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Abstract: The current study proposes a numerical method which solves nonlinear Fredholm and
Volterra integral of the second kind using a combination of a Newton–Kantorovich and Haar
wavelet. Error analysis for the Holder classes was established to ensure convergence of the Haar
wavelets. Numerical examples will illustrate the accuracy and simplicity of Newton–Kantorovich
and Haar wavelets. Numerical results of the current method were then compared with previous
well-established methods.

Keywords: holder classes; nonlinear integral equation; Haar wavelets; Newton–Kantorovich

1. Introduction

The application of integral equations can be found in various fields which include mathematics,
physics and engineering. The process of solving the integral equations analytically is very complicated
and for application purposes, it will be sufficient to solve the latter numerically. Previously, many
methods have been established to find numerical solutions for integral equations. These methods
include the polynomial approximation [1,2], linear multistep methods [3], modified homotopy
perturbation [4], wavelets [5–9], triangular functions [10] and Newton–Kantorovich method [11–14].
A few of the mentioned methods are applicable to merely linear integrals whereas the latter are
capable of approximating nonlinear integral equations. Finding the numerical solutions for integral
equations are often a complicated process and requires a large number of arithmetic computations.
Therefore, a simple and efficient technique that can solve both linear and nonlinear integral equations
is needed.

This research aims to present a numerical method which approximates nonlinear
Fredholm integrals

x(t) = f (t) +
∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl(s)ds, m > 1, (1)

and nonlinear Volterra integral

x(t) = f (t) +
∫ t

0
K(t, s)

m

∑
l=0

fl(s)xl(s)ds, m > 1, (2)
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both of the second kind. The functions f , fl ∈ L2[0, 1], l = 0, 1, . . . , m, K(t, s) ∈ L2[0, 1]× [0, 1] are
given functions whereas, x(t) is the unknown function with m as a positive integer. This article is
organized as follows: following the introduction section, Sections 2 and 3 provides the preliminaries
and approximation of the functions by Haar wavelets; numerical solutions for both nonlinear Fredholm
and Volterra integrals are then constructed in Sections 4 and 5 respectively; error analysis for Haar
wavelets which is derived in Section 6 satisfies the conditions in Holder space; the numerical results
are reported in Section 7; while the conclusion is elaborated in Section 8.

2. Preliminaries

Theorem 1. The solution of system

xn(tp) =
2N

∑
n=1

cnhn(tp), p = 1, 2, . . . , 2N,

is established as below:

c1 =
1

2N

2N

∑
j=1

x(tj)

ci =
1
ρi

(
βi

∑
p=αi

x(tp)−
γi

∑
p=βi+1

x(tp)

)
, i = 2, 3, . . . , 2N,

(3)

where

αi = ρi(σi − 1) + 1,

βi = ρi(σi − 1) +
ρi
2

,

γi = ρiσi,

ρi =
2N
τi

,

σi = i− τi,

τi = 2blog2(i−1)c.

(4)

See [6,15].

Corollary 1. The solution of the system

KN(t, sp) =
2N

∑
n=1

cn(t)hn(sp), p = 1, 2, . . . , 2N,

is defined below:

c1(t) =
1

2N

2N

∑
j=1

K(t, sj)

ci(t) =
1
ρi

(
βi

∑
p=αi

K(t, sp)−
γi

∑
p=βi+1

K(t, sp)

)
, i = 2, 3, . . . , 2N,

(5)

where τi, σi, βi, αi and ρi are illustrated in Theorem 1. See [8].

Definition 1. The set of all continuous functions on [0, 1], which satisfies the inequality

| f (t)− f (y)| ≤ L |t− y|s , L > 0, ∀t, y ∈ [0, 1].



Symmetry 2020, 12, 2034 3 of 13

is called a Holder space of order s and denoted by Hs[0, 1] whereas, the norm is given by

‖ f ‖Hs [0,1] = ‖ f ‖C[0,1] + sup
t 6=y

| f (t)− f (y)|
|t− y|s

,

for all t, y ∈ [0, 1].

3. Establishing Haar Wavelets

Haar wavelets are selected to solve the Equations (1) and (2) due to fact that they are the most
simple orthonormal wavelets with compact support. The Haar wavelets are defined on the interval
[0, 1) by

H(x) =


1, x ∈ [0, 1

2 )

−1, x ∈ [ 1
2 , 1)

0, elsewhere,

where,
hn(x) = 2

j
2 H(2jx− k), n = 2j + k, j = 0, 1, 2, ..., k = 0, 1, ..., 2j − 1

which forms an orthonormal system:

∫ 1

0
hn(x)h`(x) dx =

{
1, n = ` = 2j + k
0, n 6= `.

