FABRICATION OF HYBRID GRAPHENE-POLYETHERSULFONE SUPPORTED LIQUID MEMBRANE FOR ACETIC ACID REMOVAL FROM OIL PALM FROND BIOMASS HYDROLYSATE

NORLISA BT HARRUDDIN

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

__
(Supervisor’s Signature)
Full Name : AP DR SYED MOHD SAUFI BIN TUAN CHIK
Position : ASSOCIATE PROFESSOR
Date :

__
(Co-supervisor’s Signature)
Full Name : AP DR CHE KU MOHAMMAD FAIZAL CHE KU YAHYA
Position : ASSOCIATE PROFESSOR
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : NORLISA BINTI HARRUDDIN
ID Number : PKC 14009
Date :
FABRICATION OF HYBRID GRAPHENE-POLYETHERSULFONE SUPPORTED LIQUID MEMBRANE FOR ACETIC ACID REMOVAL FROM OIL PALM FROND BIOMASS HYDROLYSATE

NORLISA BT HARRUDDIN

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Chemical and Process Engineering Technology

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2020
ACKNOWLEDGEMENTS

Foremost, I would like to express my deepest appreciation to all those who provided me the possibility to complete this thesis. A special gratitude I give to my supervisor, AP Dr Syed M. Saufi and my co-supervisor, AP Dr Che Ku Mohammad Faizal for the useful comments, remarks and guidance through the learning process of this thesis. Without their guidance, this thesis would not have been possible.

I would like to thank Prof. Dr. Ir. Abdul Wahab Mohammad and LRGS Project Future Biorefineries group members for giving me the opportunity to be a part of them. I gratefully acknowledge the assistance and cooperation of all laboratory staffs of Faculty of Chemical and Natural Resources Engineering, UMP who helped me in many ways and made my stay in UMP pleasant and unforgettable. My sincere appreciation also extends to all my colleagues and friends who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

Finally, special gratitude to my beloved husband Zafril Rizal and my beautiful daughter, Zinnirah for their understanding, help and emotionally support throughout this journey. Apart of that, all my family members including En Harruddin, Pn Rokiah, Pn Satila Harruddin, Mohd Adam Afif, En Azmi and Pn Marhamah for their understanding and supported throughout entire process. To those who indirectly contributed in this research, your kindness means a lot to me. Thank you very much.
Penukaran biojism lignoselulosa kepada bahan bakar bio memberi sumbangan hebat kepada pembekalan sumber tenaga boleh diperbaharui. Untuk mencapai matlamat ini, penguraian asid telah digunakan untuk menguraikan bahan lignoselulosa kepada gula fermentasi. Penguraian asid adalah kaedah yang cekap, mudah dan pantas berbanding penguraian enzim. Walau bagaimanapun, masalah utama yang ditemui semasa proses penguraian adalah pembebasan kumpulan asetil seperti asid asetik (AA) sebagai hasil sampingan bersama komponen gula. AA boleh bertindak sebagai perencat kepada penukaran enzim gula ke dalam produk akhir etanol atau bahan kimia lain. Maka, AA perlu dikeluarkan daripada hidrolisat biojism untuk memaksimumkan penghasilan produk akhir. Kajian ini menumpukan terhadap pembinaan sokongan membran hibrid yang digunakan di dalam ceai memran bersokong (SLM) proses untuk penyekirkan AA menggunakan teknik pemisahan fasa induksi wap (VIPS). Membran hibrid telah dicirikan dari segi morfologi dengan menggunakan pengimbas mikroskop elektron (SEM) dan pelepasan medan pengimbas mikroskop elektron (FESEM), hidrofobisiti membran dan kekuatan mekanikal. Ceaai organik membran untuk pengestrakkan AA telah diformulasikan di bahagian pertama kajian ini. Ceaai membran dan agen pelucutan terbaik adalah pada pembawa 0.5 M tri-n-octylamine (TOA) di dalam pelarut 2-ethyl-1-hexanol dan 0.5 M NaOH. Penggabungan 0.1 wt% graphene di dalam hibrid polyethersulfone (PES) lemaran rata sokongan membran didapati ketara meningkatkan tekanan tegangan memb hibrid dari 740 kPa kepada 1790 kPa, peningkatan sebanyak 140% kekuatan mekanikal berbanding memb PES yang asli. Sudut sesentuh membran juga meningkat dari 81.92º kepada 122.35º dan menjadi sokongan membran yang sangat tinggi hidrofobik yang dapat memperbaiki kestabilan SLM. PES-0.1 graphene (G) sokongan membran kekal stabil lebih daripada 116 jam (12 kitaran SLM) tanpa rendaman semula dalam ceai memran berbanding dengan memb asli yang hanya stabil untuk 16 jam (2 kitaran SLM). Keadaan terbaik untuk penghasilan memb hibrid lemaran rata melalui VIPS adalah menggunakan suhu rendaman 50 °C, 30 saat masa pendedahan dan 80% kelembapan udara. Ia menunjukkan 95% penyekiran AA daripada larutan akueu 10 g/l. Semasa penghasilan sokongan memran gentian berongga, masa rendaman membran ceai dan mod operasi aliran suapan PES-0.1G gentian berongga telah dikaji. Masa rendaman terbaik untuk penyediaan modul gentian berongga adalah 4 jam. Fasa suapan yang mengalir di sisi lumen (Mod I) menunjukkan prestasi pemisahan yang lebih baik dibandingkan dengan sisi shell (Mod II). Peratusan penyekiran AA menggunakan gentian berongga yang dikendalikan dengan Mod I dan Mod II masing-masing adalah 80.1% dan 42.4%. Kebolehan proses SLM dalam mengeluarkan AA dari hidrolisat biojism pelepas kelapa sawit (OPF) telah diuji menggunakan memb PES-0.1G lemaran rata dan gentian berongga. Kepekatana AA dalam OPF hidrolisat dikerangkan dari 6.83 g/l kepada 1.33 g/l dan 2.01 g/l dengan menggunakan lemaran rata dan gentian berongga SLM. Kedua-dua sistem SLM memenuhi kepekatana minimum AA yang perlu wujud dalam hidrolisat biojism untuk memastikan penghasilan etanol yang tinggi yang kurang daripada 5 g/l. Oleh itu, sistem SLM yang menggunakan sokongan memb hibrid G-PES yang dihasilkan dalam kajian ini terbukti berkesan menyengingkiran AA daripada larutan akueu dan hidrolisat biojism OPF.
ABSTRACT

