training time can be significant. (Shah & Trivedi, 2015) proposed a distributed system 

with an adaptive structure to detect attacks in the cloud platform. They used a KDD99 

dataset in a testbed environment and achieved high accuracy with an acceptable 

computation time. 

Chiba et al. (2016) proposed a cooperative hybrid network intrusion detection 

system (CH-NIDS) that detects network attacks in the cloud environment by monitoring 

network traffic while maintaining performance and service quality. In their NIDS 

framework, Snort signature-based detection is used to detect known attacks, with 

network anomalies identified using a Back-Propagation Neural Network (BPNN). By 

applying Snort first, the BPNN classifier can concentrate on detecting anomalies, thus 

reducing the detection time. To solve the BPNN problems of slow convergence and 

falling into local optima, they used a parameter optimization algorithm to ensure a high 
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detection rate, high accuracy, few false positives, and few false negatives at a 

reasonable computational cost. 

2.2.3.2 MLP 

To solve nonlinearly separable problems, it is possible to connect several 

neurons in layers to build an MLP. Each perceptron is used to identify small linearly 

separable sections of the inputs (Tang et al., 2016). The outputs of the perceptron are 

combined and fed into another perceptron to produce the final output. The hard-limiting 

(step) function used to produce the output prevents information on the real inputs from 

flowing into the inner neurons. To solve this problem, the step function can be replaced 

by the continuous sigmoid function. In an MLP, the neurons are arranged on an input 

layer, an output layer, and one or more hidden layers. The system applies neural 

projection architectures to detect anomalous situations. MLPs use advanced 

visualization features and provide an overview of network traffic. DDoS attacks in 

cloud computing can be input to an MLP for classification, as shown in Figure 2.9. 

 

Figure 2.9 Schematic of MLP used in IDPS. 

The learning rule for MLPs is known as the generalised delta rule or the 

backpropagation rule. The generalised delta rule calculates an error function for each 

input and back-propagates the error from one layer to the previous one. The weights for 
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each node are adjusted in direct proportion to the error. In this algorithm, only the 

winning weight vector can change its value after each iteration. The other weight 

vectors remain unchanged. (Mukhopadhyay et al., 2011) used the backpropagation 

neural network approach, in which the error is propagated from the output layer to the 

hidden layer and then to the input layer. Corchado & Herrero (2011) used a system 

called mobile visualization connectionist IDS and IPS (MOVCIDS).   

2.2.3.3 K-Nearest Neighbours  

The K-Nearest Neighbours (KNN) approach is a simple technique for 

classifying data. It computes the distance between two points, and then classifies 

unlabelled data accordingly. Deshpande et al. (2014) proposed an H-IDS based on 

analysing the failed system calls trace and classifying it using KNN. This would reduce 

the computational burden, detect the intrusion early, and alert the user to the threat.  

Their proposed scheme provided security at the infrastructure layer, where each 

VM used the IDS. The proposed mechanism achieved 96% average intrusion detection 

sensitivity. However, this system had only a limited view of the virtual network activity, 

so it was only able to detect malicious activity on the machine where it occurred.  

Ghosh and Mitra (2015) presented a hybrid KNN and Neural Network KNN and 

NN algorithm to improve the classification performance. They used rough set theory 

and the idea of information gain to select 25 features from the NSL-KDD dataset; the 

results indicate a reduction in both training time and memory usage. KNN was used to 

classify normal and abnormal data, and then the abnormal class was passed to the NN to 

classify specific attack types such as DOS, U2R, R2L, and Prob. The results 

emphasized that, for NSL-KDD, information gain was more suitable than rough set 

theory for choosing appropriate features, and the proposed KNN-NN hybrid multilevel 

classification increased the accuracy of the intrusion detection system. Moreover, the 

proposed KNN-NN hybrid multilevel classification offered an improvement over KNN 

and NN, achieving 76.54% accuracy. Nevertheless, there are some limitations to their 

approach because of the very high level (23.46%) of false alarms. 

Bhat et al. (2013) introduced a machine learning method that constructs IDS on 

the VM monitor (i.e. hypervisor). First, they used a naïve Bayes (NB) tree to classify 
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packets based on the NSL-KDD training dataset. This part contributes to a better 

classification mechanism by determining the most important features. Second, they used 

a hybrid of an NB tree and a random forest (RF) to predict the class of data based on the 

similarity of connection features. They compared the proposed method with many IDSs 

using machine learning. The results suggest that the hybrid NB tree and RF outperforms 

the NB tree in terms of accuracy and the false negative rate. 

2.2.3.4 Fuzzy Logic 

Fuzzy Logic (FL) provides a simple way of arriving at a definite conclusion 

based upon vague, ambiguous, noisy, imprecise, or missing input information(Sanchez 

et al., 2017). The process of reaching this definite conclusion is as follows: (i) All input 

values are fuzzified into fuzzy membership functions. (ii) Fuzzy rules are generated in 

the form of IF-THEN statements. (iii) Given an instance, some of the fuzzy rules will be 

activated. (iv) The activated rules are combined in the rule base to compute the fuzzy 

output distribution. (v) The fuzzy output distribution is defuzzified to obtain a crisp 

output value. 

Mkuzangwe and Nelwamondo (2017) proposed an FL network IDS to detect 

Neptune, which is a type of TCP SYN flooding attack. The NSL-KDD dataset was used 

to train and evaluate the system, which was compared with a decision tree. The results 

indicate that the performance difference, in terms of predicting the proportion of 

Neptune cases in the test data, between the proposed system and the decision tree is 

negligible. 

FL can be applied in IDS when some features are considered as fuzzy variables. 

Iyengar et al. (2014) presented a new defence mechanism to mitigate DDoS traffic in 

cloud data centres. They used FL to define rules based on a predefined traffic pattern, 

enabling their proposed mechanism to infer the traffic class (normal or attack) based 

upon acquired knowledge. Experiments carried out in a simulated environment attained 

a classification accuracy of 86.93%. 

2.2.3.5 Evolutionary Computation  

Evolutionary Computation (EC) refers to optimization algorithms which are 

inspired by biological evolution, such as Genetic Algorithms (GAs), Particle Swarm 

https://en.wikipedia.org/wiki/Evolutionary_computation
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Optimization (PSO), ant colony algorithms, and whale optimization (Ghamisi & 

Benediktsson, 2015). These methods are global heuristic search techniques that select 

network features or determine the optimal parameters for use in other techniques, thus 

improving the performance of the IDS. For example, Raja and Ramaiah (2016) 

presented a hybrid feature selection and multiclass classification algorithm to detect 

attacks in VMs. The authors proposed a security mechanism integrating a GA with 

discrete PSO to select the best features from the NSL-KDD dataset. They then 

integrated a hidden NB approach into an intelligent agent-based multi-class SVM. The 

performance results show that their hybrid algorithms can achieve an accuracy rate of 

greater than 95%. 

2.2.3.6 Probabilistic Reasoning  

Probabilistic Reasoning (PR) combines probability theory with deductive logic 

(i.e. reasoning from one or more statements) to deal with uncertain data. Most PR 

methods used in IDS rely on Dempster–Shafer, Markov, and entropy theory. As 

described by Lonea et al. (2013), Dempster–Shafer three-valued logic and fault trees 

can be used to analyse and detect DDoS attacks in the cloud environment. The proposed 

solution combines Snort IDS in each VM with a cloud fusion unit (CFU) at the front 

end. The alerts from all VMs are stored in a mySQL database within the CFU, and then 

converted to basic probabilities which are used to detect attacks. This method deals with 

uncertain states to reduce the false negative rate and meet the detection rate and 

computation time requirements. 

Using the Hidden Markov Method (HMM), Chen et al. (2012) detected the 

sequence and frequency of attacks. They collected multiple logs from a campus network 

and normalized them to produce a uniform format. The features of the data were then 

extracted and mapped to observed actions and events, before being passed to the trained 

HMM to distinguish whether the attack exists. Several related work summarizes the 

existing classifiers techniques as shown in Table 2.5. 

https://en.wikipedia.org/wiki/Probabilistic_logic
https://en.wikipedia.org/wiki/Dempster-Shafer_theory
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Table 2.5 Summary of classification techniques.  

 

 

Author (s) Technique  Type of 

intrusio

n based 

on Alert 

Analysis 

Type of 

IDS 

based on 

source of 

data 

Type of 

IDS 

based on 

position 

 

Dataset 

 

Results 

 

Deshpande 

et al. 

(2014) 

 

KNN 

 

Anomal

y 

 

Host  

 

VM  

System 

call 

traces 

 (real 

data 

captured) 

Sensitivit

y (96%) 

 

Ghosh and 

Mitra 

(2015) 

Information 

Gain (IG) 

with KNN 

&ANN 

Rough set 

with 

KNNA&AN

N 

 

 

Anomal

y 

 

Network  

 

N/A 

 

NSL-

KDD 

IG with 

KNN&N

N 

(76.54%) 

Rough 

with 

KNN&N

N 

(74.59%). 

 

Bhat et al. 

(2013) 

NB tree; 

RF & NB 

tree 

 

Anomal

y 

 

Hyperviso

r  

 

Hyperviso

r  

 

NSL-

KDD 

NB tree 

(99.65%) 

NB tree 

& RF 

(99.1%) 

 

Iyengar et 

al. (2014) 

 

FL  

 

Anomal

y 

 

Network  

 

Back End 

 

Simulate

d traffic  

 

Accuracy 

(86.93%) 

Manickam 

and 

Rajagopala

n (2018) 

Type-2 fuzzy 

& k-means & 

GA & fuzzy 

NN. 

 

Anomal

y 

 

Network   

 

N/A 

 

CIDD 

 

Detection 

rate 

(98.598%

) 



32 

For the purposes of this review, we have considered network intrusion 

simulations based on the NSL-KDD dataset. Thus, it is prudent to explore the results of 

recent IDS construction activities for that dataset. In addition to ensemble approaches, 

many machine learning techniques have been applied to IDS development. Some of the 

most popular approaches are hybrid methods, where a classification task is usually 

decomposed into feature selection or reduction and the classification of pre-processed 

data. The chief advantage of this approach is the significant decrease in computational 

cost, and many lightweight IDSs have been built along these lines. Additionally, 

favourable classification results have ensured that hybrid IDS construction approaches 

remain an active research area. 

Hota and Shrivas (2014) made a comparative study of various hybrid approaches 

for both binary (normal vs. attack) and multi-class classifications of the NSL-KDD 

dataset. Each hybrid implementation used the information gain (IG) feature selection 

and one of five classification algorithms: MLP, C4.5, RF, and REP tree. The authors 

reported that the best performance was achieved with an IG-RF hybrid classifier. 

Pervez and Farid (2014) defined a hybrid approach based on feature selection 

and subsequent classification using the NSL-KDD dataset. Feature selection was 

implemented following the Leave-One-Out (LOO) method, and, as a classifier, the 

authors deployed SVMs in a One-against-the-Rest Multi-Class Configuration (OAR-

SVM). Their experiment showed that the greatest classification accuracy was achieved 

by evaluating 14 selected features. 

Enache and Patriciu (2014) developed a two-stage hybrid approach: (i) feature 

selection with an IG algorithm and (ii) classification with an SVM method for binary 

(normal vs. attack) IDS classification. In addition, the authors chose to introduce a 

meta-optimization based on swarm intelligence algorithms to find the optimal set of 

classification parameters for the SVM. Two approaches were used to optimize the SVM 

classification parameters: PSO and Artificial Bee Colony (ABC). The experimental 

results for the NSL-KDD dataset indicated that an ABC-SVM approach achieved 

slightly higher precision than PSO-SVM. 
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Eid et al. (2011) proposed a simple hybrid classifier as a solution to the IDS 

classification problem. A GA was implemented as a wrapper method for feature 

selection, in conjunction with an NB classifier. The optimal subset of features was 

found by minimizing the classification error of the NB classifier trained with a given 

subset of features. In addition to feature selection, the authors implemented the Entropy 

Minimization Discretization (EMD) method to discretize the input data. The method 

was applied to the NSL-KDD dataset, with the whole set used for training, and the 

effectiveness of the proposed method was evaluated using 10-fold cross-validation. 

