THE DEVELOPMENT OF RAINFALL TEMPORAL PATTERN IN GOMBAK

AINA SYUHADA BINTI ROSNAN

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

(Supervisor's Signature) Full Name : SHAIRUL ROHAZIAWATI BT SAMAT Position : LECTURER Date : JUNE 2018

(Co-supervisor's Signature) Full Name : NORASMAN BIN OTHMAN Position : LECTURER Date : JUNE 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature)

Full Name : AINA SYUHADA BT ROSNAN

ID Number : AA14102

Date : JUNE 2018

THE DEVELOPMENT OF RAINFALL TEMPORAL PATTERN IN GOMBAK

AINA SYUHADA BINTI ROSNAN

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2018

ACKNOWLEDGEMENTS

Praised to God and Alhamdulillah, I have accomplished this final year project as a requirement to graduate and acquire a bachelor degree in civil engineering from Universiti Malaysia Pahang (UMP). There are number of people without whom this achievement might not have been done, and to whom I am greatly indebted.

I would like to express my sincere gratitude to my supervisor, Madam Shairul Rohaziawati Binti Samat for the continuous support of my degree study, thesis process, for her patience, motivation, and immense knowledge. Without her guidance, assistance and dedicated involvement in every step throughout the process, this paper would have never been accomplished. I would like to thank you very much for your support, kindness and understanding over these past four years.

Many thanks to my Co-supervisor, Mr. Norasman Bin Othman. His encouragement, advices and moral support helped me to continue growing and stay motivated during my long term case study. The success of this depends largely on the encouragement and guidelines of him too.

Most importantly, none of this could have happened without my family. My mother and father, who offered their encouragement through phone calls every week. To my parents, thank you for all your support and for teach me through the years. Next, to my family members, who offered me unconditional love through my study.

My friend, Athirah Zulkfali, thank you for your help and the moral supports given during my toughest moment of this journey. All the best to you in the future.

To all of you, thank you for everything.

ABSTRAK

Analisis hujan bagi corak taburan hujan adalah sangat penting dalam proses reka bentuk hujan. Maklumat mengenai corak taburan hujan dalam kejadian hujan merupakan faktor penting yang mempengaruhi keputusan pemodelan hidrologi. Taburan hujan temporal yang berbeza boleh membawa kepada perubahan dalam tindak balas kawasan tadahan, dan dalam beberapa kes banjir boleh berlaku kerana taburan hujan temporal yang lebih tidak mencukupi. Di Malaysia, corak hujan temporal disediakan di Manual Saliran Mesra Alam Edisi Kedua (MSMA 2). Data yang tersedia tidak dikemas kini selepas tahun 2010 dan dinyatakan khusus mengikut wilayah. Tujuan kajian ini adalah untuk membangunkan corak temporal hujan di Gombak menggunakan Kaedah Kepelbagaian Purata (AVM), Kaedah Pengagihan Masa Huff (HTDM) dan Kaedah Institut Penyelidikan Sumber Air (WRRI) dan bandingkan keputusan untuk AVM dengan MSMA 2 dan HTDM dengan WRRI. Kajian ini dijalankan untuk tujuh stesen hujan di Gombak. Data 5 minit sela hujan telah diekstrak dan dianalisis sebelum membangunkan corak temporal hujan berdasarkan kaedah AVM, HTDM dan WRRI. Berdasarkan perbandingan antara AVM dan MSMA 2 yang dibuat untuk 7 stesen di Gombak menunjukkan stesen 2 iaitu stesen Ibu Bekalan KM. 16 untuk tempoh 60 minit mempunyai perbezaan peratusan tertinggi (1% -79%) dan stesen 5 iaitu stesen Kg. Kuala Sleh mempunyai perbezaan peratusan terendah (6% -19%). Bagi perbandingan antara HTDM dengan WRRI, keputusan yang diperoleh menunjukkan bahawa julat terendah adalah dalam kuartil keempat iaitu antara 0.95% hingga 13.58 dan untuk julat tertinggi pada tempoh 60 minit berada dalam kuartil kedua iaitu antara 24.07% hingga 32.42%.