Any square integrable function, x(t) over the interval (0, 1) can be approximated using Haar
wavelets as follows:

x(t) =
∞

∑
n=1

cnhn(t). (6)

In practice, the series (6) is truncated as

x(t) ' xN(t) =
2N

∑
n=1

cnhn(t), (7)

where N = 2β, β = 0, 1, 2, . . . , and cn are the unknown coefficients. To evaluate the coefficients cn,
we need to consider these collocation points

tp =
p− 0.5

2N
, p = 1, 2, ..., 2N. (8)

Next, by substituting the collocation points (8) into (6), we obtain the following 2N × 2N linear
system of equations

xn(tp) =
2N

∑
n=1

cnhn(tp), p = 1, 2, . . . , 2N, (9)

which could be written in the matrix form

xn(tp) = HTC,

where H is an 2N × 2N with hij = hi(tj) and unknown coefficients, C = [c1, c2, . . . , cn]T . The H is
an asymmetric Haar with only element 1,−1 or 0. Here we do not need to solve the above system
which is computationally expensive for large values of N, thus Theorem 1 gives us a simple formula to
calculate the coefficients cn.
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Let K(t, s) be a square integrable function with variables t and s where the function K(t, s) is
approximated using the Haar wavelet basis as

K(t, s) ' KN(t, s) =
2N

∑
n=1

cn(t)hn(s). (10)

Substituting (8) into (10) yields the following system of 2N × 2N linear equations

KN(t, sp) =
2N

∑
n=1

cn(t)hn(sp), p = 1, 2, . . . , 2N, (11)

where the corollary 1 above denotes an algorithm for finding the unknown coefficients
ci(t), i = 1, 2, . . . , 2N.

4. Nonlinear Fredholm Integral of the Second Kind

This section provides the derivation for solving nonlinear Fredholm integral of the second kind.
Firstly consider the following nonlinear Fredholm integral of the second kind

x(t) = f (t) +
∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl(s)ds, m > 1, (12)

which can be rewritten in the operator form

P (x) = x(t)−
∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl(s)ds− f (t).

The initial iteration of Newton–Kantorovich method is described as

P′(x0)(x− x0) + P(x0) = 0, (13)

where x0 = x0(t) is the initial guess and is a continuously differentiable function in the interval [0, 1].
P′(x0) is the derivative of P(x) at the point x0. By the method of iteration, we obtain a sequence of
linear integral equations as follows:

∆xi(t)−
∫ 1

0
K(t, s)∆xi(s)

m

∑
l=0

l fl(s)xl−1
0 (s)ds

= f (t)− xi−1(t) +
∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl
i−1(s)ds,

(14)

where ∆xi(t) = xi(t)− xi−1(t), i = 1, 2, 3, . . ..
Therefore, the nonlinear Fredholm integral Equation (12) is reduced to a sequence of linear integral

Equations (14). The Newton–Kantorovich method constructs a sequence of functions that will converge
to the solution (13). The Newton–Kantorovich theorem was first introduced by Leonid Kantorovich in
1948 since then, many studies and applications have been done in this area (see [13,14,16–19]).

Next, substitute i = 1 in the linear Fredholm integral (14) to obtain

∆x1(t) +
∫ 1

0
K1(t, s)∆x1(s)ds = f (t)− x0(t) +

∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl
0(s)ds, (15)
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where K1(t, s) = K(t, s)
m
∑

l=0
l fl(s)xl−1

0 (s). Subsequently, the functions ∆x1(t) and K1(t, s)∆x1(s) are

approximated as

∆x1(t) '
2N

∑
n=1

cnhn(t), (16)

K1(t, s)∆x1(s) '
2N

∑
n=1

dn(t)hn(s), (17)

where

d1(t) =
1

2N

2N

∑
j=1

K1(t, sj)∆x1(sj)

and

di(t) =
1
ρi

(
βi

∑
p=αi

K1(t, sp)∆x1(sp)−
γi

∑
p=βi+1

K1(t, sp)∆x1(sp)

)
, i = 2, 3, ..., 2N.

