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Highlights
Desert sand was used as fine aggregate to prepare mortar.

The mechanical properties of desert sand mortar after high temperature were
studied.

The compression constitutive model of desert sand mortar after high
temperature was established.

Abstract
In China, medium sand is widely used for engineering applications. However, over quarrying
of medium sand to meet the demand for urbanization has led to the environmental issue. The
arid area of Northwest China, which has high concentration of desert could provide sufficient
supply of desert sand for engineering applications. In this paper, desert sand was used to
replace medium sand to produce desert sand mortar (DSM). The uniaxial compression test
was performed on the DSM undergoing elevated temperature treatment, and the stress-strain

a a a a a b

Share Cite

Download

https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1474706520304071&orderBeanReset=true
https://www.sciencedirect.com/science/journal/14747065
https://www.sciencedirect.com/science/journal/14747065/121/supp/C
https://doi.org/10.1016/j.pce.2020.102962
https://www.sciencedirect.com/


Previous Next 

curves of the DSM after different temperatures were obtained. The effects of temperature and
desert sand replacement rate (DSR) on the peak stress, peak strain, elastic modulus, Poisson's
ratio, and mass loss rate of DSM was analysed. The test results showed that with the increase
of DSR, the peak stress and elastic modulus of DSM first increased and then decreased. As the
temperature increased, the Poisson's ratio of the DSM decreased first and then increased.
Based on regression analysis, the relationships between peak stress, peak strain, elastic
modulus, Poisson's ratio of DSM, temperature, and DSR were obtained. At the same time, a
one-parameter compression constitutive equation of DSM after the elevated temperature was
established. Since the equation has only one parameter, the calculation process was greatly
simplified based on ensuring the calculation results. The model was in high agreement with
the test results. This equation can provide a reference for further studies in the field of
mechanical properties of DSM and desert sand concrete (DSC) after elevated temperatures.
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1. Introduction
Article II. Sand is one of the most consumed natural resources which is essential for the
preparation of concrete.

Article III. By mixing suitable amount of sand, concrete can achieve the optimal mix ratio
with only small amount of cement. About 50 billion tons of fine aggregates are used every
year, which is more than enough to blanket the entire UK (BBC NEWS). However, the high
demand of sand due to development has cause scarcity of sand forcing some countries to
import sand from other countries. In the current research trend focuses on using industrial
byproduct such as copper slag (Chithra et al., 2016; Vijayaraghavan et al., 2017), blast furnace
slag (Aliabdo et al., 2019; Shen et al., 2019), fly ash (Tuinukuafe et al., 2019; Singh et al., 2019) to
replace sand. China has wide desert area of approximately 1.28 million square kilometers with
80% of the desert are concentrated in the arid zone of northwest China. Therefore, from the
perspective of ecology and cost, it is more beneficial to use desert sand to produce concrete.
Over the year, many studies have been conducted on desert sand. However, those researches
only study on the effect of DSR (Zhang et al., 2019; Che et al., 2019), water to cement ration
(Yan et al., 2019; Liu et al., 2017a), cement to sand ratio (Benabed et al., 2014), high strength
DSC (Yang et al., 2014, 2015), dynamic mechanical properties of DSC (Liu et al., 2017b) and etc.
Luo (Luo et al., 2013) and Al-Harthy (Al-Harthy et al., 2007) still discussed the effects of dune
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sand on the mechanical properties of concrete. Very minimum studies have been conducted
on DSC from the perspective of elevated temperature.

At present, building fires have become one of the most common and easily-caused disasters.
The statistics of building fires in China, as shown in Table 1.

Table 1. The statistics of building fires in China (China Fire Yearbook, 2013, China Fire
Yearbook, 2014, China Fire Yearbook, 2015).

