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Abstract In this study, we investigated the physical properties of CuO/TiO2/SiO2 trihybrid

nanofluids. The physical properties that were investigated included density, crystallite size, and sur-

face morphology. The trihybrid nanofluid density was observed to increase at higher volume con-

centration, with t1 exhibiting the highest density (2.26 gml�1). X-Ray Diffraction (XRD) spectra

showed the main diffraction peaks of individual nanoparticles (CuO, TiO2 and SiO2), highlighting

the successful formation of trihybrid nanoparticles. The nanofluid’s calculated crystallite size

showed the formation of smaller trihybrid nanofluid crystallites (5.2 nm) compared to the original

nanoparticles. The crystallite size is in good agreement with the SEM surface morphology, which

shows the appearance of small particles. The trihybrid solution (t1) had the best thermal properties,

based on temperature output, at around 55 �C, as the highest volume concentration of nanofluids

was used. The heat absorption of t1 also demonstrated increased temperature output at higher solar
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radiations with a maximum temperature output at 73 �C under 700 W/m2. This study is the first to

report on the thermal properties CuO/TiO2/SiO2 trihybrid nanofluids for future solar thermal appli-

cation.

� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cumulatively, fossil fuels accounted for 84% of the world’s
primary energy source in 2019. Fossil fuels also dominated
about 40% of global electricity generation in the same year
(BP Statistical Review of World Energy, 2020). Global electri-

cal energy consumption is typically high, and the demand is
growing rapidly at an alarming rate. In an effort to reduce
the dependency on fossil fuels, many countries have turned

to renewable energy such as solar energy (Grätzel, 2009). Gen-
erating electricity with solar power instead of fossil fuels can
dramatically reduce greenhouse gas emissions, particularly car-

bon dioxide (CO2). Greenhouse gases emitted by fossil fuels
have led to increased global temperature and climate change,
subsequently contributing to serious environmental and public
health issues (Haines et al., 2006).

Solar water heating is currently the most common applica-
tion of solar energy systems, especially in urban areas. This
system is environmentally friendly and harnesses the generated

electricity to heat water (Shukla et al., 2013). Basically, this
system involves natural solar thermal technology based on
simple working principles that require only sunlight to heat

the water. The system works by bringing the thermal fluid into
contact with a dark surface exposed to sunlight, which then
increases the temperature of the fluid (Al-Badi and Albadi,

2012). In a direct system, the fluid may cause the water to heat
up directly, or in an indirect system, a heat transfer fluid (e.g.,
glycol or a water mixture) could be used to pass through some
form of heat exchanger (Jamar et al., 2016).

Meanwhile, nanofluids are world-class heat transfer work-
ing fluids that have been developed by adding solid nanoparti-
cles to the base fluids (Alawi et al., 2018; Sarafraz et al., 2019).

Homogenized mixtures of low-volume-fraction nanoparticles
and conventional fluids such as ethylene glycol, glycerine, oil,
and water can remarkably increase overall thermal perfor-

mance (Das et al., 2007; Sarafraz et al., 2016). Due to its
potential use in numerous engineering applications, nanofluids
are now the focus of an expanding body of research. Addition-

ally, nanofluids are most commonly used in heating and cool-
ing processes prevalently seen in solar cells, solar stills, and
other thermal energy storage methods (Khanafer and Vafai,
2018; Sarafraz et al., 2018) and thermal conductivity

(Ghalambaz et al., 2020a, 2020b).
Oxide nanofluids such as aluminum oxide (Al2O3), titanium

oxide (TiO2), silicon dioxide (SiO2), and copper oxide (CuO)

are mostly used in heat transfer applications either as single
or hybrid nanofluids, due to their capability to increase heat
transfer in the heat transfer system by up to 60% (Azmi

et al., 2019). The investigation into various hybrid nanofluid
applications have greatly increased (Fikri et al., 2020b).
Hybrid or composite nanofluids are an extension of the body
of research on single nanofluids. These hybrids can be made
via two or more different nanoparticles: either in the form of
a mixture or a composite that disperses in liquid (Minea,

2017). Previous works have reported on the superiority of
the thermal and rheological properties of hybrid and compos-
ite nanofluids over single nanoparticles. Table 1 presents the

summary of respective nanofluids for thermal properties
characterization.

