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Abstract 

Recently, detecting and tracking people using infrared sensors in public surveillance has been 

given attention by many researchers since the global outbreak of severe acute respiratory syndrome, 

and machine vision is bound to play an important role. In machine vision, sliding window approach 

has appeared as most promising approach. Since Papageorgious et al who proposed the first sliding 

window detetectors until Dalal et al who have come out with a large gains detector based on 

histogram adoption, the ideas of sliding in human detections continue to serve as a root for modern 

detectors. While there is increasing research in thermal spectrum, very little research focus on the 

effectiveness of state of art detectors in febrile mass screening application. The exposed area of 

head-to-shoulder is an important body part for region of interest detection priorly before the 

temperature of febrile person is measured by the thermal camera. In addition, some of the thermal 

datasets used in previous research are more fit to surveillance or safety applications where the 

targets are mostly far-scales. One of the challenges in detecting the pedestrian in thermal images is 

the nature and quality of image in infrared spectrum as well as the real crowd situation in public 

area that cause occlusion. Therefore in this paper, we are interested to evaluate the top three 

detectors’ performance on thermal images taken during fever screening in Kuala Lumpur 

International Airport. We also analyze the best approach to be adopted in the detection using a new 

context of training and evaluation. 
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1. Introduction 

Since the outbreak of SARs, various countries has set up thermal imaging system in airport to find 

potential suspect with elevated body temperature as a first mass screening before further examined 

by medical doctors. Hence, a surge of interest in researching the best methods and the feasibility of 

the thermal camera installed for screening has been carried out [1]–[9]. While the debate rages on 

differences in finding the best area of human head that best represent core body temperature  [1], [3], 

[6], [7], it is undeniably that the exposed area of head-to-shoulder is an important body part for target 

detection; a step prior to the febrile mass measurement.  Fewer researches in the last decade have 

used non-visible spectrum sensors, such as thermal imaging. The breathtaking progress in computer 

vision research has mostly been associated with visible-light sensors. This is because initially, low 

cost infrared cameras had poor spatial resolution and cameras with better image quality were 

prohibitively expensive for many researchers. Due to different nature of images produced by visible-

light and thermal cameras, this raise questions about the effectiveness of current state-of-art detectors 

used in visible dataset to be applicable in  thermal dataset. In F.Suard et Al [10],  HOG-SVM 

framework was used in detecting pedestrian applied to infrared images. Using HOG, they have 

evaluated using variety of parameters with accuracy of detection nearly 99%. Another research by 

Bertozzi et al [11] has been incorporating subsystem tetra-vision based for pedestrian detection. This 

system has use of both visible and far infrared cameras to detect people especially at night. Apart of 

their system, HOG-SVM detector based has been applied with very good results 91% of recognition 

rate. In [12], the nighttime pedestrian detection with in infrared thermal HOG is combined in their 

last step after pre-processing step to enhance the recognition and precisely locate the detected object. 
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These previous algorithm performances using infrared sensors signify positive impact in their 

context, but they mainly focus on specific applications such driving assistance safety, surveillance 

and military to such a degree make the camera setup and dataset characteristics different to our 

purposes. In addition, some of the thermal datasets used in previous research [13]–[15] are more fit 

to  surveillance applications where the targets are far-scale. Nonetheless, their approach is based on 

the popular non-template framework, or using background subtraction, which requires two frames 

(the background and current frame). Thus it is less practical in real time application as the system 

need to frequently update the background image whenever the angle of camera or mountings 

adjusted.  To sum up, more challenging thermal datasets are essential and to inspire new applicable 

ideas especially in adapting the challenging real time thermal subjects. Our contribution is threefold 

(1) In this research, we introduce, KLIA#1; a small-scale thermal dataset using high resolution 

infrared camera, taken from real stream people in Kuala Lumpur International Airport (KLIA) 

corresponds to application of fever mass screening in airports. The pedestrians vary in appearance, 

pose and scale; furthermore, occlusion information is annotated (see Fig.4). These statistics are more 

representative of real world applications and allow for in depth analysis of existing algorithms.  (2) 

In this research, we are interested on template methods, where the examples of all possible targets to 

be detected are trained and independent of any previous/background frame.  The three distinctive 

framework HOG, Haar and LBP are selected to detect the region of interest (ROI) in crowds using 

the thermal camera. We also take a different perspective by training these features using new local 

context and combining with Gentle Adaboost (GAB) for better performance. (3) We highlight best 

detector among the three distinctive detectors for situations of practical interest under which existing 

methods fail and identify future research directions. 
 