2013 89005 968 526 174.6625 4180544

2014 202299 1962 1448 376.0282 7048557

2015 197427 1720 1259 353.8072 6985867

Building fire accelerates the concrete deterioration through water-fire coupling effort which
reduces the carrying capacity of a structure. In this regard, some researchers (Ren et al., 2015;
Gupta et al., 2017) compared the strength of concrete with natural cooling and water cooling.
Due to different cooling methods, the result indicated that the peak stress after natural
cooling is better than the water cooling. Liu (Liu and Liu, 2018) conducted both microscopic
analysis on specimens with elevated temperature. The result revealed that the modulus of
elasticity of DSC gradually decreases with the increase of temperature, from room
temperature (20 °C) to 500 °C. The optimum modulus of elasticity for DSC was at 40% DSR.
The same result is confirmed by Sun (Sun and Liu, 2018) for both flexural strength and
splitting tensile. Sun (Sun and Liu, 2018) found that as the temperature increase, the concrete
with higher DSR has lower ultrasonic loss and lower porosity rate.

Concrete is composed of aggregate and mortar. During the loading process, if the elastic
modulus and Poisson's ratio of coarse aggregate and mortar are significantly different, it will
lead to inconsistent deformation between them. As a result, the concrete structure is damaged,
and the bearing capacity is reduced. Therefore, in order to study the mechanical properties of
DSC and DSM after elevated temperature, six target temperatures and six substitution rates
were set, the maximum temperature was 700 °C. This paper conducted a uniaxial compression
test on DSM after elevated temperature, and obtained the stress-strain curve. Through
experiments, the peak stress, elastic modulus, peak strain and Poisson's ratio of DSM after
elevated temperature were analysed. The relationship between temperature, DSR and peak
stress, elastic modulus, peak strain and Poisson's ratio were fitted, respectively. A constitutive
equation suitable for this study is obtained. Using desert sand as fine aggregate to prepare
DSM and DSC is conducive to reducing project cost, alleviating the pressure of shortage of
sand resources, improving urban desertification, and optimizing the ecological environment.
Therefore, it is very necessary to study the application of desert sand in practical engineering.

Years Occurrences Deaths Injuries Direct loss/million ¥ Burned building/m2



2. Materials and method

2.1. Materials and mix ratio

Article IV. The medium sand and desert sand were used to produce DSM. Medium sand was
taken from the artificial washing sand from the quarrying industry in Ningxia. Desert sand
was taken from Mu Us desert. The physical and mechanical properties of medium sand and
desert sand were tabulated in Table 2.

Table 2. Physical and mechanical properties of fine aggregate.

The chemical components of fine aggregate are shown in Table 3. Comparing with the article
(Che et al., 2019), the desert sand all was derived from Mu Us Desert, however, the content of
FeO, CaO, and MgO in desert sand is quite different. It was thought that this difference may
be caused by the location and depth of sand extraction. In the test, the cement was 42.5 R
ordinary Portland cement. Fly ash was the Class Ⅰ fly ash, which was produced by a local power
plant in Ningxia. The water content was 0.2%, and the burning loss was 2.8%. The
superplasticizer was a polycarboxylic acid superplasticizer with high performance. The mix
proportion of DSM are shown in Table 4.

Table 3. Chemical components of fine aggregate.

Medium sand 86.55 0.98 9.74 0.96 1.09 – – –

Desert sand 82.66 1.85 8.72 2.00 1.51 0.07 0.12 2.8

Medium

sand

4.8 32.8 51.2 70.0 85.6 95.3 2.38 1.57 2.64

Desert

sand

___ ___ 0 0.04 2.4 22.3 0.29 1.4 2.62

Type of

test

sand

Corresponding cumulative sieve percentage for different

sieve sizes/%

Fineness

modulus/%

Bulk

density/g·cm3

Appare

Density

4.75 mm 2.36 mm 1.18 mm 0.6 mm 0.3 mm 0.15 mm

Type of test sand Component/%

SiO2 FeO Al O2 3 CaO MgO Na O2 K O2 Loss on ignition



Table 4. Mix proportion of DSM.

