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Abstract. In this work, a hybrid photocatalyst, PANI-CuFe2O4 was synthesized, characterized 

and used as a photocathode for the photoelectrocatalytic (PEC) reduction of CO2 to methanol 

selectively under 470 nm wavelength light irradiation at applied potential -0.4 V vs NHE. The 

PEC results showed that the combination of PANI with CuFe2O4 could increase the rate of 

PEC CO2 reduction to methanol owing to the increase of CO2 chemisorption at the 

photocathode surface and at the same time by facilitating the separation of photogenerated 

electron-hole (e-/h+) pairs during CO2 reduction. The rate of methanol formation was found 

maximum as 49.2 µmole g-1.h-1 with 73% Faradaic efficiency. The incident photon current 

efficiency (IPCE) and quantum efficiency (QE) for PEC CO2 reduction was achieved as 7.11% 

and 23.9% respectively. The PEC results demonstrated that the bias potential played a 

significant role in the separation of e-/h+ pairs and enhanced the PEC CO2 reduction activity of 

the hybrid photocatalyst.  

1.  Introduction 

Fossil fuels are in limited and they are producing huge amount of CO2 gas during burning process 

which causes the atmospheric pollution and global warming simultaneously. Conversion of CO2 in to 

value added chemicals has attracted the attention  recently from various points of view especially in 

the context global warming, shortage of carbon resources and  shortage of energy [1]. Electrocatalytic 

(EC) reduction of CO2 to fuels and chemicals was very attractive and could effectively reduce the CO2 

concentration. However, it requires higher electrical energy (1.90 V vs NHE for single electron 

reduction) because of high stability of CO2 molecule [2]. Alternatively, once the development of the 

photocatalyst for the conversion of CO2 into valuable fuels by Inoue et al. [3], the  photocatalytic (PC) 

CO2 reduction has got the momentum as it requires solar light or it can use the solar light as the energy 

source [4]. However, the limitation of PC CO2 reduction is the lower availability of electrons at the 

interface due to the only photogenerated electrons at the interface in PC system. Moreover, a 

significant portion of the photogenerated electrons in PC system are reduces because of the 

recombination of  e-/h+ during the reduction period [5, 6]. PEC (combination of PC and EC) reduction 

of CO2 to useful chemical is a subject of considerable interest in recent years because in PEC system 
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both the photogenerated electrons and electrons supplied from the external source can concurrently 

contribute to enhance the CO2 reduction activity. Moreover, the electrons from the external source can 

inhibit photogenerated e-/h+ recombination rate [7]. PEC CO2 reduction employing various metal 

oxides and their composites such as CuO foam cathode[8], Cu3Nb2O8 [9], FeS2/TiO2[10] have been 

reported as good photocatalyst.  Photocatalysts with higher electron conductivity, good photo-response 

properties along with the low e-/h+ recombination rate are preferential for PEC CO2 reduction [11].  

CuFe2O4 is a low band gap p-type ferrite material and proved to be a photocatalyst for CO2 

reduction [12, 13] and water splitting [14]. But due to the low band gap, the e-/h+ recombination rate in 

CuFe2O4 is high causes the low products yield. CuFe2O4 could be coupled with some other materials 

to create the hetero-junction that eventually increase the lifespan of electrons and holes leading the 

high efficiency of CO2 reduction. Polyaniline (PANI) is reported to be a visible light responsive 

properties polymer possessing CO2 adsorption sites [15]. The incorporation of PANI with CuFe2O4 

may enhance the charge separation by transferring the photogenerated electrons to the N-containing 

functional groups of PANI which could acts as the CO2 reduction site. The superior activity of PEC 

CO2 reduction over PANI-CuFe2O4 photocathode surface could be attributed due to the synergistic 

effect of both constituents.  

2.  Experimental 

CuFe2O4 was produced by Sol-gel method with slight modification followed by our earlier work [12, 

16, 17]  whereas PANI was produced by a conventional method [18]. In brief, during CuFe2O4 

synthesis the major precursors Cu(NO3)2.3H2O and Fe(NO3)3.9H2O were taken in stoichiometric ratio 

1:2 in a 500 mL beaker and then 300 mL distilled (DI) water was added to the precursor with 

continuous stirring for 3h followed by adding 6g of agar and 60 mL of HNO3. After that, the mixture 

was heated at 80 °C in ultrasonic bath until a green gel was formed. The gel was dried overnight in 

oven at 120 °C and then grinded to powder. Finally, the grinded powder was calcined at 800 °C in a 

muffle furnace with the heating rate at 10 °C/min for 7h. The brown calcined powder was grinded to 

fine powder and stored as CuFe2O4. For the synthesis of PANI, 10 mL of monomer, aniline, was 

dissolved in 250 mL of 1 M HCl solution in a 500 mL beaker (kept in ice bath) with constant stirring. 