Thus, it can be summarized that oxides have great promise

in solar thermal applications and the hybrid nanofluids have
superior thermophysical properties over single nanofluids.
Based on the above findings, this study aims to develop a nov-
el, trihybrid nanofluids made up of CuO, TiO2, and SiO2 and

to investigate the physical properties of these materials such
as density, crystallite size, and surface morphology, as well
as temperature output performance. This is the first study to

report on the CuO/TiO2/SiO2 trihybrid nanofluid. Thus, this
study is the first to report on the thermal properties CuO/
TiO2/SiO2 trihybrid nanofluids for future solar thermal

application.

2. Experimental method

2.1. Materials preparation

Copper (II) oxide powder (Bendosen) (99.9%, � 160 mm), tita-
nium dioxide (TiO2) powder (R&M chemicals) (�99.5%, 1 to
150 nm) and silicon dioxide (SiO2) powder (HmbG Chemical)
(99.9%, 0–2000 lm) were used without further purification.

Initially, each nanofluid from the copper oxide (CuO), tita-
nium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles
was prepared in 2.5 M that were dissolved in ethylene glycol.

Then, the mixture was stirred continuously for 3 days and son-
icated for 2 h until a homogenized solution was obtained. Each
nanofluid was mixed at a 1:3 vol ratio to finally form 100 mL

of the (CuO/TiO2/SiO2) trihybrid nanofluids. Different con-
centrations of the trihybrid nanofluids were prepared in water
and ethylene glycol mixture (60:40) which are 0.17, 0.08 and

0.04 M, denoted as t1, t2, and t3 respectively. The overall pro-
cess is summarized in Fig. A1.

2.2. Physical characterization

The investigation into the physical properties of the prepared
(CuO/TiO2/SiO2) trihybrid nanofluids (t1, t2, and t3) was
observed via visualization effect (Chakraborty and Panigrahi,

2020). Sedimentation is the most commonly used technique
for stability evaluation which based on the formation of sedi-
ment at the bottom of the liquid column due to gravity. The

longer time taken by the nanofluid for the formation of precip-
itate is an indication of superior stability of nanofluid. Several
researchers have used the sedimentation technique to evaluate
nanofluid stability (Chakraborty et al., 2018a, 2018b). The

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Summary of experimental results of thermal properties measurement of various nanofluids.

Particle Type Base fluid Enhancement References

Al2O3 Single Ethylene glycol The thermal conductivity decreased when the EG content in the

mixture increased, but increased when the volume concentration of

the Al2O3 nanofluids increased

Hamid et al. (2018)

Single Water and ethylene

glycol

The average thermal conductivity enhancement from 2.6 to 12.8% as

the percentage of ethylene glycol increases

Chiam et al. (2017)

Single Ethylene glycol and

water

At fixed EG content, the thermal conductivity of nanofluids

increased with increasing of temperature

Guo et al. (2018)

SiO2

Single Ethylene glycol Viscosity linearly increased with the increased of nanoparticles

concentration with maximum enhancement with 1.3905 times

_Zyła and Fal (2017)

TiO2 Single Water, ethylene

glycol, paraffin oil

The thermal conductivity increases 22% with the addition of

nanoparticles

Sonawane et al.

(2015)

Single Ethylene glycol Thermal conductivity and viscosity of nanofluids increased with the

addition of nanoparticles to base fluids

Khedkar et al.

(2016)

CuO Single Water, ethylene

glycol, engine oil

Thermal conductivity increases 40%, 27% and 19%, for CuO in

water, EG and engine oil, respectively

Agarwal et al.

(2016)

Single Water 18% increase in thermal conductivity Nemale and

Waghuley (2016)

Al2O3, TiO2,

SiO2 and

CuO

Single Ethylene glycol,

water

The thermal conductivity of oxide nanofluids was enhanced up to

40% better than the base fluids (water)

Azmi et al. (2019)

Al2O3 and

SiO2

Hybrid Water An increase of thermal conductivity with volume fraction and

temperature increase

Moldoveanu et al.

(2018)

ZnO and

TiO2

Hybrid Ethylene glycol (0.1–

3.5 vol%)

Maximum enhancement (32%) at / = 3.5% and 50 �C Toghraie et al.