0 10 285 570 69 1278 0

20 285 570 69 1023 255

40 285 570 69 767 512

60 285 570 69 512 767

80 285 570 69 255 1023

100 285 570 69 0 1278

2.2. Physical properties of freshly mixed DSM

Article V. The physical properties of various fresh DSM were tested following the Standard for
Test Methods of Basic Performance of Building Mortar (JCJ/T 70–2009) (Shanxi Provincial Academy
of Building Sciences, 2009). In Table 5, with the increase of DSR, the immersion and
stratification of DSM gradually decreased. The apparent density increases from 0 to 40% first,
then reduces from 40% to 100%. Since the fineness modulus of desert sand is only 0.292,
compared with ordinary mortar (0%), as the replacement rate increases, the water demand is
greater. Therefore, in the case of constant water consumption, the degree of immersion
decreases. As shown in Table 5, the maximum difference in DSM stratification is 6 mm. Using
desert sand instead of medium sand can effectively improve the compactness of DSM.
However, when the replacement rate exceeded 40%, the gradation and uniformity of DSM
were reduced, resulting in a decrease in the apparent density of DSM.

Table 5. Physical properties of DSM.

Immersion/cm 9.9 9.3 8.5 7.8 7.4 7.1

Stratification/cm 1.3 1.1 1.0 0.9 0.8 0.7

Apparent density/kg.m 2230 2276 2295 2246 2187 2168

DSR/% Fly ash Dosage/% Mixing ratio per unit volume of concrete/kg.m ³−

water cement fly ash medium sand desert sand

Indicator name DSR-0% DSR-20% DSR-40% DSR-60% DSR-80% DSR-100%

−3



2.3. Elevated temperature test

In this paper, the size of the test specimens were prisms of 40 mm × 40 mm × 160 mm.
Considering six DSR and six temperatures, six test specimens were prepared at the same
temperature in each DSR, a total 216 test specimens were required. The preparation of the
DSM mixture was carried out following the Standard for Test Methods of Basic Performance of
Building Mortar (JCJ/T 70–2009) (Shanxi Provincial Academy of Building Sciences, 2009). After
the specimens were made for 24 h, the specimens were demolded and placed in a standard
curing room for 28 days. Subsequently, the test specimens were oven dried at a constant
temperature of 50 °C for 24 h, and then subjected to an elevated temperature test.

When performing elevated temperature tests, there were often differences in the setting of the
maximum temperature value. The highest temperature was 600 °C (Pliya et al., 2019), 700 °C
(Kim and Gyu-Phil, 2015), and some were more than 700 °C (Qiu, 2019; Kienzler et al., 2014;
Fernández et al., 2017). Since the fineness modulus of sand is very small, the use of desert sand
instead of medium sand improves the compactness and water retention of DSM. When the
temperature was too high, the DSM was prone to burst, which may damage the test
equipment. By referring to past literatures (Gupta et al., 2017; Liu and Liu, 2018), the target
temperature was 100 °C, 200 °C, 300 °C, 500 °C, 700 °C. The heating equipment was CSL-26-17
elevated temperature furnace, and the heating rate was 10 °C/min. As shown in Fig. 1, after
heating to the target temperature, the constant temperature is maintained for 3 h. The DSM
samples were then removed from the high-temperature furnace, and the DSM samples were
cooled to room temperature by natural cooling. After three days, the mass of the DSM
specimens was measured, while the mechanical properties were tested.

Download : Download high-res image (160KB) Download : Download full-size image

Fig. 1. Heating and cooling curve.

2.4. Uniaxial compression test

Article VI. The uniaxial compression test of the prism was carried out by using CMT5305
electronic universal testing machine, and the loading was controlled by displacement with a
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loading rate of 0.006 mm/s. The longitudinal and transverse strain gauges were affixed to the
front and back sides of the specimen, and the loading diagram was shown in Fig. 2. In order to
make the surfaces of the test piece flush, the surfaces of the test piece needed to be polished
before heating at the elevated temperature. Before the compressive test started, the test piece
needed to be pre-compressed with a compressive strength of about 30%. Three preloads can
effectively reduce the error caused by the unevenness of the loading surface and the pressured
surface.

Download : Download high-res image (169KB) Download : Download full-size image

Fig. 2. Loading setup.