ABSTRACT

Rainfall temporal pattern analysis of rainfall duration is very important in the process of design rainfall. Information about temporal rainfall distribution within a rainfall event is an important factor that influences hydrological modelling results. Different temporal rainfall distributions can lead to changes in catchment response, and in some cases flooding can occur due to more inconvenient temporal rainfall distribution. In Malaysia, temporal rainfall pattern is provided in Malaysian Urban Storm Water Management Manual Second Edition (MSMA 2). The data available was not updated after 2010 and is stated specific by region. The aim of this study are to develop rainfall temporal pattern in Gombak using Average Variability Method (AVM), Huff Time Distributions Method (HTDM) and Water Resources Research Institute Method (WRRI) and to compare the result for AVM with MSMA 2 and HTDM with WRRI. This study is conducted for seven rainfall stations in Gombak. The data of 5 minutes rainfall interval were extracted and analysed before develop the rainfall temporal pattern based on AVM, HTDM and WRRI method. Based on the comparison between AVM and MSMA 2 made for 7 number of stations at Gombak shows that station 2 which is Ibu Bekalan KM. 16 station for 60 minutes duration has the highest range of percentage difference (1%-79%) and station 5 which is Kg. Kuala Sleh station has the lowest range of percentage difference (6%-19%). For HTDM with WRRI, the result shows that the lowest range is in fourth quartile that is between 0.95% to 13.58. For highest range in differences for 60 minutes duration is in second quartile that is between 24.07% to 32.42%.

TABLE OF CONTENT

DEC	LARATION		
TITI	LE PAGE		
ACK	CKNOWLEDGEMENTS		
ABS'	TRAK	iii	
ABS'	TRACT	iv	
ТАВ	LE OF CONTENT	V	
LIST	TOF TABLES	ix	
LIST	T OF FIGURES	xiii	
LIST	T OF SYMBOLS	xvi	
СНА	PTER 1 INTRODUCTION	1	
1.1	Background	1	
1.2	Problem Statement	2	
1.3	Objectives	3	
1.4	Scope of Study	4	
1.5	Significant of Study	4	
СНА	PTER 2 LITERATURE REVIEW	5	
2.1	Introduction	5	
2.2	Function of Rainfall Temporal Pattern	7	
2.3	Method to Develop Rainfall Temporal Pattern	8	
	2.3.1 Triangular Distribution Method	8	
	2.3.2 Alternating Block Method	10	

	2.3.3	SCS Time Distribution	11
	2.3.4	Huff Time Distribution	12
	2.3.5	Average Variability Method	17
	2.3.6	Water Resources Research Institute Method	17
2.4	Impor	tance of Analysis Rainfall Data	18
	2.4.1	Estimation of Missing Rainfall Data	19
	2.4.2	Test for Consistency of Record	19
	2.4.3	Predicting Flood Occurrence	21
	2.4.4	Design the Best Drainage System	21
2.5	Advar	tages and Disadvantage Rainfall Temporal Pattern	21
	2.5.1	Advantages of Rainfall Temporal Pattern	21
	2.5.2	Disadvantages of Rainfall Temporal Pattern	21
CHAI	PTER 3	METHODOLOGY	22
3.1	Introd	uction	22

2 2	Flow Chart		23	2
3.2	Flow Chart		23)

3.3	Study Area	24
3.4	Data Collection	25

3.5	Metho	d to Develop Rainfall Temporal Pattern	25
	3.5.1	Average Variability Method	25
	3.5.2	Huff-Time Distribution Method	28
	3.5.3	Water Resources Research Institute Method	30

3.6 Comparison of Result 3.6.1 Average Variability Method and Malaysian Urban StormWater 33 Management Manual Second Edition (MSMA2)

		and Huff Time Distribution Method (HTDM)	
СНА	PTER 4	RESULT AND DISCUSSION	32
4.1	Introd	uction	32
4.2	Avera	ge Variability Method	33
	4.2.1	Kg. Sungai Tua Rainfall Station	33
	4.2.2	Ibu Bekalan KM. 16 Rainfall Station	36
	4.2.3	Empangan Genting Klang Rainfall Station	39
	4.2.4	Ibu Bekalan KM. 11 Rainfall Station	42
	4.2.5	Kg. Kuala Sleh Rainfall Station	45
	4.2.6	Gombak Damsite Rainfall Station	48
	4.2.7	Air Terjun Sungai Batu Rainfall Station	51
4.3	Huff	Fime Distribution Method	54
	4.3.1	Kg. Sungai Tua Rainfall Station	55
	4.3.2	Ibu Bekalan KM. 16 Rainfall Station	57
	4.3.3	Empangan Genting Klang Rainfall Station	59
	4.3.4	Ibu Bekalan KM. 11 Rainfall Station	61
	4.3.5	Kg. Kuala Sleh Rainfall Station	63
	4.3.6	Gombak Damsite Rainfall Station	65
	4.3.7	Air Terjun Sungai Batu Rainfall Station	67
4.4	Water	Resources Research Institute Method	69
	4.4.1	Kg. Sungai Tua Rainfall Station	69
	4.4.2	Ibu Bekalan KM. 16 Rainfall Station	71