Then, 1.50 g of (NH4)4S2O8 (ammonium persulfate) was added to the mixture drop wise to avoid the 

secondary reaction during polymerization reaction. After that, the whole mixture was kept with 

constant stirring to complete the polymerization reaction for 24 h. At this stage, a green precipitate 

was formed which was separated by centrifugation. The green precipitated was dried in oven at 120 °C 

for 24 h and grinded as powder and stored as PANI.  For the preparation of 5% PANI-CuFe2O4, 15mg 

of PANI was dissolved in 200 mL ethanol (95%) followed by the addition of 285 mg of CuFe2O4. The 

resulted suspension was ultrasonicated at 80 °C for 6h and thereafter it was calcined at 220 °C for 2h. 

The as-prepared catalysts were characterized by XRD (Rigaku MiniFlex2), TEM (transmission 

electron microscope) (Phillips Technai G220) and with UV-visible spectroscopy (UV 2600, Shimadzu 

spectrophotometer).  

The photochemical activity was carried out with the help of linear sweep voltammetry (LSV) and 

chronoamprometry in a double chamber PEC cell reactor (separated by nafion-117 membrane) in 

0.1M NaHCO3 solution under 470 nm wavelength light irradiation. The photoelectrochemical 

reduction of CO2 was carried out followed  by our earlier work [12] in where the as-prepared 

electrodes (acted as photocathode) and Ag/AgCl electrode were used as working electrode and 

reference electrode respectively. The working electrode and reference electrode were placed in the 

cathode chamber of the PEC Cell reactor in where the reference electrode was placed very close to the 

working electrode with the help of luggin capillary. The 10% Pt/C electrode was used as counter 

electrode and was placed in anode chamber of the PEC cell reactor. Potentiostat (Autolab Compact 

PGSTAT 204, Netherland) was connected with the PEC cell and used for potential supply. Before CO2 

reduction analysis, both chamber of the PEC cell reactor was poured with 0.1M NaHCO3 (~120 mL 

for each chamber) solution and then the electrolyte in cathode chamber was saturated with CO2 

(99.99%) for 45 minute. After that, photoelectrochemical reduction of CO2 was carried under 470 nm 
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wavelength light irradiation at -0.4 V vs NHE applied potential for 4 h. The liquid product during PEC 

CO2 reduction was collected at different time interval and was analyzed by GC-FID. 

 

2.1.  Characterization of the synthesized catalysts 

To find out the lattice plane and the crystal size of CuFe2O4 in PANI-CuFe2O4, XRD was carried out in 

the range of 2Ɵ = 10-70 degree and the result is shown in figure 1a. The characteristics diffraction 

peaks were observed at 2Ɵ = 18.36, 30.02, 35.42, 36.99, 42.95, 55.25, 56.71, 62.48 and 66.34 degree 

for the plane of (111), (220), (311), (222), (400), (422), (333), (440) and (531) for the spinel CuFe2O4 

[19] in PANI-CuFe2O4 (DB card number-9006199). Moreover, the crystal plane of (111), (202) and 

(113) were also observed at 2Ɵ = 38.84, 48.89 and 68.26 degree in PANI-CuFe2O4 for the presence of 

CuO (DB card number-9016105) which may be formed simultaneously with CuFe2O4 during 

calcination process. Among all the peaks, the crystal plane of (311) at 2Ɵ = 35.42 degree was the most 

prominent peaks and the crystal size of CuFe2O4 of that plane was determined using Scherer equation 

[20] which was found as 51.2 nm. The figure 1a inset shows the XRD pattern of PANI in where the 

plane (031), (200) and (132) were found at 2Ɵ = 15.17, 20.78 and 25.30 degree respectively for the 

emeraldine salt  phase of PANI [21]. HR-TEM images of PANI-CuFe2O4 (Fig. 1b) indicate that 

CuFe2O4 nanoparticles were distributed in the PANI surfaces due to the electrostatic attraction 

between CuFe2O4 and PANI leading to the formation of PANI-CuFe2O4 hybrid catalyst [22]. The 

distance between the two adjoining (dhkl) CuFe2O4 nanoparticles in hybrid catalyst was determined and 

was found as 0.25 nm, representing the existence of lattice plane of (311) for the spinel CuFe2O4. 

 

 

 

Figure 1. XRD pattern of hybrid PANI-CuFe2O4 and PANI (inset) and (b) HR-TEM image of PANI-CuFe2O4. 

 

2.2.  Photoelectrochemical activity of the synthesized catalysts 

Current density-potential behaviour of the as-prepared photocatalyts under dark and light on condition   

(both N2 and CO2 saturated) was determined through the LSV (Figure 2a and 2b). From figure 2a, it is 

found that small amount of cathodic current was produced for all electrodes which may be associated 

with the water-proton reduction reaction [23]. 
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Figure 2. LSV of CuFe2O4, PANI and PANI-CuFe2O4 in (a) N2 saturated and (b) CO2 saturated 0.1M 

NaHCO3 aqueous solution under 470 nm cut-off filter. 