3. Analysis of test results

3.1. Uniaxial compression failure mode

Article VII. Fig. 3 is a typical photograph of DSM with different DSR after uniaxial
compression failure. From Fig. 3, the failure of the DSM was oblique splitting. With the
increase of DSR, the oblique splitting failure angle decreased from 0 to 40% first and then
increased from 40% to 100%. When the DSR was 100%, the damage was close to horizontal
damage. With the increase of the DSR, the denseness of the DSM was improved, and the pore
structure was less. Some researchers conducted XRD (Sugiyama and Tsuji, 2008; Tonelli et al.,
2017), X-ray (Lerouge et al., 2017) to study the internal changes of concrete. Therefore, in the
later tests, similar methods can be used to study the structural damage of the mortar after
elevated temperature.
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Fig. 3. Failure surface of DSM.

3.2. The mass loss rate of DSM after elevated temperature

The mass loss rate of DSM was the ratio of mass change before and after elevated temperature
to the mass before elevated temperature. In Fig. 4, the mass loss rate of DSM gradually
increased with the increasing temperature. According to the literature (Annerel and Taerwe,
2009; Hager, 2013; Sun and Miao, 2012), when the temperature was lower than 300 °C, a large
amount of free and combined water evaporated inside the specimen, and the mass loss rate
increased significantly. At 300 °C–500 °C, the free water and bound water inside the mortar
specimens were basically evaporated, part of the hydrated calcium silicate (C–S–H) was
dehydrated, and a small amount of Ca(OH)  was decomposed, so that the mass loss rate
continued to increase. After the temperature exceeded 500 °C, the Ca(OH)  in the mortar
sample was decomposed, and a large amount of calcium silicate hydrate (C–S–H) was
dehydrated. The mass loss rate after 500 °C was significantly improved compared with the
mass loss rate of 300 °C–500 °C.

2

2
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Fig. 4. Relationship between mass loss rate and temperature.

3.3. Test results of uniaxial compression mechanical properties of DSM

Article VIII. Table 6 shows the test results of uniaxial compression of DSM after elevated
temperature. The peak strain in the table was the corresponding strain value at the peak
stress, which was obtained from the test. The elastic modulus was taken as the secant modulus
at 40% peak stress, and the Poisson's ratio was the ratio of transverse strain to longitudinal
strain in the elastic stage of the stress-strain curve.

Table 6. Test results of DSM under uniaxial compression after elevated temperature.

/MPa room temperature 43.41 45.92 46.91 44.41 42.11 39.84

100 39.93 40.93 42.97 40.37 37.53 35.37

200 50.03 49.33 51.87 48.97 46.57 44.63

300 39.14 41.77 44.60 43.22 42.32 41.38

500 33.67 35.67 37.97 35.41 30.03 31.33

700 20.53 23.65 26.49 25.63 19.82 20.01

/10 room temperature 3.01 2.84 2.92 2.72 2.59 2.57

100 2.81 2.79 2.83 2.71 2.54 2.48

200 2.87 2.83 2.83 2.76 2.67 2.47

300 3.67 3.58 3.52 3.36 3.34 3.34

500 5.25 5.09 4.96 4.57 4.47 4.50

700 6.47 6.11 5.72 5.86 5.85 5.65

/GPa room temperature 26.03 27.74 27.96 27.49 26.33 25.84

100 22.06 23.42 23.69 22.81 21.12 20.5

200 24.87 25.7 26.16 25.54 23.64 23.07

300 14.01 14.66 16.10 15.23 14.69 15.05

Parameter T/°C Test results of different DSR

0% 0% 20% 40% 60% 80% 100%

Peak stress

Peak strain
−3

Elastic Modulus
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500 8.12 8.15 8.71 8.58 7.90 8.12

