EXTRACTION OF BIOACTIVE COMPOUNDS FROM HIBISCUS AND JASMINE FLOWERS USING MICROWAVE-ASSISTED HYDRODISTILLATION (MAHD) AND HYDRODISTILLATION (HD) METHODS

HESHAM HUSSEIN ALAADDIN RASSEM

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that We have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

__
(Supervisor’s Signature)
Full Name : PROF. DR. ABDURAHMAN HAMID NOUR
Position : PROFESSOR
Date :

__
(Co-supervisor’s Signature)
Full Name : PROF. DATO’ DR. ROSLI BIN MOHD YUNUS
Position : PROFESSOR
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__

(Student’s Signature)

Full Name : HESHAM HUSSEIN ALAADDIN RASSEM
ID Number : PKC15008
Date :
EXTRACTION OF BIOACTIVE COMPOUNDS FROM HIBISCUS AND JASMINE FLOWERS USING MICROWAVE-ASSISTED HYDRODISTILLATION (MAHD) AND HYDRODISTILLATION (HD) METHODS

HESHAM HUSSEIN ALAADDIN RASSEM

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Chemical and Process Engineering Technology

UNIVERSITI MALAYSIA PAHANG

JANUARY 2020
ACKNOWLEDGEMENTS

First and foremost, I would thank my Allah for the sound health during the course of my research work and thesis writing. Also, my appreciation goes to every individual who have contributed to this research in one way or the other. Firstly, my deepest gratitude is to my advisor, Professor Dr. Abdurahman Hamid Nour for the continuous motivation and support for my doctoral study and other related research work. I acknowledge his patience and immense knowledge which helped all through. I would also like to thank my co-supervisor, Professor Dr. Rosli Bin Mohammed Yunus. I am also thankful for the efforts of the staff in FTKKP laboratory, UMP especially Madam Hafizah Ramli, Mr. Razak.

I would also like to dedicate this research to the pure spirit of my father and mother (may Allah have mercy on them). I would like to thank my wonderful wife for helping me to complete my studies. I also thank all my brothers and my sisters to help me.

Finally, I would like to appreciate the financial support from UMP that funded this research work through (PGRS 160363).
ABSTRAK