(2016)

SiO2 and

TiO2

Hybrid Water and ethylene

glycol (60:40)

Maximum enhancement of 22.8% obtained at 3.0% volume

concentration and 80 �C temperature.

Nabil et al. (2018)

Hybrid Water and ethylene

glycol (60:40)

The nanofluid viscosity increased with increased volume

concentration and decreased with increased temperature

Hamid et al. (2019)

and Guo et al.

(2018)

Hybrid Ethylene glycol and

water (40:60)

The maximum enhancement 22.1% at concentration 3.0% and

temperature 70 �C
Hamid et al. (2017)

TiO2 and

Al2O3

Hybrid Water The highest thermal conductivity value of 1.134 W/m K is observed

for hybrid nanofluid with mixing ratio of 50:50 at 70 �C, with an

average thermal conductivity augmentation of 71% comparative to

deionized (DI) water

Wanatasanapan

et al. (2020)

Hybrid Ethylene glycol and

water (40:60)

The thermal conductivity is improved by 40.86% at 0.1% volume

concentration and 80 �C
Urmi et al. (2020)

Al2O3, TiO2

and SiO2

Trihybrid Water and Ethylene

glycol (60:40)

Reported trihybrid nanofluids remains stable with a concentration

ratio of 80%.

Ramadhan et al.

(2019)

Trihybrid Water and Ethylene

glycol (60:40)

The maximum enhancement of the heat transfer coefficient for

coolant side is observed at 39.7% at 0.3% volume concentration

Ramadhan et al.

(2020)

SiO2,

Al2O3 and

ZrO2

Trihybrid Deionised water and

Ethylene glycol

(60:40)

Nanofluid viscosity decreases with increasing liquid temperature and

increases with increasing of nanoparticles volume concentration

Safiei et al. (2020)
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density of the base fluids and the prepared trihybrid nanofluids
was checked using a density meter (Radwag Balances and

Scales model), and several physical characterizations were con-
ducted via Ultraviolet–visible Spectrophotometer (UV–vis), X-
Ray Diffraction (XRD), and Scanning Electron Microscopy

(SEM). MeaUV–Vis analysis was carried out using a Spectro-
quant Pharo 300 UV–vis Spectrometer. This analysis was run
10 days in a row with a wavelength set at 400 nm to determine

the absorption and the stability of the trihybrid nanofluid. The
crystallite size and the crystalline structure of CuO, TiO2, and
SiO2, as well as the t1, t2, and t3 trihybrid were determined via
X-ray diffraction (XRD D2 Phaser, Bruker). The surface mor-

phology was observed using a JEOL JSM IT 100 Scanning
Electron Microscope (SEM) at 300� magnification.
2.3. Heat absorption performance

t1, t2 and t3 trihybrid nanofluids were exposed to 300 W/m2 arti-
ficial solar radiation to investigate the heat absorption perfor-
mance of each nanofluid, after which t1 was chosen for further
analysis on different solar radiation intensities (300 W/m2,
500 W/m2, and 700 W/m2). A dimmer switch was installed in
the circuit to regulate the solar radiation. The experiment started
with a charging process of 16 min and then a discharging process
for another 16 min using a thermocouple. The temperature data
was recorded every 2 min in a controlled environment. The tem-
perature was displayed by thermocouple and the information was
manually recorded. The experimental setup is shown in Fig. A2,
with detailed descriptions given in Table A1.
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3. Results and discussion

3.1. Physical properties

The formulation of the trihybrid nanofluids is based on the
two-step method outlined by Ramadhan et al. (2019), with

the difference of metal oxides and solution concentrations
used. The copper oxide (CuO), titanium dioxide (TiO2), and
silicon dioxide (SiO2) solutions in ethylene glycol were pre-

pared individually before mixing to finally form the (CuO/
TiO2/SiO2) trihybrid solution. Fig. A1 shows the image of
oxide solution and trihybrids solutions.