3.6.2 Water Resources Research Institute Method (WRRI)

31

 4.4.4 Ibu Bekalan KM. 11 Rainfall Station 4.4.5 Kg. Kuala Sleh Rainfall Station 4.4.6 Gombak Damsite Rainfall Station 	 75 77 79 81 83
	79 81
4.4.6 Gombak Damsite Rainfall Station	81
4.4.7 Air Terjun Sungai Batu Rainfall Station	83
4.5 Comparison of Result Average Variability Method and Malaysian	
Urban Storm Water Management Manual Second Edition (MSMA2)	
4.6 Comparison of Result Huff Time Distribution Method and Water	88
Resources Research Institute Method	
4.6.1 Kg. Sungai Tua Rainfall Station	88
4.6.2 Ibu Bekalan KM. 16 Rainfall Station	88
4.6.3 Empangan Genting Klang Rainfall Station	89
4.6.4 Ibu Bekalan KM. 11 Rainfall Station	89
4.6.5 Kg. Kuala Sleh Rainfall Station	89
4.6.6 Gombak Damsite Rainfall Station	90
4.6.7 Air Terjun Sungai Batu Rainfall Station	90
4.6.8 Range in Difference	91
CHAPTER 5 CONCLUSION AND RECOMMENDATION	92
5.1 Introduction	92
5.2 Conclusion	93
5.3 Recommendation	94
REFERENCES	

LIST OF TABLES

Table 2.1	Median Time Distributions of Heavy Storm Rainfall	16
Table 2.2	Median Time Distributions of Area1 Mean Rainfall	16
Table 2.3	Standard Duration Recommended in MSMA 2	17
Table 4.1	Rainfall event for each station	33
Table 4.2	Analysis of 15 minutes rainfall event for Kg. Sungai Tua	33
Table 4.3	Analysis of 30 minutes rainfall event for Kg. Sungai Tua	34
Table 4.4	Analysis of 60 minutes rainfall event for Kg. Sungai Tua	35
Table 4.5	Analysis of 15 minutes rainfall event for Ibu Bekalan KM. 16	36
Table 4.6	Analysis of 30 minutes rainfall event for Ibu Bekalan KM. 16	
Table 4.7	Analysis of 60 minutes rainfall event for Ibu Bekalan KM. 16	38
Table 4.8	Analysis of 15 minutes rainfall event for Empangan Genting Klang	39
Table 4.9	Analysis of 30 minutes rainfall event for Empangan Genting Klang	40
Table 4.10	Analysis of 60 minutes rainfall event for Empangan Genting Klang	41
Table 4.11	Analysis of 15 minutes rainfall event for Ibu Bekalan KM. 11	42
Table 4.12	Analysis of 30 minutes rainfall event for Ibu Bekalan KM. 11	43
Table 4.13	Analysis of 60 minutes rainfall event for Ibu Bekalan KM. 11	44
Table 4.14	Analysis of 15 minutes rainfall event for Kg. Kuala Sleh	45
Table 4.15	Analysis of 30 minutes rainfall event for Kg. Kuala Sleh	46
Table 4.16	Analysis of 60 minutes rainfall event for Kg. Kuala Sleh	47
Table 4.17	Analysis of 15 minutes rainfall event for Gombak Damsite	48
Table 4.18	Analysis of 30 minutes rainfall event for Gombak Damsite	49
Table 4.19	Analysis of 60 minutes rainfall event for Gombak Damsite	50
Table 4.20	Analysis of 15 minutes rainfall event for Air Terjun Sg. Batu	51
Table 4.21	Analysis of 30 minutes rainfall event for Air Terjun Sg. Batu	52
Table 4.22	Analysis of 60 minutes rainfall event for Air Terjun Sg. Batu	53
Table 4.23	1 st Quartile of 60 min rainfall data of Kg. Sungai Tua	56
Table 4.24	2 nd Quartile of 60 min rainfall data of Kg. Sungai Tua	56
Table 4.25	3 rd Quartile of 60 min rainfall data of Kg. Sungai Tua	56