Penggunaan minyak pati asal semulajadi baru-baru ini mendapat banyak perhatian dalam banyak bidang seperti perasa makanan, racun perosak dan industri farmaseutikal. Walau bagaimanapun, batasan penggunaan kaedah pengekstrakan konvensional yang sedia ada adalah penggunaan masa yang sedia ada, kos yang tinggi, penggunaan tenaga yang tinggi, kehilangan potensi sebatian yang tidak menentu dari minyak pati serta kebimbangan alam sekitar. Oleh itu, teknik pengekstrakan inovasi baru diperlukan untuk mengatasi batasan-batasan ini. Dalam kajian ini, minyak pati telah diekstrak daripada bunga Hibiscus dan bunga Jasmine dengan menggunakan hidrodistilasi konvensional (HD) dan kaedah hidrodistilasi dibantu oleh mikro-kaedah konvensional bukan konvensional (MAHD). Pengaruh pra-rawatan pada bunga Hibiscus dan bunga Jasmine sebelum pengekstrakan diselidiki. Juga, perubahan dalam morfologi serbuk bunga Hibiscus dan serbuk bunga Jasmine sebelum dan selepas pengekstrakan oleh kedua-dua kaedah diperhatikan melalui SEM. Gangguan kelemahan minyak pati bunga Hibiscus diperhatikan untuk MAHD berbanding dengan HD. Kecekapan teknik pengekstrakan MAHD dibandingkan dengan HD dari segi komposisi kimia dan aktiviti biologi minyak diperoleh serta implikasi kos proses pengekstrakan. Untuk mewajarkan prestasi teknik MAHD, tiga faktor utama mempengaruhi seperti nisbah bahan pelarut-untuk-tumbuhan, masa pengekstrakan dan daya gelombang penyinaran dianalisis. Analisis faktor-faktor ini pada mulanya dijalankan menggunakan satu faktor pada satu masa. Selain itu, penyaringan dan pengoptimuman faktor-faktor telah dijalankan dengan bantuan perisian pakar reka bentuk melalui analisis faktorial dan reka bentuk komposit pusat, masing-masing. Keadaan optimum yang diperoleh oleh kedua kaedah adalah masa pengekstrakan 120 min, 8: 1 metanol kepada nisbah bahan mentah dan 300 kuasa gelombang penyinaran. Hasil maksimum yang diperoleh dari bunga Hibiscus dan Jasmine adalah 1.25 % dan 1.21 %, masing-masing. Sebaliknya, parameter pengekstrakan untuk HD adalah 160 minit masa pengekstrakan, 8: 1 metanol kepada nisbah bahan mentah dan kuasa operasi berterusan 350 W. Hasil maksimum yang diperoleh dari bunga Hibiscus dan Jasmine untuk HD adalah 1.15 % dan 1.13 %, masing-masing. Minyak penting yang didapati pada keadaan operasi optimum untuk kedua-dua kaedah adalah tertakluk kepada analisis kualitatif yang lebih lanjut. Analisis komposisi dilakukan melalui spektroskopi massa kromatografi gas. Sejumlah 37 sebatian didapati dalam kedua kaedah pengekstrakan (MAHD dan HD) untuk minyak bunga Hibiscus yang disokong oleh analisis fourier mengubah spektroskopi inframerah. Bagaimanapun, sebatian aktif yang terdapat dalam minyak bunga Hibiscus (asid etanimidic, etil ester) menunjukkan nilai min 31.48 ± 0.2 dan 29.23 ± 0.2 untuk MAHD dan HD, masing-masing. Begitu juga dengan pengumpulan 10 sebatian diperolehi kaedah pengekstrakan untuk minyak bunga Jasmine yang disokong oleh analisis FTIR. Walau bagaimanapun, sebatian aktif yang terdapat dalam minyak bunga Jasmine (2-Phenylthiolane) menunjukkan nilai min 57.31 ± 0.1 dan 57.21 ± 0.1 untuk MAHD dan HD, masing-masing. Selain itu, sifat-sifat antioksidan yang dipamerkan oleh bunga Hibiscus dan bunga Jasmine yang diperolehi melalui MAHD telah dinilai untuk menentang DPPH Radikal Scavenging Assay. Menariknya, ekstrak mentah yang diperoleh melalui MAHD menunjukkan nilai IC$_{50}$ 0.7 ppm dan 5.15 ppm bagi bunga Hibiscus dan bunga Jasmine, masing-masing. Ini menunjukkan bahawa teknik MAHD sesuai untuk mendapatkan bunga Hibiscus dan bunga Jasmine dan minyak yang diperolehi boleh menawarkan manfaat farmaseutikal yang hebat.
ABSTRACT

The use of natural origin essential oil has recently gained much attention in many fields such as food flavoring, pesticides and in pharmaceutical industries. However, limitations to the use of existing conventional extraction methods are the inherent time consumption, high cost, high power consumption, potential loss of volatile compounds from essential oil as well as environmental concerns. Therefore new innovation extraction techniques are required to overcome these limitations. In this research, essential oil was extracted from Hibiscus flower and Jasmine flower by using conventional hydrodistillation (HD) and non-conventional microwave assisted hydrodistillation (MAHD) methods. The influence of pre-treatment on the Hibiscus flower and Jasmine flower prior to extraction was investigated. Also, changes in morphology of the Hibiscus flower powder and Jasmine flower powder before and after extraction by the two methods was observed through SEM. Milder disruption of Hibiscus flower oil gland were observed for MAHD compared to HD. This is associated with the effective heat distribution obtainable from MAHD. The efficiency of MAHD extraction technique was compared with HD in terms of chemical composition and biological activity of the oil obtained as well as cost implication of the extraction process. To justify the performance of MAHD technique, the three main influencing factors such as solvent–to-plant material ratio, extraction time and irradiation microwave power were analyzed. Analysis of these factors was initially carried out using one factor at a time method. Furthermore, screening and optimization of the factors was conducted with the help of Design expert software via factorial analysis and central composite design, respectively. The optimum conditions obtained through CCD for MAHD is 120 min extraction time, 8:1 of methanol to raw material ratio and 300 W irradiation microwave power. The maximum yield obtained from Hibiscus and Jasmine flowers is 1.25 % and 1.21 %, respectively. On the other hand, the extraction parameters for HD are 160 min extraction time, 8:1 of methanol to raw material ratio and a constant operating power 350 W. The maximum yield obtained from Hibiscus and Jasmine flowers for HD is 1.15 % and 1.13 %, respectively. The essential oil obtained at the optimum operating conditions for both methods was subjected to further qualitative analysis. Compositional analysis was conducted through gas chromatography-mass spectrometer. A total of 37 compounds were found in both extraction methods (MAHD and HD) for Hibiscus flower oil which were supported by fourier transforms infrared spectroscopy analysis. However, the active compound present in Hibiscus flower oil (Ethanimidic acid, ethyl ester) manifested a mean value of 31.48 ± 0.2 and 29.23 ± 0.2 for MAHD and HD, respectively. Similarly, the collection of 10 compounds was obtained both extraction methods for Jasmine flower oil which were supported by FTIR analysis. However, the active compound present in Jasmine flower oil (2-Phenylthioliolane) manifested a mean value of 57.31 ± 0.1 and 57.21 ± 0.1 for MAHD and HD, respectively. In addition, the antioxidant properties exhibited by Hibiscus and Jasmine flowers crude obtained through MAHD was evaluated against DPPH Scavenging Radical Assay. Interestingly, the crude extract obtained through MAHD shows IC50 value of 0.7 ppm and 5.15 ppm for Hibiscus and Jasmine flowers, respectively. This indicates that the MAHD technique is suitable for obtaining volatile oils from Hibiscus flower and Jasmine flower and the oils obtained can offer great pharmaceutical benefits.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS

ABSTRAK

ABSTRACT

TABLE OF CONTENT

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1 Background of Study
1.2 Problem Statement
1.3 Objectives of Study
1.4 Scopes of Study

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction
2.2 Essential Oil
 2.2.1 Chemical constituents of essential oil
 2.2.2 Applications
 2.2.3 Sources of essential oils

2.2.4 Extraction Techniques

2.3 Classical and Conventional Methods of Essential Oil Extraction

2.3.1 Distillation

2.3.2 Solvent extraction

2.3.3 Soxhlet extraction

2.3.4 Cold pressing method

2.4 Innovative Techniques of Essential Oils Extraction (Non-Traditional)

2.4.1 Supercritical fluid extraction (SFE)

2.4.2 Ultrasound assisted extraction (UAE)

2.4.3 Microwave extraction

2.5 Raw Material of Essential Oil Extraction

2.5.1 Hibiscus flower

2.5.2 Jasmine flower

2.6 Hydrodistillation

2.6.1 Basic principles of hydrodistillation

2.7 Microwave Assisted Hydrodistillation

2.7.1 Theory of microwave

2.7.2 Principle of MAHD

2.7.3 Mechanism of MAHD

2.8 Effects of Operating Factors on Efficiency of MAHD

2.8.1 Nature and volume of solvent

2.8.2 Extraction time

2.8.3 Microwave irradiation power or temperature

2.9 Analysis of Essential Oil

2.9.1 Gas chromatography-mass spectrometry (GC-MS)

2.9.2 Scanning electron microscopy (SEM)
2.9.3 Fourier transforms infrared spectroscopy (FTIR) 59

2.10 Bioassay 61
 2.10.1 Antioxidant assay 62

2.11 Statistical Model 63
 2.11.1 Factorial design 64
 2.11.2 Central composite design 64

2.12 Summary of Literature Review 65

CHAPTER 3 MATERIALS AND METHODS 66

3.1 Introduction 66

3.2 Materials 68
 3.2.1 Raw material 68
 3.2.2 Chemicals 69

3.3 Methods 69
 3.3.1 Sample preparation 69

3.4 Optimization of Process Parameters for Essential Oil Extract 74
 3.4.1 One factor at a time (OFAT) 74
 3.4.2 Screening of MAHD extraction parameter using factorial design 75
 3.4.3 Optimization of MAHD extraction parameter using response surface methodology (RSM) 76

3.5 Analysis 77
 3.5.1 Calculation of extraction flowers oil yield 77
 3.5.2 Gas chromatography-mass spectrometry (GC-MS) 78
 3.5.3 Scanning electron microscopy (SEM) Analysis 78
3.6 Antioxidant Assay

