AN ENSEMBLE OF NEURAL NETWORK AND MODIFIED GREY WOLF OPTIMIZER FOR STOCK PREDICTION

DEBASHISH DAS

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor’s Signature)
Full Name : DR ALI SAAFA SADIQ
Position : SENIOR LECTURER
Date : APRIL, 2019

(Co-supervisor’s Signature)
Full Name : DR NORAZIAH BINTI AHMAD
Position : ASSOCIATE PROFESSOR
Date : APRIL, 2019
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : DEBASHISH DAS
ID Number : PCC15003
Date : APRIL, 2019
AN ENSEMBLE OF NEURAL NETWORK AND MODIFIED GREY WOLF OPTIMIZER FOR STOCK PREDICTION

DEBASHISH DAS

Thesis submitted in fulfillment of the requirements for the award of the degree of
Doctor of Philosophy

Faculty of Computer Systems & Software Engineering
UNIVERSITI MALAYSIA PAHANG

APRIL 2019
ACKNOWLEDGEMENTS

Foremost, this thesis would not have been possible without the financial support from Doctoral Scholarship Scheme (DSS), University Malaysia Pahang. I would like to thank Faculty of Computer Systems & Software Engineering (FSKKP) and Institute of Postgraduate Studies (IPS) for supporting this great opportunity.

I would like to express my gratitude to my supervisor, Dr. Ali Safa Sadiq, and my co-supervisor, Associate Professor Dr. Noraziah Ahmad for their sincere dedication, useful comments, guidance, advice and support of this thesis. I am really appreciative.

I also would like thank Professor Dr. Kamal Z. Zamli and Dr Junaida for useful suggestions on reviewing my draft thesis and others lecturers that I have learned from. My thanks also go to Dr. Nizam, Associate Professor Dr. Mazlina and FSKKP staffs, for their good support for research students to international level.

I would like to thank UMP for supporting me in receiving Postgraduate Research Grant (PGRS), attending conferences and publishing journals. I also acknowledge with thank to UMP library staffs for their works to provide convenient environments for doing this research.

I would like to thank Asia Pacific University of Technology and Innovation, Malaysia and University of Liberal Arts Bangladesh (ULAB) for assisting me to attain PhD. My warmth thanks also go to my friends and colleagues for encouraging, supporting, assisting and sharing emotions.