Table 4.26	4 th Quartile of 60 min rainfall data of Kg. Sungai Tua	56
Table 4.27	1 st Quartile of 60 min rainfall data of Ibu Bekalan KM. 16	58
Table 4.28	2 nd Quartile of 60 min rainfall data of Ibu Bekalan KM. 16	58
Table 4.29	3 rd Quartile of 60 min rainfall data of Ibu Bekalan KM. 16	58
Table 4.30	4 th Quartile of 60 min rainfall data of Ibu Bekalan KM. 16	58
Table 4.31	1st Quartile of 60 min rainfall data of Empangan Genting Klang	60
Table 4.32	2 nd Quartile of 60 min rainfall data of Empangan Genting Klang	60
Table 4.33	3 rd Quartile of 60 min rainfall data of Empangan Genting Klang	60
Table 4.34	4 th Quartile of 60 min rainfall data of Empangan Genting Klang	60
Table 4.35	1st Quartile of 60 min rainfall data of Ibu Bekalan KM. 11	62
Table 4.36	2 nd Quartile of 60 min rainfall data of Ibu Bekalan KM. 11	62
Table 4.37	3rd Quartile of 60 min rainfall data of Ibu Bekalan KM. 11	62
Table 4.38	4th Quartile of 60 min rainfall data of Ibu Bekalan KM. 11	62
Table 4.39	1 st Quartile of 60 min rainfall data of Kg. Kuala Sleh	64
Table 4.40	2 nd Quartile of 60 min rainfall data of Kg. Kuala Sleh	64
Table 4.41	3 rd Quartile of 60 min rainfall data of Kg. Kuala Sleh	64
Table 4.42	4 th Quartile of 60 min rainfall data of Kg. Kuala Sleh	64
Table 4.43	1st Quartile of 60 min rainfall data of Gombak Damsite	66
Table 4.44	2 nd Quartile of 60 min rainfall data of Gombak Damsite	66
Table 4.45	3 rd Quartile of 60 min rainfall data of Gombak Damsite	66
Table 4.46	4 th Quartile of 60 min rainfall data of Gombak Damsite	66
Table 4.47	1 st Quartile of 60 min rainfall data of Air Terjun Sg. Batu	68
Table 4.48	2 nd Quartile of 60 min rainfall data of Air Terjun Sg. Batu	68
Table 4.49	3 rd Quartile of 60 min rainfall data of Air Terjun Sg. Batu	68
Table 4.50	4 th Quartile of 60 min rainfall data of Air Terjun Sg. Batu	68
Table 4.51	1 st Quartile of 60 min rainfall data of Kg. Sungai Tua	70
Table 4.52	2 nd Quartile of 60 min rainfall data of Kg. Sungai Tua	70
Table 4.53	3 rd Quartile of 60 min rainfall data of Kg. Sungai Tua	70
Table 4.54	4 th Quartile of 60 min rainfall data of Kg. Sungai Tua	70
Table 4.55	1 st Quartile of 60 min rainfall data of Ibu Bekalan KM. 16	72
Table 4.56	2 nd Quartile of 60 min rainfall data of Ibu Bekalan KM. 16	72
Table 4.57	3 rd Quartile of 60 min rainfall data of Ibu Bekalan KM. 16	72