The functions di(t), i = 1, 2, . . . , 2N are derived using Equation (5), then Equations (16) and (17)
are substituted into (15) to get:

2N

∑
n=1

cnhn(t) +
2N

∑
n=1

dn(t)
∫ 1

0
hn(s)ds = f (t)− x0(t) +

∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl
0(s)ds. (18)

Since
∫ 1

0 hn(s)ds = 0 for all n = 2, 3, . . . , 2N and
∫ 1

0 h1(s)ds = 1 then Equation (18) reduce to

2N

∑
n=1

cnhn(t) + d1(t) = f (t)− x0(t) +
∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl
0(s)ds. (19)

Only the left side of Equation (18) is expanded by Haar wavelets, because of the unknown function
∆x1(t), whereas, the right hand side are given functions including x0(t). Equation (19) is then utilized
by the collocation points (8) to attain 2N × 2N linear system of equations

2N

∑
n=1

cnhn(tp) + d1(tp) = f (tp)− x0(tp) +
∫ 1

0
K(tp, s)

m

∑
l=0

fl(s)xl
0(s)ds, (20)

where p = 1, 2, . . . , 2N. Solving the linear algebraic system (20), we get
x1(t), given that x1(t) = ∆x1(t) + x0(t). By repeating this procedure (20), we obtain the values
x2(t), x3(t), . . . for a selected i ∈ 1, 2, 3, . . . , in order to provide better approximation of x(t).

In general, the sequence of xi(t) can be evaluated by solving the following equation

∆xi(t) +
∫ 1

0
K1(t, s)∆xi(s)ds = f (t)− xi−1(t) +

∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl
i−1(s)ds,

where ∆xi(t) = xi(t)− xi−1(t) i = 1, 2, 3, . . . , in order to achieve better approximation of x(t).
After a few iterations, the approximated solution xi(t) stacks at a certain level of iteration and is

not gaining better results. Therefore, we need to increase the number of bases N for the Haar wavelets
as to improve the approximated solution of xi(t). The consequence of increasing the number of bases
N increases the computational effort. Fortunately, the problem can be avoided. Due to the Haar
wavelets figure (step functions), one’s could take the average of the approximated solution xi(t) below:

S1(t) =
xi(t) + xi(t + 1

2N )

2
,
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and allign back the approximated solution as

Sj+1(t) =
Sj(t) + Sj(t− 1

2N )

2
j = 1, 2, 3, . . . . (21)

The Equation (21) will perform a better approximation solution than xi(t) without any increase in
the number of bases N for the Haar wavelets. Next, we proceed with the nonlinear Volterra integral of
the second kind.

5. Nonlinear Volterra Integral of the Second Kind

The general nonlinear Volterra integral of the second kind is formulated as.

x(t) = f (t) +
∫ t

0
K(t, s)

m

∑
l=0

fl(s)xl(s)ds, m > 1.

Using similar techniques, the Fredholm integral is reduced via the Newton–Kantorovich method
produces a sequence of linear Volterra integral equations

∆xi(t)−
∫ t

0
K(t, s)∆xi(s)

m

∑
l=0

l fl(s)xl−1
0 (s)ds

= f (t)− xi−1(t) +
∫ t

0
K(t, s)

m

∑
l=0

fl(s)xl
i−1(s)ds,

(22)

where ∆xi(t) = xi(t)− xi−1(t). Next, substitute i = 1 in the Equation (22) to obtain

∆x1(t) +
∫ t

0
K1(t, s)∆x1(s)ds = f (t)− x0(t) +

∫ t

0
K(t, s)

m

∑
l=0

fl(s)xl
0(s)ds, (23)

where K1(t, s) = K(t, s)
m
∑

l=0
l fl(s)xl−1

0 (s). By approximating the functions ∆x1(t) and K1(t, s)∆x1(s)

using the Equations (16) and (17) and substituting it into Equation (23) yields

2N

∑
n=1

cnhn(t) +
2N

∑
n=1

dn(t)
∫ t

0
hn(s)ds = f (t)− x0(t) +

∫ t

0
K(t, s)

m

∑
l=0

fl(s)xl
0(s)ds. (24)

Similarly to the Fredholm integral, we only expand the left side of the Equation (24) by the Haar
wavelets. Then, we substitute Equation (24) using the collocation points from (8) and get the following
2N × 2N linear system of equation:

2N

∑
n=1

cnhn(tp) +
2N

∑
n=1

dn(tp)
∫ tp

0
hn(s)ds = f (tp)− x0(tp) +

∫ tp

0
K(tp, s)

m

∑
l=0

fl(s)xl
0(s)ds.