Emiro De la Hoz et al. (2014) implemented a two-component hybrid approach, 

with a feature selection and classification stage. They employed multi-objective feature 

selection, with the non-dominated Sorting Genetic Algorithm (NSGA) implemented to 

find the subset of features that maximized the Jaccard coefficient for each class in the 

dataset. The NSL-KDD dataset was classified by the growing hierarchical self-

organizing maps (GHSOM). Similar to Eid et al. (2011), the whole NSL-KDD dataset 

was used in the training phase, and the results were based on 10-fold cross-validation 

with a reported accuracy of 95.60%. 

Rastegari et al. (2015) developed an IDS based on GA optimization. Binary 

classification (normal vs. attack) of the NSL-KDD dataset was performed using a set of 

IF–THEN rules applied to the selected features. The features for rule construction and 

condition boundaries were selected by GA optimization, with the goal of minimizing 

the number of misclassified instances. Additionally, the authors implemented 

Correlation-Based Feature Selection (CFS), the Consistency Subset Evaluator (CSE), 

and the selection of only real-valued features. Their results indicate that the developed 

approach is comparable to other single-stage learning methods. 
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Alpha profiling was applied to the whole NSL-KDD dataset to combine the 

protocol and service features into a single “alpha” feature. To reduce the training time, 

beta profiling was deployed to remove redundant training pairs from the training set. 

Feature selection was based on three approaches: Filtered Subset Evaluation (FSE), 

CFS, and CSE. The authors reported that their Alpha FST Beta OSLEM approach could 

reduce both the dimensionality and training set size without compromising the 

classification accuracy. 

Kanakarajan and Muniasamy (2016) presented an approach based on a greedy 

randomized adaptive search procedure with Annealed Randomness (GAR-forest) 

classifier for both binary (normal vs. attack) and multi-label classification of NSL-

KDD. The GAR-forest approach uses the meta-heuristic Greedy Randomized Adaptive 

Search Procedure (GRASP), which generates a set of randomized adaptive decision 

trees. Feature selection was implemented through IG, Symmetrical Uncertainty (SU), 

and CFS. The authors reported that the GAR-forest classifier outperformed RF, C4.5, 

NB, and MLP classifiers. Their feature selection method also resulted in improved 

classification accuracy. 

Hassanien et al. (2014) presented a multi-layer IDS based on three stages: (i) 

feature extraction through Principal Component Analysis (PCA), (ii) binary (normal vs. 

anomalous) classification with a GA, and (iii) multi-class categorization of anomalous 

instances with decision trees. The GA classification was performed as a set of IF-THEN 

rules, with each observation labelled as either normal network traffic or a network 

intrusion. The experimental procedure was conducted on the NSL-KDD dataset. An 

analysis of the developed approach found that two-layer classification offered more 

reliable classification results than single-stage classifiers. A similar approach was 

developed by (Pajouh et al., 2017).  

As a feature reduction method, they implemented a Linear Discriminant 

Analysis (LDA) algorithm. The first-tier, binary (normal vs. anomalous) classification 

was performed with an NB classifier, and anomalous data were then classified more 

precisely in the second tier using kNNCF (kNN with a certainty factor).  
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The analysis of Hassanien et al. (2014) and Pajouh et al. (2017) indicates that 

the latter managed to obtain considerably better classification results. 

Table 2.6 provides an overview of popular IDS classification approaches based-

on the NSL-KDD dataset. 

Table 2.6 Popular NSL-KDD classification approaches based on feature selection 

and classifier method.  

Reference Feature selection/Pre-

processing 

Classification 

method 

Eid et al. (2011) GA and EMD NB 

Hassanien et al., 2014 PCA GA-DT 

Enache and Patriciu (2014) IG PSO-SVM 

Hota and Shrivas (2014) IG MLP 

Emiro De la Hoz et al. (2014) NSGA GHSOM 

Pervez and Farid (2014) LOO OAR-SVM 

Pajouh et al. (2017) LDA NB-kNNCF 

Rastegari et al. (2015) CFS GA classifier 

Kanakarajan and Muniasamy 

(2016) 

IG GAR-forest 

 

2.3  DDoS Benchmark Dataset for Verification of Machine Learning Classifiers  

Recently, machine learning-based methods for security applications have been 

gaining popularity as machine learning techniques become more advanced (Kim et al., 

2018). However, the major challenge with these methods is to obtain real-time and 

unbiased datasets. Many benchmark datasets cannot be shared because of privacy 

issues, or lack certain statistical characteristics. Because of this, researchers prefer to 

generate datasets for training and testing purposes in simulated, or closed experimental 

environments, which may lack comprehensiveness. Machine learning mechanisms 

trained with such datasets generally result in a semantic gap between the test results and 

their application. There is a lack of research on the effectiveness of these mechanisms 

when applied across multiple datasets obtained from different environments. 

Various security research groups have introduced network intrusion datasets to 

assess various intrusion detection methods and unknown attacks (Behal & Kumar, 

2016). These datasets can be classified into three categories: public datasets, private 

datasets, and network simulation datasets (J. Singh et al., 2012). Several tools have been 

used to generate most of the public and private intrusion datasets. 
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2.3.1 NSL-KDD  

The NSL-KDD dataset is a heterogeneous dataset consisting of 41 features and a 

class variable. The data cover both discrete and continuous values, with some of the 

discrete values being symbolic (Ingre & Yadav, 2015). In the KDD Cup 1999 dataset, 

several instances are redundant and exhibit potentially biasing learning mechanisms 

towards frequent records. To solve this problem, the NSL-KDD dataset retains only one 

of the duplicated records (Tavallaee et al., 2009). 

Hatef et al. (2018) presented a comprehensive and accurate solution that can 

detect and prevent intrusions in cloud computing systems using a hybrid method. They 

also applied their technique to the NSL-KD99 dataset. Although they evaluated their 

technique in terms of the accuracy, reliability, and availability of false alarms, they did 

not report the instances of correct and incorrect classifications. 

Osanaiye et al. (2016) used an ensemble-based multi-filter feature selection 

method that combines the output of four filtering techniques to achieve the optimum 

selection. They performed extensive experimental evaluations using an intrusion 

detection benchmark dataset, NSL-KDD, and a decision tree classifier. Their method 

can effectively reduce the number of features from 41 to 13 while achieving a high 

detection rate and classification accuracy. However, the dataset reduction in this 

approach means that not all the dataset features are used.  

2.3.2 DARPA Family 

The US Defence Advanced Research Projects Agency (DARPA) is responsible 

for the development of emerging technologies in the military sector (Maher et al., 

2014). DARPA-sponsored datasets are all synthetically generated, and questions have 

been raised about the realism of the underlying traffic mechanisms. In addition, none of 

the DARPA datasets was recorded on a network connected to the Internet. They usually 

contain a large degree of anomalous traffic that is not caused by malicious behaviour. 

2.3.3 CAIDA 

This dataset contains approximately one hour of anonymized traffic traces from 

a DDoS attack on August 4, 2007. The one-hour trace is split into various packet 

capture (PCAP) files (Grossman et al., 2009). The compressed dataset has a total size of 
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5.3 GB (21 GB uncompressed), and includes only attack traffic to the victim and 

responses to the attack from the victim (K. Singh et al., 2017). The payload has been 

removed from all packets. These traces can be read with any software that can handle 

the PCAP TCPDUMP format, such as the Coral Reef Software Suite, TCP DUMP, 

Wireshark, and many others. 

Jiao et al. (2017) proposed a real-time TCP-based DDoS detection approach 

which extracts the effective features of TCP traffic and distinguishes malicious traffic 

from normal traffic using two decision tree classifiers. They evaluated their approach 

using CAIDA and achieved an attack detection rate of more than 99% with a false alarm 

rate of less than 1% in a cloud computing environment. One main issue with this study 

is that it is based on only one DDoS TCP flooding attack, and so it should also be 

applied to a UDP flooding attack. 

Karimi et al. (2016) developed a distributed architecture-based IDS that can 

detect network anomalies in real time. However, they only divided the datasets into two 

groups of attacks and did not consider applying data reduction to the CAIDA dataset. 

However, these cloud/DDoS IDPS datasets underwent ML-based pre-processing, one 

part of which is dimensional reduction. The two most popular algorithms for dimension 

reduction are PCA and LDA. 

2.3.3.1 Dataset Dimension Reduction 

Dimensionality reduction is a field of machine learning in which high-

dimensional data are mapped to a lower dimension while preserving important features 

of the original dataset (Cunningham & Ghahramani, 2015). Two well-known 

dimensionality reduction techniques are PCA and LDA. Although many prior studies 

have developed feature selection and feature extraction techniques to reduce the size of 

the data under consideration, none has focused on determining by how much the dataset 

should be reduced. 

PCA has been widely used to extract the most relevant information from a 

dataset. It has been successfully used in face recognition applications, where PCA is 

employed to derive a new set of uncorrelated features from a set of correlated ones. 

Thus, PCA generates a set of orthogonal basis vectors, allowing the data to be expressed 
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as a linear combination of that basis. Some researchers have claimed that PCA 

introduces some classification task problems, as more processing is required whenever 

new data are added, and the data reduction is not invariant under certain 

transformations. Using PCA in the design of an IDPS will reduce the complexity of the 

system whilst achieving higher classification accuracy. The process of PCA can be 

described as follows: 

1. Compute mean vectors for the input features dataset (    

Mean      
 

 
   

 
              2.1 

2. Calculate the scatter matrix as the covariance matrix 

                                                   
 
                 2.2 

3. Compute eigenvectors and eigenvalues 

4. Sort the eigenvectors in descending order to give the vector   

5. Project the principal components onto the input features dataset  

                                                                                                                               2.3 
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Table 2.7 Summary of PCA approaches. 

Approaches   Advantages Disadvantages  

Reddy et al. 

(2017) 

IDPS with the union of most efficient features selected by PCA can 

reduce the computational complexity of the system. Along these 

lines, an improved version of K-means clustering was developed for 

enhanced classification accuracy. 

PCA has been utilized for feature extraction, whereby components are 

fundamentally anticipated into a principal space and at that point 

elements are chosen based on the eigenvalues. However, the elements 

with the largest eigenvalues might not provide the classifier with the 

ideal affectability. 

 

Keerthi Vasan 

and Surendiran 

(2016) 

PCA experiments were conducted using various classifier 

algorithms on two benchmark datasets, namely KDD CUP and UNB 

ISCX. The results show that the first 10 principal components are 

effective for classification. The classification accuracy with 10 

principal components is above 99%. 

 

The original 41 features (KDD) and 28 features (ISCX) were used 

without any dataset normalization.  

Eduardo De la 

Hoz et al. (2015) 

This approach hybridizes statistical techniques and self-organizing 

maps for network anomaly detection. PCA and Fisher’s 

Discriminant Ratio (FDR) were considered for feature selection and 

noise removal. 

 

Further investigation is required to determine how fast IDS 

implementations will need to be to cope with current link bandwidths. 

Thaseen and 

Kumar (2014) 

Proposes a novel method of integrating PCA and SVM by 

optimizing the kernel parameters using an automatic parameter 

selection technique. This technique reduces the training and testing 

time needed to identify intrusions, thereby improving the accuracy. 

Tested on the KDD dataset. 

 

Minimal resources are consumed as the classifier input requires 

reduced feature set, thereby minimizing the training and testing 

overhead. 

Lee et al. (2013) Proposed an online Over-Sampling PCA (OSPCA) algorithm. Most anomaly detection methods are typically implemented in batch 

mode, and thus cannot be easily extended to large-scale problems 

without sacrificing computation and memory requirements. 
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Another widely used feature extraction approach is LDA, which is based on the 

within-class scatter and between-class scatter. To separate different classes, the 

between-class scatter must be maximized, and the within-class scatter must be 

minimized. The LDA algorithm proceeds as follows: 

1. Compute mean vectors for the input features dataset (    

Mean      
 

 
   

 
                                            

 

2. Calculate the within-class (Sw) and between-class (SB) scatter matrices 

        

 

   

          
                                        

                                
                      2.6 

3. Find linear discriminants by computing the eigenvalues for Sw
-1

 SB 

4. Select the linear discriminants for the new feature set by sorting and choosing 

the eigenvectors   with the highest eigenvalues 

5. The feature set obtained by the linear discriminants is then used to obtain the 

transformed input dataset according to 

          2.7 

 

Table 2.8 Summary of LDA approaches. 