3.6.1 DPPH Radical scavenging assay

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction

4.1.1 Selection of factor range

4.2 Optimization of MAHD Parameters

4.2.1 Optimization of MAHD parameters for Hibiscus flower

4.2.2 Optimization of MAHD parameters for Jasmine flower

4.3 Effects of Parameters

4.3.1 Effect of extraction parameters for Hibiscus flower

4.3.2 Effect of extraction parameters for Jasmine flower

4.4 Morphological Studies

4.4.1 Morphological studies of Hibiscus flower powder

4.4.2 Morphological studies of Jasmine flower powder

4.5 FTIR Analysis

4.5.1 Spectra analysis of Hibiscus flower oil

4.5.2 Spectra analysis of Jasmine flower oil

4.6 Composition of Hibiscus Flower Oil

4.6.1 Classification of Hibiscus Flower Oil crude extract

4.7 Composition of Jasmine Flower Oil

4.7.1 Classification of Jasmine flower oil crude extract

4.8 Antioxidant Assay

4.8.1 Antioxidant studies of Hibiscus flower oil extract by MAHD

4.8.2 Antioxidant studies of Jasmine flower oil extract by MAHD

4.9 Energy, Economy and Environmental Impact
LIST OF TABLES

Table 1.1 Comparison of different extraction methods for some plants 4
Table 2.1 Types of secretory structures 10
Table 2.2 Taxonomy of selected plant families and medicinal applications 13
Table 2.3 Sources and applications of essential oil 15
Table 2.4 Summary of types of distillation processes in extraction of essential oil 23
Table 2.5 Comparison among advance extraction techniques 32
Table 2.6 Summary of Hibiscus species 41
Table 2.7 Summary of extraction of Hibiscus rosa-sinensis flower oil through various methods 43
Table 2.8 Summary of extraction of Jasmine flower oil through various methods 48
Table 2.9 Functions of equipment used for essential oil analysis 57
Table 2.10 Some examples of infrared absorption frequencies 61
Table 3.1 List of chemicals 69
Table 3.2 Overall parameters and conditions of MAHD extraction process 72
Table 3.3 Overall parameters and conditions of HD extraction process 73
Table 3.4 Two level factorial design experiment matrix with response variable 75
Table 3.5 Two level factorial design experiment matrix with response variable 76
Table 3.6 Design summary 77
Table 4.1 Experimental layout of Central Composite Design (CCD) in extraction of Hibiscus flower oil yield 82
Table 4.2 ANOVA for response surface quadratic model 85
Table 4.3 Validation results 93
Table 4.4 Experimental layout of Central Composite Design (CCD) in extraction of Jasmine flower oil yield 95
Table 4.5 ANOVA for response surface quadratic model 97
Table 4.6 Validation results
Table 4.7 Summary of functional groups present in Hibiscus flowers oil obtained through HD and MAHD
Table 4.8 Summary of functional groups present in Jasmine flowers oil obtained through HD and MAHD
Table 4.9 Mean composition (%) of compounds in Hibiscus flower oil extracted through MAHD and HD
Table 4.10 Mean composition (%) of compounds in Jasmine flower oil extracted through MAHD and HD
Table 4.11 DPPH Assay of methanol extract of Hibiscus flower
Table 4.12 DPPH Assay of methanol extract of Jasmine flower
Table 4.13 Summary of energy consumption and CO₂ emission of MAHD and HD methods for extraction of Hibiscus flower
Table 4.14 Summary of energy consumption and CO₂ emission of MAHD and HD methods for extraction of Jasmine flower
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mechanism of liquid-liquid extraction</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanism of contacting process during solvent extraction</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic subsidize apparatus for hydrodistillation</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>The schematic subsidize apparatus for steam distillation</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Solvent extraction</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Soxhlet extraction</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Cold pressing method</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Supercritical fluid extraction (SFE)</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Ultrasound assisted extraction (UAE)</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Microwave-assisted hydrodistillation</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>Solvent free microwave extraction (SFME)</td>
<td>37</td>
</tr>
<tr>
<td>2.12</td>
<td>Setup microwave dry-diffusion and gravity process</td>
<td>38</td>
</tr>
<tr>
<td>2.13</td>
<td>Hibiscus flower</td>
<td>40</td>
</tr>
<tr>
<td>2.14</td>
<td>Jasmine flower</td>
<td>46</td>
</tr>
<tr>
<td>2.15</td>
<td>Fundamental mechanism of mass and heat transfer in conventional and MAHD extraction</td>
<td>54</td>
</tr>
<tr>
<td>2.16</td>
<td>Schematic diagram of GC-MS</td>
<td>59</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow process of the general experimental procedure</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>Fresh Hibiscus flower</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Fresh Jasmine flower</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Illustration of Hibiscus flower sample preparation</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Illustration of Jasmine flower sample preparation</td>
<td>70</td>
</tr>
<tr>
<td>3.6</td>
<td>Microwave-assisted hydrodistillation (MAHD)</td>
<td>72</td>
</tr>
<tr>
<td>3.7</td>
<td>Hydrodistillation (HD)</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>(a) Correlation of actual and predicted values by the models and (b) Normal probability of residuals</td>
<td>86</td>
</tr>
</tbody>
</table>
Figure 4.2 Effect of independent factors: (a) microwave power, W, (b) methanol: raw material ratio, and (c) extraction time (min) on the yield of Hibiscus flower oil