By solving this linear system, we obtain x1(t) where, x1(t) = ∆x1(t) + x0(t). For a better
approximation of x(t), this process is repeated to find x2(t), x3(t), . . . until a sufficient solution for xi(t)
is obtained. Finally, to achieve a better approximation than xi(t) without increasing the number of
Haar wavelet bases N as mentioned in the previous section, the sufficient solution xi(t) is substituted
into Equation (21).



Symmetry 2020, 12, 2034 7 of 13

6. Error Analysis

Let xi(t) ∈ L2[0, 1] be sequence of functions which satisfy

∆xi(t)−
∫ 1

0
K(t, s)∆xi(s)

m

∑
l=0

l fl(s)xl−1
0 (s)ds

= f (t)− xi−1(t) +
∫ 1

0
K(t, s)

m

∑
l=0

fl(s)xl
i−1(s)ds,

(25)

where ∆xi(t) = xi(t)− xi−1(t), i = 1, 2, 3, . . . , and the Haar wavelet expansion of ∆xi be

∆xi(t) =
∞

∑
n=0

cnhn(t).

Theorem 2. If the sequence xi(t) satisfy the Lipschitz condition with 0 < s < 1 then∥∥∥∥∥ ∞

∑
n=M

cnhn(t)

∥∥∥∥∥
L2[0,1]

≤ L2

2(4s − 1)M2s .

Proof. Let M = 2β+1, β = 0, 1, 2, . . . , then by taking the error in L2[0, 1] norm,∥∥∥∥∥ ∞

∑
n=2β+1

cnhn(t)

∥∥∥∥∥
2

L2[0,1]

=
∞

∑
n=2β+1

∞

∑
n′=2β′+1

cncn′

∫ 1

0
hn(t)hn′(t) dt =

∞

∑
n=2β+1

c2
n,

where

cn = 〈∆xi, hn〉 =
∫ 1

0
∆xi(t)hn(t) dt.

From definition of the Haar wavelets:

hn(t) = 2
j
2 H(2jt− k), k = 0, 1, . . . 2j − 1, j = 0, 1, . . . ,

H(2jt− k) =


1 f or t ∈

[
k2−j ,

(
k + 1

2

)
2−j
)

,

−1 f or t ∈
[(

k + 1
2

)
2−j , (k + 1) 2−j) ,

0 elsewhere,

we obtain

cn = 〈∆xi, hn〉 =
∫ 1

0
2

j
2 ∆xi(t) H(2jt− k) dt,

=2
j
2

(∫ (k+ 1
2 )2
−j

k2−j
∆xi(t)dt−

∫ (k+1)2−j

(k+ 1
2 )2
−j

∆xi(t)dt

)
.

By changing the limit of integration in the above equation from(
k +

1
2

)
2−j ≤ t < (k + 1)2−j,

to

k2−j ≤ t− 2−j−1 <

(
k +

1
2

)
2−j,
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yields

cn =2
j
2

(∫ (k+ 1
2 )2
−j

k2−j
∆xi(t)dt−

∫ (k+ 1
2 )2
−j

k2−j
∆xi(x + 2−j−1)dt

)
,

=2
j
2

∫ (k+ 1
2 )2
−j

k2−j

(
∆xi(t)− ∆xi(t + 2−j−1)

)
dt.

Taking into account that the sequence of function xi(t)

|xi(t + h)− xi(t)| ≤ L|h|s , L > 0 ∀t, h ∈ [0, 1].

The latter allow us to estimate the coefficients cn as follows

|cn| ≤ 2
j
2

∫ (k+ 1
2 )2
−j

k2−j

∣∣∣∆xi(t)− ∆xi(t + 2−j−1)
∣∣∣dt,

≤ 2
j+2

2 L2s(−j−1)
∫ (k+ 1

2 )2
−j

k2−j
dt = L2s(−j−1)− j

2 .

Hence, we have arrived to the final estimation for the coefficients

c2
n ≤ L22−2s(j+1)−j.