 Approaches  Advantages Disadvantages 

Elkhadir et al. 

(2017) 

Proposed an improved median nearest neighbours 

LDA (median NN-LDA), which performs well 

without satisfying the above two conditions. Their 

approach can effectively determine the local structure 

of data by working with samples that are near to the 

median of every data class. 

There are concerns about the 

nature of the data class 

distribution.  

Aburomman 

and Reaz 

(2016) 

Developed an efficient IDS in which an ensemble of 

LDA feature extraction algorithms were 

implemented. 

Feature extraction addresses 

the problem of finding the most 

compact and informative set of 

features. 

Saad et al. 

(2015) 

Proposed an IDS implementation that achieves a 

detection accuracy rate of 97.75%. 

Still need to develop more 

accurate algorithms combining 

D-LDA with some other 

classification methods for 

intrusion detection. 
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2.4 Evaluating Findings for Existing H-IDPS Cloud DDoS Attack Classifiers  

 To compare all previous approaches on an equal footing, our examination was 

restricted to the overall classification accuracy based on the same type and size of 

dataset. Only studies that applied the full NSL-KDD dataset were used for comparison 

(see Table 2.9).  

Table 2.9 Comparison of studies that classified the NSL-KDD dataset in terms of 

overall accuracy 

Authors Approach Accuracy 

Pajouh et al. (2017) IG-GAR 82.00% 

Hassanien et al. (2014) PCA-BFtree 68.28% 

Kanakarajan and Muniasamy (2016) LDA-NB-kNNCF 78.90% 

Pervez and Farid (2014) LOO-OAR-SVM 82.68% 

Tavallaee et al. (2009) MLP 77.41% 
 

2.5 Chapter Summary  

The distributed and open structure of cloud computing and related services has 

become an attractive target for potential cyberattacks by intruders. H-IDPS are largely 

inefficient when deployed in cloud computing environments because of their openness 

and specific characteristics. As with any developing system, IDPS in cloud computing 

must be improved. This Chapter has discussed H-IDPS in terms of the threats it is 

intended to catch, the challenges it faces, and the types of alerts that it triggers. In 

addition, the detailed in H-IDPS has been reviewed, as this is the basis on which the 

research presented in this thesis is built. In summary, current H-IDPS approaches lack 

the ability to identify and distinguish TP, TN alerts and accuracy during cloud DDoS 

attacks. The next Chapter describes a methodology that can overcome this issue.
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CHAPTER 3 

 

 

METHODOLOGY  

3.1 Overview 

This Chapter describes the design of an H-IDPS mechanism for a cloud 

computing environment. Section, 3.2 shows how the research objectives can be 

achieved within this methodology. Each individual process is separately explained in 

the following subsections. The main mechanism is used to detect and prevent DDoS 

attacks. The algorithm generates pre-processor rules in Snort for H-IDPS and uses a 

new detection and prevention mechanism to classify the NSL-KDD dataset, it discusses 

the evaluation of the classifier using a benchmark dataset. Finally, an evaluation process 

for the proposed mechanism is described in detail. 

3.2 Methodology Design Process  

The main aim of this methodology design process is to achieve the three 

research objectives, as shown in Figure 3.1. Objective one is necessary to design a 

mechanism for H-IDPS. This mechanism will function as a classifier for protecting 

DDoS attacks. To do this, we examine the original ALO algorithm. Based on the work 

of (Mirjalili, 2015), the ALO benchmark outperforms other metaheuristic algorithms. 

Thus, we select ALO as the base algorithm, and attempt to overcome the weaknesses of 

MLP by feeding the weights through ALO ternaries. This will be explained in detail 

later in this section. 

In Objective two is to implement the proposed ALO-MLP classifier, we will 

apply it to the NSL-KDD dataset through the topology of the cloud environment, which 

Snort is the source engine for H-IDPS. However, dimensional reduction removes 

redundant data, simplifying the process of sampling data for application to the classifier. 
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While, in objective three the proposed mechanism is evaluated using several 

metrics and the result are compared with those given by the main machine learning 

approaches from related work. 
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Figure 3.1  Proposed methodology and relation to research objectives. 
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3.2.1 Design of Classifier Mechanism 

To achieve the objective1, a design a classifier has placed in Figure 3.2. Initially, 

we need to know the original algorithm for ALO before do the hybrid mechanism. 

Then, a detailed explanation for the ALO-MLP has done as shown in Figure 3.2.  

Start

 ALO  Process

end

 ALO-MLP 

classifier Process r 

Objective 1 Achievement 

 

Figure 3.2 Classifier mechanism design.  

 

3.2.1.1 ALO Process  

Antlions, sometimes known as doodlebugs, are part of the Myrmeleontidae 

family and go through larvae and adult life phases (Mani et al., 2018). As larvae, they 

have an interesting hunting mechanism whereby small cone-shape construction are used 

to trap ants. The antlions sit in a pit underneath the cones and wait for prey to be 

trapped, as shown in Figure 3.3 and the process flowchart in Figure 3.4. After 

consuming the prey’s flesh, antlions throw the leftovers outside the pit and amend the 

pit for the next hunt. It has been observed that antlions tend to dig bigger pits when they 

are hungry, and this is the main inspiration for the ALO algorithm. 
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Cone Shaped Traps
Random walks of ant

inside antlion’s trap 
Catching the Prey Entrapment of ants

 

Figure 3.3 Operators of the ALO algorithm. 

With the mechanisms proposed so far, antlions are able to build traps 

proportional to their fitness and ants are required to move randomly. However, antlions 

shoot sands outwards the centre of the pit once they realize that an ant is in the trap. 

This behaviour slides down the trapped ant that is trying to escape. For mathematically 

designing this behaviour, the radius of ant’s random walks hyper-sphere is decreased 

adaptively. ALO is characterized as a three-tuple function, i.e. ALO ( 1 2 3, ,N N N ), that 

approximates the global optimum. 1N , 2N , and 3N  are formally defined as: 

 
1

, , ,
N

Ant OA Antlions OAL    
 

3.1 

   
2

, ,
N

Ant Antlion Ant Antlion     3.2 

   
3

, ,
N

Ant Antlion true false  
 

3.3 

where Ant
 is the ants’ position matrix, Antlion

 contains the antlions’ positions, OA
 

includes the fitness of the ants, and OAL
 defines the fitness of the antlions. In this 

algorithm, the ant and antlion matrices are randomly initialized using the function 1N
. 

The position of each ant with respect to the antlion is chosen by the roulette wheel 

operator, while the elite antlion position is updated by the function 2N
 in each iteration 

T. The boundary position is updated relative to the current iteration number. The 

position is then updated by two random walks around the elite and current antlion 

positions. The random path of each ant is evaluated by the fitness function. If any ant 

becomes fitter than an antlion, its position is considered as the new position for the 

antlion in the next iteration. The best current antlion is contrasted with the best antlion 
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obtained through optimization (elite). These steps are iterated until the function 3N
 

returns a false value. The pseudocode for the ALO algorithm is as follows: 

Algorithm 1: ALO 

Input:  

Output:      

1: 

Search-specific function, numbers of ants and antlions, number of iterations T 

The elite antlion and its fitness  

Initialize a population of n antlions and ants at random 

2: Compute the ants’ and antlions’ fitness 

3: Locate the best antlion and define as the elite 

4: While the end condition is not satisfied 

             Foreach Antt do 

                     Choose antlion utilizing roulette wheel selection 

                     Slide ants toward the antlion  

                     Create a random walk for the ant 

Update the position of Antt and normalize it,  

              End  

5 Compute the fitness of all ants  

6: Substitute an antlion for an ant if the ant is fitter 

7: Update elite if an antlion becomes fitter than the current elite 

8: End While 

9: Return elite 
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Read System Data

Start

Set the parameters of ALO, 

itmax

Initialize positions of ant and 

antlions using uniformly 

distributions

Evaluate the initial population  

and, find the fittest antlion & 
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It<itmax

For i=1:pop

Select an antlion using Roulette 

Wheel

Use to slide ants towards the 

antlion

Update the position of ant

Variables out 

of bound

Tagging at the 

boundaries

Calculate fitness values of all 

ants 

Replace an antlion with its 

corresponding ant if it becomes 

fitter 

Upadate Elite antlions

Convergence(it)=Best

End

No

No

Yes

Yes

 

Figure 3.4 ALO process flowchart. 
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3.2.1.2 ALO-MLP Classifier Mechanism  

The aim of any optimizer is to determine the variable values that give the 

highest classification rate and the lowest error rate. To achieve this, the ALO algorithm 

is used to optimize the weights and biases written in vector form, which represent the 

input to the ALO algorithm:  

   1,1 1,2 , 1 2, ,..., , , , ,...,n n hX Y Y Y Y    
  

   3.4 

where n represents the number of inputs, 
ijY  is the weight of the connection between the 

thi  and 
thj  nodes, and k  represents the bias of the kth hidden node. In other words, the 

objective of the proposed algorithm is to achieve the highest classification rate of both 

training and testing samples. To evaluate the MLP output, the Mean Square Error 

(MSE) is used to calculate the difference between the desired output and the actual 

output of MLP. The MSE is used to measure the deviation between the desired output 

and the actual output. 
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where m  represents the number of outputs, and k

i , k

i  are the desired and actual 

outputs, respectively, of the thi  input unit when the thk  training sample is used. Thus, the 

average MSE can be calculated for all N training samples. The objective function of the 

ALO algorithm is used to minimize the average MSE as: 

min : F X MSE
 

 
 

 3.6` 

  

Figure 3.5 illustrates how ALO feeds the weights and biases to produce more 

training sampling in an efficient manner. 



49 

Determine training pattern  

Define MLP architecture 

Determine MLP and ALO parameters 

Start training 

Weight adjustment using ALO
 

Figure 3.5 ALO-MLP mechanism.  

 

Although most of the pre-processor rule options focus on simple checks against 

fields within Snort’s packet structure, some of them are quite complex. In this section, 

these options are explored in more detail by examining how Snort evaluates the content 

rule option and its modifiers. The theory behind ALO-MLP and information on 

configuring and using the options will be highlighted. Building the pattern matcher 

begins with the pre-processor classifier that was previously used to evaluate the packets, 

as shown in Figure 3.6. The reason for using the pattern matcher is to reduce the 

number of rules that Snort must evaluate against the packet. Reducing the number of 

rules evaluated decreases the amount of time spent on any single packet. This allows 

Snort to process more packets and handle higher network speeds.  

The pattern matcher starts by grouping rules based on their destination ports. For 

each pre-processing rule on a destination port, it then identifies the string with the 

longest content. If a rule does not have a content string, it is moved into a special non- 

content category. Once the strings have been collected, they are compiled into a set-

wise pattern matcher using one of several possible algorithms. When a packet is input to 

the pattern matcher, the set of patterns for inspection is selected using the destination 

port. In a single pass, the pattern matcher then determines all patterns within the set that 

are contained within the packet. This pattern-matching process reduces the number of 
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rules considerably, thereby increasing the amount of traffic that Snort can analyse in 

semi-real time, as shown in Figure 3.6.  

Decoded Packets 

Flow Pre-processor 

Other  Pre-processor 

Flow Pre-processor 

Alert File 

Analysis File 

Cloud computing 
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Detection and Prevention 
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Figure 3.6 Detection and prevention engine in Snort. 

As static profiles eventually become inaccurate, they are periodically 

regenerated. For example, an attacker may occasionally perform small amounts of 

malicious activity before subsequently increasing the frequency and quantity of this 

activity. If the rate of change is sufficiently low, the H-IDPS might treat the malicious 

activity as normal and include it in a normal profile. Malicious activity might also be 

observed by the H-IDPS while it is building its initial profiles. 

Within the fast pattern matcher, the process of pattern matching does not 

consider positional modifiers such as the depth, offset, or distance that may be specified 

alongside the content option in the rule. These modifiers will be evaluated when the 

prevention engine calls the list of detection functions attached to the Option List (OTN) 

in the Snort engine. This improves performance, although using a long content match is 

not recommended if an efficient rule set is required. If the rule set grows beyond the 

memory available in H-IDPS, the options for matching become limited. However, work 

on an improved pattern matcher that offers similar performance as the current 

Adhocratic, which consumes only a small fraction of the memory, is currently 

underway.  