Finally, I dedicate this work to my parents, Dilip Kumar Das and Sabita Das, my wife, Tanuza, my son Adrik. Unforgettable thanks to my sisters and families who support and look after me and are always beside me.
Pengoptimuman berkaitan dengan proses mencari penyelesaian optimum (sama ada memaksimumkan atau meminimumkan) kepada masalah tertentu yang memenuhi beberapa kekangan yang diberikan. Disebabkan kesederhanaan dan kelenturannya, meta-heuristik telah terbukti berkesan untuk menyelesaikan masalah pengoptimuman. Sehingga kini, terdapat banyak meta-heuristik yang telah dibangunkan dalam bidang penelitian. Selaras dengan teorem ‘No Free Lunch’ yang menunjukkan bahawa tiada meta-heuristik tunggal, yang terbaik untuk semua masalah pengoptimuman, tetapi mencari algoritma yang lebih baik masih merupakan usaha yang membuahtakan hasil. Grey Wolf Optimizer (GWO) merupakan algoritma meta-heuristik terkini yang menarik perhatian kebanyakan penyelidik kerana prestasi unggulnya yang disebut dalam kajian literatur. Walaupun GWO menunjukkan prestasi yang tinggi, ia juga ada kelemahannya. Pada masa kini, keoptimuman GWO adalah berat sebelah terhadap GWO jenis alfa dan jenis yang lain (iaitu beta dan delta) masing-masing cuba untuk mengubah kedudukannya ke arah yang terbaik dalam setiap proses ulangan. Proses kemaskini ini boleh menyebabkan algoritma ini bergerak ke optima tempatan terutama dalam kes-kes di mana terdapat banyak optima tempatan yang bersaing. Oleh itu, penyelidikan ini cuba mengubahsuaui GWO untuk menangani batasan GWO dengan penambahbaikan penerokaan dengan menguatkkan proses pencarian melalui beberapa pemimpin rawak dalam setiap lelaran, menghasilkan semula pemimpin rawak dalam setiap lelaran dan memperkenalkan arkib untuk mengesahkan penyelesaian dengan kebaringkalan yang lebih baik untuk teruskan latihan dan penjanaan semula. Pengesahan setiap penyelesaian secara individu oleh Modified GWO, dan bukannya dipertimbangkan sebagai penyelesaian akhir, memudahkan peningkatan penerokaan. Selain itu, penyelidikan mengehadkan bilangan pembolehubah melalui pemilihan ciri untuk meningkatkan prestasi algoritma. Selepas itu, penyelidikan cuba untuk membina model ensemble menggunakan Modified Gray Wolf Optimizer (MGWO) dan rangkaian neural untuk ramalan saham. Model-model yang meluas seperti Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Evolutionary Strategies (ES) dan Probability Based Incremental Learning (PBIL) yang berurusan dengan masalah tertentu juga diterokai dan dibandingkan. Kajian ini melaksanakan analisis ramalan saham sebagai kajian kes untuk melatih rangkaian saraf dengan mengadopsi algoritma MGWO. Dalam kajian ini, data dikumpulkan dari pasaran saham terkenal; New York Stock Exchange (NYSE), NASDAQ dan pasaran baru muncul; Dhaka Stock Exchange (DSE), Bursa Malaysia. Selain itu, pelbagai data faktor seperti harga Dolar, harga Emas, kadar faedah Bank, Pelaburan Langsung Asing, dan Inflasi dikumpulkan untuk mengukur kesan dalam pasaran saham. K-means clustering digunakan untuk memilih syarikat yang sangat menjanjikan; MGWO dilaksanakan untuk pemilihan dan latihan ciri; akhirnya, MGWO-NN digunakan untuk meramalkan harga saham. Model "ensemble" yang dipilih di sini untuk mencapai prestasi ramalan yang lebih baik, digunakan untuk meramalkan harga pasaran masa hadapan. Pendekatan yang dicadangkan mengatasi algoritma meta-heuristik sedia ada. Khususnya, model yang dicadangkan mencapai 97% kadar klasifikasi, 95% ramalan tepat dan kadar kesilapan yang kurang daripada 2.0. Sebagai kesimpulan, kejayaan pelaksanaan model MGWO dan ensemble menjadikan sumbangan yang berharga kepada arena saintifik.
ABSTRACT

Optimization relates to the process of finding the optimum solution (either maximize or minimize) to a particular problem satisfying some given constraints. Owing to its simplicity and flexibility, meta-heuristics have been proven to be effective for solving optimization problems. To date, there are many meta-heuristics have been developed in the literature. In line with the No Free Lunch theorem which suggests that no single meta-heuristic is the best for all optimization problems, the search for better algorithms is still a worthy endeavour. Grey Wolf Optimizer (GWO) is a recently developed meta-heuristic algorithm which is appealing to researcher owing to its demonstrated performance as cited in the scientific literature. Despite its performances, GWO is not without limitation. Precisely, the current best optimal individual of GWO is biased toward alpha and other individuals (e.g. beta and delta) attempt to modify their positions toward this best individual in each iteration process. This update process may cause the algorithm to fall to local optima especially in the cases where there are many competing local optima. Therefore, the research attempts to modify GWO to addresses the limitation of GWO for improvement of exploration by strengthen the searching process via several random leaders in each iteration, re-generating the random leaders in each iteration and introducing archive to verify the solution with better probability to proceed further for training and re-generation. The verification of each solution individually by Modified GWO, instead of considering as a final solution, facilitates the improvement of the exploration. Additionally, the research restricts the number of variables through feature selection to enhance the performance of the algorithm. Subsequently, the research attempts to construct an ensemble model applying Modified Grey Wolf Optimizer (MGWO) and neural network for stock prediction. Widespread models like Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Evolutionary Strategy (ES) and Population-Based Incremental Learning (PBIL) dealing with the specified problems are also explored and compared. The research implements stock prediction analysis as a case study for training the neural network by adopting MGWO algorithm. In this research, data is collected from reputed stock markets; New York Stock Exchange (NYSE), NASDAQ and emerging markets; Dhaka Stock Exchange (DSE), Bursa Malaysia. Moreover, various factors data like Dollar price, Gold price, Bank interest rate, Foreign Direct Investment, and Inflation are collected to measure the effect in stock market. K-means clustering is applied to select the highly promising company; MGWO is implemented for feature selection and training; finally, MGWO-NN is applied to predict the stock price. The “ensemble” model selected here to achieve better predictive performance, is used to predict future market price. The proposed approach outperforms existing available meta-heuristic algorithms. Specifically, the proposed model achieved 97% classification rate, 95% precise prediction and less than 2.0 error rate. In conclusion, the successful implementation of MGWO and ensemble model makes a valuable contribution to scientific arena.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Optimization in Science and Engineering 1