2. Method 

2.1. Dataset collection 

A few of thermal infrared dataset have been published in the past, e.g., the OTCBVS 

Benchmark 1, the LITIV Thermal-Visible Registration Dataset [16], the AIC Thermal Visible 

Night-time Dataset ,[17] and the ASL Thermal Infrared Dataset [18].Typically these datasets 

focus on specific biometric applications or involve thermal-visible multimodal systems and 

imply a close-up view of the objects in the scene. The thermal camera (TIV) dataset collected 

by high-resolution high-speed cameras (FLIR SC8000, FLIR Systems, Inc., Wilsonville, OR) 

is the largest infrared dataset.[19] However, for the specific task such as the thermal health 

screening, there is still lack of complexity of visual events in realistic, challenging 

environments especially in the airport for human operators to manually monitor and detect 

febrile humans in crowd. 

2.1.1. Training Dataset 

We split the database into training/testing data and specify our evaluation methodology. For 

training dataset, we train our detectors on Terravic Facial Infrared Database [13] (see Fig.1). 

The database contains total no. of 20 classes (19 men and 1 woman) of 8 -bit gray scale JPEG 

thermal faces. Size of the database is 298MB and images with different rotations are left, right 

and frontal face images also available with different i tems like glass and hat. In our training, 

random 102 images are selected. The reason we train on Terravic dataset, because, it contains 

a large variation of infrared poses of upper body part of human with good in resolution, 

240x320 pixels, centered and non-overlap. Inspired by [21], we train a detector on instances in 

Terravic dataset that contain a person’s entire head, neck and part of shoulder. As illustrated in 

Figure 1 our choice of training area is different from area trained in [20] [21], where the red 

box of size h2xw2 shown the local context of our training instances. Viola at al trained on fixed 

face h1xw1 and Kruppa et al train from head to to upper part of body. Intuitively, this choice of 

context promises to hold an important cue for the presence of our ROI, especially in highly 

occluded crowd in thermal images where temperature of human clothes normally exhibit 

similarly to the ambient temperature that can make the lower body parts merges into each 

other and lose the shape cues. 
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Figure 1 .Terravic Facial Infrared Database for training database, random 102 images 
are selected for training. 

 

Figure 2.The red box of size h2 x w2 show the local context of our training instances 
from head-to-shoulder. Blue box h1xw1 is used as bounding box (BB) in Viola Jones 

[20]  and green box h3xw3 is used in Kruppa et. al.[21] 

2.1.2. KLIA Dataset and Ground Truthing 

We collected approximately 156 seconds of 15 Hz thermal videos (~Total 2340 Frames and 

1810 Frames with Humans walking) taken from a mounted thermal camera in a fixed indoor 

environment of KLIA arrival terminal to scan the arrival passengers (camera setup shown in 

Figure 3(a) and (d).). The scanner used is P640 FLIR system (FLIR Systems, 2009), a focal 

plane array, uncooled microbolometer 640 x 480 pixels with a thermal sensitivity of 30 mK at 

30°C spectral range of 7.5–13 µm and measurement accuracy at ±2% of the real-time 

reading.The input of the system is the form of sequence image of temperature values, X0 

Celsius degree as the intensity level is captured under controlled and fixed ambient 

temperature (25-260Celcius) in arrival area of Kuala Lumpur International Airport (KLIA). 

The camera is placed fixedly mounted and changed to three angles positions to capture the 

flow of moving subjects on the walkalator.  