Therefore, by using the fast pattern matcher, more complex configurations can 

be built, and the base Snort pre-processor rule set can be expanded. An initial profile is 

generated over a training period of several days or weeks. These profiles for the 
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prevention engine can be either static or dynamic. Once generated, a static profile is 

constant unless the H-IDPS is specifically directed to generate a new profile.  

Dynamic profiles are constantly adjusted as additional events are observed. The 

corresponding measure of normal behaviour could be different, as the systems and 

networks will change over time as shown in Figure 3.7 
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Figure 3.7 ALO-MLP as a pre-processor classifier in Snort core.  

 

After being introduced to the cloud environments hypervisor based on any 

suspicious IPs, the H-IDPS will take immediate action against anomalous DDoS 

packets. The hypervisor will create a list of discrete entities such as the hosts, TCP, and 

UDP port numbers associated with the malicious activity, which extracted from NSL-

KDD traffic in Snort. Blacklists, also known as hot lists, are typically used to allow the 
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H-IDPS to recognize and block activity that is highly likely to be malicious; this list 

may also be used to assign a higher priority to alerts that match entries on the blacklists.  

The proposed mechanism generates dynamic blacklists that are used to 

temporarily block recently detected threats (e.g. activity from the IP address of an 

attacker). A whitelist is a list of discrete entities that are known to be benign. Whitelists 

are typically used on a granular basis, such as to reduce or ignore false negative 

involving known benign activity from trusted hosts in true positive. Whitelists and 

blacklists are commonly used in signature-based detection and stateful protocol 

analysis. 

3.2.2 Implementing ALO-MLP as a Classifier for the NSL-KDD Dataset  

Packets captured from different source of NSL-KDDIP addresses are recognized 

as attack packets, whereas the aggregation of packets sent from different sources to a 

specific destination is classified as a DDoS attack, which extracted from NSL-KDD. 

The incoming traffic from different sources to one specific destination sends the result 

to the correlation engine to detect the DDoS attack. 
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Figure 3.8 Implementing ALO-MLP. 
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There are two focal issues that need to be addressed for an H-IDPS: cleaning the 

training data and devising an enriched representation for the mechanism. Strategies for 

both could improve the performance of an anomaly detection system. Techniques that 

perform system monitoring require clean training data when building their mechanism. 

The current audit sequence is then examined for anomalous behaviour using some 

supervised learning algorithm. 

An attack embedded inside the training data would result in an erroneous 

mechanism, as all future occurrences of that attack would be treated as normal. 

Moreover, obtaining clean data by hand could be tedious. Hence, an automated 

technique for purging all malicious content from audit data is required. Additionally, 

normal behaviour is structured using features extracted from the training set. It is 

important to remember that the concept of normal/abnormal in anomaly detection is 

vague when compared to a virus detector, which has an exact signature of the virus it is 

trying to detect. As a result, anomaly detection is a difficult problem. 

 Traditional host-based anomaly detection systems focus on system call 

sequences to build mechanisms of normal application behaviour. These techniques are 

based upon the observation that malicious activity results in an abnormal (novel) 

sequence of system calls. Several variants of LDA have been used to address the 

vanishing of within-class scatter under the projection to a low-dimensional subspace. 

However, some of these proposals are ad-hoc and do not address the generalization 

problem for new data (Rathore et al., 2016). 

 Although LDA is preferred in several dimension reduction applications, it does 

not always outperform PCA. Therefore, both PCA and LDA are combined to optimize 

the performance of NSL-KDD. The main goal is to enhance data discrimination, which 

can be achieved with subspaces learned with either PCA or LDA, as shown in Figure 

3.9.  
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Figure 3.9 ALO-MLP classifier testing in Weka. 

The learning mechanism of the hybrid method differs from those of existing 

techniques. The hybrid mechanism addresses the generalization problem for new data 

directly, a novel computational strategy has been developed to estimate the optimal 

subspaces. Given a set of labelled training data from different classes and a set of 

unlabelled test data from the same group of classes, each test sample is identified using 

the new mechanism. Both sets consist of feature vectors. The hybrid procedure for PCA 

and LDA is described below: 

1. Compute Mean vectors for the input features dataset (    

               Mean      
 

 
   

 
                   3.7 

2. Calculate the scatter matrix – Covariance Matrix 

                                                            
 
             

                          3.8 

3. Compute Mean vectors for the principal components (     

     Mean          
 

 
    

 
                             3.9 
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4. Calculate the scatter matrices – within class(Sw) and between class(SB) matrices 

 

              
 
                      

                3.10 

                                                                                    
                3.11  

5. Find linear discriminants by computing the eigen values for   
     

6. Select the linear discriminants for the new feature set by sorting and choosing 

eigen vectors,   with highest eigen values. 

7. The new feature set obtained by the linear discriminants are then used to obtain 

transformed input dataset by following equation 

                          3.12 

3.2.2.1 Scenario 1: Denial of Service  

This attack scenario is designed to perform attacks on a target using the targa8 

tool until it is successful. Targa is a very powerful tool that can quickly damage a 

network belonging to an organization. 

3.2.2.2 Scenario 2: Probing  

In this scenario, we attempt to acquire information about the target host and then 

launch an attack by exploiting vulnerabilities found using the nmap9 tool. Examples of 

attacks that can be launched by this method are SYN-scan and ping-sweep. 

3.2.2.3 Scenario 3: R2L 

This scenario has the goal of performing coordinated port scans to single and 

multiple targets. The tasks are distributed. 

3.2.2.4 Scenario 4: User to Root  

These attacks are very common against networks, as they tend to break into 

accounts with weak username and password combinations. 

3.2.3 Performance evaluation of the Proposed Mechanism  

A binary classifier produces output with two class values or labels, such as 

Yes/No and 1/0, for given input data. The class of interest is usually denoted as 

“positive” and the other as “negative”. NSL-KDD used for performance evaluation is 

called a test dataset. It should contain the correct labels (observed labels) for all data 
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instances. These observed labels are used to compare with the predicted labels for 

performance evaluation after classification. Figure 3.10 shows the nine-evaluation 

metrics that used to evaluate the proposed mechanism.  
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Figure 3.10 Evaluation Metrics 

 

 



58 

3.2.3.1 Accuracy  

The accuracy (ACC) is the proportion of correct predictions over the whole 

dataset. It is determined as: 

ACC = (TP + TN) / (TP + TN + FP + FN)          3.13 

3.2.3.2 Incorrect Classification Rate 

Misclassification is the situation where an intrusion is assigned a class (either 

normal or anomalous) that is different from the actual one (Salman et al., 2017). This 

measure is useful in estimating the probability of disagreement between the true and 

predicted classification rates of H-IDPS. It is obtained by dividing the sum (FN+FP) by 

the total number of paired observations, i.e. TP+FP+FN+TN. 

In a binary classifier, we only have the two classes of “Attack” and “Normal”. 

Thus, we have four instances: an “Attack” predicted as “Attack” (TP) or predicted as 

“Normal” (FN), and “Normal” predicted as “Normal” (TN) or predicted as “Attack” 

(FP). The classifiers used with the NSL-KDD dataset aim to predict the class of each 

attack. If an attack that belongs to a certain class is incorrectly predicted as belonging to 

the wrong class of attacks, it has still been correctly identified as an attack. Thus, we 

cannot consider this case as a false positive or a false negative, as it contradicts the 

definition of both.  

3.2.3.3 Confusion Matrix 

A confusion matrix can be used to illustrate the performance of an H-IDPS. The 

confusion matrix can be used for N-class problems, whereas the matrix discussed earlier 

is used for 2-class problems (Chatterjee & Bhattacharya, 2014). The size of the matrix 

depends on the number of distinct classes to be detected in the dataset. The matrix 

entries reflect a comparison of the class labels predicted by the classifier and the actual 

class labels. Consider an intrusion dataset with 100 instances, of which 45 are normal, 

35 are DDoS, 15 are probe, and 5 are U2R attack instances. Of the 45 normal instances, 

the H-IDPS predicts 38 correctly, 4 as U2R, 2 as probe, and 1 as DDoS; of the 35 DDoS 

instances, the N-IDS predicts 31 correctly and 4 as normal; of the 15 probe instances, 

the system predicts 11 correctly and 4 as normal; and finally, of the 5 U2R instances, 
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the system predicts 3 correctly, 1 as normal, and 1 as probe. The confusion matrix for 

this situation is illustrated in Figure 3.11.  
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Figure 3.11 Confusion matrix classification. 

The Receiver Operating Characteristic (ROC) curve could not be used to 

compare the IDPS and determine which is most suitable for certain circumstances. For 

example, the appropriateness of ROC analysis is very questionable when the IDPS only 

produces 0 or 1 as output, and the proper unit of analysis and measurement differs for 

different detectors. 

3.2.3.4 Precision 

The precision (P) is the proportion of attack cases that are correctly predicted 

relative to the predicted size of the attack class. This is calculated as: 

P= TP/(TP+FP)             3.14 

3.2.3.5 FN Rate  

In statistics, when performing multiple comparisons, a false negative ratio (or 

false alarm ratio) is the probability of falsely rejecting the null hypothesis for a test. The 

false negative rate is calculated as the ratio between the number of negative events 
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wrongly categorized as positive (false positives) and the total number of actual negative 

events (regardless of classification).  

 The false negative rate (FN) is calculated as: 

 

FN= FN/(TP+FP)         3.15 

3.2.3.6 Recall 

Recall (also known as sensitivity) is the fraction of relevant instances that have 

been retrieved over the total amount of relevant instances. Both precision and recall are 

therefore based on an understanding and measure of relevance. The recall (R) or TP rate 

(TPR) is the proportion of correctly predicted attack cases over the actual size of the 

attack class. This is calculated as: 

Recall = FN/(TP+FN)          3.16 

3.2.3.7 F1 Score  

In the statistical analysis of binary classification, the F1 score (also F-score or F-

measure) is a measure of a test’s accuracy. It considers both the precision P and recall R 

of the test to compute the score: P is the number of correct positive results divided by 

the number of all positive results returned by the classifier, and R is the number of 

correct positive results divided by the number of all relevant samples (all samples that 

should have been identified as positive). The F1 score is the harmonic average of the 

precision and recall. The best F1 score is 1 (perfect precision and recall) and the worst is 

0. 

F1 = 2 * (precision * recall) / (precision + recall)     3.17 

3.2.3.8 TPR 

The attack or anomalous data are labelled as positive, whereas normal data are 

labelled as negative. The true label is used for decision-making. We have the four 

possibilities of TP, TN, FP, and FN (Li et al., 2014). When the H-IDPS correctly 
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classifies an anomalous instance, this counts as a TP. FP occurs when a legitimate 

action is misclassified as anomalous.   

TPR = true positive fraction 

     = 1 – false negative fraction 

     = TP / (TP + FN)       3.18 

3.2.3.9 Area Under ROC Curve (AUC) 

Figure 3.12 shows three AUC curves representing excellent, good, and worthless 

tests. The accuracy of the test depends on how well the test separates the group being 

tested into those with and without the attribute in question. Accuracy is measured by the 

area under the ROC curve. An area of 1 represents a perfect test; an area of 0.5 

represents a worthless test. 
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Figure 3.12 Illustration of the area under the AUC curve. 
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3.2.3.10 Matthews Correlation Coefficient  

The Matthews correlation coefficient (MCC) is used in machine learning to 

measure the quality of binary (two-class) classifications (Boughorbel et al., 2017). 

However, it considers true and false positives and negatives and is generally regarded as 

a balanced measure which can be used even if the classes are of very different sizes. 