Ethylene glycol also acts as an antifreeze when mixed with

water to form a solution with a relatively good heat transfer
(Peyghambarzadeh et al., 2011). Ethylene glycol (EG) has been
reported to minimize the damage and increase the shelf-life of

water heating systems (Sundar et al., 2014). According to the
literature, mixed base fluids have better heat transfer proper-
ties with high thermal conductivity and low viscosity. The

use of base-water has limited operated temperature range, high
vapour pressure and high corrosivity. Besides, ethylene glycol
has higher performance in the convective heat transfer com-
pared to water. Thus, a water-ethylene glycol mixture at a

60:40 ratio was used as the base fluid for this study.
The density of the base fluids used in this study was initially

checked to compare the density of distilled water with the dis-

tilled water-ethylene glycol mixture, as shown in Table A2.
Next, the density of the prepared t1, t2, and t3 trihybrid was
measured. It was found that the density increased with increas-

ing nanoparticle concentration. According to the rule of mix-
tures, the density of good heat transfer fluids increases
linearly with volume fraction since the addition of a small frac-

tion of solid nanoparticles to the base liquid will enhance the
density of the mixture (Chandrasekar et al., 2012; Tahat and
Benim, 2017).

Fig. A3 shows the images of t1, t2 and t3 trihybrid nanoflu-

ids with concentrations of 0.17, 0.08 and 0.04 M, respectively,
at after preparation (day 1) and at day 10. At room tempera-
ture, no sedimentation of particles was observed after the solu-

tion was prepared but sedimentation started to form on day
10. The sedimentation was occurred due to the effect of gravity
on the particles (Sahid et al., 2017). The suspension of these

solid particles in the base fluids reported can enhance the
energy transmission in the fluids resulting an increase thermal
conductivity properties and heat transfer performance (Ganji
et al., 2018; Okonkwo et al., 2019).

3.2. Physical characterization

Fig. A4 displays the X-Ray Diffraction (XRD) patterns of

CuO, TiO2, SiO2, and the (CuO/TiO2/SiO2) trihybrid collected
within a Bragg’s angle (2h) between 10� and 90�. The diffrac-
tion pattern in Fig. A4(a) is identical to the single-phase mon-

oclinic CuO observed at 2h � 32� and 35�, indicating the good
crystallinity of the copper oxide nanoparticles. All diffraction
peaks of CuO at (32, 35, 38, 48, 53, 58, 61 and 67) � are in good

agreement with the JCPDS card NO. 48-1548 (Siddiqui et al.,
2018). Next, the peak of the SiO2 nanoparticles was observed
at 2h � 24� reported in amorphous phase (Yuvakkumar
et al., 2014; Nayak et al., 2019), while the sharp peak of

TiO2 nanoparticles at 2h � 25�, 38�, and 48� confirm the pres-
ence of the anatase phase in concordance with the JCPDS card
no.: 21-1272 and 211,276 database (Li et al., 2014; Almashhori
et al., 2020; Antić et al., 2012). Meanwhile, the XRD spectrum

of the (CuO/TiO2/SiO2) trihybrid (Fig. A4d) shows the
appearance of the main diffraction peaks from the individual
nanoparticles (CuO, TiO2 and SiO2), highlighting the forma-

tion of the trihybrid nanoparticles. The diffraction peaks were
observed at 2h � 25�, 35�, 38�, 48�, and 54�.

The crystallite size of the nanoparticles was identified from

XRD patterns according to the peak position (Zak et al.,
2012). The crystallite size of the nanofluids was evaluated by
measuring the FWHM of the strongest peak (Mohammadi
et al., 2017). The average crystallite size was computed using

the Debye–Scherrer formula below (Deraz and Abd-Elkader,
2014):

D ¼ kk=bcosh

where D is the crystallite size (nm), k is a constant equal to 0.9,

k is the wavelength of X-ray radiation (0.15406 nm), b is the
full-width at half maximum (FWHM) of the peak (in radians),
and h is peak position (in radians).

Based on the FWHM values, the calculated average crystal-
lite size of CuO, SiO2, TiO2, and the trihybrid was 26.4 nm,
0.6 nm, 14.4 nm, and 5.2 nm, respectively. From the results

obtained (Table A3), it can be concluded that the trihybrid
particles had a smaller crystallite size (5.2 nm) compared to
their original nanoparticles.