As for our testing dataset, apart from the video that we recorded, we extracted random of 

160 images and named as KLIA#1. For each frame in KLIA#1, the annotator marks two types 

of bounding boxes (BB) for further analysis. The first is BB-Human that indicates the full 

extent of human in order to get distribution of height, h f as in Fig. 4a and occlusion amount in 

Fig 4b. The second BB-R indicates the full extent of area from head-to-shoulder of human as 

shown in Fig 4c.The aspect ratio of BB-R is obtained as in Fig 4d. A histogram of the aspect 

ratios, using logarithmic bins, is shown in Fig. 3f, and indeed the distribution is lognormal. 

The log-average aspect ratio is 1.02, meaning that typically wR ≈ 1.02hR, the width of BB-R is 

greater than height BB-R. However, to define near, medium and far scales, instead of hR, we 

used the height of BB-Human, hf, as this is more accurate and consistent to reflect the ratio of 

true height of human. Another reason, we annotate two type of BB; BB-Human and BB-R is to 

analyze occluded pattern of both parts. For both BB human and BB-R, the other BB is used to 

delineate the visible regions; BB-Hvis for BB-Human and BB-Rvis for BB-R, see Figure 4a 
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and 4c. This is useful to estimate the location of hidden parts. The summary of the dataset 

statistics is summarized in the next section. 

2.1.3. Dataset Statistics 

A summary of the database is given in Fig.3b and 3c. Below, we give detailed analysis of 

the distribution of pedestrian scale, occlusion and location. This will serve as a foundation for 

establishing the requirements for a real world system.  

Scale: We group pedestrians by their image size (height in pixels) into four scales: near (80 

or more pixels), medium (between 30-80 pixels) and far (30 pixels or less) and optimal scale 

(over 169 pixels). The value of optimal scale is calculated from pinhole camera model 

equation. Initially division into three scales (far, medium and near) is motivated by work in 

[22] as comparison . However our purpose is for fever screening requirements we add another 

scale called optimal scale. In a mass-screening survey, a long distance is required for a crowd 

of people. Research by [23] suggest that optimal distance of 10m or less is the best condition 

for the screening test and based on initial three scale division, this lie under near scale.  

In Fig. 3b, we histogram the heights of the 956 BB-Humans in our KLIA#1 database using 

logarithmic sized bins. In Fig 3b we mark the height based on measurements of hf, where a 

pedestrian’s pixel height hf is inversely proportional to distance to the camera.  Note that only 

∼6.1% of the pedestrians lie in the medium scale, and nearly 94 % lie in near scale. The 

cutoffs for the near/far scales correspond to about ±1 standard deviation from the mean height 

(in log space). The decrease at the other end, below 30 pixels, is due to the crowded people 

that are very small and difficult to be annotated. They are also overlapping and decreace in 

resolution quality. In Fig 3c distance distribution calculated from hf values are plotted in 

logarithmic bins. Optimal distance for thermal screening is at 10m or less. The camera is 

mounted still on the tripod while passengers arrive from plane is entering the arrival section in 

airport is walking forward near to the thermal camera while being scanned. This is mainly the 

reason why most people lie in near scale.   
 

 

 

 

 
  

(a) Planar View                        (b) Height Distribution                                   (c) Distance Distribution 
 

 
 

 
 

(d) Side view                (e) BB-R ratio in scales                         (f) Aspect ratio 

 
Figure 3. (a) Planar view of camera setup in KLIA airport and images are captured at 

three different angles. (b) Distribution of height, hf in pixels of persons who walk 
through the camera. Based on [22] the division is defined into three scales; far (less 

than 30 pixel) medium (between 30 to 80 pixels) and near scale (over 80 pixels).In this 
work, another division named ‘optimal scale’ is added as this is relevant to the febrile 

detection (c) The distribution of distance, d, of people where d is inversely 
proportional to hf. For febrile screening optimal distance for detection is at 10m. 
Based on division adopted from [22], our distance of interest lies in near scale 

category. (d) The side view based on pinhole camera to show the relationship of hf 
and d based on hf/f=H/d. (e) The BB-R is the bounding box of training from head-to-
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shoulder. The aspect ratio of BB-R is relatively changed to the scales. (f) Distribution 
of BB-R aspect ratio with wR ≈ 1.02hR 