700 3.25 4.65 5.52 4.87 4.15 4.17

room temperature 0.215 0.210 0.198 0.192 0.185 0.181

100 0.191 0.184 0.182 0.180 0.174 0.172

200 0.183 0.176 0.173 0.171 0.165 0.160

300 0.163 0.158 0.152 0.146 0.142 0.136

500 0.099 0.103 0.108 0.103 0.094 0.098

700 0.176 0175 0.169 0.161 0.145 0.152

3.4. Peak stress of DSM after elevated temperature

3.4.1. Effect of temperature on the peak stress

Article IX. Fig. 5 shows the relationship between the peak stress of DSM and temperature after
elevated temperature. According to Fig. 5, at 100 °C, the peak stress of DSM was lower than
that at room temperature. When the temperature increased to 200 °C, the peak stress was
raised. When the temperature was higher than 200 °C, the peak stresses of DSM decreased
with the rise of temperature. This was because when the temperature reaches 100 °C, a small
amount of C SH(A) was generated in the mortar (Khoury, 1992). This material has a low
specific surface area and has porosity and crystallinity, which accordingly reduced the
adhesive force between the slurry (Khoury, 1992). As a result, the peak stress was reduced. At
200 °C, the cohesion between the gel particles in the DSM sample increased due to a large
amount of free water discharged, and the dehydration and hardening of the cement gel
increase the peak stress. As the temperature continued to rise, the cement slurry tended to
shrink, and the fine aggregate continues to expand (Annerel and Taerwe, 2009; Cruz and
Gillen, 1980). There was a massive thermal strain difference between the fine aggregate and
the cement slurry, which weakened the adhesion between them and causes cracks. Meanwhile,
in the range of 500 °C–650 °C, α-type quartz becomes β-type quartz, and its volume increases
(Khoury, 1992; Dong, 2001), which exacerbated the destruction of the internal structure of the
mortar, and made the peak stress of the mortar sharply decrease.

Parameter T/°C Test results of different DSR

0% 0% 20% 40% 60% 80% 100%

Poisson's ratio

2
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Fig. 5. Relationship between the peak stress of DSM and temperature.

Fig. 6 shows the relationship between the relative peak stress of DSM and temperature. It
observed from Fig. 6 that at the range of 100 °C–200 °C, the strength of the DSM about 90%
and 110% of the peak stress at room temperature, respectively. The relative peak stress of
DSM decreased with the increase of temperature.
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Fig. 6. Relationship between relative peak stress of DSM and temperature.

Based on the literature (Popovics, 1973), the fitting relationship between the peak stress of
DSM, temperature, and DSR was established, as shown in the following formula:
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where  is the peak stress of DSM after elevated temperature, .  is the peak
stress of ordinary mortar at room temperature, .  is temperature, °C.  is DSR, %. The
coefficient of determination ( ) of this formula is 0.97, and the fitting degree is good.

3.4.2. Effect of DSR on peak stress

Article X. Fig. 7 reveals the relationship between the peak stress of DSM and the replacement
rate of desert sand after elevated temperature. From Fig. 7, the peak stress of the DSM was
increased first and then decreased with the rise of the DSR after elevated temperature. The
peak stress of the DSM reached the maximum at 40% of the DSR at different temperatures.
The fineness modulus of the desert sand was only 0.292. After adding desert sand to the
mortar, the gradation of the aggregate was improved, and the internal structure was more
uniform and denser, so the strength of the DSM was improved. However, desert sand was the
product of long-term weathering of loose parent rock, and its strength was lower than the
medium sand. For the DSM, when the DSR exceeded the optimal replacement rate, the
strength of the DSM was gradually decreased.

Download : Download high-res image (278KB) Download : Download full-size image

Fig. 7. Relationship between DSR and peak stress.

3.5. Elastic modulus of DSM after elevated temperature

3.5.1. Effect of temperature on the elastic modulus

(1)
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Article XI. After elevated temperature, the relationship between the elastic modulus of DSM
and temperature can be seen from Fig. 8, and the relationship between the relative elastic
modulus of DSM and temperature can be seen from Fig. 9. From Figs. 8 and 9, at 100 °C, the
elastic modulus of the DSM was lower than that at room temperature, which was 80%–90% of
the elastic modulus at room temperature. The elastic modulus reached 90%–95% of the elastic
modulus at room temperature. The elastic modulus decreased sharply at 200 °C–300 °C. When
the temperature exceeded 300 °C, the decrease in elastic modulus was slowed down. At 700 °C,
the elastic modulus was 10%–20% of the elastic modulus at room temperature.