Conversion of lignocellulosic biomass to biofuel gives a great contribution to the supplement of renewable energy source. To achieve this purpose, acid hydrolysis was used to hydrolyze the lignocellulosic materials to fermentable sugars. Acid hydrolysis is efficient, simple and fast method compared to enzymatic hydrolysis. However, the major problem encountered during the hydrolysis process is the releasing of acetyl group such as acetic acid (AA) as byproducts with the hydrolyzed sugar component. AA can act as inhibitors to the enzymatic conversion of sugar into the final product of ethanol or other chemicals. Therefore, AA needs to be removed from the biomass hydrolysate to maximize the yield of products. This study focused on development of the hybrid membrane support for used in the supported liquid membrane (SLM) process for AA removal using vapor induced phase separation (VIPS) technique. The hybrid membrane were characterised in term of morphology by scanning electron microscope (SEM) and field emission scanning electron microscope (FESEM), porosity, membrane hydrophobicity and mechanical strength. The organic liquid membrane phase for extraction of AA was formulated in the first part of the study. The best liquid membrane phase and stripping agent were 0.5 M tri-n-octyl-amine (TOA) carrier in 2-ethyl-1-hexanol diluent and 0.5 M NaOH, respectively. Incorporation of 0.1 wt% graphene in the hybrid polyethersulfone (PES) flat sheet membrane support was found significantly improved the tensile stress of the hybrid membrane from 740 kPa to 1790 kPa, an improvement about 140% in mechanical strength compared to pristine PES membrane. The contact angle of the hybrid membrane also increased from 81.92º to 122.35º and becoming highly hydrophobic membrane support that improved the SLM stability. PES-0.1G membrane support remains stable for more than 116 hours (12 SLM cycles) without requires reimpregnation in the liquid membrane phase compared to the pristine membrane that only stable for 16 hours (2 SLM cycles). The best condition to prepare the flat sheet hybrid membrane through VIPS are using 50 °C coagulation bath temperature, 30 second air exposure time and 80% air humidity. It showed 95% removal of the AA from 10 g/l aqueous solution. During production of hollow fiber membrane support, impregnation time of liquid membrane and feed flow operating modes of PES-0.1G hollow fiber membrane was studied. The best impregnation time for preparing hollow fiber module was 4 hours. The feed phase flowed in lumen side (Mode I) showed better separation performance compared to the shell side (Mode II). The removal percentage of AA using hollow fiber operated with Mode I and Mode II were 80.1% and 42.4%, respectively. The capability of SLM process in removing of AA from oil palm frond (OPF) biomass hydrolysate was tested using PES-0.1 G flat sheet and hollow fiber membrane. The concentration of AA in the OPF hydrolysate was reduced from 6.83 g/l to 1.33 g/l and 2.01 g/l using flat sheet and hollow fiber SLM, respectively. Both SLM systems meet the minimum concentration of AA that should present in the biomass hydrolysate for ensuring highest ethanol production which is less than 5 g/l. Thus, the SLM system using hybrid G-PES membrane support developed in this study is proven effective for removing AA from aqueous solution and OPF biomass hydrolysate.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xiv