In contrast to [22], detection in the near scale is more reliable for febrile screening 

applications. Due to the large volume of tourists who arrive at the airport each day, a less 

time-consuming and reliable method to screen body temperature is needed. In this study, we 

chose a camera setup that mirrors expected febrile screening applications: The P640 visual 

camera includes matching Field Of View (FOV) lenses, so IR and visual images are shown at 

similar long distances using the same FOV. The focal length is 38mm with FOV of 24° × 

18°and the detector is a focal plane array, uncooled microbolometer 640 x 480 pixels with a 

thermal sensitivity of 30 mK at 30°C spectral range of 7.5–13 µm and measurement accuracy 

at ±2% of the real-time reading. The mean temperature of a skin surface is measured from the 

field of view of a thermal imager with an appropriate adjustment for skin emissivity and it 

may vary from site to site in the range of 0.94–0.99 (0.98 is used here). The skin temperature 

is lower than the normal 37°C body temperature because of well -studied heat evaporation, 

conduction and convection principles. 

                  (1) 

                    (2) 

Using (1) focal length in pixels is f ≈ 1129, given the angular field of view (AFOV) at 24° 

and w is horizontal dimension or width of image resolution is 480. Based on pinhole camera 

model relationship (2) and Fig. 3d, an observed pixel height of object, hf is inversely 

proportional to the distance d to the camera:   where H is the actual object height. Assuming 

1.5m tall pedestrians, we can obtain an estimate of the distance to a pedestrian of observed 

pixel height hf.  

Although for febrile detection the best distance is at 10m and less, detecting coming people 

at medium scale may leave for far scale pedestrians are less relevant as temperature is cannot 

be measure accurately. Moreover, most people are observed at the near scale as human 

performance is quite good in the near scales but reduces noticeably at the far scale. Therefore, 

we shall use the near and medium distinction throughout this work. 

TABLE 1 
Training Parameters for Three Detectors 

 

Features/ 

Boosting Parameters 

 

Haar 

 

HOG 

 

LBP 

Positive Samples Per Stage 105 105 105 

Negative Samples Per Stage 210 210 210 

Stages 6 7 10 

Min hit rate 0.9950 

 

0.9950 0.9950 

Max False Alarm Rate 0.2 0.2 0.2 

Width 37 37 37 

Height 32 32 32 

 

Comparison of training parameters using Gentle AdaBoost for three distinctive detectors. 

The training for the detectors halt and return cascade detector to certain stages due to limited 

samples. 

Occlusion: Little previous work has been done to quanti- fy detection performance in the 

presence of occlusion (using real data) especially in thermal datasets. Inspired by work for 

pedestrian detection in visible dataset in [22][24] , we adopt their way to calculate fraction of 

occlusion. As described, occluded pedestrians are annotated with two types of BBs; BB-

Human and BB-R that denote the head- to-toe and head-to-shoulder extent and each type of 
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BBs, we annotate their full and visible parts. In Fig 4a and 4c, the annotator labels visible 

parts for BB-Human and BB-R differently for the same person. For BB-Human, anything that 

hide the area between head-to-toe is consider as occlusion, likewise for BB-R, anything that 

hide area between head-to-shoulder is an occlusion. 

In Fig 4 occlusion amount, i.e., for each pedestrian we measure the fraction of occlusion for 

each person and compare which parts are mostly occluded.To calculate the fraction of 

occluded, one minus the visible area over total area which is obtained from the visible and full 

parts of BBs. Aggregating, we obtain the histograms in Fig. 4b and Fig. 4d  Most of occlusions 

are generally caused by overlapping  persons  in  crowd  or  any  structure  in  the airports hide 

the visibility from the camera point of view. For BB-Human in Fig. 4(b), over 85% occlusion 

typically indicates heavy occlusion, while 0% is used to indicate that a BB could not represent 

the extent of the visible region. Compared to Fig. 4d the heavy occlusion in BB- R is less than 

BB-Human, which is 70%. This meant that head-to-shoulder parts are lessly occluded in 

crowds compared to the body and torso parts. We further subdivide the occlusion into partial 

occlusions, for BB-Human, only 10.5% is occluded and for BB-R, 29% of humans are 

partially occluded. This shows that probability of occlusion is non-uniform, detection using 

BB-R, more cues could be detected as this area is overlapped. 