Figure 4.3 Response surface of Hibiscus flower oil yield as function of (a) microwave power and methanol: Hibiscus flower powder ratio at extraction time 120 min, (b) microwave power and extraction time at methanol: Hibiscus flower powder ratio of 8:1 and (c) methanol: raw material ratio and extraction time at microwave power of 300 W

Figure 4.4 Contour plot of Hibiscus flower oil yield as function of (a) microwave power and methanol: Hibiscus flower powder ratio at extraction time 120 min, (b) microwave power and extraction time at methanol: Hibiscus flower powder ratio of 8:1 and (c) methanol: raw material ratio and extraction time at microwave power of 300 W

Figure 4.5 (a) Correlation of actual and predicted values by the models and (b) Normal probability of residuals

Figure 4.6 Effect of independent factors: (a) microwave power, W, (b) methanol: raw material ratio, and (c) extraction time (min) on the yield of Jasmine flower oil

Figure 4.7 Response surface of Jasmine flower oil yield as function of (a) microwave power and methanol: Jasmine flower powder ratio at extraction time 120 min, (b) microwave power and extraction time at methanol: Jasmine flower powder ratio of 8:1 and (c) methanol: raw material ratio and extraction time at microwave power of 300 W

Figure 4.8 Contour plot of Jasmine flower oil yield as function of (a) microwave power and methanol: Jasmine flower powder ratio at extraction time 120 min, (b) microwave power and extraction time at methanol: Jasmine flower powder ratio of 8:1 and (c) methanol: raw material ratio and extraction time at microwave power of 300 W

Figure 4.9 Effect of different methanol-to-Hibiscus flower powder ratio on extraction yield MAHD and HD at fixed irradiation power of 300 W and extraction time of 120 min

Figure 4.10 Effects of different extraction time on yield Hibiscus flower oil by MAHD and HD at fixed irradiation power of 300 W and methanol to Hibiscus powder ratio of 8:1

Figure 4.11 Effect of various irradiation power on Hibiscus flower oil yield (%) and induction time (min) of MAHD at fixed extraction time of 120 min and methanol-to-Hibiscus flower powder ratio of 8:1
Figure 4.12 Effect of extraction methods on Hibiscus flower oil yield (%) and induction time (min) of MAHD (300 W) and HD at fixed extraction time of 120 min and methanol-to-Hibiscus flower powder ratio of 8:1

Figure 4.13 Effect of different methanol-to-Jasmine flower powder ratio on extraction yield MHAD and HD at fixed irradiation power of 300 W and extraction time of 120 min

Figure 4.14 Effects of different extraction time on yield Jasmine flower oil by MAHD and HD at fixed irradiation power of 300 W and methanol to Jasmine powder ratio of 8:1

Figure 4.15 Effect of various irradiation power on Jasmine flower oil yield (%) and induction time (min) of MAHD at fixed extraction time of 120 min and methanol-to-Jasmine flower powder ratio of 8:1

Figure 4.16 Effect of extraction methods on Jasmine flower oil yield (%) and induction time (min) of MAHD (300 W) and HD at fixed extraction time of 120 min and methanol-to-Jasmine flower powder ratio of 8:1

Figure 4.17 SEM images of (a) untreated raw Hibiscus flower powder (b) pretreated Hibiscus flower powder after soaking for 60 min