LIST OF ABBREVIATIONS xv

CHAPTER 1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 4

1.3 Objective of the Research 6

1.4 Scope of the Research 6

CHAPTER 2 LITERATURE REVIEW 8

2.1 Biomass as Biorenewable Energy 8

2.2 Lignocellulosic Biomass 9

2.3 Lignocellulose Biomass Processing 10

2.3.1 Pretreatment Process 10

2.3.2 Hydrolysis Process 11
2.4 Formation of Inhibitor Components 13
2.5 Detoxification of Acetic Acid Inhibitor 14
2.6 Liquid Membrane Technology 15
 2.6.1 Bulk Liquid Membrane (BLM) 15
 2.6.2 Emulsion Liquid Membrane (ELM) 16
 2.6.3 Supported Liquid Membrane (SLM) 17
2.7 Development of Membrane Support for Supported Liquid Membrane Process 28
2.8 Fabrication of Membrane Support using Vapour Induced Phase Separation Method 29
2.9 Incorporation of Inorganic filler in the Membrane Support 30

CHAPTER 3 METHODOLOGY 33
3.1 Experimental Workflow 33
3.2 Chemicals 34
3.3 Preparation of Dope Solution 35
3.4 Preparation of Flat Sheet Membrane 36
3.5 Preparation of Hollow Fiber Membrane 38
3.6 Flat Sheet Supported Liquid Membrane 40
3.7 Hollow Fiber Supported Liquid Membrane 43
3.8 Feed Solution Preparation 45
3.9 Membrane Characterization 45
 3.9.1 Membrane Morphology 45
 3.9.2 Membrane Porosity Measurement 45
 3.9.3 Membrane Hydrophobicity 46
 3.9.4 Membrane Mechanical Strength 46
3.10 Sample Analysis 46
CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 48

4.2 Determination of Favourable Condition of Supported Liquid Membrane 48

4.2.1 Effect of Diluent in Liquid Membrane 49

4.2.2 Effect of Flow Rate of Feed Phase 52

4.2.3 Effect of Tri-n-octylamine Carrier Concentration 54

4.2.4 Effect of Type of Stripping Agents 55

4.2.5 Effect of Stripping Agent Concentration 57

4.2.6 Effect of Acetic Acid Concentration 58

4.2.7 Summary 60

4.3 Development of Microporous Flat Sheet Membrane via Vapour Induced Phase Separation 61

4.3.1 Effect of Inorganic Filler on Membrane Support 61

4.3.1.1 Membrane Structure 62

4.3.1.2 Membrane Hydrophobicity 70

4.3.1.3 Mechanical Strength 72

4.3.1.4 Membrane Performance in Supported Liquid Membrane 74

4.3.1.5 Summary 79

4.3.2 Effect of Coagulation Bath Temperature 82

4.3.2.1 Membrane Morphology and Properties 82

4.3.2.2 Membrane Performance in Supported Liquid Membrane 85

4.3.3 Effect of Air Exposure Time 87

4.3.3.1 Membrane Morphology and Properties 87

4.3.3.2 Membrane Performance in Supported Liquid Membrane 90

4.3.4 Effect of Air Humidity 91

4.3.4.1 Membrane Morphology and Properties 91

4.3.4.2 Membrane Performance in Supported Liquid Membrane 93

4.3.5 AA Removal from Oil Palm Frond Biomass Hydrolysate 94
4.4 Development of Microporous Hollow Fiber Membrane via Vapour Induced Phase Separation 96