 
 

 

 

(a)                                                (b) 

 

 

 

(c)                                                  (d) 

Figure 4. Occlusion statistics (a) The annotate label head-to-toe BB, BB-Human for 
measuring heights. The exposed part within BB-Human is considered as BB-Hvis (b) 
The fraction of BB-Human that is occluded (c) The BB-R label from head-to-shoulder 

and the BB-Rvis, is what is visible within BB-R 

TABLE 2 
Training Algorithm 

Gentle Adaboost 

 

1. Given N examples  with  

2. Start with weights  

3. Repeat for  
a) Fit the regression function , by weighted least-squares  to 

with weights  
b) Set , and renormalize weights so that 

 
 

4. Output the classifier  
Gemtle Adaboost Training Algorithm 



Emerging Information Science and Technology 

Vol. 1, No. 1, (2020), pp. 22-32 

 

 

28 

2.2. Learning approach and implementation details 

To measure performance we evaluated the effectiveness on three distinct detection 

frameworks. The employed detectors’ framework is a modified version of the HOG , Viola-

Jones and LBP cascade detectors and available through the Open Computer Vision Library and 

Matlab Computer Vision System Toolbox™ [20]. These are based on the idea of a boosted 

classifier cascades [20] .Features derived from HOG, Haar and LBP and offers different 

boosting variants for learning. In this paper, the main contribution is to evaluate three main 

features using an efficient classifier that is built by selecting number from huge library of 

potential features using Adaboost [25] . The multiscale sliding-window paradigm is employed. 

This subsection summarizes the most essential implementation details regarding features, 

learning algorithm and training parameters. The aim is to evaluate the most effective features 

on our KLIA#1 thermal dataset. 

2.2.1. Viola Jones (VJ) 

Viola and Jones built introduce integral images for fast feature computation and a cascade 

structure for efficient detection, and utilizing AdaBoost for automatic feature selection. The 

“Integral Image” allows very fast evaluation for Harr-wavelet type features, known as 

rectangular filter. These ideas continue to serve as a foundation for modern detectors. The VJ 

detection framework in [20] is conceptually straight- forward and later Haar features are 

extended in [26]. 

2.2.2. Cascaded Histogram Oriented Gradients (CHOG) 

Based on adoption of gradient-based features, Dalal and Triggs popularized the HOG 

features based on evaluating a dense grid of well-normalized local histograms of image 

gradient orientations over the image windows. The distribution of local intensity gradient or 

edge directions can present the local object appearance and shape. In their work, the HOG 

features are combined with linear SVMs [27] .In visible object detection, HOG has shown 

great success in object detection and recognition. [27]–[30]. HOG has been widely accepted as 

one of the best features to capture the edge or local shape information. HOG has been 

successfully adopted for numerous object detection tasks and the HOG is almost the most 

frequently used descriptor in PASCAL challenges. Zhu et Al [29] has extended Dalal’s 

framework and improve the speed of detector  by combining HOG features in Adaboost 

cascaded classifier.  

2.2.3. Cascaded Local Binary Patterns (CLBP) 

While no single feature has been shown to outperform HOG, additional features can provide 

complementary information such as Local Binary Patterns (LBP). LBP was first presented by 

Ojala et al. [31], for the purpose of tex- ture classification. LBP are feature vectors extracted 

from a gray-scale image by applying a local texture operator at all pixels and the using the 

result of operators to form histograms. Extending their earlier work, they present a gray-scale 

and rotation invariant texture operator based on LBP [32] and they derive an operator that is 

invariant against any monotonic transformation of gray scale. 