Table 4.58	4 th Quartile of 60 min rainfall data of Ibu Bekalan KM. 16	72
Table 4.59	1st Quartile of 60 min rainfall data of Empangan Genting Klang	74
Table 4.60	2 nd Quartile of 60 min rainfall data of Empangan Genting Klang	74
Table 4.61	3 rd Quartile of 60 min rainfall data of Empangan Genting Klang	74
Table 4.62	4 th Quartile of 60 min rainfall data of Empangan Genting Klang	74
Table 4.63	1 st Quartile of 60 min rainfall data of Ibu Bekalan KM. 11	76
Table 4.64	2 nd Quartile of 60 min rainfall data of Ibu Bekalan KM. 11	76
Table 4.65	3 rd Quartile of 60 min rainfall data of Ibu Bekalan KM. 11	76
Table 4.66	4 th Quartile of 60 min rainfall data of Ibu Bekalan KM. 11	76
Table 4.67	1 st Quartile of 60 min rainfall data of Kg. Kuala Sleh	78
Table 4.68	2 nd Quartile of 60 min rainfall data of Kg. Kuala Sleh	78
Table 4.69	3 rd Quartile of 60 min rainfall data of Kg. Kuala Sleh	78
Table 4.70	4 th Quartile of 60 min rainfall data of Kg. Kuala Sleh	78
Table 4.71	1st Quartile of 60 min rainfall data of Gombak Damsite	80
Table 4.72	2 nd Quartile of 60 min rainfall data of Gombak Damsite	80
Table 4.73	3 rd Quartile of 60 min rainfall data of Gombak Damsite	80
Table 4.74	4 th Quartile of 60 min rainfall data of Gombak Damsite	80
Table 4.75	1st Quartile of 60 min rainfall data of Air Terjun Sg. Batu	82
Table 4.76	2 nd Quartile of 60 min rainfall data of Air Terjun Sg. Batu	82
Table 4.77	3rd Quartile of 60 min rainfall data of Air Terjun Sg. Batu	82
Table 4.78	4 th Quartile of 60 min rainfall data of Air Terjun Sg. Batu	82
Table 4.79	Comparison between Kg. Sungai Tua with MSMA 2	83
Table 4.80	Comparison between Ibu Bekalan KM. 16 with MSMA 2	83
Table 4.81	Comparison between Empangan Genting Klang with MSMA 2	84
Table 4.82	Comparison between Ibu Bekalan KM. 11 with MSMA 2	84
Table 4.83	Comparison between Kg. Kuala Sleh with MSMA 2	85
Table 4.84	Comparison between Gombak Damsite with MSMA 2	85
Table 4.85	Comparison between Air Terjun Sg. Batu with MSMA 2	86
Table 4.86	Comparison of the percentage range difference for all station	87
Table 4.87	Comparison between Huff Time Distribution Method and WRRI Method for 60 minutes rainfall event of Kg. Sungai Tua	88

Table 4.88	Comparison between Huff Time Distribution Method and WRRI Method for 60 minutes rainfall event of Ibu Bekalan KM. 16	88
Table 4.89	Comparison between Huff Time Distribution Method and WRRI Method for 60 minutes rainfall event of Empangan Genting Klang	89
Table 4.90	Comparison between Huff Time Distribution Method and WRRI Method for 60 minutes rainfall event of Ibu Bekalan KM. 11	89
Table 4.91	Comparison between Huff Time Distribution Method and WRRI Method for 60 minutes rainfall event of Kg. Kuala Sleh	90
Table 4.92	Comparison between Huff Time Distribution Method and WRRI Method for 60 minutes rainfall event of Gombak Damsite	90
Table 4.93	Comparison between Huff Time Distribution Method and WRRI Method for 60 minutes rainfall event of Air Terjun Sg. Batu	90
Table 4.94	Range in differences for 60 minutes rainfall duration	91

LIST OF FIGURES

Figure 2.1	Triangular representation of a hyetograph	9
Figure 2.2	Alternating Block Method	10
Figure 2.3	SCS distribution	12
Figure 2.4	Time distribution of areal mean rainfall in first-quartile storms	13
Figure 2.5	Time distribution of areal mean rainfall in second-quartile storms	14
Figure 2.6	Time distribution of areal mean rainfall in third-quartile storms	14
Figure 2.7	Time distribution of areal mean rainfall in fourth-quartile storms	15
Figure 2.8	Steps using WRRI Method	18
Figure 3.1	Flow Chart	23
Figure 3.2	Stations in Gombak	24
Figure 3.3	Average Variability Methods	27
Figure 3.4	Huff Time Distribution Method	29
Figure 3.5	Water Resources Research Institute Method	30
Figure 4.1	Rainfall temporal pattern of 15 minutes rainfall event for Kg. Sungai Tua	34
Figure 4.2	Rainfall temporal pattern of 30 minutes rainfall event for Kg. Sungai Tua	35
Figure 4.3	Rainfall temporal pattern of 60 minutes rainfall event for Kg. Sungai Tua	36
Figure 4.4	Rainfall temporal pattern of 15 minutes rainfall event for Ibu Bekalan KM. 16	37
Figure 4.5	Rainfall temporal pattern of 30 minutes rainfall event for Ibu Bekalan KM. 16	38
Figure 4.6	Rainfall temporal pattern of 60 minutes rainfall event for Ibu Bekalan KM. 16	39
Figure 4.7	Rainfall temporal pattern of 15 minutes rainfall event for Empangan Genting Klang	40
Figure 4.8	Rainfall temporal pattern of 30 minutes rainfall event for Empangan Genting Klang	41
Figure 4.9	Rainfall temporal pattern of 60 minutes rainfall event for Empangan Genting Klang	42
Figure 4.10	Rainfall temporal pattern of 15 minutes rainfall event for Ibu Bekalan KM. 11	43