The MCC describes the correlation between the observed and predicted binary 

classifications, returning a value between −1 and +1. A coefficient of +1 represents a 

perfect prediction, 0 is no better than random, and −1 indicates total disagreement 

between prediction and observation. The MCC is calculated as: 

( )( )( )( )

TP TN FP FN
MMC

TP FP TP FN TN FP TN FN
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3.3 Chapter Summary  

This Chapter has described the mechanism based on two important methods: a 

new Snort classifier based on ALO-MLP for H-IPDS in cloud environment, and the 

ALO-MLP classifier in Weka. The proposed use of ALO-MLP in H-IDPS is based on 

new mechanism design with the hypervisor environment to detect and prevent DDoS 

attacks. Therefore, achieving the objectives stated in Chapter 1. The next Chapter 

describes the implementation of the proposed solution for the dataset.  
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CHAPTER 4 

 

 

IMPLEMENTATION AND RESULTS 

4.1 Overview 

This Chapter describes all implementation processes of the proposed prevention 

mechanism for DDoS attacks in a cloud environment through the H-IDPS inline 

hypervisor. Performance results using the proposed implementation are also presented 

for various scenarios. Section 4.2 introduces the implementation of NSL-KDD and 

extracted dataset into Snort over cloud environment and Weka. The parameters and 

metrics used in the implementation stage are reported in Section 4.3. Section 4.4 

presents the NSL-KDD results though Weka. Furthermore, a method for identifying 

which IPs are attacking the cloud server is described in section 4.5. Finally, Section 4.6 

summarizes the current Chapter. 

4.2 Implementation Phases  

The Snort pre-processor rule sensor operates efficiently in cloud environment. 

The mechanism was used over NSL-KDD. However, the selected classifier was tested 

using 74,637 records, which were fully randomized to simulate a more realistic 

situation. All network traffic was collected and audited by H-IDPS as follows: 

1. Classifier mechanism for ALO-MLP implemented in Weka.  

2. ALO-MLP classifier verification using NSL-KDD. 

3. Implementation of evaluation metrics for ALO-MLP. 
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4.2.1 Implementation of Designed ALO-MLP Classifier  

H-IDPS was built as a core network security system for the cloud computing 

environment. Thus, H-IDPS was used to detect and prevent all types of DDoS attack in 

NSL-KDD. This allows the hypervisor to profile the results in white/black lists. This 

implementation was intended to create and test the virtual network in a small-scale 

environment. A simple virtual network was created and tested with the help of a single 

virtual router, virtual switches, and two virtual computers as hosts in VMware 

Workstation 14. The second part of this stage focused on implementing and scaling the 

virtual network to large numbers of devices using ESXi. In this part, a large-scale 

virtual network was created with multiple switches and a router, and then installed in 

the server environment. The router and switches erased the previous configuration 

automatically.  

There are specific instructions regarding how new pre-processor plugin modules 

can be incorporated. The ALO-MLP generic flood detection and prevention pre-

processor was named ALO-MPL_flood.c and was accompanied by the ALO-

MLP_flood.h header file, where employed as DDoS prevention. The following 

statements describe the initial steps required to add the ALO-MLP_flood pre-processor 

to Snort: 

Add to the Snort plugbase.h file 

#include “ALO-MLP_flood.h”  

Add the following lines to the Snort plugbase.c file 

 void Init. Pre-processor () 

  { 

  SetupFlood(); 

  } 

Add the following lines to the Snort. conf file 

pre-processor flood: $HOME_NET <threshold # packets> <threshold # time period> 

<logfilename> 

Create two flood-plugin files: 

ALO-MLP_flood.h 

ALO-MLP_flood.c 

In ALO-MLP_flood.h, add 
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void SetupFlood (); 

void FloodInit (u_char *); 

# The FloodInit function creates the pre-processor data structure  

In ALO-MLP_flood.c, register the pre-processors by adding the following function: 

void SetupFlood(void) 

{ 

       Register Preprocessor ("flood", FloodInit); 

 

4.2.1.1 Flood Pre-Processor Data Structure 

The pre-processor flood list maintains the packet rate using a three-dimensional 

double-linked list:   

1. Flood list  source info (match source IP). 

2. Destination info (match destination IP). 

3. Connection info  (match port info). 

The first-level source info list registers the packet source address. For each 

source, the packet’s destination was recorded and counted in the destination info list. 

For each source–destination connection, the packet’s port information was recorded and 

incremented. The key data structures used for flood detection are presented in Figures 

4.1 and 4.2. 

 

Figure 4.1 DDoS pre-processor key data structure. 

 

Based on the ALO-MLP pre-recorded rules, H-IDPS classified and prioritized 

Snort alerts. This process is fully customizable and allows the desired classifications 

and priorities to be defined. There are three priority levels by default: low, medium, and 

high. 
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Figure 4.2 DDoS pre-processor key data structure.  
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The computer used for attack coordination assumed the dual roles of “Master 

client” and “Handler”. The system specifications and those of four attack agents are 

presented in Table 4.1; the H-IDPS cloud hypervisor testbed is shown in Figure 4.3. 

Table 4.1 System specifications 

System Specifications 

Model  VL HP ProLiant dl320e gen8 

CPU  Intel® Xeon® E3-1220Lv2 (2.3GHz/2-core/3MB/17W, HT) 

RAM  16 Gigabyte 1600MHz DDR3 

Hard Drive  2 Terabyte 

Network Interface HP Ethernet 1Gb 2-port 330i Adapter 

OS Debian 9.2 

Linux Kernel Version 4.9 2017  

 

 

Figure 4.3 Two HP servers.  

4.2.1.2 Cloud Environment H-IDPS Network System Specifications 

The hypervisor H-IDPS used identical computer models as described in Table 

4.1 with Snort v2.9.11. However, the firewall overrides the security policy and routes 

TCP and UDP external traffic-which came from NSL-KDD to specific service ports on 

the testbed, namely TCP/UDP-ports 21, 22, and 23 for FTP, SSH, and Telnet services. 

 TCP/UDP-port 25 for SMTP services. 

 TCP/UDP-port 42 for DNS services. 

 Other ports opened for remote administration of Real Server, Snort, and other 

applications. 

For testing purpose, iptables were also configured to allow ICMP packets. Class-

based queuing was implemented on Titan to manage outbound traffic into the private 
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network. Seventy percent of the internal link bandwidth was allocated to HTTP and 

RealPlayer traffic. Moreover, SMTP was assigned 15% of the bandwidth, and SSH, 

Telnet, and FTP collectively used 10% of the bandwidth. Finally, SYN and ICMP 

traffic was bounded to 5% of the network link bandwidth. The rateif.pl program in Titan 

opens port 6779 to listen for alerts from H-IPDS.  

4.2.2 Implementation of ALO-MLP H-IDPS Classifier using NSL-KDD 

We used nine algorithms in Weka for the classification task. The test option 

used in all techniques was 10-fold cross-validation. NSL-KDD is suggested to solve 

some of the problems in the original KDD99 dataset. One of the most important 

deficiencies in the KDD data set is the huge number of redundant records, which causes 

the learning algorithms to be biased towards the frequent records. Furthermore, the 

number of records in the NSL-KDD train and test sets are reasonable. This advantage 

makes it affordable to run the experiments on the complete set without the need to 

randomly select a small portion. Consequently, Data files in NSL-KDD have: 

1. KDDTrain+.ARFF: The full NSL-KDD train set with binary labels in ARFF 

format. 

2. KDDTest+.ARFF: The full NSL-KDD test set with binary labels in ARFF 

format. 

However, the normal traffic in this dataset was 972,781 records and attacks in   

was 3,925,650. Whereas, the dataset contains 41 features which are listed in the Table 

4.2. 

In each record there are 41 attributes unfolding different features of the flow and 

a label assigned to each either as an attack type or as normal. The details of the 

attributes namely the attribute name, it contains type information of all the 41 attributes 

available in the NSL-KDD data set as shown in Tables 4.2. In addition, these attributes 

contain data about the various 5 classes of network connection vectors and they are 

categorized as one normal class and four attack class. Tables 4.3, shows the 4 attack 

classes are further grouped as DDoS, Probe, R2L and U2R. The description of the 

attack classes. 
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Table 4.2 NSL-KDD features.  

 

`

S.NO Class Features

1. Basic features 

2. Content features

3. Same host 

features

4. Same services 

features

F1-F9

F10-F22

F23-F31

F32-F41

Duration Protocol Type, Service Flag, Source Bytes, Destination 

Bytes, Land Wrong Fragment, Urgent.

Count, Srv Count, Serror Rate, Rerror Rate, Srverror Rate, Same 

Srv Rate, Diff Srv Rate, Srv Diff Host Rate.

Dst Host Count, Dst Host Srv Count, Dst Host Same Srv Rate, Dst 

Host Diff Srv Rate, Same Scr Port Rate, Dst Host Srv Diff Host Rate, 

Dst Host Serror Rate, Dst Host Srverror Rate, Dst Host Rerro Rate, 

Dst Host Srverror Rate

Number Failed Logged In, Number Compromised, Root Shell, Su 

Attempted, Number Root, Number File Creations, Number Shells, 

Number Access Files, Number Outbound Cmds, Is Host Login

 

 

Table 4.3 Attack type and their related attack. 

 

Category Attacks  

 

DDoS 

Duration,Scr-bytes, Count,,Srv_rerror_ rate , 

,dst_host_same_srv_rate 

,dst_host_srv_serror_rate, ,dst_host_srv_rerror_rate 

 

Probe 

 

http tunnel, ftp_write, multihop, buffer overflow, root kit, 

xterm, ps. 

R2L guess_passwd, named, snmpgetattack, xlock, send mail 

 

U2R 

ipsweep, nmap, port sweep, satan, mscan, saint 
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4.3 Evaluation of Mechanism 

Forty-one features were calculated and stored in the database. The attack 

features included the number of DoS, Probe, U2R and R2L. The number of features was 

then reduced using PCA (Badis et al., 2014). It is important to characterize and evaluate 

the reliability (precision) of the solution under different conditions. Hence, the 

performance evaluation of machine learning systems is increasingly popular. H-IDPS 

can be evaluated using AUC, which depicts the trade-off between the TP and the FN 

rate.  

4.3.1 Parameters 

In the case of the proposed mechanism, the network packets were decoded, their header 

fields were evaluated, and the relevant features were computed with respect to some 

statistical properties of the traffic. Table 4.4 lists the parameters used in the H-IDPS 

Weka setup. 

Table 4.4 Control parameters used in H-IDPS. 

 

  

Parameter type Value 

Multimodal Benchmark Functions 15-Dimensional 

Trainfcn Trainscg 

Hidden Layer Size 41 

Training Ratio 01% 

Validation Ratio 15% 

Test Ratio 41% 

Simulation Time Five Minutes for Single Run 

Simulation Run 100 Times 

DDoS Report Output Format Excel Sheet 

Number of Search Agents 3000 

Population (No. Of Ants) (N) 50 

Maximum Iteration Count (T) 500 

Number of Variables (DIM) 6 

Random Number [0, 1] 
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4.3.2 Confusion Matrix  

The correctness of a classification can be evaluated by computing the number of 

correctly recognized class examples (TP), the number of correctly recognized examples 

that do not belong to the class (TN), and examples that are either incorrectly assigned to 

the class (FP) or not recognized as class examples (FN).  

4.4 ALO-MLP classifier Scenario Results Through NSL-KDD 

The results from the proposed H-IDPS under NSL-KDD classes attack are now 

presented. Several machine learning metrics and parameters have been adopted. Finally, 

the parameters that produced the highest detection rate are reported. For brevity, we 

focus on the case of sample confusion matrices as shown in Table 4.5. 

Table 4.5 Sample confusion matrix for ALO-MLP for 74,637 samples. 

 Positive Negative  

Positive  4594 13 

Negative 17 3088 

 

4.4.1 DoS Scenario Results 

For DoS attacks, the features ‘land’ and ‘urgent’ were removed due to their lack 

of information gain. After ALO-MLP classified it using Weka. The remaining features 

are 1–18, which shows that there are still strong correlations between some higher-level 

features. Several different well-performing subsets were extracted. Using training set 

with 10-fold cross-validation, shows that the removal of any feature leads to 

performance loss.  

Based on our performance metrics, Table 4.6 shows that it clearly indicates that 

ALO-MLP classifier could be the most suitable mechanism to reduce the FN and 

increase the accuracy. Additionally, ALO -MLP has also achieved the first rank in DoS 

class of attack in terms of accuracy, incorrect classification, TP, FN, precision, Recall 

and F-measure. Regarding accuracy, it comes out (99.1%) correct predictions out of 100 

total examples). That means our classifier is doing a great result of identifying DoS 

attack. 
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 FN result shown as (0.005%), which is the lower rate. However, TP rate was 

97.9%, which considerably good for our mechanisms. ALO-MLP has highest precision 

rate 97.65%, which means that it has the FN value. Furthermore, the recall percentage 

97.9%, which means that it has the lowest FN (missed attacks) percentage. 