1.3 Problem Statement 5

1.4 Research Question 7

1.5 Aim and Objectives of the Research 7

1.6 Scope of the Research 7

1.7 Significance of the Study 8

1.8 Research Framework 8

1.8.1 Literature Review 9

1.8.2 Research Activity 9

1.8.3 Evaluation 9

1.9 Thesis Organization 10
CHAPTER 2 LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Optimization</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Optimization Algorithms</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 Traditional Algorithms</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Stochastic Algorithms</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Nature-Inspired Computing</td>
<td>15</td>
</tr>
<tr>
<td>2.4.2 Computing with Nature (CWN)</td>
<td>15</td>
</tr>
<tr>
<td>2.4.3 Heuristics and Meta-heuristics Algorithm</td>
<td>16</td>
</tr>
<tr>
<td>2.4.4 Characteristics of Meta-heuristic Algorithms</td>
<td>17</td>
</tr>
<tr>
<td>2.4.5 Randomization in Meta-heuristic</td>
<td>18</td>
</tr>
<tr>
<td>2.5 Broad Classification of Meta-heuristic Algorithms</td>
<td>19</td>
</tr>
<tr>
<td>2.5.1 Trajectory-based Algorithms</td>
<td>19</td>
</tr>
<tr>
<td>2.5.2 Population-based Meta-heuristic Algorithms</td>
<td>26</td>
</tr>
<tr>
<td>2.6 Swarm Intelligence</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1 Swarm-based Approaches</td>
<td>28</td>
</tr>
<tr>
<td>2.6.2 Particle Swarm Optimization</td>
<td>30</td>
</tr>
<tr>
<td>2.6.3 Ant Colony Optimization</td>
<td>32</td>
</tr>
<tr>
<td>2.6.4 Genetic Algorithm</td>
<td>33</td>
</tr>
<tr>
<td>2.6.5 Evolutionary Strategy</td>
<td>34</td>
</tr>
<tr>
<td>2.6.6 Probability Based Incremental Learning</td>
<td>36</td>
</tr>
<tr>
<td>2.6.7 Bio-geography Based Optimization</td>
<td>37</td>
</tr>
<tr>
<td>2.7 Artificial Neural Network and Its Training</td>
<td>39</td>
</tr>
<tr>
<td>2.8 Meta-heuristic Algorithms for Training Neural Network</td>
<td>42</td>
</tr>
<tr>
<td>2.8.1 Review on Grey Wolf Optimizer</td>
<td>42</td>
</tr>
<tr>
<td>2.8.2 Review on Neural Network Training by Grey Wolf Optimizer</td>
<td>50</td>
</tr>
<tr>
<td>2.9 Gap Analysis on the Need for Modified Grey Wolf Optimizer</td>
<td>52</td>
</tr>
</tbody>
</table>
2.10 Summary