Therefore, ∥∥∥∥∥ ∞

∑
n=M

cnhn(t)

∥∥∥∥∥
2

=
∞

∑
n=2β+1

c2
n ≤

∞

∑
n=2β+1

L22−2s(j+1)−j,

=
2L2

4s+1

∞

∑
j=β+1

2j+1−1

∑
n=2j

2−2sj−j =
2L2

4s+1

∞

∑
j=β+1

2−2sj,

=
L2

2 (4s − 1) M2s .

Finally ∥∥∥∥∥ ∞

∑
n=M

cnhn(t)

∥∥∥∥∥
2

L2 [0,1]

≤ L2

2 (4s − 1) M2s .

This completes the proof of the Theorem 2.

We note that Ahmedov et al. [20] have shown that the error in L2[0, 1] norm is given by

‖ f − fN‖L2[0,1] ≤
L2

4(4s − 1)N2s ,

if f (t) ∈ Hs[0, 1] , 0 < s < 1. This ensures that the Haar wavelet approximation converges if
N increases.

7. Numerical Examples

In this section, we demonstrate the efficiency of the Newton–Kantorovich-Haar wavelets method
to solve nonlinear Fredholm and Volterra integral equations of the second kind. The calculation for
each of these examples was performed in Maple 15.
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Example 1. Consider the following nonlinear Fredholm integral equation [11]

x(t) = sin (πt) +
1
5

∫ 1

0
cos (πt) sin (πs)(x(s))3ds.

In order to approximate this integral equation, we repeat the Haar wavelets method until x3(t) and used
the approach in Equation (4) to obtain S10(t).

We apply the same initial condition as x0(t) = 0 stated in [11] for N = 8 and N = 16. In Table 1,
we compare the absolute error of the proposed method with those from Newton–Kantorovich–Simpson
quadrature method [11]. Figure 1 shows the comparison of the approximated solution x3(x), S10(t) and
the exact solution of this integral equation x(t) = sin(πt) + 1

3 (20−
√

391) cos(πt). The advantage of
the proposed method is that we can obtain an estimate of all t values in the interval [0, 1] for any value
of N, unlike the [11] method which can only obtain a certain t value depending on the subinterval
number they divide.

Figure 1. Comparison of the approximated solution x3(t) and S10(t) for N = 16 with the exact solution
for Example 1.

Table 1. Comparison of errors with the Newton–Kantorovich–Simpson quadrature method [11] for
Example 1.

t [11] Presented Method Presented Method
S10(t), N = 8 S10(t), N = 16

0 4.98 × 10−2 1.38 × 10−2 1.13 × 10−3

0.05 4.92 × 10−2 1.41 × 10−3 5.85 × 10−4

0.1 4.74 × 10−2 2.75 × 10−4 1.96 × 10−4

0.15 4.44 × 10−2 4.15 × 10−3 9.23 × 10−4

0.2 4.03 × 10−2 2.70 × 10−3 21.51 × 10−3

0.25 3.52 × 10−2 1.75 × 10−3 6.49 × 10−5

0.3 2.93 × 10−2 4.53 × 10−3 5.63 × 10−4

0.35 2.26 × 10−2 3.80 × 10−3 1.01 × 10−3

0.4 1.54 × 10−2 5.14 × 10−3 1.26 × 10−3

0.45 7.80 × 10−3 4.77 × 10−3 1.28 × 10−3

0.5 0 5.05 × 10−3 1.32 × 10−3

0.55 0.780 × 10−3 4.52 × 10−3 1.38 × 10−3

0.6 1.54 × 10−2 5.10 × 10−3 1.23 × 10−3

0.65 2.26 × 10−2 3.12 × 10−3 8.53 × 10−4

0.7 2.93 × 10−2 4.04 × 10−3 3.08 × 10−4

0.75 3.52 × 10−2 5.39 × 10−3 1.93 × 10−3

0.8 4.03 × 10−2 1.86 × 10−3 1.39 × 10−3

0.85 4.44 × 10−2 3.41 × 10−3 7.29 × 10−4

0.9 4.74 × 10−2 7.29 × 10−4 4.96 × 10−5

0.95 4.92 × 10−2 2.60 × 10−3 8.46 × 10−4

1 4.98 × 10−2 8.66 × 10−2 6.27 × 10−2
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Example 2. Consider the following nonlinear Volterra integral equation [11]

x(t)−
∫ t

0
x2(s)ds = sin(x)− t

2
+

1
4

sin(2x).