4.4.1 Effect of Impregnation Time of Liquid Membrane 97

4.4.2 Effect of Flow Operating Modes 99

4.4.3 Acetic Acid Removal from Oil Palm Frond Biomass Hydrolysate 100

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 103

5.1 Conclusions 103

5.2 Recommendations 105

REFERENCES 106

APPENDIX A STANDARD CURVE 121

APPENDIX B EXPERIMENTAL DATA 127

APPENDIX C LIST OF PUBLICATION 131
LIST OF TABLES

Table 2.1	Acid and enzymatic hydrolysis at different material and reaction conditions	12
Table 2.2	Type and concentration of inhibitors found in biomass hydrolysate	13
Table 2.3	Type of diluents and carriers commonly used in SLM process	21
Table 2.4	Removal of acetic acid using TOA as carrier with different types of diluents	23
Table 2.5	Removal performance of solute using SLM process	26
Table 3.1	Properties of PES, DMAc, PEG 200, Graphene and Graphene Oxide	34
Table 3.2	Physical properties of AA	35
Table 3.3	Fixed and manipulated casting parameters	38
Table 3.4	Spinning condition of hollow fiber membrane	39
Table 3.5	Properties of various diluents used in liquid membrane (Xu et al., 2019; Dżygiel & Wieczorek, 2010)	41
Table 3.6	Fixed and varied parameters in operation of FSSLM	43
Table 4.1	Contact angle (°) value of the pristine PES membrane and hybrid PES membrane	72
Table 4.2	Summarization of FESEM image of membrane with and without addition inorganic filler	80
Table 4.3	Summarization of contact angle value, mechanical strength and membrane performance in AA removal	81
Table 4.4	Composition of hydrolysate before and after undergo FSSLM process	95
Table 4.5	Composition of hydrolysate before and after undergo HFSLM process	101
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The composition of lignocellulosic materials and their potential hydrolysis product</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Pretreatment process on lignocellulosic materials</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>BLM system F; feed phase, LM; liquid membrane, S; strip phase.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Configuration of ELM, F: feed phase, LM: liquid membrane phase, S: strip phase</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Configuration of SLM, F: feed phase, LM: liquid membrane phase, S: strip phase</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Schematic diagram of the transport of solute through SLM, A= solute, B= stripping agent, C= carrier, Phase I= feed phase, Phase II= strip phase, Phase III= liquid membrane phase</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Schematic of flat sheet supported liquid membrane module</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Schematic of hollow fiber supported liquid membrane module</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Different forms (0D, 1D, 3D) of modified graphene (Geim and Novoselov, 2007)</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Experimental work flow</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Dope polymer solution with addition of inorganic filler: (a) graphene (b) graphene oxide</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Semi automatic casting flat sheet membrane</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Flat sheet membrane support at different condition: (a) immersion in coagulation bath (b) resultant membrane after drying process.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Casting procedure for production of flat sheet membrane</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Dry-wet spinning process for production of hollow fiber membrane</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Spinning hollow fiber equipment</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Hollow fiber take up process</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Procedure of impregnation of membrane in liquid membrane</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Flat sheet supported liquid membrane system</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Hollow fiber module construction</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Hollow fiber supported liquid membrane system</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Removal of of AA using PES membrane support without impregnated in liquid membrane (Experimental condition: feed phase= 10 g/l AA; strip phase= 0.5 M NaOH)</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Removal of aqueous AA using different type of diluents in liquid membrane formulation (Experimental condition: feed phase=10 g/l AA; liquid membrane phase= 0.5 M TOA in diluent; strip phase= 0.5 M NaOH)</td>
<td>52</td>
</tr>
</tbody>
</table>
Figure 4.3 Removal of aqueous AA at different flow rate of feed phase (Experimental condition: feed phase=10 g/l AA; liquid membrane phase= 0.5 M TOA in diluent; strip phase= 0.5 M NaOH) 53

Figure 4.4 Removal of aqueous AA at different concentration of TOA carrier (Experimental condition: feed phase=10 g/l AA; liquid membrane phase= TOA in 2-ethyl-1-hexanol; strip phase= 0.5 M NaOH) 55

Figure 4.5 Removal of AA from aqueous solution by using different types of stripping agents (Experimental condition: feed phase= 10 g/l AA; liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol) 56