It is important to note that MMC usually gives lower values which is only 

percentage (1%). Using the ALO-MLP to classify new incoming traffic is very fast, 

which is the main benefit of this method.  However, best performance AUC for testing 

with percentage (1%).  

Table 4.6 ALO-MLP classifier for DoS over metrics.  

Evolution DoS (%) 

Accuracy  99.1 

Incorrectly Classified Instances 0.389 

TP Rate 99.7 

FN Rate 0.005 

Precision 99.6 

Recall 99.7 

F-Measure 99.2 

MCC 1.000 

AUC 1.000 

 

4.4.2 U2R Scenario Results 

Features with information gain are 1–5 and ‘num file creations’ is the most 

important feature. Table 4.6 shows that it clearly indicates that ALO-MLP classifier in 

U2R scenario has reduced the false alarm and increase the accuracy. Additionally, ALO 

-MLP has also achieved U2R class of attack in terms of accuracy, incorrect 

classification, TP, FN, precision, Recall and F-measure. Regarding accuracy, it comes 

out (97.37%), which means our classifier is efficient enough to identifying U2R attack. 

FN results increase in overheads, may cost time and resources of systems but it 

shown as (0.030%), which is the lower rate. TP rate percentage (97.9%), which 

considerably good for our mechanism. ALO-MLP has highest precision percentage 

(96.2%), Furthermore, the recall percentage (97.9%). 

It is important to note that MMC usually gives lower values which is only 

percentage (94.7%). Using the ALO-MLP to classify new incoming traffic is very fast, 
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which is the main benefit of this method.  However, better performance AUC for testing 

with percentage (99.8%).   

Table 4.7 ALO-MLP classifier for U2R over metrics 

Evolution U2R (%) 

Accuracy  97.37 % 

Incorrectly Classified Instances 2.6294 % 

TP Rate 97.9 

FP Rate 0.030 

Precision 96.2 

Recall 97.9 

F-Measure 97.7 

MCC 94.7 

AUC  99.8 

 

4.4.3 R2L Scenario Results 

Features with information has gained from 1 to 38 in R2L. Table 4.8 shows that 

our ALO-MLP classifier in R2L scenario has also reduced the FN and increase the 

accuracy. Moreover, ALO-MLP has also achieved R2L class of attack in terms of 

accuracy, incorrect classification, TP, FN, precision, Recall and F-measure. Regarding 

accuracy, it comes out (98.46%) correct predictions out of 100 total examples). That 

means our classifier is efficient enough to identifying R2L attack. 

FN result show as (0.004%), which is the lower rate. TP rate percentage 

(99.60%), which considerably good for our mechanism. ALO-MLP has highest 

precision percentage (98.90%), which means that it has the lower false-positive value. 

Furthermore, the recall percentage (99.60%). 

It has important to note that MMC usually gives lower values which is only 

percentage (91.10%). Using the ALO-MLP to classify new incoming traffic is very fast, 

which is the main benefit of this method.  However, better performance AUC for testing 

with percentage (98.00%).   
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Table 4.8 ALO-MLP Classifier for R2L over metrics. 

 

Evolution  R2L (%) 

Accuracy 98.46 

Incorrectly Classified Instances 0.1.3594 

TP 99.60 

FP Rate 0.004 

Precision 98.90 

Recall 99.60 

F-Measure 99.30 

MCC 91.10 

AUC  98.00 

 

4.4.4 Probes Scenario Results 

Observing information gain for features in the network ‘probe’ dataset, 

remaining ‘38’ features. The feature ‘SRC bytes’ is the most important for successful 

classification of this traffic class, and its removal causes the most significant increase of 

misclassification errors.  10-fold cross valuation was used. Table 4.9 shows that our 

ALO-MLP classifier in probes scenario has also reduced the FN and increase the 

accuracy as well. Furthermore, ALO -MLP has also achieved probes class of attack in 

terms of accuracy, incorrect classification, FP, precision, Recall and F-measure. 

Regarding accuracy, it comes out (98.85%), which means our classifier is efficient 

enough to identifying probes attack. 

False positive results show as (0.109%), which is the lower rate. TP rate 

percentage (99.80%), which considerably good for our mechanism. ALO-MLP has 

highest precision percentage (99.90%), which means that it has the lower FN value. 

Furthermore, the recall percentage (99.80%), which means that it has the lowest false-

negative (missed attacks) percentage. 

It is important to note that MMC usually gives lower values which is only 

percentage (92.50%). Using the ALO-MLP to classify new incoming traffic is very fast, 

which is the main benefit of this method.  However, better performance AUC for testing 

with percentage (99.90%).   
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Table 4.9 ALO-MLP Classifier for Probe over metrics  

Evolution   Probe (%) 

Accuracy 98.85 

Incorrectly Classified Instances         1.147 

TP Rate 99.80 

FN Rate   0.109 

Precision 99.90 

Recall 99.80 

F-Measure   99.40 

MCC 92.50 

AUC   99.90   

 

4.5 Variance Blacklist H-IDPS  

As shown in Figure 4.4, the source attack IP “1.1.39.98” has the highest DDoS 

attack rate in H-IDPS through the NSL-KDD dataset. In fact, H-IDPS prevented this IP 

from accessing the network 33 times in five minutes during the UDP DDoS attacks. 

Furthermore, the fewest attack attempts to hit the Apache cloud server were from IP 

“1.1.39.20”; all IPs shown in Figure 4.5 were classified as blacklist IPs. 

 

Figure 4.4 UDP highest and lowest IP attack rates. 

While, in Figure 4.5 shows the flooding attack rates with the NSL-KDD datasets under 

the TCP scenario. In this case, address 71.126.222.64 produced the most critical DDoS 

attack in the cloud server, and this was detected by H-IDPS and sent to the IP blacklist. 

The fewest attacks in this case came from IP address 69.199.186.70.  
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Figure 4.5 TCP highest and lowest IP attack rates. 

 

4.6 Chapter Summary  

This Chapter has presented an implementation for preventing DDoS using NSL-

KDD dataset. With the current hybrid PCA–LDA, it is challenging to normalize large 

offline datasets such as NSL-KDD. Then, ALO-MLP classifier has been found to be 

efficient in detecting and preventing DDoS attacks with high accuracy and low FP rate. 

H-IDPS blocks any suspicious activity and reports it to the hypervisor, which then 

evaluates the blocked IPs. However, the results will be further evaluated and compared 

in the next Chapter. 
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CHAPTER 5 

 

 

EVALUATION AND COMPARATIVE ANALYSIS 

5.1 Overview  

In this Chapter, the proposed mechanism is further analysed and compared with existing 

mechanisms. The comparison domain covers algorithmic mechanisms as well as other 

heuristic algorithms. Section 5.2 presents a comprehensive evaluation of the results 

alongside those from other studies. Section 5.3 evaluates the performance of the ALO-

MLP classifier against several common classifiers. Section 5.4 presents a comparative 

analysis against the results of other mechanisms. 

5.2 Evaluation of H-IDPS Snort    

To evaluate the Snort H-IDPS in the cloud environment, evaluation examined 

the Snort pre-processor efficiency, the performance was evaluated using the Packet 

Header Anomaly Detection (PHAD) pre-processor, Application Layer Anomaly 

Detection (ALAD) pre-processor, and Learning Rules for Anomaly Detection (LERAD) 

(Garg & Maheshwari, 2016).  

Snort was tested using NSL-KDD traffic and a simulated one-week dataset, with 

the detected attacks listed day-by-day. The files were downloaded from a local area 

network. A breakdown of the daily attacks is shown in Figure 5.1. Snort detected 77 out 

of 180 attacks without using any anomaly-based approaches. 
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Figure 5.1  Daily DDoS prevention levels for Snort H-IDPS. 

 

5.2.1 Snort with ALO-MLP + PHAD  

The attacks detected by Snort and PHAD in H-IDPS are shown in Figure 5.2. The 

addition of PHAD clearly improves the performance of Snort, with the number of 

attacks detected increasing from 77 to 105. Our implementation of PHAD-C32 

processes 2.9 GB of training data and 4.0 GB of test data in 364 s (310 user + 20 VMs), 

or 95,900 packets per second on a Sparc Ultra 60 with a 450 MHz 64-bit processor, 512 

MB memory, and 4 MB cache. The overhead is 23 s of CPU time per simulated day, or 

0.026% at the simulation rate. The wall time in our test was 465 s (78% usage), 

consisting of 165 s of training (77,665 packets per second) and 300 s of testing (73,560 

packets per second). The PHAD mechanism uses negligible memory: 34 fields times 32 

pairs of 4-byte integers to represent the bounds of each cluster, giving a total of 8 KB. 

The attacks detected by Snort and PHAD on their own are also shown in Figure 5.2.  
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Figure 5.2 Daily DDoS prevention levels for Snort H-IDPS using ALO-MLP with 

and without PHAD. 

 

5.2.2 Snort with ALO-MLP + PHAD + ALAD   

Adding both PHAD and ALAD to Snort enables more attacks to be detected, as shown 

in Figure 5.3. The number of attacks detected increases from 105 to 124 in the Snort + 

PHAD + ALAD version of H-IDPS, because attacks are detected based on rule 

definition files. In PHAD and ALAD, attacks are detected using packet headers and the 

network protocol. 
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Figure 5.3 Daily DDoS prevention levels for Snort H-IDPS using ALO-MLP 

compared with PHAD and ALAD. 

 

5.2.3  Snort  with ALO-MLP+ ALAD + LERAD 

The number of attacks detected by Snort + ALAD + LERAD is shown in Figure 5.4. 

The number of attacks detected has increased from 124 to 149 upon replacing PHAD 

with LERAD. 
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Figure 5.4 Daily DDoS prevention levels for Snort H-IDPS using ALO-MLP 

classifier compared with ALAD and LERAD. 

 

5.3 Evaluation of ALO-MLP in Comparison with Most Common Classifiers  

Our classifier was compared with other seven related classifiers, which are 

MLP, Naive Bayes, K-Mean, Nearest cluster, SVM and Decision tree, NB tree in terms 

of accuracy for the NSL-KDD attacks seniors. As seen, ALO-MLP classifier is more 

efficient in locating the optimal solution (optimal solution is found within 10 iterations). 

Nevertheless, it is observed that our classifier mechanism performs the best (See 

Appendix B). Figure 5.5, visualise the results of the proposed ALO-MLP with another 

related classifier. Four attacks of NSL-KDD dataset were simulated and evaluated in 

term of accuracy for the NSL-KDD classes. In addition, we took our classifier 

mechanism and applied it attack classes for NSL-KDD starting from DoS, Probing 

U2R, and ending to R2L. 

Naive Bayes Classifier has one main disadvantage that makes a very strong 

assumption on the shape of data distribution rather than our proposed method.  Neuro-

Fuzzy experts with 3 datasets, i.e. CAIDA, conficker and UNIANA, but only 6 features. 

Again, this shows that the proposed H-IDPS using ALO-MLP is better than other ALO-

MLP.   
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K-means is used to detect DDoS attacks and partition large data space 

effectively, but it has accuracy disadvantage, because It includes dependence on initial 

centroids, dependence on number of clusters and degeneracy. Our ALO-MLP has 

overcome these disadvantages of accuracy and achieved the highest rate. The limitation 

of Nearest Cluster cannot effectively detect U2L and R2L attacks in high accuracy, 

which means that this one-dimensional distance-based feature representation is not able 

to well represent the pattern of these two types of attacks.  

While, the main disadvantage is SVM can only handle binary-class 

classification, and for that it shows lower results than our classifier. Decision Tree 

suffering from overfitting, which is one of cardinal sins in analytics and machine 

learning and for that it shows less accuracy than our proposed ALO-MLP classifier.

  

 

Figure 5.5 ALO-MLP Compared with Most Common Classifiers 
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5.4 Comparative Analysis for ALO-MLP Classifier with Other Classifier 

Mechanisms  

An evaluation comparison has done with other six related works. These related 

works have cited in earlier Chapter 1 problem statement. However, we did the 

comparison using NSL-KDD dataset and eight evaluation metrics as mentioned in 

Chapter 3 such as: accuracy, incorrect classification rate, FN , TPR , precision, recall 

and F1 score. DoS, Prob,R2L and U2R DDoS attack classes in NSL-KDD also 

eveulated using our classfoer mechiansim which is ALO-MLP and PCA-LDA for the 

Data pre-processing. After comparsion done, accuracy and FN rate is the most 

imprortant metrics highlighted -which fill the requriment of this thesis objectives . 