2.2.4. Gentle Adaboost (GAB) 

AdaBoost is an algorithm for constructing strong classifi - ers as linear combination of 

simple weak learners, which often outperforms SVMs and Neural Networks. The total number 

of features derived from Haar, HOG or LBP within any image sub-window is very large and 

Ada- boost is able to do feature selection resulting in relatively simple classifier. The  cascade 

classifier consists of stages, where each stages an ensemble of weak learners.  The weak   

learners   are   simple   classifiers   called   decision stumps. Each stage is trained using a 

technique called boosting. Boosting provides the ability to train a highly accurate classifier by 

taking a weighted average of the decisions made by the weak learners. As a result each stage 

of the boosting process, which selects a new weak classifier, can be viewed as an efficient 

feature selection process. Different variants of boosting are known such as Discrete Adaboost, 

Real AdaBoost, and Gentle AdaBoost are identical with respect to computational complexity, 
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but differ in their learning algorithm (see Table 2 for GAB algorithm).  For face detection 

tasks, it is empirically shown in [22] that variant in Gentle Adaboost outper- forms other type 

of Adaboost both in accuracy and speed. Thus in this paper, we adopt Gentle Adaboost (GAB).  

 

3. Results  

We first analyse performance under 3 conditions on testing data KLIA#1. Fig. shows the 

performance for overall, on near and medium scales, under no and partially vis ible 

pedestrians. We plot miss rate versus false positives per image (lower curves  or lower percent 

of miss rate  indicates better performance and use of log-average miss rate as a common 

reference value for summarizing performance. Legend entries display and ordered by the 

highest performance. 

Overall: Fig. 5 plots performance on the entire test set with variable parameters, using a 

scalar minimum neighbour=6, the scale factors for multiscale scanning.  Minimum neighbour 

is a parameter to specify how many neighbours in each candidate BB should have retain in the 

post-processing step. If minimum neighbour is 0, the function does not any grouping at all and 

returns all the detected candidate rectangles, which may be useful if the user wants to apply a 

customized grouping procedure. The scale factor is the factor by which the search window is 

scaled between the subsequent scans, if scale factor 1.1 means increasing window by 10 

percent. HOG slightly outperforms the other detectors, with Haar a close second.  In Fig. 5a 

HOG, the best scale factor is at 1.6. In Fig. 5b LBP and Fig. 5c Haar both best scale factor at 

1.3. However, absolute overall performance is poor, with a log-average miss rate of over 98 

percent. To understand where the detectors fail, we examine performance under various 

conditions in Fig with similar multscale parameters, minimum neighbor at 6 and scale factor at 

1.6.  
 

 

 

 

                        (a)HOG             (b)Haar     

 

 

 

 

 
(c) LBP 

Figure 5. Overall performance on KLIA#1 using minimum neighbourhood 6 for (a) 
HOG (b) Haar (c) LBP. Overall detector is HOG performs better with lowest log-

average miss rate 

Scale: Fig. 6 (a) to 6(c) shows the results for three scale (medium, near and optimal) 

corresponding to heights division of at least 80 pixels (see Section 2.3). LBP performs best 

with a log-average miss rate of only 98.14 percent; numerous other detectors still achieve 

slightly similar log-average miss rates around 98 percent. On the medium scale, which 

contains aproximately 6 percent of ground truth humans in BB-Human annotations (see Fig. 
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3b) performance degrades slightly over 99 percent. LBP and Haar achieve the best relative 

performance, but absolute performance on HOG in medium scale is very poor with 100 

percent log-average miss rate. Moreover, the three performing detectors on far scale 

pedestrians degrade most. By plotting the miss rate graphs, we can see this trend clearly. 

 

 

 
 

 

(a) Medium Scale  (b) Near Scale                 (c) Optimal Scale 

 

 

 
           (d) No occlusion                (e) Partial    (f) Heavy 

Figure 6. The performance of three detectors under six different conditions (a) far 
scale (b) medium scale (c) near scale (d) without occlusion (e) partially occluded and 
(f) heavy occlusion. The scale is measured through hf of BB-Human while occlusion 

fraction is based on BB-R and BB-Rvis (see Figure 4) 

Occlusion: The impact of occlusion on detecting humans is shown in Figs. 6d to 6e. As 

discussed in Section 2.3, we classify pedestrians as unoccluded, partially occluded (1 -35 

percent occluded), and heavily occluded (35-80 percent occluded). Performance drops 

significantly under heavy occlusion, leading to a log-average miss rate over 99 percent for 

three detectors. Surprisingly, performance of in partial detectors is substantially better than 

performance without occlusions. 