Figure 4.6 Removal of AA from an aqueous solution using different NaOH concentration in the strip phase (Experimental condition: feed phase= 10 g/l AA; liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol) 58

Figure 4.7 Removal of AA from an aqueous solution at different AA concentration in feed phase (Experimental condition: liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol; strip phase= 0.5 M NaOH) 60

Figure 4.8 FESEM image of pristine PES membrane support (a) cross section at 200 × magnification (b) top cross section at 40000 × magnification (c) top surface at 1000× magnification (d) top surface at 5000× magnification 63

Figure 4.9 FESEM image of hybrid PES-0.1G membrane support (a) cross section at 200× magnification (b) top cross section at 40000× magnification (c) top surface at 1000× magnification (d) top surface at 5000× magnification 64

Figure 4.10 FESEM image of hybrid PES-0.5G membrane support (a) cross section at 200× magnification (b) top cross section at 40000× magnification (c) top surface at 1000× magnification (d) top surface at 5000× magnification 65

Figure 4.11 FESEM image of hybrid PES-1G membrane support (a) cross section at 200× magnification (b) top cross section at 40000× magnification (c) top surface at 1000× magnification (d) top surface at 5000× magnification 66

Figure 4.12 FESEM image of hybrid PES-0.1GO membrane support (a) cross section at 200× magnification (b) top cross section at 40000× magnification (c) top surface at 1000× magnification (d) top surface at 5000× magnification 67

Figure 4.13 FESEM image of hybrid PES-0.5GO membrane support (a) cross section at 200× magnification (b) top cross section at 40000× magnification (c) top surface at 1000× magnification (d) top surface at 5000× magnification 68

Figure 4.14 FESEM image of hybrid PES-1GO membrane support (a) cross section at 200× magnification (b) top cross section at 40000× magnification (c) top surface at 1000× magnification (d) top surface at 5000× magnification 69
Figure 4.15 Maximum tensile stress (kPa) of pristine PES membrane and hybrid PES-graphene membrane 73

Figure 4.16 Maximum tensile stress (kPa) of pristine and hybrid PES-graphene oxide membrane 74

Figure 4.17 Removal of AA from an aqueous using hybrid membrane with different concentration of graphene and graphene oxide. (Experimental condition: feed phase= 10 g/l AA, liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol, strip phase= 0.5 M NaOH, exposure time= 30 second, CBT= 40°C) 76

Figure 4.18 Stability of pristine PES membrane and hybrid PES graphene membrane (Experimental condition: feed phase: AA= 10 g/l, liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol, strip phase= 0.5 M NaOH) 78

Figure 4.19 Cross sectional of flat sheet PES-0.1G hybrid membrane prepared at different CBT: (a) 30°C (b) 40°C (c) 50°C and (d) 60°C at 300× magnification. 83

Figure 4.20 Micropores structure of the PES-0.1G membrane support prepared at a CBT: (a) 50°C and (b) 60°C at 3000× magnification 84

Figure 4.21 Porosity (%) and contact angle (°) of the PES-0.1G hybrid membrane support prepared at different CBT 85

Figure 4.22 Removal of AA from an aqueous using PES-01G hybrid flat sheet membrane support fabricated at different CBT. (Experimental condition: feed phase: AA= 10 g/l, liquid membrane phase= 0.5M TOA in 2-ethyl-1-hexanol, Strip phase= 0.5 M NaOH) 86

Figure 4.23 Cross sectional of flat sheet PES-0.1G hybrid membrane prepared at different air exposure time: (a) 10 second (b) 30 second (c) 50 second and (d) 70 second at 300× magnification. 88

Figure 4.24 Micropores structure of the PES-0.1G membrane support prepared at a air exposure of (a) 50 second and (b) 70 second at 3000× magnification. 88

Figure 4.25 Porosity (%) and contact angle (°) of the PES-0.1G hybrid membrane support prepared at different air exposure time 89

Figure 4.26 Removal of AA from an aqueous using PES-0.1G hybrid flat sheet membrane support fabricated at different air exposure time. (Experimental condition: feed phase= 10 g/l AA, liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol, strip phase= 0.5 M NaOH) 90

Figure 4.27 Micropores structure of the PES-0.1G membrane support prepared at different air humidity: (a)70°C, (b) 80°C, (c) 90°C and (d) 100°C at 300× magnification 92