Download : Download high-res image (269KB) Download : Download full-size image

Fig. 8. Relationship between elastic modulus of DSM and temperature.

Download : Download high-res image (248KB) Download : Download full-size image

Fig. 9. Relationship between relative elastic modulus of DSM and temperature.
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The formula of the elastic modulus of DSM, temperature and the DSR after the elevated
temperature was fitted, as follows:

where  is the elastic modulus of DSM after elevated temperature, .  is the elastic
modulus of ordinary mortar at room temperature, . The coefficient of determination ( )
of this formula is greater than 0.967, and the fitting degree is good.

3.5.2. Impact of DSR on elastic modulus

Article XII. Fig. 10 reveals the relationship between the elastic modulus of DSM and the
replacement rate of desert sand after elevated temperature. From Fig. 10, the elastic modulus
of the DSM increased first and then decreased with the increase of the replacement rate of the
desert sand after elevated temperature. The elastic modulus of the DSM reached the
maximum when the DSR was 40%.

Download : Download high-res image (252KB) Download : Download full-size image

Fig. 10. Relationship between DSR and elastic modulus.

3.6. Peak strain of DSM after elevated temperature

3.6.1. Effect of temperature on peak strain

Article XIII. After elevated temperature, the relationship between the peak strain and
temperature of DSM under uniaxial compression can be seen in Fig. 11, and the relationship
between the relative peak strain and temperature of DSM can be seen in Fig. 12. In Figs. 11
and 12, when the temperature was lower than 200 °C, the peak strain of DSM did not change

(2)
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much. When the temperature was higher than 200 °C, the peak strain of DSM showed a linear
increasing trend. This is because when the temperature was less than 200 °C, the fine
aggregate and the slurry polymer are in a slightly expanded state, and the expansion rate was
similar. The compactness inside the DSM was equivalent to that at room temperature, and the
peak strain was basically unchanged. When the temperature exceeded 200 °C, the fine
aggregate continued to expand. At the same time, the slurry polymer volume shrunk sharply,
which caused the mortar interior to become porous and loose (Yang et al., 2015), and the peak
strain increased significantly.
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Fig. 11. Relationship between the peak strain of DSM and temperature.
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Fig. 12. Relationship between the relative peak strain of DSM and temperature.
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The relationship between the peak strain of DSM, temperature and the replacement rate of
desert sand after the elevated temperature was fitted, as follows,

where is the peak strain of DSM after elevated temperature, . is the peak strain
of ordinary mortar at room temperature, . The coefficient of determination ( ) of this
formula is 0.972, and the fitting degree is good.

3.6.2. Effect of DSR on peak strain

Article XIV. Fig. 13 reveals that the relationship between the peak strain of DSM and the
replacement rate of desert sand after elevated temperature. It can be known from Fig. 13 that
the peak strain of the DSM gradually decreased with the increase of the DSR after elevated
temperature.

Download : Download high-res image (243KB) Download : Download full-size image

Fig. 13. Relationship between DSR and peak strain.

3.7. Poisson's ratio of DSM after elevated temperature

3.7.1. Influence of temperature on Poisson's ratio

Article XV. The relationship between Poisson's ratio of DSM and temperature are shown in
Fig. 14. The relationship between the relative Poisson's ratio of DSM and temperature can be
found in Fig. 15. By referring to Figs. 14 and 15, when the temperature was lower than 500 °C,
the Poisson's ratio decreased with increasing temperature. After 500 °C, the Poisson's ratio of
DSM dropped to a minimum, which was 45%–55% of Poisson's ratio at room temperature.
After 500 °C, the Poisson's ratio gradually increases as the temperature continues to increase.
After 700 °C, Poisson's ratio of DSM reaches about 80% at room temperature.

(3)
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Fig. 14. Relationship between Poisson's ratio of DSM and temperature.
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Fig. 15. Relationship between relative Poisson's ratio of DSM and temperature.

The relationship between Poisson's ratio of DSM, temperature and DSR after elevated
temperature was fitted as follows:

where  is Poisson's ratio of DSM after the elevated temperature; is Poisson's ratio of
ordinary mortar at room temperature. The coefficient of determination ( ) of this formula is
0.976, and the fitting degree is good.