From Fig. A5(a), the surface morphology of the CuO

nanoparticles is spherical and nearly uniform in size, with a
similar shape to that reported previously (Ranjbar-Karimi
et al., 2010). This spherical nanoparticle form is favorable

for the heat transfer of absorbed solar energy within the nano-
fluid and can increase solar absorption capacity
(Subramaniyan et al., 2018). Meanwhile, Fig. A5 (b) and (c)

show the images of the SiO2 and TiO2 nanoparticles that are
also similar in shape to that reported by Ramadhan et al.
(2019). The surface morphology of CuO/TiO2/SiO2 in

Fig. A5(d) appear similar in shape to that of the (CuO, TiO2

and SiO2) original nanoparticles, proving the formation of
the trihybrid nanoparticles although the size of CuO changed
after the trihybrid formation. The spherical, nearly uniform

size, and rock-like shape, as well as the smaller crystallite par-
ticles, prove that the nanoparticles are loose agglomerates
(Akilu et al., 2017).

The absorption spectra of the trihybrid nanofluid in differ-
ent volume concentrations were determined using a UV–Vis
spectrophotometer at 400 nm for up to 10 days at room tem-

perature to optimize the stability of the nanohybrid solutions.
The absorbance of the nanofluids was found to linearly
increase with an increase in volume concentration. This trend
is in agreement with the Beer-Lambert Law (Sharif et al.,

2019). The UV–vis absorption of the 0.05% (t3), 0.1% (t2),
and 0.2% (t1) concentrations are shown in Fig. A6. From
the UV–vis spectrum, t1 clearly recorded the highest UV–vis

absorption, as t1 has the highest concentration of the sample
series. The mixing solution was confirmed due to the compar-
ison of spectra made based on the literature (Saidina et al.,

2020; Kumar et al., 2020; Adam et al., 2020). Furthermore,
the absorbance of the trihybrid nanofluids in different concen-
trations was monitored after 24 h up until day 10 (240 h). It

was found that the absorbance of the CuO/TiO2/SiO2 trihy-
brid (t1, t2, and t3) decreased over hours (Fig. A7). On day
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5, t2 was the most stable trihybrid with only a 10.5% decrease,
compared to t3 (60%) and t1 (27.6%). However, nearing
240 h, t1 showed the highest absorption of the series, with only

a 62.1% drop in the initial absorbance reading.

3.3. Heat absorption performance analysis

Fig. A8 shows the comparison of solar absorption and the
cooling curve of the base fluids, the distilled water (dw), and
the mixture of distilled water and ethylene glycol (w:eg), car-

ried out under 15 min charging and 15 min discharging. The
results clearly show w:eg having better base fluid properties
so it will store heat better than dw.

In a similar method, the heat absorption performance of
the (t1, t2, and t3) trihybrid nanofluids in water-ethylene glycol
as the base fluid was investigated under 300 W/m2 solar radi-
ation. From the analysis, the temperature gradually increased

with time during the charging process and started to decrease
during the discharge process (Fig. A9a). Hence, t1 recorded the
highest performance due to its highest concentration of

nanofluids and thus the best thermal absorber of the series.
Under different solar radiation (Fig. A9b), t1 exhibited
increasing heat absorption at higher solar radiation (500 W/

m2) and 700 W/m2) with a maximum temperature achieved
at 73 �C. In summary, the obtained results exhibited improved
performance in thermophysical properties, compared to the
Fig. A1 Preparation of trihybrid nanofluids (t1,
TiO2-SiO2 hybrid nanofluids, which recorded a maximum tem-
perature of 37 �C under 300 W/m2 solar radiation (Fikri et al.
2020a, 2020b).

4. Conclusion

A trihybrid nanofluid was successfully prepared from CuO,

TiO2, and SiO2 and analyzed using XRD, SEM, UV–vis,
and thermocouple. t1 recorded the highest density of 2.26
gml�1. The XRD spectra showed the existence of the main

diffraction peaks of the individual nanoparticles (CuO, TiO2,
and SiO2), proving the formation of the CuO/TiO2/SiO2 trihy-
brid. The calculated crystallite size and SEM images demon-

strated the smaller size of the trihybrid nanoparticles
(5.2 nm) compared to the original size of their oxides. The
as-prepared trihybrid nanofluid solution (t1) performed stably

for 240 h, with only a 62.1% drop in the initial absorbance
reading. From the heat absorption performance, t1 recorded
the best performance, achieving maximum temperature at
73 �C under 700 W/m2.
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t2, t3) from CuO (A), TiO2 (B) and SiO2 (C).