Figure 4.28 Porosity (%) and contact angle (°) of the PES-0.1G hybrid membrane support prepared at different air humidity: 70, 80, 90 and 100% 93
Figure 4.29 Removal of AA from an aqueous using PES-0.1G hybrid flat sheet membrane support fabricated at different air humidity. (Experimental condition: feed phase= 10 g/l AA, liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol, strip phase: 0.5 M NaOH) 94

Figure 4.30 Removal of AA from OPF biomass hydrolysate using hybrid PES-0.1G hybrid flat sheet membrane support. (Experimental condition: OPF hydrolysate; liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol; strip phase= 0.5 M NaOH) 96

Figure 4.31 SEM of hybrid PES-graphene hollow fiber membrane 100× magnification 97

Figure 4.32 Removal of aqueous AA using hybrid PES-0.1G hybrid hollow fiber membrane support impregnated with liquid membrane at different time (Experimental condition: feed phase= 10 g/l AA; liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol; strip phase= 0.5 M NaOH) 98

Figure 4.33 Removal of aqueous AA using hybrid PES-0.1G hybrid HF membrane support at mode I (lumen side) and mode II (shell side). (Experimental condition: feed phase=10 g/l AA; liquid membrane phase= 0.5 M TOA in 2-ethyl-1-hexanol; strip phase= 0.5 M NaOH) 100

Figure 4.34 Removal of AA from OPF biomass hydrolysate using hybrid PES-0.1G hybrid hollow fiber membrane support. (Experimental condition: OPF hydrolysate; liquid membrane phase = 0.5 M TOA in 2-ethyl-1-hexanol; strip phase= 0.5 M NaOH) 102
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>g/g</td>
<td>Gram per Gram</td>
</tr>
<tr>
<td>g/l</td>
<td>Gram per Liter</td>
</tr>
<tr>
<td>g/mol</td>
<td>Gram per Mole</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilo Pascal</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>ml</td>
<td>Mililiter</td>
</tr>
<tr>
<td>ml/min</td>
<td>Mililiter per Minutes</td>
</tr>
<tr>
<td>mm</td>
<td>Milimeter</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>M</td>
<td>Molar Concentration</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>ϕ</td>
<td>Porosity</td>
</tr>
<tr>
<td>min⁻¹</td>
<td>Reciprocal Minutes</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>W₁</td>
<td>Weight of the Dry Membrane</td>
</tr>
<tr>
<td>W₂</td>
<td>Weight of the Wet Membrane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>AA</td>
<td>Acetic Acid</td>
</tr>
<tr>
<td>BLM</td>
<td>Bulk Liquid Membrane</td>
</tr>
<tr>
<td>CBT</td>
<td>Coagulation Bath Temperature</td>
</tr>
<tr>
<td>DMAc</td>
<td>Dimethylacetamide</td>
</tr>
<tr>
<td>ELM</td>
<td>Emulsion Liquid Membrane</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>FSSLM</td>
<td>Flat Sheet Supported Liquid Membrane</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HFSLM</td>
<td>Hollow Fiber Supported Liquid Membrane</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>HMF</td>
<td>Hydroxylmethylfurfural</td>
</tr>
<tr>
<td>LSR</td>
<td>Liquid Solid Ratio</td>
</tr>
<tr>
<td>PES</td>
<td>Polyethersulfone</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>H$_2$SO$_4$</td>
<td>Sulfuric Acid</td>
</tr>
<tr>
<td>SLM</td>
<td>Supported Liquid Membrane</td>
</tr>
<tr>
<td>TOA</td>
<td>Tri-n-octylamine</td>
</tr>
<tr>
<td>VIPS</td>
<td>Vapour Induced Phase Separation</td>
</tr>
<tr>
<td>ID</td>
<td>Internal Diameter</td>
</tr>
<tr>
<td>OD</td>
<td>Outer Diameter</td>
</tr>
<tr>
<td>G</td>
<td>Graphene</td>
</tr>
<tr>
<td>GO</td>
<td>Graphene Oxide</td>
</tr>
</tbody>
</table>
REFERENCES

Zambare, R. S., Dhopte, K. B., Patwardhan, A. V., & Nemade, P. R. (2017). Polyamine functionalized graphene oxide polysulfone mixed matrix membranes with