5.4.1 DoS comparison 

Here, NSL-KDD Dos in terms of accuracy, incorrect classification rate, FN, 

TPR, precision, recall and F1 score were compared. As shown in Table 5.1, our 

mechanism is 1.1% higher than that of Eid et al. (2011) in terms of accuracy, and 1.1% 

lower in terms of incorrect classification rate. Furthermore, our mechanism is 0.003 % 

lower in FN, 0.20% higher in TPR, and 0.70% higher in precision. For the Recall, ALO-

MLP mechanism achieved 1.45% higher than their rates. Furthermore, F1 score has 

achieved 0.80% higher than their mechanism. 

As compared to Hassanien et al., (2014) our mechanism is 17.31% higher in 

terms of accuracy and 4.1% lower in terms of incorrect classification rate. Furthermore, 

our mechanism is 0.202% lower in FN, 17.96% higher in TPR, and 17.46% higher 

precision. While the Recall, ALO-MLP mechanism achieved 18.22% higher than their 

rates. Furthermore, F1 score has achieved 17.51% higher than their mechanism. 

Upon comparing our classifier with Emiro De la Hoz et al. (2014), our 

mechanism is 0.10% higher in terms of accuracy and 2.39% lower in terms of incorrect 

classification rate. Furthermore, our mechanism is 0.039% lower in FN, 1.12% higher in 

TPR and 1.96% higher in precision. While the Recall, ALO-MLP mechanism achieved 

2.41% higher than their rates. Furthermore, F1 score has achieved 1.71% higher than 

their mechanism. 
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The comparison of the proposed system was further evaluated with Pervez and 

Farid (2014) works. our mechanism is 16.42% higher in terms of accuracy and 4.28% 

lower in terms of incorrect classification rate. Furthermore, our mechanism is 0.093% 

lower in FN, 17.65% higher in TPR and 17.61% higher in precision. While the Recall, 

ALO-MLP mechanism achieved 18.31% higher than their rates. Furthermore, F1 score 

has achieved 17.90% higher than their mechanism. 

For Pajouh et al. (2017), our classifier mechanism is 4.54% higher in terms of 

accuracy and 1.8% lower in terms of incorrect classification rate. Furthermore, our 

classifier is 0.063 % lower in FN, 5.42% higher in TPR, and 6.03% higher in precision. 

Recall has achieved 5.47 rather than their mechanism. However, F1 score has achieved 

5.6% higher than their work. 

Lastly, our classifier mechanism is also better than developed by Kanakarajan 

and Muniasamy (2016) In terms of accuracy, our mechanism is 16.71% higher. 

Meanwhile, our mechanism is 4.59% lower in terms of incorrect classification rate. 

Furthermore, our mechanism is 0.011% higher in terms of FN, 16.71% higher in terms 

of TPR, and 17.68% higher in terms of precision. Recall has achieved 17.37 rather than 

their mechanism. However, F1 score has achieved 16.92% higher than their work
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Table 5.1 DoS comparison with other related works for accuracy, incorrect 

classification rate, FN , TPR , precision, recall and F1 score. 
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FN 
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74 
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81.

69 
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09 
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3 
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5.4.2 Probe comparison  

Here, NSL-KDD Probe attack in terms of accuracy, incorrect classification rate, 

FN, TPR, precision, recall and F1 score were compared. As shown in Table 5.2, our 

mechanism is 2.9% higher than that of Eid et al. (2011) in terms of accuracy, and 2.0% 

lower in terms of incorrect classification rate. Furthermore, our mechanism is 0.900 % 

lower in FN, 11.70% higher in TPR, and 2.8% higher in precision. For the Recall, ALO-

MLP mechanism achieved 3.9% higher than their rates. Furthermore, F1 score has 

achieved 3.4% higher than their mechanism. 

As compared to Hassanien et al., (2014) our mechanism is 34.17% higher in 

terms of accuracy and 33.97% lower in terms of incorrect classification rate. 

Furthermore, our mechanism is 9.400% lower in FN, 38.76% higher in TPR, and 

33.58% higher precision. While the Recall, ALO-MLP mechanism achieved 38.16% 

higher than their rates. Furthermore, F1 score has achieved 35.19% higher than their 

mechanism. 

Upon comparing our classifier with Enache and Patriciu (2014), our mechanism 

is 0.12% higher in terms of accuracy and 0.08% lower in terms of incorrect 

classification rate. Furthermore, our mechanism is 1.863% lower in FN, 1.53% higher in 

TPR and 0.89% higher in precision. While the Recall, ALO-MLP mechanism achieved 

1.02% higher than their rates. Furthermore, F1 score has achieved 1.03% higher than 

their mechanism. 

The comparison of the proposed system was further evaluated with Emiro De la 

Hoz et al. (2014) works. our mechanism is 3.2% higher in terms of accuracy and 3% 

lower in terms of incorrect classification rate. Furthermore, our mechanism is 1.829% 

lower in FN, 4.62% higher in TPR and 3.85% higher in precision. While the Recall, 

ALO-MLP mechanism achieved 4.62% higher than their rates. Furthermore, F1 score 

has achieved 3.81% higher than their mechanism. 

For Pajouh et al. (2017), our classifier mechanism is 19.04% higher in terms of 

accuracy and 18.84% lower in terms of incorrect classification rate. Furthermore, our 

classifier is 1.734 % lower in FN, 20.60% higher in TPR, and 19.70% higher in 

precision. Recall has achieved 20.30 rather than their mechanism. However, F1 score 

has achieved 20.29% higher than their work. 
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Lastly, ALO-MLP mechanism is also better than developed by Kanakarajan and 

Muniasamy (2016) In terms of accuracy, our mechanism is 20.47% higher. Meanwhile, 

our mechanism is 20.27% lower in terms of incorrect classification rate. Furthermore, 

our mechanism is 0.120% higher in terms of FN, 21.69% higher in terms of TPR, and 

20.72% higher in terms of precision. Recall has achieved 21.53 rather than their 

mechanism. However, F1 score has achieved 20.83% higher than their work. 
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Table 5.2 Probe comparison with other related works for accuracy, incorrect classification 

rate, FN, TPR, precision, recall and F1 score. 

N

o. 

Referen

ce 

Feature 

selection/

Pre- 

processi

ng 

Classific

ation 

method 

Performance Metrics 

Accur

acy 

(%) 

Incorrec

t 

Classific

ation 

Rate (%) 

FN 

Rat

e 

(%) 

TP

R 

Ra

te 

(%

) 

Precis

ion 

(%) 

Rec

all 

(%) 

F1 

Sco

re 

(%

) 

1 Jaber et 

al. 

(2017) 

PCA-

LDA 

ALO-

MLP 
98.80 1.40 1.90

0 

99.

80 

99.00 99.8

0 

99.

40 

2 Eid et 

al. 

(2011) 

GA-

EMD 

NB 95.90 4.10 2.80

0 

88.

10 

96.20 95.9

0 

96.

00 

3 Hassani

en et al., 

(2014) 

PCA GA-DT 64.63 35.37 44.3

10 

61.

04 

65.42 61.6

4 

41.

21 

4 Enache 

and 

Patriciu 

(2014) 

IG PSO-

SVM 

98.68 1.32 0.03

7 

98.

27 

98.11 98.7

8 

98.

37 

5 Emiro 

De la 

Hoz et 

al. 

(2014) 

NSGA GHSOM 95.60 4.40 0.07

1 

95.

18 

95.15 95.1

8 

95.

59 

6 Pajouh 

et al. 

(2017) 

LDA NB-

kNNCF 

79.76 20.24 0.16

6 

79.

20 

79.30 79.5

0 

79.

11 

7 Kanakar

ajan and 

Muniasa

my 

(2016) 

IG GAR-

forest 

78.33 21.67 2.02 78.

11 

78.28 78.2

7 

78.

57 

 



89 

5.4.3 R2L comparison 

Here, NSL-KDD R2L attacks in terms of accuracy, incorrect classification rate, 

FN, TPR, precision, recall and F1 score were compared. As shown in Table 5.3, our 

classifier is 4.36% higher than that of Eid et al. (2011) in terms of accuracy, and 4.55% 

lower in terms of missed detection. Furthermore, our mechanism is 0.392% higher in 

FN, 2.6% higher in TPR, and 3.5% higher in precision. Recall has achieved 3.4 rather 

than their mechanism. However, F1 score has achieved 4.8% higher than their work. 

As compared to Hassanien et al., (2014) our classifier is 65.56% higher in terms 

of accuracy and 65.75% lower in terms of incorrect classification rate. Furthermore, our 

classifier is 1.681% higher in FN, 78.53% higher in TPR, and 81.30% higher precision 

Recall has achieved 2.5 rather than their mechanism. However, F1 score has achieved 

62.16% higher than their work. 

Upon comparing our ALO-MLP with Emiro De la Hoz et al. (2014), ALO-MLP 

is 4% higher in terms of accuracy and 2.39% lower in terms of missed incorrect 

classification rate. Furthermore, our ALO-MLP is 1.5% higher in FN, 1.5% higher in 

TPR and 1.98% higher in precision. Recall has achieved 2.5 rather than their 

mechanism. However, F1 score has achieved 1.6% higher than their work. 

ALO-MLP classifier mechanism is also better than that proposed by Enache and 

Patriciu (2014). As reported, our ALO-MLP is 10.36% higher in terms of accuracy and 

10.55% lower in terms of incorrect classification rate. Furthermore, our ALO-MLP 

0.114% higher in FN, 11.59% higher in TPR, and 14.51% higher in precision. Recall 

has achieved 14.68% rather than their mechanism. However, F1 score has achieved 

8.6% higher than their work. 

Also, ALO-MLP is also better than that developed by Pajouh et al. (2017) in 

terms of accuracy, our ALO-MLP is 4.08% higher. Meanwhile, our ALO-MLP is 

4.27% lower in terms of incorrect classification rate. Furthermore, ALO-MLP is 

0.389% higher in terms of FN, 5.32% higher in terms of TPR, and 5.49% higher in 

terms of precision. Recall has achieved 5.05 rather than their mechanism. However, F1 

score has achieved 3.19% higher than their work. 
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Lastly, our ALO-MLP is also better than that developed by Kanakarajan and 

Muniasamy (2016) In terms of accuracy, our ALO-MLP is 3.7% higher. Meanwhile, 

ALO-MLP is 2.69% lower in terms of incorrect classification rate. Furthermore, ALO-

MLP is 7% higher in terms of FN, 10% higher in terms of TPR, and 2.98% higher in 

terms of precision. Recall has achieved 2.5 rather than their mechanism. However, F1 

score has achieved 1.6% higher than their work. 
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Table 5.3 R2L comparison with other related works for accuracy, incorrect 

classification rate, FN, TPR, precision, recall and F1 score 

N

o. 

Referenc

e 

Feature 

selection/

Pre- 

processin

g 

Classifica

tion 

method 

Performance Metrics  

Accur

acy 

(%) 

Incorrect 

Classifica

tion Rate 

(%) 

FN 

Rat

e 

(%) 

TP

R 

Rat

e 

(%) 

Precisi

on 

(%) 

Rec

all 

(%) 

F1 

Sco

re 

(%) 

1 Jaber et 

al. 

(2017) 

PCA-LDA ALO-

MLP 
98.46 1.35 0.4

00 

99.

60 

99.60 99.3

0 

91.1

0 

2 Eid et al. 

(2011) 

GA and 

EMD 

NB 94.1 5.90 0.0

08 

97.

00 

96.10 95.9

0 

95.9

0 

3 Hassanie

n et al., 

(2014) 

PCA GA-DT 32.90 67.10 2.0

81 

21.

07 

24.30 18.0

0 

28.9

4 

4 Enache 

and 

Patriciu 

(2014) 

IG PSO-SVM 88.10 11.90 0.2

86 

88.

01 

85.09 84.6

2 

82.6

2 

5 Emiro 

De la 

Hoz et al. 

(2014) 

NSGA GHSOM 94.38 5.62 0.0

11 

94.