Figure 4.11	Rainfall temporal pattern of 30 minutes rainfall event for Ibu Bekalan KM. 11	44
Figure 4.12	Rainfall temporal pattern of 60 minutes rainfall event for Ibu Bekalan KM. 11	45
Figure 4.13	Rainfall temporal pattern of 15 minutes rainfall event for Kg. Kuala Sleh	46
Figure 4.14	Rainfall temporal pattern of 30 minutes rainfall event for Kg. Kuala Sleh	47
Figure 4.15	Rainfall temporal pattern of 60 minutes rainfall event for Kg. Kuala Sleh	48
Figure 4.16	Rainfall temporal pattern of 15 minutes rainfall event for Gombak Damsite	49
Figure 4.17	Rainfall temporal pattern of 30 minutes rainfall event for Gombak Damsite	50
Figure 4.18	Rainfall temporal pattern of 60 minutes rainfall event for Gombak Damsite	51
Figure 4.19	Rainfall temporal pattern of 15 minutes rainfall event for Air Terjun Sg. Batu	52
Figure 4.20	Rainfall temporal pattern of 30 minutes rainfall event for Air Terjun Sg. Batu	53
Figure 4.21	Rainfall temporal pattern of 60 minutes rainfall event for Air Terjun Sg. Batu	54
Figure 4.22	Graph of 60 minutes of rainfall temporal pattern of Kg. Sungai Tua	55
Figure 4.23	Graph of 60 minutes of rainfall temporal pattern of Ibu Bekalan KM. 16	57
Figure 4.24	Graph of 60 minutes of rainfall temporal pattern of Empangan Genting Klang	59
Figure 4.25	Graph of 60 minutes of rainfall temporal pattern of Ibu Bekalan KM. 11	61
Figure 4.26	Graph of 60 minutes of rainfall temporal pattern of Kg. Kuala Sleh	63
Figure 4.27	Graph of 60 minutes of rainfall temporal pattern of Gombak Damsite	65
Figure 4.28	Graph of 60 minutes of rainfall temporal pattern of Air Terjun Sg. Batu	67
Figure 4.29	Graph of 60 minutes of rainfall temporal pattern of Kg. Sungai Tua	69
Figure 4.30	Graph of 60 minutes of rainfall temporal pattern of Ibu Bekalan KM. 16	71

Figure 4.31	Graph of 60 minutes of rainfall temporal pattern of Empangan Genting Klang	73
Figure 4.32	Graph of 60 minutes of rainfall temporal pattern of Ibu Bekalan KM. 11	75
Figure 4.33	Graph of 60 minutes of rainfall temporal pattern of Kg. Kuala Sleh	77
Figure 4.34	Graph of 60 minutes of rainfall temporal pattern of Gombak Damsite	79
Figure 4.35	Graph of 60 minutes of rainfall temporal pattern of Air Terjun Sg. Batu	81

LIST OF SYMBOLS

MV	Mean Value
%	Percentage
TPF	Temporal Pattern in Fraction
RTP	Rainfall Temporal Pattern
AVM	Average Variability Method
HTDM	Huff Time Distribution Method
WRRI	Water Resources Research Institute
DID	Department of Irrigation and Drainage
ARI	Average Recurrence Interval
SCS	Soil Conservation System
IDF	Intensity Duration Frequency
MSMA	Urban Storm Management Manual
NR	New Rank
hr	Hour
min	Minutes

CHAPTER 1

INTRODUCTION

1.1 Background

Floods in Malaysia are regular natural disasters which happen nearly every year during the monsoon season. Flood occurs when a river's discharge exceeds its channel's volume causing the river to overflow onto the area surrounding the channel known as the floodplain. The increase in discharge can be triggered by several events. The most common cause of flood is prolonged rainfall. If it rains for a long time, the ground will become saturated and the soil will no longer be able to store water leading to increased surface runoff. Rainwater will enter the river much faster than it would if the ground wasn't saturated leading to higher discharge levels and floods.