(4)
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3.7.2. Impact of DSR on Poisson's ratio

Fig. 16 shows the relationship between Poisson's ratio of DSM and DSR after elevated
temperature. From Fig. 16, the Poisson's ratio of DSM decreased gradually with the increase
DSR after elevated temperature.
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Fig. 16. Relationship between DSR and Poisson's ratio of DSM.

4. Stress-strain curve of DSM after elevated temperature

4.1. Stress-strain curve of DSM after different temperatures

The uniaxial compressive stress-strain curve of DSM after the elevated temperature is shown
in Fig. 17. From Fig. 17, the uniaxial compression stress-strain curves of DSM were very
similar after different temperatures. When the temperature was lower than 500 °C, there was
no obvious softening stage of the stress-strain curve of DSM, and the damage was relatively
sudden. When the temperature was higher than 700 °C, the stress-strain curve has the visible
softening stage.
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Fig. 17. Stress-strain curve of DSM after elevated temperature.

4.2. Stress-strain curves of DSM at different DSRs
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Fig. 18 shows the uniaxial compressive stress-strain curve of DSM under different DSR. It can
be seen from Fig. 18 that with the increase of the DSR, the plastic deformation of the DSM
under uniaxial compression gradually decreased, which indicated that the deformation
modulus gradually decreases. When the DSM was brittle, the destruction of it was more
sudden. Under different DSR, the stress-strain curves of DSM were roughly the same with
temperature changes, and the curve shows a trend which is steep in the beginning and plateau
at the ends.
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Fig. 18. Stress-strain curve of DSM with different DSR.

4.3. Stress-strain constitutive equation under uniaxial compression

There were many constitutive equations on the stress-strain relationship of concrete under
elevated temperatures at home and abroad. In this paper, the constitutive equation (Popovics,
1973) established by Sandor Popovics is selected, which is relatively simple and can be used for
mortar and concrete. The parameter n in the constitutive equation can be obtained by fitting.
The expression was as follows:

where and are stress and strain respectively, and are peak stress and peak strain,
respectively,  is a function of temperature (T) and DSR (S), obtained by fitting:

Comparing the stress-strain curve obtained by formula (5) with the stress-strain curve
obtained by the experiment, as shown in Fig. 19, it was found that the two curves agree well.

(5)

(6)
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Fig. 19. Comparison of test and calculated stress-strain curve.

5. Conclusion
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In this paper, five temperature levels were considered. After elevated temperature, the
compressive strength of DSM was tested, and the effects of elevated temperature and DSR on
the peak stress, elastic modulus, peak strain and Poisson's ratio of DSM were analysed. This
study can provide a reference for the damage assessment of DSC structures after a fire. The
main conclusions are as follows:

As the replacement rate of the desert sand increases, the peak stress and elastic modulus of
DSM increased first and then decreased. When the DSR was 40%, the peak stress and elastic
modulus of DSM reached the maximum value. With the increase of DSR, the peak strain and
Poisson's ratio of the specimens decreased slightly.

With the rise of temperature, Poisson's ratio of the DSM decreases first and then increases. At
500 °C, Poisson's ratio of DSM reached the minimum value. When the temperature was lower
than 200 °C, the peak strain of DSM not changed much. When the temperature was higher
than 200 °C, the peak strain of DSM increased linearly.

With the increase of temperature, the peak stress and elastic modulus of DSM had the same
trend. At 100 °C, the peak stress and elastic modulus of DSM decreased. When the
temperature increased to 200 °C, the peak stress and elastic modulus of DSM increased. After
200 °C, with the increase of temperature, the peak stress and elastic modulus of DSM
gradually decreased.

Considering the effects of temperature and DSR, a single parameter compression constitutive
model of DSM after the elevated temperature was established. This equation can provide a
reference for further studies in the field of mechanical properties of DSM and DSC after
elevated temperatures.

DSR has a greater impact on DSM. Compared with the influence of DSR, the influence of
temperature on mortar is more significant, which can provide reference for the application of
desert sand as fine aggregate in engineering.
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