28 

94.11 94.2

5 

94.2

9 

6 Pajouh et 

al. 

(2017) 

LDA NB-

kNNCF 

84.68 15.32 0.1

69 

84.

19 

84.12 84.4

7 

84.5

2 

7 Kanakara

jan and 

Muniasa

my 

(2016) 

IG GAR-

forest 

78.98 27.02 78.

15 

78.

88 

78.10 78.2

2 

78.5

5 
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5.4.4 U2R comparison  

Here, NSL-KDD Dos in terms of accuracy, incorrect classification rate, FN, 

TPR, precision, recall and F1 score also were compared. As shown in Table 5.4, our 

classifier mechanism is 1.97% higher than that of Eid et al. (2011) in terms of accuracy, 

and 2% lower in terms of missed detection. Furthermore, our ALO-MLP is 0.002% 

higher in FN, 0.9% higher in TPR, and 0.5% higher in precision. Recall has achieved 

2.5 rather than their mechanism. However, F1 score has achieved 1.6% higher than their 

work. 

As compared to Hassanien et al., (2014) our mechanism is 29.02% higher in 

terms of accuracy and 33.05% lower in terms of incorrect classification rate. 

Furthermore, our classifier is 2.677% higher in FN, 31.62% higher in TPR, and 30.87% 

higher precision Recall has achieved 29.57 rather than their mechanism. However, F1 

score has achieved 28.87% higher than their mechanism. 

Upon comparing our ALO-MLP with Emiro De la Hoz et al. (2014), our 

proposed mechanism is 4.37% higher in terms of accuracy and 4.4% lower in terms of 

missed incorrect classification rate. Furthermore, our classifier mechanism is 0.006% 

higher in FN, 4.9% higher in TPR and 6.26% higher in precision. While, in Recall has 

achieved 8.24 rather than their mechanism. Nevertheless, F1 score has achieved 7.83% 

higher than their mechanisms. 

Our mechanism is also better than that proposed by Pajouh et al. (2017) as 

reported, ALO-MLP is 30.21% higher in terms of accuracy and 21.24% lower in terms 

of incorrect classification rate. Furthermore, ALO-MLP is 11.015% higher in FN, 

30.72% higher in TPR, and 29.19% higher in precision. While, in Recall has achieved 

30.82 rather than their mechanism. Nevertheless, F1 score has achieved 29.98% higher 

than their mechanism. 

Also, our classifier mechanism is also better than that developed by Rastegari et 

al. (2015) In terms of accuracy, our ALO-MLP is 17.46% higher. Meanwhile, ALO-

MLP is 17.49% lower in terms of incorrect classification rate. Furthermore, ALO-MLP 

is 8.867% higher in terms of FN, 18.4% higher in terms of TPR, and 16.62% higher in 

terms of precision. Recall has achieved 18.02% rather than their mechanism. 

Nevertheless, F1 score has achieved 17.79% higher than their mechanism. 
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Lastly, our mechanism is also better than that developed by Kanakarajan and 

Muniasamy (2016) In terms of accuracy, ALO-MLP is 19.81% higher. Meanwhile, our 

ALO-MLP is 2.25% lower in terms of incorrect classification rate. Furthermore, ALO-

MLP is 12.578% higher in terms of FN, 20.82% higher in terms of TPR, and 18.8% 

higher in terms of precision. Recall has achieved 20.71% rather than their mechanism. 

Nevertheless, F1 score has achieved 19.84% higher than their mechanism. 
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Table 5.4 U2R comparison with other related works for accuracy, incorrect classification rate, FN, TPR, precision, recall and F1 score 

 

No. Reference 

Feature 

selection/Pre- 

processing 

Classification 

method 

Performance Metrics  

Accuracy 

(%) 

Incorrect 

Classification 

Rate (%) 

FN Rate 

(%) 

TPR 

Rate 

(%) 

Precision (%) Recall (%) F1 Score (%) 

1 Jaber et al. 

(2017) 
PCA-LDA ALO-MLP 97.37 02.60 0.003 97.90 96.20 97.90 97.00 

2 Eid et al. 

(2011) 
GA and EMD NB 95.40 4.60 0.005 97.00 95.70 95.40 95.40 

3 Hassanien et 

al., 2014 

PCA GA-DT 68.35 35.65 2.680 66.28 65.33 68.33 68.13 

4 Emiro De la 

Hoz et al. 

(2014) 

NSGA GHSOM 93.00 07.00 0.009 93.00 89.94 89.66 89.17 

5 Pajouh et al. 

(2017) 
LDA NB-kNNCF 67.16 23.84 11.018 67.18 67.01 67.08 67.02 

6 Rastegari et 

al. (2015) 
CFS GA classifier 79.91 20.09 8.690 79.50 79.58 79.88 79.21 

7 Kanakarajan 

and 

Muniasamy 

(2016) 

IG GAR-forest 77.56 0.35 12.581 77.08 77.40 77.19 77.16 
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5.5 Chapter Summary  

The results presented in this Chapter demonstrate that the current mechanism 

offers high accuracy and efficiency for H-IDPS in the cloud hypervisor environment. 

For the purposes of comparison, the mechanism was split into three parts: PCA, LDA, 

and the proposed method with the ALO-MLP classifier. The proposed mechanism was 

then compared with existing mechanism s in terms of the detection and prevention of 

DDoS attacks. Further, a feasible estimation of the IPs observed in the NSL-KDD 

blacklist was able to identify the IP that was attacking the victim, i.e. the cloud 

environment. Thus, the proposed mechanism has addressed the research problems 

outlined in this thesis. The next Chapter discusses the advantages and limitations of the 

current mechanism. 
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CHAPTER 6 

 

 

CONCLUSION 

6.1 Overview 

DDoS makes use of many machines distributed in the environment to attack the 

services on the web. Therefore, it is crucial to detect the attack as early as possible. H-

IDPS are necessary to provide the desired protection against the attack. Therefore, it is 

essential to combine these technologies and install them in one device. In an ideal 

situation, the device will guarantee accuracy of true positives at its maximum level in 

detecting the threats and reducing the number of FN. Nevertheless, it is interesting to 

note that the number of FN has been reduced remarkably due to the improvement in the 

current technology. Meanwhile, H-IDPS can block the immediate attacks such as 

viruses and worms and certain new threats.   

 

6.2 Contribution 

The main contribution of this thesis is the design a new classifier mechanism for 

detecting and preventing DDoS attack in cloud computing environment. The 

development work of the new mechanism was executed in three phases.  

Phase 1: A newly designed classifier mechanism based on ALO-MLP for H-

IDPS in cloud environment. The main privilege of using ALO is to feed the weights of 

MLP, and for that will produce a better performance mechanism as a classifier which 

will led to better H-IDPS accuracy and less FN.  

Phase 2: The development of ALO-MLP classifier mechanism with Snort and 

Weka produced a robust classifier against DDoS attack using NSL-KDD traffics. Data 
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analysis and pattern recognition, we were able to build another high-level DDoS 

prevention mechanism.  

Phase 3: Performance evaluation of the ALO-MLP related mechanisms. These 

mechanisms can neither fulfil all the requirements proposed nor depict an architecture 

that is suitable for the protection of cloud computing environment due to the low of ty 

accuracy and high of False alarm rate as seen in Chapter 2. Therefore, ALO-MLP 

classifier shown the highest performance above them using machine learning metrics. 

Furthermore, a comparison with these mechanisms based on four attack classes of NSL-

KDD, which are DoS, R2L, U2R and Probe. Thus, we did a comparison with each 

attack classes in term of accuracy, incorrect classification rate, FN, TPR, precision, 

recall and F1 score. However, all these metrics shows the highest performance in 

Chapter 5. more precisely, the accuracy and FN. For the DoS class scenario our ALO-

MLP classifier achieve 99.10% in term of accuracy, and 0.005% in FN. In Probe 

scenario has achieved 98.80% in accuracy, and 1.40% in FN. For the R2L accuracy, it 

shown 98.46% and 0.400 in FN. While, U2R shown 0.003% in accuracy and FN. As a 

result, all these three contributions have achieved the thesis objectives requirement and 

led to prevent the DDoS attack in lower FN and higher accuracy. 

 

6.3 Future Works 

There are several methods which are related to H-IDPS, but it is in rear class for 

the H-IDPS cloud. These methods are generic algorithm, neutral networks, and fuzzy 

theory in H-IDPS. As far as the study in future is concerned it would be an open 

research by adding ALO-MLP with Harmony based strategies.  
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APPENDIX B 

 

Evaluation of ALO-MLP classifier against most common classifiers 

Classifier type DoS (%) Probing (%) U2R (%) R2L 

(%) 

ALO-MLP 99.10 98.80 98.46 97.37 

MLP 98.29 97.86 98.62 93.10 

Naive Bayes 63.00 84.14 83.68 79.522 

K-Means 78.00 88.00 92.00 95.00 

Nearest Cluster 96.88 77.36 91.92 92.92 

SVM 96.36 88.85 90.31 94.19 

Decision Tree 96.35 92.07 91.41 97.51 

NB tree 76.23 92.20 92.01 57.19 
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APPENDIX C 

Distribution histograms of all features in the original  NSL-KDD training data. 

The x-axis shows the value of the feature and the y-axis shows how often the value 

exists in the training data. The highlighted features ‗num outbound cmds‘ and ‗is host 

login‘ show no variance. The highlighted features ‗duration‘, ‗src bytes‘ and ‗dst bytes‘ 

have strongly biased distributions with some huge outliers 
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Example of DoS in Weka 
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Example of Prop in Weka 
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Example of U2R in Weka 

 

  



112 

APPENDIX D 

LIST OF PUBLICATIONS AND AWARDS 

1. Jaber, A. N., Zolkipli, M. F., Shakir, H. A., & Jassim, M. R. (2017). Host Based 

Intrusion Detection and Prevention Model Against DDoS Attack in Cloud 

Computing. International Conference on P2P, Parallel, Grid, Cloud and Internet 

Computing (pp. 241-252). Springer, Cham. 

2. Jaber, A. N., Zolkipli, M. F., Majid, M. A., & Anwar, S. (2017). Methods for 

Preventing Distributed Denial of Service Attacks in Cloud Computing. 

Advanced Science Letters, 23(6), 5282-5285.  

3. Jaber, A.N., Zolkipli, M. F., Anwar, S., & Al-Hawawreh, M. S. (2016). Present 

Status and Challenges in Cloud Monitoring Framework: A Survey. European 

Intelligence and Security Informatics Conference. IEEE. 

4. Jaber, A. N., Zolkipli, M. F. B., & Majid, M. B. A. (2015). Security Everywhere 

Cloud: An Intensive Review of DoS and DDoS Attacks in Cloud Computing. 

Journal of Advanced & Applied Sciences (JAAS), 3(5), 152-158. 

5. Jaber, A. N., Mohamad Fadli, Z. (2015). Security Scheme for Protecting Cloud 

Computing Services Against Bursty DDoS Attacks. International Journal on 

Advances in Information Sciences and Service Sciences, 7(1), 39-45. 

6. Jaber, A. N., Majid, M. A., Zolkipli, M. F., & Anwar, S. (2014). Trusting cloud 

computing for personal files. International Conference on Information and 

Communication Technology Convergence (pp. 488-489). IEEE. 

7. Jaber, A. N., Majid, M. B. A., Zolkipli, M. F. (2014). A study in data security in 

cloud computing. International Conference on Computer, Communications, and 

Control Technology (pp. 367-371). IEEE. 

  



113 

AWARDS  

1. Jun 2016 Merit awards INPEX 2017, Hypervisor IDPS: DDoS Prevention Tool 

for Cloud Computing. 

2. Feb 2017 Gold Award at Malaysia Technology Expo for real time IDPS server 

design. 

3. Mar 2016 Silver Medal at Creation, Innovation, Technology & Research 

Exposition (CITREx)  

4. Apr 2015 Award: UMP Three Minute Thesis Competition. 

5. Mar 2015 Award: Silver Medal at Creation, Innovation, Technology & Research 

Exposition (CITREx). 

6. May 2014 Grant: UMP Postgraduate Research Grants Scheme (PGRS). 

7. Mar 2014 Award: Bronze Medal at Creation, Innovation, Technology & 

Research Exposition (CITREx ). 

 

 