Design flood estimation is often required in engineering practice such as design of hydrologic structures, floodplain management, river ecological studies and flood insurance studies (Bustami et al., 2012). Thus a design rainfall is required which will be later converted into the corresponding design stream flow event which will be later converted into the corresponding design streamflow event. A design rainfall event consists of elements of rainfall duration, average rainfall intensity of an Average Recurrence Interval (ARI) event and rainfall temporal pattern. A temporal rainfall pattern is used to represent the typical variation of rainfall intensities during a typical storm and gives the proportion of total rainfall over certain time interval within a given rainfall duration (Ali, Erfen, & Amat, 1982).

In Malaysia, an urban stormwater management guidelines, namely Malaysian Urban Stormwater Management Manual (MSMA) which also includes guidelines for temporal rainfall pattern has published temporal rainfall pattern for Peninsular Malaysia. There are two temporal rainfall pattern are available which is for the West and East Coast of Peninsular Malaysia. Based on Hydrological Procedure No. 1 (1982) has been proposed on the temporal patterns for design to be adopted Storms in Peninsular Malaysia, the patterns were prepared for six standard durations which is 0.5, 3, 6, 12, 24 and 72 hours (Bustami et al., 2012).

The purpose of designing rainfall temporal patterns is to represent the typical variation of rainfall intensities during a typical storm burst (Bustami et al., 2012). It shows the temporal distribution of rainfall within the design storm which is an important factor that affects the runoff volume, magnitude and timing of the peak discharge. It is also important element in gaining knowledge of water balance dynamics on various scales for water resources management and planning. Realistic estimates of temporal distributions are obtained by analysis of local rainfall data from recording gauge network. In Malaysia, daily and annual rainfall volumes are recorded in rainfall gauges which are recorded on a daily basis (Bustami et al., 2012).

Daily rainfall data is normally readily available at or close to any location of interest for urban storm water studies. The volume rainfall influences the runoff volume and can be computed into the calculation of storm water quality. A study on temporal pattern is important for flood estimation as well as runoff computation, and further influence the water resource management and planning. Rainfall analyses are important for the primary aspect for hydrological designs, and temporal rainfall pattern provides the general rainfall event that may happen in the proposed project site to the designers. The patterns allow standard design procedures to be adopted in flow calculation. Among the methods available to develop temporal rainfall pattern are Average Variability Method, Huff Time Distributions, Triangular Hyetograph and SCS method.

1.2 Problem Statement

In Malaysia almost every year floods happen during the monsoon season. Malaysia is located near the equator and Malaysia's climate is categorized as equatorial, being hot and humid throughout the year. The average rainfall is 250 centimeters (98 in) a year and the average temperature is 27 °C (80.6 °F). The climates of the Peninsular and the East differ, as the climate on the peninsula is directly affected by wind from the mainland, as opposed to the more maritime weather of the East. Climate change is likely to have a significant effect on Malaysia, increasing sea levels and rainfall, increasing flooding risks and leading to large

droughts. During rainy season our rivers are swollen and cause disastrous floods which cause heavy destruction to life and property.

Flood sweeps away everything that comes in its way. Crops are destroyed, many houses are ruined, many people are rendered homeless, their belongings are washed away and many people and cattle are drowned. The sufferings of the people know no bounds. Railway lines remain under water, and sometimes, these are also washed away. The whole area under a flood presents a very horrible sight.

In Malaysia, temporal rainfall pattern for Peninsular Malaysia is provided in Malaysian Urban Storm Water Management Manual Second Edition (MSMA 2) which is updated data from Malaysian Urban Storm Water Management Manual First Edition (MSMA 1). The patterns were prepared for 9 standard durations which are 15 minutes, 30 minutes, 60 minutes, 180 minutes, 6 hour, 12 hour, 24 hour, 48 hour, and 72 hour. Data collected to establish the patterns were sampled from 24 rainfall stations in different parts of Peninsular Malaysia. However, the data available was not updated after 2010.

Besides, the data from MSMA 2 is stated specific by region which is not represent actual condition at each site. Rainfall temporal pattern more reliable if the actual fraction of rainfall at specific site or station can be developed to use in hydraulic and hydrology design. Therefore, the new rainfall temporal pattern need to develop at every development location.