 

But under light irradiation in CO2 condition the observed cathodic current for each electrode was 

higher than dark condition indicate that the electrodes were strongly affected by light exposure and 

were associated with CO2 reduction. A remarkable cathodic current (9.97 mA/cm2) was observed for 

PANI-CuFe2O4 electrode during light irradiation compared to dark condition (5.97 mA/cm2). During 

light exposure the photogenerated electrons may be produced in the CB of the low band gap CuFe2O4 

semiconductor leaving behind holes (h+) in the VB in CuFe2O4. The photogenerated electrons 

available in CB of CuFe2O4 could transfer to the CB of PANI resulting in higher photocatalytic 

activity for the generation of photocurrent. Under light exposure, the hybrid catalyst PANI-CuFe2O4 

produced almost double cathodic current (9.97 mA/cm2) from CuFe2O4 (5.28 mA/cm2) and three times 

higher than PANI (2.97 mA/cm2) indicating that the synergistic effect was happened when PANI was 

incorporated with CuFe2O4.    
 

  

  
 

Figure 3. Chronoamperometry in CO2 saturated 0.1M NaHCO3 aqueous solution under 470 nm cut-

off filter at an applied potential -0.4 V vs NHE and (b) IPCE action spectrum along with UV-visible 

spectroscopy of PANI-CuFe2O4. 
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The photocurrent generation under light on condition was also measured by chronoamperometry 

experiments (Refer figure 3a). From figure 3a, it is clear that, in presence of light, photogenerated 

currents in PANI-CuFe2O4 hybrid catalyst (42.4µA/cm2) was significantly higher than its individual 

components. The hybrid PANI-CuFe2O4 catalyst can produces almost ten times higher than PANI (4.6 

µA/cm2) and seven times higher than CuFe2O4 (6.3 µA/cm2) photocurrent under light illumination. 

The enhanced IPCE activity for different monochromatic light irradiation (420-730 nm) was estimated 

followed by our earlier work [17] and was found as 7.11 % for 470 nm cut-off filter. The results 

showed that IPCE value initially increased up to 470 nm wavelength light irradiation and then 

decreased and reached minimum value for 730 nm wavelength light irradiation (3.8 %) (Refer figure 

3b) and the result is consistent with the UV-visible results. The IPCE results indicate that the hybrid 

catalyst was able to absorb visible light leading to e-/h+ generation and charge transfer in the 

photocathode electrolyte interface to derive PEC CO2 reduction. The presence of high mobility of 

charge carriers and CO2 capturing material PANI ensure the efficient charge separation and visible 

light harvesting capacity of the hybrid catalyst.  

The EC and PEC CO2 reduction was carried   under 470 nm cut-off filter at -0.4 V vs NHE for 4 h. 

During PC CO2 reduction the cell was disconnects with potentiostat but others condition was 

maintained same like EC and PEC CO2 reduction. The liquid products of the sample of each 

experiment (PC, EC and PEC CO2 reduction) was collected at different time intervals and analyzed in 

where methanol was found as sole product. The rate of formation of methanol during all system was 

initially increased and found maximum at 1h after that the rate was gradually deceased and reached 

steady state almost (Refer figure 4a). The rate of methanol formation for first hour was found as 8.1, 

27.8  and 49.2 µmole g-1.h-1 for PC, EC and PEC CO2 reduction respectively. The quantum 

efficiency(QE) and Faradaic efficiency (FE) for methanol formation during PEC CO2 reduction in 

PANI, CuFe2O4 and the hybrid PANI-CuFe2O4 were calculated and the results is shown in figure 4b. 

The QE and FE results showed that the hybrid PANI-CuFe2O4 catalyst possessed higher efficiency 

(23.9 % and 73% for QE and FE respectively) than its individual components indicate that during PEC 

CO2 reduction both the photogenerated electrons from PC system and external electrons form EC 

system were effectively used for methanol production selectively. 
 

  
 

Figure 4. (a) Methanol formation rate during PEC CO2 reduction in hybrid PANI-CuFe2O4 and (b) 

Quantum efficiency and Faradaic efficiency of methanol formation during PEC CO2 reduction in 

PANI, CuFe2O4 and PANI-CuFe2O4 hybrid catalyst at -0.4 V vs NHE.    

 

3.  Conclusion 

PANI-CuFe2O4 hybrid catalyst has been successfully prepared and characterized. The distribution of 

the CuFe2O4 nanoparticles over PANI matrix is revealed by TEM. PEC CO2 reduction activity results 

demonstrated that the methanol was formed with a high selectivity with 73 % FE. The superior 
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performance of the catalyst can be ascribed to its unique hetero-architectures that can effectively use 

the photogenerated electrons along with external electrons during PEC CO2 reduction.   
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