Fig. A2 The solar radiation test rig.

Fig. A3 Sedimentation of trihybrid nanofluids from Day 1 until Day 10, which the solutions were kept at room temperature.
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Fig. A4 XRD spectrum of (a) CuO, (b) SiO2, (c) TiO2 and (d) trihybrid (CuO/SiO2/TiO2).

Fig. A5 Surface morphology of (a) CuO, (b) SiO2, (c) TiO2 and (d) trihybrid (CuO/SiO2/TiO2) at 300� magnification (50 lm).

Heat absorption properties of CuO/TiO2/SiO2 trihybrid nanofluids 7



Fig. A6 UV–vis absorption of trihybrid nanofluids of t1, t2 and t3.
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Fig. A8 Solar absorption and cooling curve of base fluids with solar radiation of 300 W/m2.
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Table A1 Detail description of the solar radiation test rig.

Number Specification Description

1 Switch Socket Outlet (Data Logger &

Spotlight Dimmer)

SSO

2 Setting up with pyranometer (300 &

700 W/m2)

Dimmer

3 Halogen 500 W Spotlight

4 K-type Thermocouple

5 100 mL Test tube

Table A2 Density of base fluids and trihybrid nanofluids.

Samples Density (g ml�1)

Distilled water 0.99

Water-Ethylene Glycol (60:40) 1.69

t3 trihybrid nanofluids 1.86

t2 trihybrid nanofluids 2.06

t1 trihybrid nanofluids 2.26

Table A3 The average crystallite size of nanoparticles.

Nanoparticles CuO SiO2 TiO2 Trihybrid

Peak position 35.47 24.30 25.49 25.10

FWHM 0.32 14.28 0.57 1.57

Crystallites size (nm) 26.41 0.57 14.39 5.19

10 N.A.S. Muzaidi et al.
Acknowledgement

Author would like to thank Faculty of Bioengineering and

Technology, UMK for providing instrumentation facility.

Funding

This study was funded by UMK PRO (Grant No. R/PRO/
A1300/01501A/002/2020/00759).

Appendix A. See Figs. A1–A9.

See Tables A1–A3.

References

Adam, S.A., Ju, X., Zhang, Z., Lin, J., Abd El-Samie, M.M., Xu, C.,

2020. Effect of temperature on the stability and optical properties

of SiO2-water nanofluids for hybrid photovoltaic/thermal applica-

tions. Appl. Therm. Eng. 175, 115394–115405. https://doi.org/

10.1016/j.applthermaleng.2020.115394.

Agarwal, R., Verma, K., Agrawal, N.K., Duchaniya, R.K., Singh, R.,

2016. Synthesis, characterization, thermal conductivity and sensi-

tivity of CuO nanofluids. Appl. Therm. Eng. 102, 1024–1036.

https://doi.org/10.1016/j.applthermaleng.2016.04.051.

Akilu, S., Baheta, A.T., Sharma, K.V., 2017. Experimental measure-

ments of thermal conductivity and viscosity of ethylene glycol-

based hybrid nanofluid with TiO2-CuO/C inclusions. J. Mol. Liq.

246, 396–405. https://doi.org/10.1016/j.molliq.2017.09.017.
Alawi, O.A., Sidik, N.A.C., Xian, H.W., Kean, T.H., Kazi, S.N., 2018.

Thermal conductivity and viscosity models of metallic oxides

nanofluids. Int. J. Heat Mass Transf. 116, 1314–1325. https://doi.

org/10.1016/j.ijheatmasstransfer.2017.09.133.

Al-Badi, A.H., Albadi, M.H., 2012. Domestic solar water heating

system in Oman: Current status and future prospects. Renew. Sust.

Energ. Rev. 16, 5727–5731. https://doi.org/10.1016/j.

rser.2012.06.007.

Almashhori, K., Ali, T.T., Saeed, A., Alwafi, R., Aly, M., Al-Hazmi,

F.E., 2020. Antibacterial and photocatalytic activities of control-

lable (anatase/rutile) mixed phase TiO2 nanophotocatalysts syn-

thesized via a microwave-assisted sol–gel method. New J. Chem. 44

(2), 562–570. https://doi.org/10.1039/c9nj03258d.
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