For this example, we intend to solve the nonlinear Volterra integral equation by choosing the initial
x0(t) = 1. In this case, we use four iterations to get the estimated settlement of x4(t) in Figure 2. In Table 2,
we compare the absolute error of the proposed method with Newton–Kantorovich block-by-block methods [11].
The exact solution for the integral equation is sin(t).

Figure 2. Comparison of the approximated solution x4(t) and S8(t) for N = 16 with the exact solution
for Example 2.

Table 2. Comparison of errors with the Newton–Kantorovich–block-by-block method [11] for
Example 2.

Nodes t [11] Presented Method Presented Method
S10(t), N = 8 S8(t), N = 16

0 0 1.61 × 10−2 8.29 × 10−3

0.05 4.16 × 10−5 4.52 × 10−4 7.31 × 10−4

0.1 3.33 × 10−4 5.98 × 10−4 4.40 × 10−4

0.15 7.90 × 10−4 5.55 × 10−4 7.66 × 10−4

0.2 1.54 × 10−3 2.26 × 10−4 2.79 × 10−6

0.25 3.93 × 10−3 9.88 × 10−4 3.78 × 10−4

0.3 6.65 × 10−3 1.37 × 10−4 4.69 × 10−4

0.35 8.87 × 10−3 6.11 × 10−4 3.00 × 10−4

0.4 1.39 × 10−2 4.67 × 10−4 7.69 × 10−4

0.45 1.97 × 10−2 2.60 × 10−4 7.84 × 10−5

0.5 0 9.34 × 10−4 7.31 × 10−4

0.55 3.53 × 10−2 1.08 × 10−4 5.60 × 10−4

0.6 4.70 × 10−2 5.30 × 10−4 7.68 × 10−5

0.65 5.47 × 10−2 4.15 × 10−4 8.85 × 10−4

0.7 6.90 × 10−2 2.17 × 10−4 1.84 × 10−4

0.75 8.45 × 10−2 7.98 × 10−4 3.56 × 10−4

0.8 9.59 × 10−2 3.31 × 10−5 6.48 × 10−4

0.85 1.19 × 10−1 5.23 × 10−4 1.47 × 10−4

0.9 1.43 × 10−1 1.80 × 10−4 6.48 × 10−4

0.95 1.60 × 10−1 1.73 × 10−2 3.22 × 10−4

1 1.85 × 10−1 4.42 × 10−1 4.51 × 10−1
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Example 3. Consider the following nonlinear Fredholm integral equations [9]

x(t) +
∫ 1

0
et−2s[x(s)]3ds = et+1.

We solve the Fredholm integral equation by choosing the initial condition x0(t) = 1. The approximated
solution x3(t) is then converted to S10 to obtain better accuracy for N = 4. For the case of N = 8, an adequate
solution is obtained using a single iteration x1(t) but with a slight alteration where the approximated solution,
x3(t) for N = 4 is taken as the new initial condition. Similarly, we attain x1(t), for N = 16 using the initial
condition x1(t) of N = 8. Table 3 shows the absolute error using the Haar wavelets method [9] and the presented
method. It is evident in Table 3 that our method is better than the Haar wavelets method [9] for this problem.
Moreover, the presented method yields good estimation results with only N = 4 compared to the Haar [9] method
using N = 16.

Table 3. Comparison of errors with the Haar wavelet method [9] for Example 3.

Nodes t [9], Presented Method Presented Method Presented Method
N = 16 S10(t), N = 4 S10(t), N = 8 S10(t), N = 16

0.1 2.05 × 10−3 3.53 × 10−3 1.94 × 10−3 4.31 × 10−4

0.2 3.30 × 10−3 4.44 × 10−3 1.67 × 10−3 3.32 × 10−7

0.3 8.69 × 10−3 1.71 × 10−3 1.32 × 10−3 7.91 × 10−4

0.4 1.69 × 10−2 4.23 × 10−3 8.69 × 10−4 2.92 × 10−4

0.5 1.87 × 10−2 7.27 × 10−3 3.54 × 10−3 1.29 × 10−3

0.6 1.17 × 10−2 3.78 × 10−3 3.20 × 10−3 7.11 × 10−4

0.7 2.93 × 10−3 7.32 × 10−3 2.75 × 10−3 5.49 × 10−7

0.8 8.08 × 10−3 2.82 × 10−3 2.17 × 10−3 1.30 × 10−3

0.9 2.16 × 10−2 3.19 × 10−2 1.43 × 10−3 4.81 × 10−4

Example 4. Consider the following nonlinear Fredholm integral equation [9]