CHAPTER 3 METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>The Proposed Research</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Modified Grey Wolf Optimizer Algorithm</td>
<td>60</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Exploration and Exploitation in MGWO</td>
<td>63</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Mathematical Model of MGWO</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Stock Market Prediction</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>MGWO Implementation</td>
<td>70</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Data Collection and Analysis</td>
<td>70</td>
</tr>
<tr>
<td>3.5.2</td>
<td>K-Means Clustering Algorithm</td>
<td>72</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Input Features with Stock Data</td>
<td>73</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Target or Output in Stock Data</td>
<td>75</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Data Partitioning</td>
<td>76</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Evaluation of the Predicted Stock Price</td>
<td>77</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Implementation of MGWO Algorithm for Feature Selection</td>
<td>77</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Neural Network Model Design</td>
<td>80</td>
</tr>
<tr>
<td>3.5.9</td>
<td>Ensemble of MGWO and Neural Network Algorithm</td>
<td>81</td>
</tr>
<tr>
<td>3.5.10</td>
<td>Implementation of Ensemble Algorithm for Stock Prediction</td>
<td>83</td>
</tr>
<tr>
<td>3.6</td>
<td>Computational Complexity of MGWO</td>
<td>87</td>
</tr>
<tr>
<td>3.7</td>
<td>Chapter Summary</td>
<td>88</td>
</tr>
</tbody>
</table>

CHAPTER 4 RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Experimentations</td>
<td>90</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Result through K-means Clustering</td>
<td>91</td>
</tr>
</tbody>
</table>
4.2.2 Feature Selection Applying MGWO 92
4.2.3 Benchmarking the Result with GWO 93
4.2.4 Stock Prediction Results through MLP Neural Network 96
4.2.5 Effect of Various Factors on Stock Price 101
4.2.6 Performance Measurement of Prediction 103
4.3 Comparison of Proposed Model with Existing Works 105
4.4 Statistical Analysis for the Experimental Findings 110
4.5 Discussion 112
4.6 Validity Threats 113
4.7 Chapter Summary` 114

CHAPTER 5 CONCLUSION 115

5.1 Introduction 115
5.2 Objectives Revisited 115
5.3 Contributions of the Research 116
5.4 Future Directions of the Research 117

REFERENCES 119

APPENDIX A RESEARCH MAPPING 134
APPENDIX B LIST OF PUBLICATIONS ON THE PHD WORK 135
APPENDIX C STOCK DATASET 136
LIST OF TABLES

Table 2.1 Gap Analysis Findings Summary 53
Table 3.1 Details of MGWO’s Parameters 60
Table 3.2 Stock Data Set from DSE 71
Table 3.3 Factors Data Set Used for DSE 72
Table 4.1 Parameters for Existing Meta-Heuristic Algorithms 90
Table 4.2 K-means Clustering Output for DSE 92
Table 4.3 K-means Clustering Output for Bursa Malaysia (KLCI) 92
Table 4.4 K-means Clustering Output for NASDAQ 92
Table 4.5 Best Set of Features through MGWO 93
Table 4.6 Experimental Result for the Stock Dataset 94
Table 4.7 Categorization of Dataset 96
Table 4.8 Actual Price versus Predicted Price of INTECH 99
Table 4.9 Actual Price versus Predicted Price of ACI 100
Table 4.10 Actual Price versus Predicted Price for Various Stock Markets Worldwide 101
Table 4.11 Effect of Various Factors on Stock Price 102
Table 4.12 Evaluation of Prediction for INTECH 103
Table 4.13 Performance Evaluation of Ensemble Model for ACI 103
Table 4.14 RMSE Value for Instrument of Various Stock Markets 104
Table 4.15 Comparison between Existing and Current Research Findings 108
Table 4.16 Friedman Test 110
Table 4.17 Wilcoxon Signed Rank Test 111
LIST OF FIGURES