1.3 Objectives

The main objectives of this study are:

- To develop rainfall temporal pattern in Gombak using Average Variability Method. (AVM), Huff Time Distributions Method (HTDM) and Water Resources Research Institute Method (WRRI).
- ii. To compare the result of AVM with MSMA 2 and HTDM with WRRI.

REFERENCES

- Ali, N. C. H. E., Erfen, Y., & Amat, N. F. (1982). Development of Temporal Rainfall Pattern for Segamat District ., *1*(1), 5–9. https://doi.org/10.13140/RG.2.1.1098.8641
- Al-Rawas, G. A., & Valeo, C. (2009). Characteristics of rainstorm temporal distributions in arid mountainous and coastal Retrieved from https://www.sciencedirect.com/science/article/pii/S0022169409004454
- Ataur, R. (2008). Investigation of design rainfall temporal patterns in the Gold Coast region of Queensland. . Retrieved from http://researchdirect.uws.edu.au/islandora/object/uws:867&p=DevEx.LB.1,5502.1
- Bustami, R. a, Rosli, N. A., Adam, J. H., Li, K. P., Rosmina, A., Nor Azalina, R., ... Kuan, P. L. (2012). Development of temporal rainfall pattern for Southern Region of Sarawak. UNIMAS E-Journal of Civil Engineering, 3, 17–23.
- Chin-Yu, L. (2010). Application of Rainfall Frequency Analysis on Studying Rainfall Distribution Characteristics of Chia-Nan Plain Area in Southern Taiwan. Retrieved from http://web.tari.gov.tw/csam/CEB/member/publication/2(1)/008.pdf&p
- Caballero, W., & Rahman, A. (2013). Variability in rainfall temporal patterns : a case study for New South Wales, Australia. Journal of Hydrology and Environment Research, 1(1), 41-48.
- Dolšak, D., Bezak, N., & Šraj, M. (2016). Temporal characteristics of rainfall events under three climate types in Slovenia. *Journal of Hydrology*, 541, 1395–1405. https://doi.org/10.1016/j.jhydrol.2016.08.047
- El- Sayed, E. A. H. (2016). Development of synthetic rainfall distribution curves for Sinai area. *Ain Shams Engineering Journal*. https://doi.org/10.1016/j.asej.2017.01.010
- Ellouze, M., Abida, H., & Safi, R. (2009). A triangular model for the generation of synthetic hyetographs. *Hydrological Sciences Journal*, *54*(2), 287–299. https://doi.org/10.1623/hysj.54.2.287
- Gabr, S., & Bastawesy, M. E. (2015). Estimating the flash flood quantitative parameters affecting the oil-fields infrastructures in Ras Sudr, Sinai, Egypt, during the January 2010 event.

- Golkar, F., & Farahmand, A. (2009). Rainfall Temporal Pattern of Some Climatic Types of Iran.
- Huff, F. (1990). Time Distributions of Heavy Rainstorms in Illinois Time Distributions of Heavy Rainstorms in Illinois. *Water Survey Campaign*, 22.
- J.V. Bonta (2011). Development And Utility Of Huff Curves For Disaggregating. Retrieved from https://naldc.nal.usda.gov/download/10017/PDF&p=DevEx.LB.1,5511.1
- Malaysia, D. of I. and D. (DID). (2000). Design Rainfall. Urban Stormwater Management Manual, 13-1-13–17.
- Mohamed, N. H., Ismail, A., Ismail, Z., Wan, C., Salleh, M., Adnan, W., ... Raji, A. (2013). TREND ANALYSIS AND FORECASTING OF RAINFALL AND FLOODS Data Analysis, (Mmd).
- Pengairan, J., & Saliran, D. A. N. (1983). Estimation of Design Rainstorm in (Vol. 1).
- Science, E. (2017). Statistical Analysis of 30 Years Rainfall Data : A Case Study Statistical Analysis of 30 Years Rainfall Data : A Case Study.
- T., & J. (2016). Temporal analysis of rainfall (1871-2012) and drought characteristics over a tropical monsoon-dominated State (Kerala) of India.
- Touhid, B. (2014). Derivation of Design Rainfall Temporal Patterns in Australia's Gold Coast Region
- Zhang, D., Zhang, J. Q., & Wang, F. (2015). Flash flood hazard mapping: A pilot case study in Xiapu River Basin, China.