x(t)−
∫ 1

0
ts[x(s)]3ds = et − (1 + 2e3)t

9
,

in which the exact solution is x(t) = et. In this example, we acquire an approximated solution of x3(t) using
N = 4 and by letting the initial condition x0(t) = 1 + x. Next, the first iterations for N = 8 and N = 16 are
attained in similar manner as Example 3. Table 4 describes both the absolute errors for the presented method
S10(t) and Haar wavelets method [9].

Table 4. Comparison of errors with the Haar wavelet method [9] for Example 4.

Nodes t [9], Presented Method Presented Method Presented Method
N = 16 S10(t), N = 4 S10(t), N = 8 S10(t), N = 16

0.1 9.46 × 10−3 3.05 × 10−3 9.42 × 10−4 1.96 × 10−4

0.2 5.36 × 10−3 4.56 × 10−3 1.31 × 10−3 2.53 × 10−4

0.3 4.40 × 10−3 5.03 × 10−3 1.61 × 10−3 5.22 × 10−4

0.4 1.16 × 10−2 6.86 × 10−3 1.79 × 10−3 4.73 × 10−4

0.5 2.30 × 10−2 9.23 × 10−3 3.13 × 10−3 9.42 × 10−4

0.6 1.67 × 10−2 8.92 × 10−3 3.40 × 10−3 8.11 × 10−4

0.7 8.37 × 10−3 1.18 × 10−2 3.54 × 10−3 5.42 × 10−4

0.8 2.40 × 10−3 1.04 × 10−2 3.55 × 10−3 1.31 × 10−3

0.9 1.59 × 10−2 3.41 × 10−3 3.38 × 10−3 8.46 × 10−4

Example 5. Consider the following nonlinear Volterra integral equation [21]

x(t) +
∫ t

0
(x2(s) + x(s))ds =

3
2
− 1

2
e−2t.
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with exact solution e−t. The initial guess is x0(t) = 1 in finding the approximate solution x4(t) and we
use the same procedure as the example above in finding the approximate solution for N = 8 and N = 16.
In Table 5, we compare the absolute error of the proposed method with hybrid Taylor polynomials and Block-Pulse
functions [21].

Table 5. Comparison of errors with the Haar wavelet method [21] for Example 5.

Nodes t [21] Presented Method Presented Method Presented Method
S10(t), N = 4 S10(t), N = 8 S10(t), N = 16

0 0 2.87 × 10−2 1.54 × 10−2 7.90 × 10−3

0.1 8.33 × 10−4 3.73 × 10−2 4.79 × 10−3 2.33 × 10−4

0.2 3.75 × 10−4 1.41 × 10−2 5.52 × 10−3 1.28 × 10−5

0.3 1.11 × 10−3 5.86 × 10−3 5.54 × 10−3 4.25 × 10−4

0.4 3.51 × 10−4 2.06 × 10−2 3.27 × 10−3 3.64 × 10−7

0.5 5.80 × 10−4 2.73 × 10−3 8.20 × 10−7 1.19 × 10−4

0.6 1.32 × 10−4 2.27 × 10−2 2.84 × 10−3 7.97 × 10−6

0.7 4.95 × 10−4 9.48 × 10−3 3.19 × 10−3 2.41 × 10−4

0.8 1.73 × 10−4 3.00 × 10−3 3.67 × 10−3 2.74 × 10−5

0.9 3.68 × 10−4 1.41 × 10−2 1.68 × 10−3 2.56 × 10−4

8. Conclusions

This study describes new techniques using a combination of Newton–Kantrovich and Haar
wavelets to solve the second kind of nonlinear Fredholm and Volterra integral equations. It has been
proven that an appropriate initial guess is required in the Newton–Kantrovich method. Therefore,
when applying large values of N such as N = 16 to the approximation of the Haar wavelets x16(t),
we recommend using the previous approximate solution x8(t) or x4(t) which considers the smaller
value of N as an initial condition. This will ultimately reduce the number of iterations and improve the
accuracy of the estimated solution. We also provide a simple approach at the end of Sections 4 and 5 that
can improve the approximation solution without increasing the number of bases N for the functions of
Haar wavelets.
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