Scale-Occluded: Because the performance in partial occlusion is slightly better than 

subjects without occlusion, the other further analysis is done under this type of occlusion to 

examine whether the scale size has influence the result in Fig.7. For near scale subjects (over 

80 pixels height) that are partially occluded the detection is performing better than near scales 

that are not occluded. In Fig. 7c, for subjects that are partially occluded at near scale, the 

performance is higher with HOG produced the better performance at 97.98 percent. 

Surprisingly performace in Fig. 7d for optimal scale partially occluded increase with best 

results for overall detectors with HOG is the best. For near and optimal scales in Fig. 7e and 

Fig 7f, performance is slightly worst with the presence of heavy occlution as the log-average 

miss rate is over 99 percent 

 This study was carried out to assess the state of the art in ROI detection by remote -sensing 

thermal camera that could be used as a proxy for core temperature recognition especially in 

moving subjects. Automatically detecting potential region in humans could have consider able 

effective impact to help personnels to detect the hot spot region correctly and fastly especially 

when passengers are arriving. Optimal scale is the best to detect temperature yet medium and 

near scale is essential to earlier scanning .In this result,  we can observe that results in near is 

generally better than medium or far scales. In this research results of all far scale categories 

are the worst with log-average miss rate 100 percent. From most of the plots, the LBP and 

HOG have outperformed Haar features. 
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We make three main contributions: a new thermal data set taken in real setup, taking a 

different perspective by training these features using new local context and combining with 

Gentle Adaboost (GAB) for better performance and an assessment of performance based on 

scale, degree of occlusion for the three main detectors that is adapted to our application.  

 

4. Conclusion 

The challenges in thermal camera are different compare to visible spectrum. One of them is 

the quality of images which is blurred and has poor contrast compared to visible images that 

are richer and colorful in presentation. As thermal images is a captured of temperature 

information and not color of the object, the shape is becoming an important feature. Thermal 

shape detection is often successfully exploited as normally humans usually emit more heat 

than other objects. The challenging part arise when the other hot artifacts such as lamps, 

heated buildings, and heat reflections can be misclassified with the real object of interest as 

they might share similar temperatures. 

There is bigger room for improvement in ROI detection in thermal imaging. Overall 

performance is far from perfect especially as the miss rate is mostly over 96%. At medium 

scale, over 99 percent of log average miss rate and the performance degrades catastrophically 

when heavy occlusion occurs. This means that the current detectors need to be improved in 

order to cope with sudden mass passengers. 

This research indicates the need of further research in our dataset: 

1. Medium and near scales: Better performance is needed in the range of greater than 80 

pixels and most importantly in optimal scale for distance of less than 10m (scale size 

greater than 169 pixel). 

2. Occlusion: Performance degrades poorly under even heavy occlusion, but better for the 

partially occluded.  

3. Global vs Local Context: Training could be done by combining local and global context 

especially when the overlapping degree is high. In visible image, when the two bodies 

are overlapping the temperature of the attires are as similar as ambient temperature thus 

erasing the borders of each other. Contarariwise in visible images the different of two 

overlapping parts could be bordered by the color of the cloth. Instituitively even in 

thermal spectrum images or in overlapping persons, normal human eyes could guess the 

global shape. 

4. Novel features: From the performance results, HOG and LBP frequently and 

substitutely be the top of the ranks. Therefore, by manipulating the texture based or 

edge orientation based this can be a good feature in thermal images. Improving the 

features could achived additional gain.  

5. Dataset: Detectors were trained on Terravic Thermal and the selected data we train in 

this research is smaller than the complete set of Terravic data. Training using larger 

Terravic data set or larger KLIA dataset is potentially to upgrade performance. Besides, 

the training data in Terravic perfect from any occlusion. Another study can be done to 

see the relationship between size of data and different type of thermal  dataset that 

include overlapping humans in training dataset.  
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