Figure 4.18 SEM images of oil cell glands of Hibiscus flower (a) after pretreatment (soaking for 60 min), (b) after MAHD extraction (120 min) and (c) after HD extraction (160 min)

Figure 4.19 SEM images of (a) untreated raw Jasmine flower powder (b) pretreated Jasmine flower powder after soaking for 60 min

Figure 4.20 SEM images of oil cell glands of Jasmine flower (a) after pretreatment (soaking for 60 min), (b) after MAHD extraction (120 min) and (c) after HD extraction (160 min)

Figure 4.21 FT-IR spectrum of essential oil for Hibiscus flower through MAHD and HD

Figure 4.22 FT-IR spectrum of essential oil for Jasmine flower through MAHD and HD

Figure 4.23 GC-MS chromatogram of MAHD at 120 min extraction at fixed methanol: Hibiscus flower powder ratio of 8:1 and constant operating power supply of 300 W

Figure 4.24 GC-MS chromatogram of MAHD at 120 min extraction at fixed methanol: Jasmine flower powder ratio of 8:1 and constant operating power supply of 300 W
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>F</td>
<td>Frequency</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>T</td>
<td>Temperature (°C)</td>
</tr>
<tr>
<td>\tan δ</td>
<td>Dielectric loss tangent</td>
</tr>
<tr>
<td>P</td>
<td>Microwave power distribution per volume unit</td>
</tr>
<tr>
<td>Λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>E</td>
<td>Electric field strength</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>-α</td>
<td>Negative axial</td>
</tr>
<tr>
<td>+α</td>
<td>Positive axial</td>
</tr>
<tr>
<td>Dₚ</td>
<td>Penetration depth</td>
</tr>
<tr>
<td>Cₚ</td>
<td>Heat capacity</td>
</tr>
<tr>
<td>qₘₜₜ</td>
<td>Volume of heat generation</td>
</tr>
<tr>
<td>nᵢ</td>
<td>Number of interactions</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACC</td>
<td>American association for clinical chemistry</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BBD</td>
<td>Box-Behken design</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>CAMD</td>
<td>Compressed air microwave distillation</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>FMASE</td>
<td>Focused microwave assisted soxhlet or solvent extraction</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectrometry</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>GRAS</td>
<td>Generally response as safe</td>
</tr>
<tr>
<td>HD</td>
<td>Hydrodistillation</td>
</tr>
<tr>
<td>MAE</td>
<td>Microwave-assisted extraction</td>
</tr>
<tr>
<td>MAHD</td>
<td>Microwave-assisted hydrodistillation</td>
</tr>
<tr>
<td>MASD</td>
<td>Microwave accelerated steam distillation</td>
</tr>
<tr>
<td>MDG</td>
<td>Microwave dry-diffusion and gravity process</td>
</tr>
<tr>
<td>MHG</td>
<td>Microwave hydrodiffusion and gravity</td>
</tr>
<tr>
<td>MSD</td>
<td>Microwave steam distillation</td>
</tr>
<tr>
<td>MSDF</td>
<td>Microwave steam diffusion</td>
</tr>
<tr>
<td>NIST</td>
<td>National institute of standards and technology</td>
</tr>
<tr>
<td>OFAT</td>
<td>One factor at a time</td>
</tr>
<tr>
<td>PMAE</td>
<td>Portable microwave assisted extraction</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetraflouro ethylene</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>RT</td>
<td>Retention time</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SFE</td>
<td>Supercritical fluid extraction</td>
</tr>
<tr>
<td>SFME</td>
<td>Solvent free microwave extraction</td>
</tr>
<tr>
<td>TDS</td>
<td>Triple distribution system</td>
</tr>
<tr>
<td>UAE</td>
<td>Ultrasound-assisted extraction</td>
</tr>
<tr>
<td>VMHD</td>
<td>Vacuum microwave hydrodistillation</td>
</tr>
</tbody>
</table>
REFERENCES

Letellier, M., Budzinski, H., Charrier, L., Capes, S. and Dorthe, A. (1999a). Optimization by factorial design of focused microwave assisted extraction of polycyclic aromatic hydrocarbons from marine sediment. Fresenius' journal of analytical chemistry, 364(3), 228-237.

Lianfu, Z. and Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasons sonochemistry, 15(5), 731-737.