Figure 1.1 Research Framework 9
Figure 2.1 Trajectory-based Algorithms Pseudocode 20
Figure 2.2 SA Algorithms Pseudocode 21
Figure 2.3 Hill Climbing Algorithms Pseudocode 23
Figure 2.4 Great Deluge Algorithms Pseudocode 25
Figure 2.5 Population-based Algorithms Pseudocode 27
Figure 2.6 PSO Algorithms Pseudocode 31
Figure 2.7 ACO Algorithms Pseudocode 32
Figure 2.8 GA Algorithm Pseudocode 34
Figure 2.9 ES Algorithm Pseudocode 35
Figure 2.10 PBIL Algorithm Pseudocode 36
Figure 2.11 BBO Algorithm Pseudocode 38
Figure 2.12 Back Propagation Algorithm 40
Figure 2.13 Multi-Layer Back-Propagation Neural Network Structure 41
Figure 2.14 Ensemble Model Architecture 42
Figure 2.15 Flow of GWO Algorithm 43
Figure 2.16 Psuedocode of GWO Classification Algorithm 45
Figure 3.1 Overall Research Plan 58
Figure 3.2 MGWO Research Activities Flowchart 59
Figure 3.3 Pseudocode of MGWO Algorithm 61
Figure 3.4 Block Diagram of Stock Prediction Activities 70
Figure 3.5 Steps of MGWO Implementation for Feature Selection 79
Figure 3.6 Multi-Layer Perceptron Architecture 80
Figure 3.7 Classification through MGWO 82
Figure 3.8 Ensemble of Neural Network and MGWO for Stock Prediction 84
Figure 3.9(a) K-means Clustering and Determining Buy/Sell/Hold Decision
Figure 3.9(b) Feature Selection, Classification and Learning through MGWO
Figure 3.9(c) Predict the Stock Price, Evaluate the Factors and Evaluate the Result
Figure 4.1(a) Classification Graph
Figure 4.1(b) Classification Graph
Figure 4.2 Architecture of the Neural Network Model
Figure 4.3 Training State
Figure 4.4 Validation Performance of the Network
Figure 4.5 Neural Network Output with Respect to Target (Actual Data) through Regression
Figure 4.6 Response of Output Element for Time Series
Figure 4.7 Share Price for ACI for 6 years (A day in October)
Figure 4.8 Comparison of Prediction Error for Various Stock Markets
Figure 4.9 Prediction Performance
Figure 4.10 Comparison of Prediction Performance
LIST OF SYMBOLS

\(A \)
Shared archived score

\(a_i \)
Actual Price

\(A(k) \)
Input of the Neural Network

\(d \)
Squared Euclidean Distance

\(f \)
Non-linear Function

\(G_{a_j} \)
Sum of All the Best Solution

\(k \)
Number of Clusters

\(N \)
Average Distance between Wolves

\(p_i \)
Predicted Price

\(P(k) \)
Predicted Output

\(Q_i \)
Mean

\(s \)
Slope

\(t \)
Number of Iteration

\(X \)
Dataset

\(Y_{n \times k} \)
Partition Matrix

\(\Pi \)
Vectors
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO</td>
<td>Ant Colony Optimization</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>BA</td>
<td>Bat Algorithm</td>
</tr>
<tr>
<td>BBO</td>
<td>Bio Geography Based Optimization</td>
</tr>
<tr>
<td>CS</td>
<td>Cuckoo Search</td>
</tr>
<tr>
<td>DSE</td>
<td>Dhaka Stock Exchange</td>
</tr>
<tr>
<td>ES</td>
<td>Evolutionary Strategies</td>
</tr>
<tr>
<td>FA</td>
<td>Firefly Algorithm</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GWO</td>
<td>Grey Wolf Optimizer</td>
</tr>
<tr>
<td>MAD</td>
<td>Mean Absolute Deviation</td>
</tr>
<tr>
<td>MAPE</td>
<td>Mean Absolute Percentage Error</td>
</tr>
<tr>
<td>MGWO</td>
<td>Modified Grey Wolf Optimizer</td>
</tr>
<tr>
<td>NARX</td>
<td>Non Linear Auto Regressive Exogenous</td>
</tr>
<tr>
<td>NFL</td>
<td>No Free Lunch</td>
</tr>
<tr>
<td>NYSE</td>
<td>New York Stock Exchange</td>
</tr>
<tr>
<td>PBIL</td>
<td>Population Based Incremental Learning</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Squared Error</td>
</tr>
<tr>
<td>RWH</td>
<td>Random Walk Hypothesis</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>EA</td>
<td>Evolutionary Algorithm</td>
</tr>
<tr>
<td>SIV</td>
<td>Suitability Index Variable</td>
</tr>
<tr>
<td>MLP</td>
<td>Multi-Layer Perceptron</td>
</tr>
<tr>
<td>HSI</td>
<td>Habitat Suitability Index</td>
</tr>
</tbody>
</table>
REFERENCES

